TEMIC

Semicon ductors

SPARC V7.0

Instruction Set

for Embedded Real time 32-bit Computer

(ERC32)
for SPACE Applications

TEMIC

Semiconductors

SPARC V7.0

Instruction Set

1. Assembly Language Syntax

The notations given in this section are taken from Sun’s SPARC Assembler and are used to describe the suggested
assembly language syntax for the instruction definitions given in Section 6.2.

Understanding the use of type fonts is crucial to understanding the assembly language syntax in the instruction
definitions.Items intypewriter font are literals, to be entered exactly as they appear. Iteitaediinfont are
metasymbols that are to be replaced by numeric or symbolic values when actual assembly language code is written.
For exampleasiwould be replaced by a number in the range of 0 to 255 (the value of the bits in the binary instruction),
or by a symbol that has been bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary instruction. For
exampleregrs2is areg (i.e., register name) whose binary value will end up imgBé&eld of the resulting instruction.

1.1. Register Names

reg
A regis an integer unit register. It can have a value of:

%0 through %31 all integer registers
%g0 through %g7 global registers—same as %0 through %7
%00 through %07 out registers—same as %8 through %15
%I0 through %I7 local registers—same as %16 through %23
%i0 through %i7 in registers—same as %24 through %31

Subscripts further identify the placement of the operand in the binary instruction as one of the following:
r€g.; —rslfield
reg.» —rs2 field
reg. —rd field

freg

A fregis a floating-point register. It can have a value from %f0 through %f31. Subscripts further identify
the placement of the operand in the binary instruction as one of the following:

freg,; —rs] field

freg,, —rs2 field

fregy —rd field
creg

A cregis a coprocessor register. It can have a value from %c0 through %c31. Subscripts further identify the
placement of the operand in the binary instruction as one of the following:

cregy; —rsl field
cregs» —rs2 field
cregy —rd field

1.2. Special Symbol Names

Certain special symbols need to be written exactly as they appear in the syntax table. Thesetgppeaitén
font, and are preceded by a percent i) . The percent sign is part of the symbol name; it must appear as part
of the literal value.

MATRA MHS 1
Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

The symbol names are:

%psr Processor State Register

%owim Window Invalid Mask register

%tbr Trap Base Register

%y Y register

%fsr Floating-point State Register

%%csr Coprocessor State Register

%fq Floating-point Queue

%cq Coprocessor Queue

%hi Unary operator that extracts high 22 bits of its operand

%lo Unary operator that extracts low 10 bits of its operand
1.3. Values

Some instructions use operands comprising values as follows:
simm13—A signed immediate constant that fits in 13 bits
const22—A constant that fits in 22 bits
asi—An alternate address space identifier (0 to 255)

1.4. Label

A label is a sequence of characters comprised of alphabetic letters (a—z, A—Z (upper and lower case distinct)),
underscore (_), dollar sign ($), period (.), and decimal digits (0-9), but which does not begin with a decimal digit.

Some instructions offer a choice of operands. These are grouped as follows:
regaddr:

reg,s;
reg,s; *treg,

address:

r€ds1

red,s; +regy
reg,; +simml3
reg,s; - Simm13
simm13
simm13+ reg,;

reg_or_imm:

reg rs2
simm13

1.5. Instruction Mnemonics

Figure 1.1 illustrates the mnemonics used to describe the SPARC instruction set. Note that some combinations
possible inFigure 1.1do not correspond to valid instructions (such as store signed or floating-point convert extended
to extended). Refer to the instruction summary on page 6—6 for a list of valid SPARC instructions.

2 MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

Data Transfer

- E -Byte]
Signed Halfword
Unsigned word
L d Double word
LoaD - -
STore -] -]
single Floating-point
Double Coprocessor
atomic SWAP word
Integer Operations
[aNnD | [i
OR normal normal
| xor | | Not | set CC
ADD normal normal
SuB eXtended set CC
- - B Y T
ReaD PSR
WRite WIiM
- - L TBR |
Floating-Point Operations
Integer Integer
Single Single
Fp convert Double TO Double
eXtended eXtended
MOVe
Fp NEGate Single
ABSolute
Control Transfer
Integer CC normal
Branch [Floating-point CC Ifn ”ad |
Coprocessor CC | Anull defay
instruction

normal
Alternate

register
Status Registe
Queue

atomic Load-Store Unsigned Byte

Left
Right

Shift [

Tagged [

Logical
Arithmetic
ADD
SUB] set CC [

MULtiply Step set CC
SETHI

SAVE

RESTORE

normal
Trap oVerflow

ADD

SUBtract

MULtiply

DIVide

SQuare RooT

CoMPare

CoMPare and Exception

Single
Double
eXtended

Fp

JUuMP and Link
RETurn from Trap

CALL
Trap on Integer CC

Figure 1.1. SPARC Instruction Mnemonic Summary

MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

2. Definitions

This section provides a detailed definition for each CY7C601 instruction. Each definition includes: the instruction
operation; suggested assembly language syntax; a description of the salient features, restrictions and trap conditions;
a list of synchronous or floating-point\coprocessor traps which can occur as a consequence of executing the instruction;
and the instruction format and op codes. Instructions are defined in alphabetical order with the instruction mnemonic
shown in large bold type at the top of the page for easy reference. The instruction set summary that precedes the
definitions, fable 1.3, groups the instructions by type.

Table 1.lidentifies the abbreviations and symbols used in the instruction definitions. An example of how some of
the description notations are used is given belokigare 1.2 Register names, labels and other aspects of the syntax
used in these instructions are described in the previous section.

Brackets indicate data located at address specified by contents

. _—) Contents of source register 1
Load data into destination re¢gister rd

Sign-extended immediate 13-bit field of instruction

L D D Load Doujleword I_ D D

Contents of source regjéter 2

1]
Operation : r[rd] «— [r[rs1] + (r[rs2] or sign_extend(simm13))]

rfrd + 1] <f(r[rs1] + (r[rs2] or sign_extend(simm13))) + 4]

Assembler - An example of this instruction would be :
Syntax : ldd [addres} regrg Idd [%g1 + 4], %6
which would add the contents of global register g1 to signeq
immediate value (4) to determine the load address.

The resulting address is used to fetch and load doubleword
data into the destination registers 6 and 7.

Description : The LDD instruction moves a doubleword from memory into a destination register pair
r[rd] and r[rd+1]. The effective memory address is derived by summing the contents of
r[rs1] and either the

Figure 1.2. Instruction Description

Table 1.1. Instruction Description Notations

Symbol Description
a Instruction field that controls instruction annulling during control transfers
AND, OR XOR, etc. AND, OR, XOR, etc operators
asr_reg Any implemented ASR (Ancillary State)
C The icc carry bit
cce The coprocessor condition code field of the CCSR
CONCAT Concatenate
cond Instruction field that selects the condition code test for branches
4 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

Symbol Description
creg Communication Coprocessor Register : can be %ccsr, %ccfr, %ccpr, Y%ccclc
CWP PSR's Current Window Pointer field
disp22 Instruction field that contains the 22-bit sign-extended displacement for brandhes
disp30 Instruction field that contains the 30-bit word displacement for calls
EC PSR's Enable Coprocessor bit
EF PSR's Enable FPU bit
ET PSR's Enable Traps bit
[Instruction field that selects rs2 or sign_extend(simm13) as the second operpnd
icc The integer condition code field of the PSR
imm22 Instruction field that contains the 22-bit constant used by SETHI
n The icc negative bit
not Logical complement operator
nPC next Program Counter
opc Instruction field that specifies the count for Coprocessor-operate instructions
operand2 Either r[rs2] or sign_extend(simm13)
PC Program Counter
pS PSR's previous Supervisor bit
PSR Processor State Register
r[15] A directly addressed register (could be floating-point or coprocessor)
rd Instruction field that specifies the destination register (except for store)
r[rd] Depending on context, the integer register (or its contents) specified by the ingtruc-
tion field, e.g. , rd, rsl, rs2
r[rd]<31> <> are used to specify bit fields of a particular register or I/O signal
[r[rs1] + r[rs2]] The contents of the address specified by r[rs1] + r[rs2]
rsl Instruction field that specifies the source 1 register
rs2 Instruction field that specifies the source 2 register
S PSR's Supervisor bit
shent Instruction field that specifies the count for shift instructions
sign_extend(simm13) Instruction field that contains the 13-bit, sign-extended immediate value
Symbol Description
TBR Trap Base Register
tt TBR's trap type field
uf Floating-point exception : underflow
MATRA MHS 5

Rev. A (10/09/96)

TEMIC

SPARC V7.0 Semiconductors
Symbol Description
v The icc overflow bit
WIM Window Invalid Mask register

Y Y Register

z The icc zero bit

- Subtract

X Multiply

/ Divide
<-- Replaced by

7FFFFFF H Hexadecimal number representation
+ Add
6 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

Table 1.2. Instruction Set Summary

Name Operation Cycles
LDSB(LDSBA*) Load Signed Byte gfrom Alternate Spaceg 2
LDSH(LDSHA*) Load Signed Halfword from Alternate Space 2
LDUB(LDUBA¥*) Load Unsigned Byte (from Alternate Space) 2
LDUH(LDUHA*) Load Unsigned Halfword (from Alternate Space) 2
LD(LDA*) Load Word (from Alternate Space) 2
LDD(LDDA*) Load Doubleword (from Alternate Space) 3
LDF Load Floating Point 2
2 LDDF Load Double Floating Point 3
8 LDFSR Load Floating Point State Register 2
E LDC Load Coprocessor 2
= LDDC Load Double Coprocessor 3
= LDCSR Load Coprocessor State Register 2
g STB(STBA*) Store Byte (into Alternate Space) 3
» STH(STHA*) Store Halfword (into Alternate Space) 3
<= ST(STA*) Store Word (into Alternate Space) 3
g STD(STDA*) Store Doubleword (into Alternate Space) 4
3 STF Store Floating Point 3
._°1 STDF Store Double Floating Point 4
STFSR Store Floating Point State Register 3
STDFQ* Store Double Floating Point éueue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB(LDSTUBA*) | Atomic Load/Store Unsigned Byte (in Alternate Space) 4
SWAP(SWAPA™) Swap r Register with Memory (in Alternate Space) 4
ADD(ADDcc) Add (and modify icc) 1
ADDX(ADDXcc) Add with Carry (and modify icc) 1
TADDcc(TADDccTV) Tagged Add and modify icc (and Trap on overflow) 1
SUB(SUBcc) Subtract and modify icc 1
&£ SUBX(SUBXcc) Subtract with Carry and modify icc 1
7 TSUBcc(TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow) 1
Gl MULScc Multiply Step and modify icc 1
& AND(ANDcc) And (and modify icc) 1
= ANDN(ANDNCcc) And Not (and modify icc) 1
= OR(ORcc) Inclusive Or (and modity icc) 1
g ORN(ORNCcc) Inclusive Or Not (and modify icc) 1
= XOR(XORcc) Exclusive Or (and modify icc) 1
E XNOR(XNORcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHI Set High 22 Bits of r Register 1
SAVE Save caller’s window 1
RESTORE Restore caller’s window 1
Bicc Branch on Integer Condition Codes 1%
- FBicc Branch on Floating Point Condition Codes 1%
—E S CBccc Branch on Coprocessor Condition Codes 1%
£8 [CCALL Call 1%
S& [IMPL Tump and Link S
RETT Return from Trap Dk
Ticc Trap on Integer Condition Codes 1 (4 if Taken)
RDY Read Y Register 1
» | RDPSR* Read Processor State Register 1
2 < RDWIM* Read Window Invalid Mask 1
£ [_RDTBR* Read Trap Base Register 1
%E WRY Write Y Register 1
g g WRPSR* Write Processor State Register 1
®E | WRWIM* Write Window Invalid Mask 1
© |_WRTBR* Write Trap Base Register 1
UNIMP Unimplemented Instruction 1
IFLUSH Instruction Cache Flush 1
apa 3| FPop Floating Point Unit Operations 1 to Launch
~Q O |~ CPop Coprocessor Operations 1 to Launch
* privileged instruction ** assuming delay slot is filled with useful instruction
MATRA MHS 7

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

ADD

Add ADD

Operation: r[rd] =— r[rs1] + (r[rs2] or sign extnd(simm13))
Assembler
Syntax: add regrs1, reg_or_imm, regj
Description: The ADD instruction adds the contents of the register named iatfield ,r[rs1], to either the con-
tents of r[rs2] if the instructionshit equals zero, or to the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The resultis placed in the register specifiedrihfieéd.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000000 rsi i=1 simm13
8 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

ADDcc

ADDcc

Add and modify icc

Operation: r[rd] =— r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd] =0 then 1, else O
v=— (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)
OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
Cc=— (r[rs1]<31> AND operand2<31>)
OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))
Assembler
Syntax: addccregs1, reg_or_imm, reg
Description: ADDcc adds the contents of r[rs1] to either the contents of r[rs2] if the instrudtlmh&quals zero,
or to a 13-bit, sign-extended immediate operancduals one. The result is placed in the register
specified in thed field. In addition, ADDcc modifies all the integer condition codes in the manner
described above.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010000 rsi i=1 simm13
MATRA MHS 9

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

ADDX

Add with Carry

ADDX

Operation: r[rd] =— r[rs1] + (r[rs2] or sign extnd(simm13)) + c

Assembler

Syntax: addx regrs1, reg_or_imm, reg

Description: ADDX adds the contents of r[rs1] to either the contents of r[rs2] if the instrudtisihisquals zero, or
to a 13-bit, sign-extended immediate operanceijuals one. It then adds the PSR’s carrydpito(
that result. The final result is placed in the register specified il tield.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 001000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 001000 rsi i=1 simm13

10 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

ADDXcc

ADDXcc

Add with Carry and modify icc

Operation: r[rd] =— r[rs1l] + operand2 + c, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd] =0 then 1, else O
v=— (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)
OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
Cc=— (r[rs1]<31> AND operand2<31>)
OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))
Assembler
Syntax: addxccregrs1, reg_or_imm, reg
Description: ADDXcc adds the contents of r[rs1] to either the contents of r[rs2] if the instrudtlmhéjuals zero,
or to a 13-bit, sign-extended immediate operanddjuals one. It then adds the PSR’s carrcpio(
that result. The final result is placed in the register specified il fiedd. ADDXcc also modifies
all the integer condition codes in the manner described above.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 011000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 011000 rsi i=1 simm13
MATRA MHS 11

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

AND

And AND

Operation: r[rd] =— r[rs1] AND (r[rs2] or sign extnd(simm13))

Assembler

Syntax: and regs1, reg_or_imm, reg

Description: This instruction does a bitwise logical AND of the contents of register r[rs1] with either the contents
of r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction
(if if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000001 rsi i=1 simm13

12 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

AN DCC And and modify icc AN DCC

Operation: r[rd] =— r[rs1] AND (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd] =0 then 1, else O
v 20
c=20
Assembler
Syntax: andccregsy, reg_or_imm, regy
Description: This instruction does a bitwise logical AND of the contents of register r[rs1] with either the contents
of r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction
(if if bit field i=1). The result is stored in register r[rd]. ANDcc also modifies all the integer condition
codes in the manner described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010001 rs1 i=1 simm13
MATRA MHS 13

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

ANDN And Not

Operation: r[rd] =— r[rs1] AND (r[rs2] or sign extnd(simm13))
Assembler
Syntax: andn regysy, reg_or_imm, reg

Description: ANDN does a bitwise logical AND of the contents of register r[rs1] with the logical compliment (not)
of either r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate value contained in the

instruction (if if bit field i=1). The result is stored in register r[rd].

ANDN

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000101 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000101 rsi i=1 simm13

14 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

AN DNCC And Not and modify icc AN DNCC

Operation: r[rd] =— r[rs1] AND (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd] =0 then 1, else O
v 20
c=20
Assembler
Syntax: andnccregrs1, reg_or_imm, reg
Description: ANDNCcc does a bitwise logical AND of the contents of register r[rs1] with the logical compliment
(not) of either r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the
instruction (if bit field i=1). The result is stored in register r[rd]. ANDNcc also modifies all the inte-
ger condition codes in the manner described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010101 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010101 rs1 i=1 simm13
MATRA MHS 15

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

B|CC Integer Conditional Branch B|CC

Operation: PC=— nPC
If condition true then nP@— PC + (sign extnd(disp22) x 4)
else nPGe— nPC + 4

Assembler

Syntax: ba{,a} label
bn{,a} label
bne{,a} label synonym: bnz
be{,a} label synonym: bz

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bee{,a} label synonym: bgeu
besq,a} label synonym: blu
bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. If it is
not appended, the a field is automatically reset. “,a” is shown in braces because it is optional.

Description: The Bicc instructions (except for BA and BN) evaluate specific integer condition code combinations
(from the PSR’scc field) based on the branch type as specified by the value in the instructiod’s
field. If the specified combination of condition codes evaluates as true, the branch is taken, causing a
delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the condi-
tion codes evaluate as false, the branch is not taken. Refer to Section NO TAG for additional in-
formation on control transfer instructions.

If the branch is not taken, the annul bit field (a) is checked. Ifa is set, the instruction immediate-
ly following the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If
the annul field is zero, the delay instruction is executed. If the branch is taken, the annul field is
ignored, and the delay instruction is executed. See Section NO TAG regarding delay-branch
instructions.

Branch Never (BN) executes like a NOP, except it obeys the annul field with respect to its delay
instruction.

Branch Always (BA), because it always branches regardless of the condition codes, would nor-
mally ignore the annul field. Instead, it follows the same annul field rules: if a=1, the delay
instruction is annulled; if =0, the delay instruction is executed.

The delay instruction following a Bicc (other than BA) should not be a delayed-control-transfer
instruction. The results of following a Bicc with another delayed control transfer instruction
are implementation-dependent and therefore unpredictable.

Traps: none

16 MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

Mnemonic | Cond. Operation icc Test
BN 0000 | Branch Never No test
BE 0001 | Branch on Equal z
BLE 0010 |Branch on Less or Equal z OR (n XOR V)
BL 0011 | Branch on Less n XOR v
BLEU 0100 [Branch on Less or Equal, Unsigned cORz
BCS 0101 | Branch on Carry Set c
(Less than, Unsigned)
BNEG 0110 | Branch on Negative n
BVS 0111 | Branch on oVerflow Set v
BA 1000 | Branch Always No test
BNE 1001 | Branch on Not Equal not z
BG 1010 | Branch on Greater not(z OR (n XOR v))
BGE 1011 | Branch on Greater or Equal not(n XOR v)
BGU 1100 | Branch on Greater, Unsigned not(c OR z)
BCC 1101 | Branch on Carry Clear not c
(Greater than or Equal, Unsigned)
BPOS 1110 | Branch on Positive not n
BVC 1111 | Branch on oVerflow Clear not v
Format:
3130 29 28 25 24 22 21 0
00|a| cond 010 disp22
MATRA MHS 17

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

CALL

Cal CALL

Operation: r[15]=— PC
PC=— nPC
NPC<— PC + (disp30 x 4)

Assembler

Syntax: call label

Description: The CALL instruction causes a delayed, unconditional, PC-relative control transfer to the address
(PC + 4) + (disp30 x 4). The CALL instruction does not have an annul bit, therefore the delay slot
instruction following the CALL instruction is always executed (See Section NO TAG). CALL first
writes its return address (PC) into thesregister, r[15], and then adds 4 to the PC. The 32-bit dis-
placement which is added to the new PC is formed by appending two low-order zeros to the 30-bit
word displacement contained in the instruction. Consequently, the target address can be anywhere in
the CY7C601’s user or supervisor address space.
If the instruction following a CALL uses register r[15] as a source operand, hardware interlocks
add a one cycle delay.
Programming note: a register-indirect CALL can be constructed using a JMPL instruction with
rd set to 15.

Traps: none

Format:
3130 29 0
01 disp30

18 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

CBCCC Coprocessor Conditional Branch CBCCC

Operation: PC<=— nPC
If condition true then nP@— PC + (sign extnd(disp22) x 4)
else NnPGe— nPC + 4

Assembler

Syntax: cba{,a} label
cbn{,a} label
cb3{,a} label
cb2{,a} label
cb23{,a} label
cbl{,a} label
cbl13{,a} label
cb12{,a} label
cb123{,a} label
cb0{,a} label
cb03{,a} label
cb02{,a} label
cb023{,a} label
cb01{,a} label
cb013{,a} label
cb012{,a} label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. Ifiitis
not appended, the a field is automatically reset. “,a” is shown in braces because it is optional.

Description: The CBccc instructions (except for CBA and CBN) evaluate specific coprocessor condition code
combinations (from the CCC<1:0> inputs) based on the branch type as specified by the value in the
instruction’scondfield. If the specified combination of condition codes evaluates as true, the branch
is taken, causing a delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22)
x 4). If the condition codes evaluate as false, the branch is not taken. See Section NO TAG regarding
control transfer instructions.

If the branch is not taken, the annul bit field (a) is checked. Ifa isset, the instruction immediate-
ly following the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If
the annul field is zero, the delay instruction is executed. If the branch is taken, the annul field is
ignored, and the delay instruction is executed. See Section NO TAG regarding delayed branch-
ing.

Branch Never (CBN) executes like a NOP, except it obeys the annul field with respect to its
delay instruction.

Branch Always (CBA), because it always branches regardless of the condition codes, would nor-
mally ignore the annul field. Instead, it follows the same annul field rules: if a=1, the delay
instruction is annulled; if =0, the delay instruction is executed.

To prevent misapplication of the condition codes, a non-coprocessor instruction must immedi-
ately precede a CBccc instruction.

A CBccc instruction generates a cp_disabled trap (and does not branch or annul) if the PSR’s
EC bit is reset or if no coprocessor is present.

MATRA MHS 19
Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

Traps: cp_disabled
cp_exception

Mnemonic cond. CCC<1:0> test
CBN 0000 Never
CB123 0001 lor2or3
CB12 0010 lor2
CB13 0011 lor3
CB1 0100 1
CB23 0101 20r3
CB2 0110 2
CB3 0111 3
CBA 1000 Always
CB0 1001 0
CB03 1010 Oor3
CB02 1011 Oor2
CB023 1100 Oor2or3
CB01 1101 Oorl
CBO013 1110 Oorlor3
CB012 1111 Oorlor2
Format:
3130 29 28 25 24 22 21 0
00|a cond. 111 disp22
20 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

CPop

Coprocessor Operate

CPop

Operation: Dependent on Coprocessor implementation

Assembler

Syntax: Unspecified

Description: CPopl and CPop2 are the instruction formats for coprocessor operate instructiong3 fidie for

CPoplis 110110; for CPop2 it's 110111. The coprocessor operations themselves are encoded in the
opcfield and are dependent on the coprocessor implementation. Note that this does not include load/
store coprocessor instructions, which fall into the integer unit’s load/store instruction category.

All CPop instructions take all operands from, and return all results to, the coprocessor’s regis-
ters. The data types supported, how the operands are aligned, and whether a CPop generates a

cp_exception trap are Coprocessor dependent.

A CPop instruction causes a cp_disabled trap if the PSR’s EC bit is reset or if no coprocessor is

present.

Traps: cp_disabled
cp_exception

Format:
31 30 29 25 24 19 18 14 13
10 rd 110110 rsi opc rs2
31 30 29 25 24 19 18 14 13
10 rd 110111 rsi opc rs2
MATRA MHS 21

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FABSs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Absolute Value Single FABSS

(FPU Instruction Only)

flrd]s<— f[rs2]s AND 7FFFFFFF H

fabssfregso, fregqg

The FABSs instruction clears the sign bit of the word in f[rs2] and places the resultin f[rd]. It does not
round.

Since rs2 can be either an even or odd register, FABSs can also operate on the high-order words
of double and extended operands, which accomplishes sign bit clear for these data types.

fp_disabled
fp_exception*

3130 29 25 24 19 18 14 13 5 4 0

10 rd 110100 ignored 000001001 rs2

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

22

MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FADDd

Add Double

(FPU Instruction Only)

FADDd

Operation: flrd]d =— f[rs1]d + f[rs2]d

Assembler

Syntax: faddd fregyss, fregs2, fregyq

Description: The FADDd instruction adds the contents of f[rs1] CONCAT f[rs1+1] to the contents of f[rs2] CON-
CAT flrs2+1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd] and
flrd+1].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 rsi 001000010 rs2

MATRA MHS 23

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FADDs Add Single FADDs

(FPU Instruction Only)

Operation: flrd]s = f[rsl]s + f[rs2]s
Assembler
Syntax: fadds fregrs1, fregso, fregg
Description: The FADDs instruction adds the contents of f[rs1] to the contents of f[rs2] as specified by the ANSI/
IEEE 754-1985 standard and places the results in f[rd].
Traps: fp_disabled
fp_exception (of, uf, nv, nx)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001000001 rs2
24 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FADDX

Add Extended

(FPU Instruction Only)

FADDX

Operation: flrd]x <— frs1]x + f[rs2]x

Assembler

Syntax: faddx fregrs1, fregrs2, fregyq

Description: The FADDx instruction adds the contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2] to the con-
tents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the ANSI/IEEE 754-1985 stan-
dard and places the results in frd], fird+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 rsi 001000011 rs2

MATRA MHS 25

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FBfCC Floating-Point Conditional Branch FBfCC

Operation: PC=—nPC
If condition true then nP&— PC + (sign extnd(disp22) x 4)
else nPGe— nPC + 4

Assembler
Syntax: fba{,a} label
fon{,a} label
fou{,a} label
tbg{,a} label
tbug{,a} label
fbl{,a} label
fbul{,a} label
fblg{,a} label
fbne{,a} label synonym: fbnz
fbe{,a} label synonym: fbz
fbue{,a} label
fbge{,a} label
fbuge{,a} label
fble{,a} label
foule{,a} label
fbo{,a} label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. Ifiitis
not appended, the a field is automatically reset. “,a” is shown in braces because it is optional.

Description: The FBfcc instructions (except for FBA and FBN) evaluate specific floating-point condition code
combinations (from the FCC<1:0> inputs) based on the branch type, as specified by the value in the
instruction’scondfield. If the specified combination of condition codes evaluates as true, the branch
is taken, causing a delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22)
x 4). If the condition codes evaluate as false, the branch is not taken. See Section NO TAG for addi-
tional information on control transfer instructions.

If the branch is not taken, the annul bit field (a) is checked. Ifa isset, the instruction immediate-
ly following the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If
the annul field is zero, the delay instruction is executed. If the branch is taken, the annul field is
ignored, and the delay instruction is executed. See Section NO TAG regarding delayed branch
instructions.

Branch Never (FBN) executes like a NOP, except it obeys the annul field with respect to its
delay instruction.

Branch Always (FBA), because it always branches regardless of the condition codes, would nor-
mally ignore the annul field. Instead, it follows the same annul field rules: if a=1, the delay
instruction is annulled; if =0, the delay instruction is executed.

To prevent misapplication of the condition codes, a non—floating-point instruction must im-
mediately precede an FBfcc instruction.

An FBfcc instruction generates an fp_disabled trap (and does not branch or annul) if the PSR’s
EF bit is reset or if no Floating-Point Unit is present.

26 MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

Traps: fp_disabled
fp_exception*
Mnemonic | Cond. Operation fee Test
FBN 0000 | Branch Never no test
FBNE 0001 | Branch on Not Equal UorLor G
FBLG 0010 | Branch on Less or Greater LorG
FBUL 0011 | Branch on Unordered or Less UorL
FBL 0100 | Branch on Less L
FBUG 0101 | Branch on Unordered or Greater Uor G
FBG 0110 | Branch on Greater G
FBU 0111 | Branch on Unordered U
FBA 1000 | Branch Always no test
FBE 1001 | Branch on Equal E
FBUE 1010 | Branch on Unordered or Equal UorE
FBGE 1011 | Branch on Greater or Equal GorE
FBUGE 1100 | Branch on Unordered or Greater or Equal UorGorE
FBLE 1101 | Branch on Less or Equal LorE
FBULE 1110 | Branch on Unordered or Less or Equal UorLorE
FBO 1111 |Branch on Ordered LorGorE
Format:
3130 29 28 25 24 22 21 0
00|a cond. 110 disp22

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS 27
Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FCM Pd Compare Double FCM Pd

(FPU Instruction Only)

Operation: fcc=— f[rs1l]Jd COMPARE f[rs2]d

Assembler

Syntax: fcmpd fregrsi, fregs?

Description: FCMPd subtracts the contents of f[rs2] CONCAT f[rs2+1] from the contents of f[rs1] CONCAT
flrs1+1] following the ANSI/IEEE 754-1985 standard. The result is evaluated, the fEEBits are
set accordingly, and then the result is discarded. The codes are set as follows:

fec relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1], f[rs1+1] and fs2 represents the contents of
f[rs2], f[rs2+1].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one
non—{floating-point instruction must be executed between an FCMP and a subsequent FBfcc
instruction.
FCMPd causes an invalid exception (nv) if either operand is a signaling NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

3130 29 25 24 19 18 14 13 5 4 0
10| ignored | 110101 rsi 001010010 rs2
28 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

FC M P Ed Compare Double and Exception if UnorderedFC M P Ed

(FPU Instruction Only)

Operation: fcc=— f[rs1]Jd COMPARE f[rs2]d
Assembler
Syntax: fcmped fregrs1, fregsz
Description: FCMPEd subtracts the contents of f[rs2] CONCAT f[rs2+1] from the contents of f[rs1] CONCAT
flrs1+1] following the ANSI/IEEE 754-1985 standard. The result is evaluated, the fEEBits are
set accordingly, and then the result is discarded. The codes are set as follows:
fee Relation
0 fs1 = fs2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1], f[rs1+1] and fs2 represents the contents of
f[rs2], f[rs2+1].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one
non—{floating-point instruction must be executed between an FCMP and a subsequent FBfcc
instruction.
FCMPEd causes an invalid exception (nv) if either operand is a signaling or quiet NaN.
Traps: fp_disabled
fp_exception (nv)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10| ignored | 110101 rsi 001010110 rs2
MATRA MHS 29

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FC M P ES Compare Single and Exception if Unordered FC M P ES

(FPU Instruction Only)

Operation: fcc=— flrsl]s COMPARE f[rs2]s
Assembler
Syntax: fcmpes fregrs1, fregss
Description: FCMPEs subtracts the contents of f[rs2] from the contents of f[rs1] following the ANSI/IEEE
754-1985 standard. The result is evaluated, the F&¢ts are set accordingly, and then the result
is discarded. The codes are set as follows:
fcc Relation
0 fs1 = fs2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1] and fs2 represents the contents of f[rs2].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one
non—floating-point instruction must be executed between an FCMP and a subsequent FBfcc
instruction.
FCMPE:s causes an invalid exception (nv) if either operand is a signaling or quiet NaN.
Traps: fp_disabled
fp_exception (nv)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10| ignored | 110101 rsi 001010101 rs2
30 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

FCM PEX Compare Extended and Exception if Unordered FCM P E

X

(FPU Instruction Only)

Operation: fcce— flrs1]x COMPARE f[rs2]x

Assembler

Syntax: fcmpex fregrst, fregs?

Description: FCMPEX subtracts the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] from the contents of
flrs1] CONCAT f[rs1+1] CONCAT f[rs1+2] following the ANSI/IEEE 754-1985 standard. The re-
sult is evaluated, the FSRe& bits are set accordingly, and then the result is discarded. The codes are
set as follows:

fee Relation
0 fs1 = fs2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1], f[rs1+1], f[rs1+2] and fs2 represents the con-
tents of f[rs2], f{rs2+1], f[rs2+2].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one non-
floating-point instruction must be executed between an FCMP and a subsequent FBfcc instruc-
tion.
FCMPEX causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

3130 29 25 24 19 18 14 13 5 4 0
10| ignored | 110101 rst 001010111 rs2
MATRA MHS 31

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FCM PS Compare Single FC M PS

(FPU Instruction Only)

Operation: fcc=— flrsl]s COMPARE f[rs2]s
Assembler
Syntax: fcmps fregrs1, fregsz
Description: FCMPs subtracts the contents of f[rs2] from the contents of f[rs1] following the ANSI/IEEE
754-1985 standard. The result is evaluated, the F&¢ts are set accordingly, and then the result
is discarded. The codes are set as follows:
fcc Relation
0 fs1 = fs2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1] and fs2 represents the contents of f[rs2].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one non-
floating-point instruction must be executed between an FCMP and a subsequent FBfcc instruc-
tion.
FCMPs causes an invalid exception (nv) if either operand is a signaling NaN.
Traps: fp_disabled
fp_exception (nv)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10| ignored | 110101 rsi 001010001 rs2
32 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

FC M PX Compare Extended FC M PX

(FPU Instruction Only)

Operation: fcc=— f[rs1]Jx COMPARE f[rs2]x
Assembler
Syntax: fcmpx fregrsy, fregse
Description: FCMPx subtracts the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] from the contents of
flrs1] CONCAT f[rs1+1] CONCAT f[rs1+2] following the ANSI/IEEE 754-1985 standard. The re-
sult is evaluated, the FSR& bits are set accordingly, and then the result is discarded. The codes are
set as follows:
fce Relation
0 fs1 = fs2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 ? fs2 (unordered)
In this table, fs1 stands for the contents of f[rs1], f[rs1+1], f[rs1+2] and fs2 represents the con-
tents of f[rs2], flrs2+1], f[rs2+2].
Compare instructions are used to set up the floating-point condition codes for a subsequent
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one
non—floating-point instruction must be executed between an FCMP and a subsequent FBfcc
instruction.
FCMPx causes an invalid exception (nv) if either operand is a signaling NaN.
Traps: fp_disabled
fp_exception (nv)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10| ignored [110101 rsi 001010011 rs2
MATRA MHS 33

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FDIVd

Divide Double F D IVd

(FPU Instruction Only)

Operation: f[rd]d =— f[rs1]d / f[rs2]d

Assembler

Syntax: fdivd fregrs1, fregsz, fregy

Description: The FDIVd instruction divides the contents of f[rs1] CONCAT f[rs1+1] by the contents of f[rs2]
CONCAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd]
and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001001110 rs2

34 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FDIVs

Divide Single

(FPU Instruction Only)

FDIVs

Operation: flrd]s = f[rsl]s / f[rs2]s
Assembler
Syntax: fdivs fregsi, fregs2, fregyq
Description: The FDIVs instruction divides the contents of f[rs1] by the contents of f[rs2] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd].
Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)
Format:
3130 29 25 24 19 18 14 13
10 rd 110100 rsi 001001101 rs2
MATRA MHS 35

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FDIVX

Divide Extended F D IVX

(FPU Instruction Only)

Operation: flrd]x <— f[rs1]x / f[rs2]x

Assembler

Syntax: fdivx fregrs1, fregsz, fregy

Description: The FDIVx instruction divides the contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2] by the
contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the ANSI/IEEE 754-1985
standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rs1 001001111 rs2

36 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FATOI

Convert Double to Integer

(FPU Instruction Only)

FATOI

Operation: flrd]i = f[rs2]d

Assembler

Syntax: fdtoi fregso, fregqg

Description: FdTOi converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to a 32-bit, signed in-
teger by rounding toward zero as specified by the ANSI/IEEE 754-1985 standard. The result is
placed in f[rd]. The rounding direction fielRD) of the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 1413
10 rd 110100 ignored 011010010 rs2

MATRA MHS 37

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FATOs

Convert Double to Single FdTOS

(FPU Instruction Only)

Operation: flrd]s =— f[rs2]d
Assembler
Syntax: fdtos fregiso, fregq
Description: FdTOs converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to a single-precision,
floating-point format as specified by the ANSI/IEEE 754-1985 standard. The resultis placed in f[rd].
Rounding is performed according to the rounding direction fiRID) Of the FSR.
Traps: fp_disabled
fp_exception (of, uf, nv, nx)
Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 011000110 rs2
38 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FdTOX Convert Double to Extended FdTOX
(FPU Instruction Only)

Operation: flrd]x <— f[rs2]d

Assembler

Syntax: fdtox fregrso, fregyq

Description: FdTOx converts the floating-point double contents of firs2] CONCAT f[rs2+1] to an extended-preci-
sion, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The resultis placed in
flrd], f[rd+1], and f[rd+2]. Rounding is performed according to the rounding direck@®) &nd
rounding precisionRP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 011001110 rs2

MATRA MHS 39

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FITOd

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Convert Integer to Double F|TOd

(FPU Instruction Only)

flrd]d =— f[rs2]i

fitod fregso, fregqg

FiTOd converts the 32-bit, signed integer contents of f[rs2] to a floating-point, double-precision for-
mat as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+1].

fp_disabled
fp_exception*

3130 29 25 24 19 18 14 13 5 4 0

10 rd 110100 ignored 011001000 rs2

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

40

MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FITOS

Convert Integer to Single

(FPU Instruction Only)

FITOS

Operation: flrd]s =— f[rs2]i

Assembler

Syntax: fitos fregsy, fregy

Description: FiTOs converts the 32-bit, signed integer contents of f[rs2] to a floating-point, single-precision for-
mat as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. Rounding is
performed according to the rounding direction fi&@,

Traps: fp_disabled
fp_exception (nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 011000100 rs2

MATRA MHS 41

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FITOXx

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Convert Integer to Extended F|TOX

(FPU Instruction Only)

flrd]x <— f[rs2]i

fitox fregso, fregqg

FiTOx converts the 32-bit, signed integer contents of f[rs2] to an extended-precision, floating-point
format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd], f[rd+1], and
flrd+2].

fp_disabled
fp_exception*

3130 29 25 24 19 18 14 13 5 4 0

10 rd 110100 ignored 011001100 rs2

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

42

MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

FMOVs Move FMOVs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(FPU Instruction Only)

f[rd]s = f[rs2]s

fmovs fregsy, fregyq

The FMOVs instruction moves the word content of register f[rs2] to the register f[rd]. Multiple
FMQVSs's are required to transfer multiple-precision numbers betivegisters.

fp_disabled
fp_exception*

3130 29 25 24 19 18 14 13 5 4 0

10 rd 110100 ignored 000000001 rs2

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS

43

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

F M U Ld Multiply Double F M U Ld

(FPU Instruction Only)

Operation: flrd]d =— f[rs1]d x f[rs2]d

Assembler

Syntax: fmuld fregsi, fregs2, fregy

Description: The FMULAJ instruction multiplies the contents of firs1] CONCAT f[rs1+1] by the contents of f[rs2]
CONCAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd]
and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001001010 rs2

44 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FMULSs

Multiply Single

(FPU Instruction Only)

FMULSs

Operation: flrd]s = f[rsl]s x ([rs2]s
Assembler
Syntax: fmuls fregs1, fregs2, fregyq
Description: The FMULSs instruction multiplies the contents of f[rs1] by the contents of f[rs2] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd].
Traps: fp_disabled
fp_exception (of, uf, nv, nx)
Format:
3130 29 25 24 19 18 14 13
10 rd 110100 rsi 001001001 rs2
MATRA MHS 45

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FMULX Multiply Extended FMULX

(FPU Instruction Only)

Operation: flrd]x <— f[rs1]x x f[rs2]x

Assembler

Syntax: fmulx fregysy, fregs2, fregyq

Description: The FMULXx instruction multiplies the contents of flrs1] CONCAT f[rs1+1] CONCAT f[rs1+2] by the
contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the ANSI/IEEE 754-1985
standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001001011 rs2

46 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

FNEGs Negate FNEGs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(FPU Instruction Only)

f[rd]s = f[rs2]s XOR 80000000 H

fnegs fregso, fregyq

The FNEGs instruction complements the sign bit of the word in f[rs2] and places the result in f[rd]. It
does not round.

Since this FPop can address both even and odd f registers, FNEGs can also operate on the high-
order words of double and extended operands, which accomplishes sign bit negation for these
data types.

fp_disabled
fp_exception*

3130 29 25 24 19 18 14 13 5 4 0

10 rd 110100 ignored 000000101 rs2

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS

47

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FSQ RTd Square Root Double FSQ RTd

(FPU Instruction Only)

Operation: f[rd]d =— SQRT f[rs2]d

Assembler

Syntax: fsqrtd fregso, fregqg

Description: FSQRTd generates the square root of the floating-point double contents of f[rs2] CONCAT f[rs2+1]
as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+1]. Round-
ing is performed according to the rounding direction fi@B®)(of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 000101010 rs2

48 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FSQRTs

Square Root Single

(FPU Instruction Only)

FSQRTs

Operation: f[rd]s =— SQRT f[rs2]s

Assembler

Syntax: fsqrts fregyso, fregyq

Description: FSQRTs generates the square root of the floating-point single contents of f[rs2] as specified by the
ANSI/IEEE 754-1985 standard. The resultis placed in f[rd]. Rounding is performed according to the
rounding direction fieldRD) of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 000101001 rs2

MATRA MHS 49

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

FSQ RTX Square Root Extended FSQ RTX

(FPU Instruction Only)

Operation: f[rd]x «— SQRT f[rs2]x

Assembler

Syntax: fsqrix fregsz, fregqg

Description: FSQRTx generates the square root of the floating-point extended contents of f[rs2] CONCAT
flrs2+1] CONCAT f[rs2+2] as specified by the ANSI/IEEE 754-1985 standard. The result is placed
in f{rd], f[rd+1], and f[rd+2]. Rounding is performed according to the rounding dired®dh &nd
rounding precisionRP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 000101011 rs2

50 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FsTOd

Convert Single to Double

(FPU Instruction Only)

FsTOd

Operation: flrd]d =— f[rs2]s

Assembler

Syntax: fstod fregrso, fregq

Description: FsTOd converts the floating-point single contents of f[rs2] to a double-precision, floating-point for-
mat as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+1].
Rounding is performed according to the rounding direction fiRD) Of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 011001001 rs2

MATRA MHS 51

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FSTOI

Convert Single to Integer FSTO|

(FPU Instruction Only)

Operation: flrd]i =— f[rs2]s

Assembler

Syntax: fstoi fregrsp, fregyq

Description: FsTOi converts the floating-point single contents of f[rs2] to a 32-bit, signed integer by rounding to-
ward zero as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. The
rounding field RD) of the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 011010001 rs2

52 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

FSTOXx

Convert Single to Extended FSTOX

(FPU Instruction Only)

Operation: flrd]x <=— f[rs2]s

Assembler

Syntax: fstox fregrso, fregyq

Description: FsTOx converts the floating-point single contents of f[rs2] to an extended-precision, floating-point
format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd], f[rd+1], and
frd+2]. Rounding is performed according to the rounding directiRiD) @nd rounding precision
(RP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 011001101 rs2

MATRA MHS 53

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FSU Bd Subtract Double FSU Bd

(FPU Instruction Only)

Operation: flrd]d =— f[rs1]d — f[rs2]d

Assembler

Syntax: fsubd fregs1, fregs?, fregyq

Description: The FSUBdA instruction subtracts the contents of f[rs2] CONCAT f[rs2+1] from the contents of f[rs1]
CONCAT f[rs1+1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd]
and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, nx, nv)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001000110 rs2

54 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FSUBs

Subtract Single

(FPU Instruction Only)

FSUBSs

Operation: flrd]s = f[rsl]s — f[rs2]s
Assembler
Syntax: fsubs fregys1, fregs2, fregy
Description: The FSUBs instruction subtracts the contents of f[rs2] from the contents of f[rs1] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd].
Traps: fp_disabled
fp_exception (of, uf, nx, nv)
Format:
3130 29 25 24 19 18 14 13
10 rd 110100 rsi 001000101 rs2
MATRA MHS 55

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FS U BX Subtract Extended FS U BX

(FPU Instruction Only)

Operation: flrd]x <— f[rs1]x — f[rs2]x

Assembler

Syntax: fsubx fregrs1, fregsz, fregqg

Description: The FSUBX instruction subtracts the contents of firs2] CONCAT f[rs2+1] CONCAT f[rs2+2] from
the contents of firs1] CONCAT f[rs1+1] CONCAT f[rs1+2] as specified by the ANSI/IEEE 754-1985
standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 rsi 001000111 rs2

56 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FxTOd

Convert Extended to Double

(FPU Instruction Only)

FxTOd

Operation: f[rd]d <=— f[rs2]x

Assembler

Syntax: fxtod fregrso, fregyq

Description: FxTOd converts the floating-point extended contents of firs2] CONCAT f[rs2+1] CONCAT f[rs2+2]
to a double-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The
result is placed in f[rd] and f[rd+1]. Rounding is performed according to the rounding diré&dtipn (
field of the FSR.

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 011001011 rs2

MATRA MHS 57

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

FXTOI

Convert Extended to Integer FXTO|

(FPU Instruction Only)

Operation: flrd]i =— f[rs2]x

Assembler

Syntax: fxtoi fregso, fregq

Description: FxTOi converts the floating-point extended contents of firs2] CONCAT f[rs2+1] CONCAT f[rs2+2]
to a 32-bit, signed integer by rounding toward zero as specified by the ANSI/IEEE 754-1985 stan-
dard. The result is placed in f[rd]. The rounding fi&dd) of the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 0
10 rd 110100 ignored 011010011 rs2

58 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

FXTOs

Convert Extended to Single

(FPU Instruction Only)

FXTOs

Operation: flrd]s =— f[rs2]x

Assembler

Syntax: fxtos fregrso, fregyq

Description: FxTOs converts the floating-point extended contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2]
to a single-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The
result is placed in f[rd]. Rounding is performed according to the rounding direR)i¢ld of the
FSR.

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13
10 rd 110100 ignored 011000111 rs2

MATRA MHS 59

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

IFLUSH

Instruction Cache Flush

IFLUSH

Operation: FLUSH-=— [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler

Syntax: iflush address

Description: The IFLUSH instruction causes a word to be flushed from an instruction cache which may be internal
to the processor. The word to be flushed is at the address specified by the contents of r[rs1] plus either
the contents of r[rs2] if the instruction’sit equals zero, or the 13-bit, sign-extended immediate op-
erand contained in the instruction Equals one.
Since there is no internal instruction cache in the current CY7C600 family, the result of execut-
ing an IFLUSH instruction is dependent on the state of the input signal, Instruction Cache
Flush Trap (IFT). If IFT = 1, IFLUSH executes as a NOP, with no side effects. If IFT = 0,
execution of IFLUSH causes an illegal_instruction trap.

Traps: illegal_instruction

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 0| ignored 111011 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 0| ignored 111011 rsi i=1 simm13

60 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

JMPL

Jump and Link J M P I_

Operation: r[rd] «=— PC
PC<— nPC
NPC=— r[rs1] + (r[rs2] or sign extnd(simm13))

Assembler

Syntax: jmpl address, reg

Description: JMPL first provides linkage by saving its return address into the register specifieddrfigie. It
then causes a register-indirect, delayed control transfer to an address specified by the sum of the con-
tents of r[rs1] and either the contents of r[rs2] if the instructionisequals zero, or the 13-bit, sign-
extended immediate operand contained in the instructicejifials one.
If either of the low-order two bits of the jump address is nonzero, a memory ad-
dress_not_aligned trap is generated.
Programming note: A register-indirect CALL can be constructed using a JMPL instruction with
rd set to 15. JMPL can also be used to return from a CALL. In this case, rd is set to 0 and the
return (jump) address would be equal to r[31] + 8.

Traps: memory_address_not_aligned

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 111000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 111000 rsi i=1 simm13

MATRA MHS 61

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LD

Load Word I_ D

Operation: r[rd] <— [r[rs1] + (r[rs2] or sign extnd(simm13))]
Assembler
Syntax: Id [addres} regq
Description: The LD instruction moves a word from memory into the destination register, r[rd]. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.
If LD takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem.
Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.
Traps: memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 1 rd 000000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 1 rd 000000 rsi i=1 simm13
62 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LDA

Load Word from Alternate space LDA

(Privileged Instruction)

Operation: address spaece— asi
r[rd] <— [r[rs1] + r[rs2]]
Assembler
Syntax: Ida [regaddj asi, regq
Description: The LDA instruction moves a word from memory into the destination register, r[rd]. The effective
memory address is a combination of the address space value giverasnfiblel and the address
derived by summing the contents of r[rs1] and r[rs2].
If LDA takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010000 rs1 i=0 asi rs2
MATRA MHS 63

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LDC

Load Coprocessor register

LDC

Operation: c[rd]=— [r[rs1] + (r[rs2] or sign extnd(simm13))]
Assembler
Syntax: Id [addres§ cregyq
Description: The LDC instruction moves a word from memory into a coprocessor register, c[rd]. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.
If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If LDC takes a trap, the state of the coprocessor depends on the particular implementa-
tion.
If the instruction following a coprocessor load uses the load’s c[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.
Traps: cp_disabled
Cp_exception
memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 1 rd 110000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 1 rd 110000 rsi i=1 simm13
64 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

I_ DCS R Load Coprocessor State Register L D CS R

SPARC V7.0

Operation: CSR=— [r[rs1] + (r[rs2] or sign extnd(simm13))]
Assembler
Syntax: Id [addres§ %csr

Description: The LDCSR instruction moves a word from memory into the Coprocessor State Register. The effec-
tive memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if
the instruction’s bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If LDCSR takes a trap, the state of the coprocessor depends on the particular imple-
mentation.

If the instruction following a LDCSR uses the CSR as a source operand, hardware interlocks
add one or more delay cycles to the following instruction depending upon implementation of
the coprocessor.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 110001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 110001 rsi i=1 simm13

MATRA MHS 65

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

LDD

Load Doubleword I_ D D

Operation: r[rd] <— [r[rs1] + (r[rs2] or sign extnd(simm13))]
rfrd + 1]=— [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

Assembler

Syntax: Idd [addres$ regyg

Description: The LDD instruction moves a doubleword from memory into a destination register pair, r[rd] and
r[rd+1]. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’it equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The most significant memory word is always moved into
the even-numbered destination register and the least significant memory word is always moved into
the next odd-numbered register (see discussion in Section NO TAG).
If a data_access_exception trap takes place during the effective address memory access, the
destination registers remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem. For an LDD, this applies to both destination registers.
Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 000011 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 000011 rsi i=1 simm13

66 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LDDA

Load Doubleword from Alternate space LD DA

(Privileged Instruction)

Operation: address spaece— asi
r[rd] <— [r[rs1] + r[rs2]]
r[rd +1]=— [r[rs1] + r[rs2] + 4]

Assembler

Syntax: ldda [regaddi asi, regq

Description: The LDDA instruction moves a doubleword from memory into the destination registers, r[rd] and
r[rd+1]. The effective memory address is a combination of the address space value givesiin the
field and the address derived by summing the contents of r[rs1] and r[rs2]. The most significant
memory word is always moved into the even-numbered destination register and the least significant
memory word is always moved into the next odd-numbered register (see discussion in Section
NO TAG).
If a trap takes place during the effective address memory access, the destination registers re-
main unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem. For an LDDA, this applies to both destination registers.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 010011 rs1 i=0 asi rs2

MATRA MHS 67

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

LDDC

Load Doubleword Coprocessor LDDC

Operation: c[rd J=— [r[rs1] + (r[rs2] or sign extnd(simm13))]
c[rd + 1]=— [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

Assembler

Syntax: ldd [addres§ cregq

Description: The LDDC instruction moves a doubleword from memory into the coprocessor registers, c[rd] and
c[rd+1]. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’it equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The most significant memory word is always moved into
the even-numbered destination register and the least significant memory word is always moved into
the next odd-numbered register (see discussion in Section NO TAG).
If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If LDDC takes a trap, the state of the coprocessor depends on the particular implementa-
tion.
If the instruction following a coprocessor load uses the load’s c[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem and coprocessor implementation. For an LDDC, this applies to both
destination registers.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 1 rd 110011 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 110011 rsi i=1 simm13

68 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

LDDF

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

LDDF

Load Doubleword Floating-Point

f[rd] =— [r[rs1] + (r[rs2] or sign extnd(simm13))]
flrd + 1]=— [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

ldd [addres§ fregyg

The LDDF instruction moves a doubleword from memory into the floating-point registers, f[rd] and
f[rd+1]. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instructionidit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The most significant memory word is always moved into
the even-numbered destination register and the least significant memory word is always moved into
the next odd-numbered register (see discussion in Section NO TAG).

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If a trap takes place during the effective address memory access, the destination
registers remain unchanged.

If the instruction following a floating-point load uses the load’s f[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction depending
upon the memory subsystem. For an LDDE this applies to both destination registers.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

fp_disabled

fp_exception*
memory_address_not_aligned
data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100011 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0
11 rd 100011 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS

69

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LDF

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Load Floating-Point register L D F

f[rd] <— [r[rs1] + (r[rs2] or sign extnd(simm13))]

Id [addres} fregyq

The LDF instruction moves a word from memory into a floating-point register, f[rd]. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.

If the PSR’s EF bit is set to zero or if no Floating-Point Unit is present, an fp_disabled trap will
be generated. If LDF takes a trap, the contents of the destination register remain unchanged.

If the instruction following a floating-point load uses the load’s f[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction depending
upon the memory subsystem.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

fp_disabled

fp_exception*
memory_address_not_aligned
data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100000 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0
11 rd 100000 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

70

MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

I_ D FS R Load Floating-Point State Register L D FS R

Operation: FSR=— [r[rs1] + (r[rs2] or sign extnd(simm13))]
Assembler
Syntax: Id [addres§ %fsr

Description: The LDFSR instruction moves a word from memory into the floating-point state register. The effec-
tive memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if
the instruction’s bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one. This instruction will wait for all pending FPops to complete execution
before it loads the memory word into the FSR.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If LDFSR takes a trap, the contents of the FSR remain unchanged.

If the instruction following a LDFSR uses the FSR as a source operand, hardware interlocks
add one or more cycle delay to the following instruction depending upon the memory subsys-
tem.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 100001 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS 71
Rev. A (10/09/96)

TEMIC

Semiconductors

LDSB Load Signed Byte LDSB

SPARC V7.0

Operation: r[rd] =— sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]
Assembler
Syntax: Idsb [addres$ regyg

Description: The LDSB instruction moves a signed byte from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction’s bit equals zero, or the 13-hit, sign-extended immediate operand contained
in the instruction if equals one. The fetched byte is right-justified and sign-extended in r[rd].

If LDSB takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles to the following instruction depending upon
the memory subsystem.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: data_access_exception

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
11 rd 001001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 001001 rsi i=1 simm13

72 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

I_ DS BA Load Signed Byte from Alternate space L DS BA

(Privileged Instruction)

Operation: address spaece— asi
r[rd] <— sign extnd[r[rs1] + r[rs2]]

Assembler

Syntax: ldsba fegaddi asi, regq

Description: The LDSBA instruction moves a signed byte from memory into the destination register, r[rd]. The
effective memory address is a combination of the address space value giveasiritha and the
address derived by summing the contents of r[rs1] and r[rs2]. The fetched byte is right-justified and
sign-extended in r[rd].
If LDSBA takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 011001 rsi i=0 asi rs2

MATRA MHS 73

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LDSH

Load Signed Halfword LDS H

Operation: r[rd] =— sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler

Syntax: ldsh [addres$ regyg

Description: The LDSH instruction moves a signed halfword from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction’s bit equals zero, or the 13-hit, sign-extended immediate operand contained
in the instruction if equals one. The fetched halfword is right-justified and sign-extended in r[rd].
If LDSH takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.
Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 001010 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 001010 rsi i=1 simm13

74 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LDS HA Load Signed Halfword from Alternate space L DS HA

(Privileged Instruction)

Operation: address spaece— asi
r[rd] <— sign extnd[r[rs1] + r[rs2]]
Assembler
Syntax: ldsha fegaddr] asi, regq
Description: The LDSHA instruction moves a signed halfword from memory into the destination register, r[rd].
The effective memory address is a combination of the address space value givasifiglieand
the address derived by summing the contents of r[rs1] and r[rs2]. The fetched halfword is right-justi-
fied and sign-extended in r[rd].
If LDSHA takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 011010 rs1 i=0 asi rs2
MATRA MHS 75

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

LDSTU B Atomic Load/Store Unsigned Byte L DSTU B

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd] =— zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]
[r[rs1] + (r[rs2] or sign extnd(simm13¥¢— FFFFFFFF H

Idstub pddres$ regy

The LDSTUB instruction moves an unsigned byte from memory into the destination register, r[rd],
and rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions.
In a multiprocessor system, two or more processors executing atomic load/store instructions which
address the same byte simultaneously are guaranteed to execute them serially, in some order.

The effective memory address is derived by summing the contents of r[rs1] and either the con-
tents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended immediate oper-
and contained in the instruction if i equals one. The fetched byte is right-justified and
zero-extended in r[rd].

If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.

If LDSTUB takes a trap, the contents of the memory address remain unchanged.

Programming note: Ifrs] issetto 0 andiis set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd 001101 rs1 i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0

11 rd 001101 rsi i=1 simm13

76

MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LDSTU BA Atomic Load/Store Unsigned Byte LDSTU BA

in Alternate space

(Privileged Instruction)

Operation: address space— asi
r[rd] =— zero extnd[r[rs1] + r[rs2]]
[r[rs1] + r[rs2]]«— FFFFFFFF H
Assembler
Syntax: ldstuba fegagqr] asi, regq
Description: The LDSTUBA instruction moves an unsigned byte from memory into the destination register, r[rd],
and rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions.
In a multiprocessor system, two or more processors executing atomic load/store instructions which
address the same byte simultaneously are guaranteed to execute them in some serial order.
The effective memory address is a combination of the address space value given in the asi field
and the address derived by summing the contents of r[rs1] and r[rs2]. The fetched byte is right-
justified and zero-extended in r[rd].
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.
If LDSTUBA takes a trap, the contents of the memory address remain unchanged.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 011101 rsi i=0 asi rs2
MATRA MHS 77

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LDUB

Load Unsigned Byte L D U B

Operation: r[rd] =— zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler

Syntax: I[dub [addres} regy

Description: The LDUB instruction moves an unsigned byte from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction’s bit equals zero, or the 13-hit, sign-extended immediate operand contained
in the instruction if equals one. The fetched byte is right-justified and zero-extended in r[rd].
If LDUB takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.
Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

Traps: data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 000001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 000001 rsi i=1 simm13

78 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LD U BA Load Unsigned Byte from Alternate space LD U BA

(Privileged Instruction)

Operation: address spaece— asi
r[rd] «— zero extnd[r[rs1] + r[rs2]]
Assembler
Syntax: Iduba fegaqqdr] asi, regrg
Description: The LDUBA instruction moves an unsigned byte from memory into the destination register, r[rd].
The effective memory address is a combination of the address space value givasifiglieand
the address derived by summing the contents of r[rs1] and r[rs2]. The fetched byte is right-justified
and zero-extended in r[rd].
If LDUBA takes a trap, the contents of the destination register remain unchanged.
If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010001 rsi i=0 asi rs2
MATRA MHS 79

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

LDUH

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Load Unsigned Halfword L D U H

r[rd] =— zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

[duh [addres} regy

The LDUH instruction moves an unsigned halfword from memory into the destination register, r[rd].
The effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction’s bit equals zero, or the 13-hit, sign-extended immediate operand contained
in the instruction if equals one. The fetched halfword is right-justified and zero-extended in r[rd].

If LDUH takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.

memory_address_not_aligned
data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd 000010 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0

11 rd 000010 rsi i=1 simm13

80

MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

LD U HA Load Unsigned Halfword from Alternate space LD U HA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(Privileged Instruction)

address spaece— asi
r[rd] «— zero extnd[r[rs1] + r[rs2]]

lduha fegaddi asi, regq

The LDUHA instruction moves an unsigned halfword from memory into the destination register,
r[rd]. The effective memory address is a combination of the address space value givasifietde

and the address derived by summing the contents of r[rs1] and r[rs2]. The fetched halfword is right-
justified and zero-extended in r[rd].

If LDUHA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source operand,
hardware interlocks add one or more delay cycles depending upon the memory subsystem.

illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

3130 29 25 24 19 18 14 13 12 5 4 0

11 rd 010010 rsi i=0 asi rs2

MATRA MHS

81

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

M U LSCC Multiply Step and modify icc M U LSCC

Operation: opl = (n XOR v) CONCAT rrs1]<31:1>

if (Y<O0>=0) op2 = 0, else op2 = r[rs2] or sign extnd(simm13)

r[rd] «— opl + op2

Y <— r[rs1]<0> CONCAT Y<31:1>

n-— r[rd]<31>

z=— if [r[rd]]=0 then 1, else O

V=— ((0p1<31> AND 0p2<31> AND not r[rd]<31>)

OR (not op1<31> AND not op2<31> AND r[rd]<31>))
c=— ((op1<31> AND o0p2<31>)
OR (not r[rd] AND (op1<31> OR 0p2<31>))
Assembler
Syntax: mulscc regs1, reg_or_imm, reg
Description: The multiply step instruction can be used to generate the 64-bit product of two signed or unsigned
words. MULScc works as follows:

1. The “incoming partial product” in r[rs1] is shifted right by one bit and the high-order bit is
replaced by the sign of the previous partial product (n XOR v). This is operandl.

2. If the least significant bit of the multiplier in the Y register equals zero, then operand?2 is set
to zero. If the LSB of the Y register equal one, then operand2 becomes the multiplicand,
which is either the contents of r[rs2] if the instruction i field is zero, or sign extnd(simm13) if
the i field is one. Operand2 is then added to operandl and stored in r[rd] (the outgoing
partial product).

3. The multiplier in the Y register is then shifted right by one bit and its high-order bit is re-
placed by the least significant bit of the incoming partial product in r[rs1].

4. The PSR’s integer condition codes are updated according to the addition performed in step
2.

Traps: none
Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

10 rd 100100 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0

10 rd 100100 rsi i=1 simm13

82 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

OR

Inclusive-Or

OR

Operation: r[rd] =— r[rs1] OR (r[rs2] or sign extnd(simm13))

Assembler

Syntax: or regs1, reg_or_imm, reg

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with either the contents of
r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit
field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4
10 rd 000010 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12
10 rd 000010 rsi i=1 simm13

MATRA MHS 83

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

ORCccC

Inclusive-Or and modify icc O RCC

Operation: r[rd] =— r[rs1] OR (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z=— if [r[rd]]=0 then 1, else O
v=20
c=—20
Assembler
Syntax: orcc regrsi, reg_or_imm, regy
Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with either the contents of
r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit
field i=1). The result is stored in register r[rd]. ORcc also modifies all the integer condition codes in
the manner described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010010 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010010 rsi i=1 simm13
84 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

ORN

Inclusive-Or Not O R N

Operation: r[rd] =— r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13))

Assembler

Syntax: orn regsy, reg_or_imm, reg

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with the one’s complement
of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained
in the instruction (if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000110 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000110 rsi i=1 simm13

MATRA MHS 85

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

ORNCC Inclusive-Or Not and modify icc ORNCC

Operation: r[rd] =— r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z=— if [r[rd]]=0 then 1, else O
v=20
c=20
Assembler
Syntax: orncc regrsy, reg_or_imm, reg
Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with the one’s complement
of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained
in the instruction (if bit field i=1). The result is stored in register r[rd]. ORNcc also modifies all the
integer condition codes in the manner described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010110 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010110 rsi i=1 simm13
86 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

R D P S R Read Processor State Register R D P S R

(Privileged Instruction)

SPARC V7.0

Operation: r[rd] «=— PSR
Assembler
Syntax: rd %psrregry

Description: RDPSR copies the contents of the PSR into the register specifiedrayfigid.

Traps: privileged-instruction (if S=0)
Format:
3130 29 25 24 19 18 0
10 rd 101001 ignored
MATRA MHS 87

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

RDTBR

Read Trap Base Register

(Privileged Instruction)

RDTBR

Operation: r[rd] =— TBR
Assembler
Syntax: rd %tbr,regq
Description: RDTBR copies the contents of the TBR into the register specified logt fledd.
Traps: privileged_instruction (if S=0)
Format:
3130 29 25 24 19 18 0
10 rd 101011 ignored
88 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

R DWI M Read Window Invalid Mask register R DWI M

(Privileged Instruction)

SPARC V7.0

Operation: r[rd] <=— WIM
Assembler
Syntax: rd %wim,regq

Description: RDWIM copies the contents of the WIM register into the register specified log fiatd.

Traps: privileged_instruction (if S=0)
Format:
3130 29 25 24 19 18 0
10 rd 101010 ignored
MATRA MHS 89

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

RDY

Read Y register

RDY

Operation: rfrd] =—Y
Assembler
Syntax: rd %y,regyg
Description: RDY copies the contents of the Y register into the register specified by fileéd.
Traps: none
Format:
3130 29 25 24 19 18 0
10 rd 101000 ignored
90 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

RESTORE

RESTORE

Restore caller’'s window

Operation: ncwp=— CWP + 1
result=— r[rs1] + (r[rs2] or sign extnd(simm13))
CWP=— ncwp
r[rd] =— result
RESTORE does not affect condition codes

Assembler

Syntax: restoreregsy, reg_or_imm, reg

Description: RESTORE adds one to the Current Window Pointer (modulo the number of implemented windows)
and compares this value against the Window Invalid Mask register. If the new window number corre-
sponds to an invalidated window (WIM AND?P= 1), a window_underflow trap is generated. If
the new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of
r[rs1] is added to either the contents of r[rs2] (field bifl) or to the 13-bit, sign-extended immediate
value contained in the instruction (field bit 0). Because the CWP has not been updated yet, r[rs1]
and r[rs2] are read from the currently addressed window (the called window).
The new CWP value is written into the PSR, causing the previous window (the caller’s window)
to become the active window. The result of the addition is now written into the r[rd] register of
the restored window.
Note that arithmetic operations involving the CWP are always done modulo the number of im-
plemented windows (8 for the CY7C601).

Traps: window_underflow

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 111101 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 111101 rsi i=1 simm13

MATRA MHS 91

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

R ETT Return from Trap R ETT

(Privileged Instruction)

Operation: ncwp=— CWP + 1
ET=1
PC=— nPC
NPC=— r[rs1] + (r[rs2] or sign extnd(simm13))
CWP-=— ncwp
S<—pS
Assembler
Syntax: rett address
Description: RETT adds one to the Current Window Pointer (modulo the number of implemented windows) and

compares this value against the Window Invalid Mask register. If the new window number corre-
sponds to an invalidated window (WIM AND?P= 1), a window_underflow trap is generated. If

the new window number is not invalid (i.e., its corresponding WIM bit is reset), then RETT causes a
delayed control transfer to the address derived by adding the contents of r[rs1] to either the contents of
r[rs2] (field biti = 1) or to the 13-bit, sign-extended immediate value contained in the instruction
(field biti = 0).

Before the control transfer takes place, the new CWP value is written into the PSR, causing the

previous window (the one in which the trap was taken) to become the active window. In addi-

tion, the PSR’s ET bit is set to one (traps enabled) and the previous Supervisor bit (pS) is re-

stored to the S field.

Although in theory RETT is a delayed control transfer instruction, in practice, RETT must al-
ways be immediately preceded by a JMPL instruction, creating a delayed control transfer cou-
ple (see Section NO TAG). This has the effect of annulling the delay instruction.

If traps were already enabled before encountering the RETT instruction, an illegal instruction
trap is generated. If traps are not enabled (ET=0) when the RETT is encountered, but (1) the
processor is not in supervisor mode (S=0), or (2) the window underflow condition described
above occurs, or (3) if either of the two low-order bits of the target address are nonzero, then a
reset trap occurs. If a reset trap does occur, the # field of the TBR encodes the trap condition:
privileged_instruction, window_underflow, or memory_address_not_aligned.

Programming note: 'To re-execute the trapping instruction when returning from a trap handler,
use the following sequence:

jmpl %17, %0 ! old PC
rett %18 ! old nPC

Note that the CY7C601saves the PCinr[17] (local 1) and the nPCinr[18] (local2) of the trap window upon entering a trap.

To return to the instruction after the trapping instruction (e.g., when the trapping instruction is
emulated), use the sequence:

jmpl %18, %0 ! old nPC
rett %18 + 4 !l old nPC + 4

92 MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

R ETT Return from Trap R ETT

(Privileged Instruction)

Traps: illegal_instruction
reset (privileged_instruction)
reset (memory_address_not_aligned)
reset (window_underflow)

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
1 O ignored | 111001 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 0| ignored | 111001 rsi i=1 simm13
MATRA MHS 93

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

SAVE

Save caller’'s window SAVE

Operation: ncwp=— CWP - 1
result=— r[rs1] + (r[rs2] or sign extnd(simm13))
CWP==— ncwp
r[rd] =— result
SAVE does not affect condition codes

Assembler

Syntax: saveregsi, reg_or_imm, reg

Description: SAVE subtracts one from the Current Window Pointer (modulo the number of implemented win-
dows) and compares this value against the Window Invalid Mask register. If the new window number
corresponds to an invalidated window (WIM ANDF2P= 1), a window_overflow trap is generated.
If the new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of
r[rs1] is added to either the contents of r[rs2] (field bifl) or to the 13-bit, sign-extended immediate
value contained in the instruction (field bit 0). Because the CWP has not been updated yet, r[rs1]
and r[rs2] are read from the currently addressed window (the calling window).
The new CWP value is written into the PSR, causing the active window to become the previous
window, and the called window to become the active window. The result of the addition is now
written into the r[rd] register of the new window.
Note that arithmetic operations involving the CWP are always done modulo the number of im-
plemented windows (8 for the CY7C601).

Traps: window_overflow

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 111100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 111100 rsi i=1 simm13

94 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

SETHI

Set High 22 bits ofr register S ETH I

Operation: r[rd]<31:10>=— imm22
r[rd]<9:0>=— 0
Assembler
Syntax: sethi const22, regy
sethi %hivalue, reg,q
Description: SETHI zeros the ten least significant bits of the contents of r[rd] and replaces its high-order 22 bits
with imm22 The condition codes are not affected.
Programming note: SETHI 0, %0 is the preferred instruction to use as a NOP, because it will not
increase execution time if it follows a load instruction.
Traps: none
Format:
3130 29 25 24 22 21 0
00 rd 100 imm22
MATRA MHS 95

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

SLL

Shift Left Logical S I_ L

Operation: r[rd] =— r[rs1] SLL by (r[rs2] or shcnt)
Assembler
Syntax: sl regrs1, reg_or_imm, reg
Description: SLL shifts the contents of r[rs1] left by the number of bits specified by the shift count, filling the
vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift
count is zero.
If the i bit field equals zero, the shift count for SLL is the least significant five bits of the contents
of r[rs2]. If the ibit field equals one, the shift count for SLL is the 13-bit, sign extended immedi-
ate value, simm13. In the instruction format and the operation description above, the least sig-
nificant five bits of simm13 is called shcnt.
This instruction does not modify the condition codes.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100101 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100101 rsi i=1 ignored shent
96 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

SRA

Shift Right Arithmetic S RA

Operation: r[rd] =— r[rs1] SRA by (r[rs2] or shcnt)
Assembler
Syntax: sra regs1, reg_or_imm, reg
Description: SRA shifts the contents of r[rs1] right by the humber of bits specified by the shift count, filling the
vacated positions with the MSB of r[rs1]. The shifted results are written into r[rd]. No shift occurs if
the shift count is zero.
If the i bit field equals zero, the shift count for SRA is the least significant five bits of the con-
tents of r[rs2]. If the i bit field equals one, the shift count for SRA is the 13-bit, sign extended
immediate value, simm13. In the instruction format and the operation description above, the
least significant five bits of simm13 is called shcnt.
This instruction does not modify the condition codes.
Programming note: A “Shift Left Arithmetic by 1 (and calculate overflow)” can be implemented
with an ADDcc instruction.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100111 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100111 rsi i=1 ignored shent
MATRA MHS 97

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

SRL

Shift Right Logical S R L

Operation: r[rd] =— r[rs1] SRL by (r[rs2] or shcnt)
Assembler
Syntax: srl regrs1, reg_or_imm, regj
Description: SRL shifts the contents of r[rs1] right by the number of bits specified by the shift count, filling the
vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift
count is zero.
If the i bit field equals zero, the shift count for SRL is the least significant five bits of the con-
tents of r[rs2]. If the i bit field equals one, the shift count for SRL is the 13-bit, sign extended
immediate value, simm13. In the instruction format and the operation description above, the
least significant five bits of simm13 is called shcnt.
This instruction does not modify the condition codes.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100110 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100110 rsi i=1 ignored shent
98 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

ST

Store Word ST

Operation: [r[rs1] + (r[rs2] or sign extnd(simm213)d— r[rd]
Assembler
Syntax: st regy, [addres$
Description: The ST instruction moves a word from the destination register, r[rd], into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.
If ST takes a trap, the contents of the memory address remain unchanged.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.
Traps: memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd ooo0100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 1 rd 000100 rsi i=1 simm13
MATRA MHS 99

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

STA

Store Word into Alternate space STA

(Privileged Instruction)

Operation: address spaee— asi
[r[rs1] + r[rs2]]=— r[rd]
Assembler
Syntax: sta regqq, [regaddi asi
Description: The STA instruction moves a word from the destination register, r[rd], into memory. The effective
memory address is a combination of the address space value giverasnfiblel and the address
derived by summing the contents of r[rs1] and r[rs2].
If STA takes a trap, the contents of the memory address remain unchanged.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010100 rsi i=0 asi rs2
100 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

ST B Store Byte ST B

SPARC V7.0

Operation: [r[rs1] + (r[rs2] or sign extnd(simm213)d— r[rd]
Assembler
Syntax: stb regyy, [addres$

synonyms: stub, stsb

Description: The STB instruction moves the least significant byte from the destination register, r[rd], into
memory. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’dit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniifequals one.

If STB takes a trap, the contents of the memory address remain unchanged.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

Traps: data_access_exception

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
11 rd 000101 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 000101 rsi i=1 simm13

MATRA MHS 101

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

ST BA Store Byte into Alternate space ST BA

(Privileged Instruction)

Operation: address spaee— asi
[r[rs1] + r[rs2]]=— r[rd]

Assembler
Syntax: stbaregyq, [regaddi asi

synonyms: stuba, stsba

Description: The STBA instruction moves the least significant byte from the destination register, r[rd], into
memory. The effective memory address is a combination of the address space value givasi in the
field and the address derived by summing the contents of r[rs1] and r[rs2].

If STBA takes a trap, the contents of the memory address remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:

3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010101 rsi i=0 asi rs2

102 MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

STC

Store Coprocessor register

STC

Operation: [r[rs1] + (r[rs2] or sign extnd(simm1334— c[rd]
Assembler
Syntax: st cregyq, [addres$
Description: The STC instruction moves a word from a coprocessor register, c[rd], into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-hit, sign-extended immediate operand contained in the
instruction ifi equals one.
If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If STC takes a trap, memory remains unchanged.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.
Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4
11 rd 110100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12
1 1 rd 110100 rsi i=1 simm13
MATRA MHS 103

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

STCSR

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13p¥¢4— CSR
Assembler
Syntax: st %csr, §ddres}

Description: The STCSR instruction moves the contents of the Coprocessor State Register into memory. The ef-
fective memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2]
if the instruction’s bit equals zero, or the 13-bit, sign-extended immediate operand contained in the

instruction ifi equals one.

Store Coprocessor State Register

STCSR

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If STCSR takes a trap, the contents of the memory address remain unchanged.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 110101 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 110101 rsi i=1 simm13

104 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

STD

STD

Store Doubleword

Operation: [r[rs1] + (r[rs2] or sign extnd(simm213)d— r[rd]

[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4} r[rd + 1]

Assembler

Syntax: std regyq, [addres}

Description: The STD instruction moves a doubleword from the destination register pair, r[rd] and r[rd+1], into
memory. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instructionidit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The most significant word in the even-numbered destina-
tion register is written into memory at the effective address and the least significant memory word in
the next odd-numbered register is written into memory at the effective address + 4.

If a data_access_exception trap takes place during the effective address memory access,
memory remains unchanged.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
11 rd 000111 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 000111 rsi i=1 simm13

MATRA MHS 105

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

STDA

Store Doubleword into Alternate space ST DA

(Privileged Instruction)

Operation: address spaee— asi
[r[rs1] + (r[rs2] or sign extnd(simm213)4— r[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 44— r[rd + 1]

Assembler

Syntax: stdaregyq, [regaddi asi

Description: The STDA instruction moves a doubleword from the destination register pair, r[rd] and r[rd+1], into
memory. The effective memory address is a combination of the address space value giasi in the
field and the address derived by summing the contents of r[rs1] and r[rs2]. The most significant word
in the even-numbered destination register is written into memory at the effective address and the least
significant memory word in the next odd-numbered register is written into memory at the effective
address + 4.
If a data_access_exception trap takes place during the effective address memory access,
memory remains unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010111 rsi i=0 asi rs2

106 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

STDC

STDC

Store Doubleword Coprocessor

Operation: [r[rs1] + (r[rs2] or sign extnd(simm1334— c[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4} c[rd + 1]

Assembler

Syntax: std cregyq, [addres$

Description: The STDC instruction moves a doubleword from the coprocessor register pair, c[rd] and c[rd+1], into
memory. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instructionidit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniiequals one. The most significant word in the even-numbered destina-
tion register is written into memory at the effective address and the least significant memory word in
the next odd-numbered register is written into memory at the effective address + 4.
If the PSR’s ECbit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If a data_access_exception trap takes place during the effective address memory access,
memory remains unchanged.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 110111 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 1 rd 110111 rs1 i=1 simm13

MATRA MHS 107

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

STDCQ Store Doubleword Coprocessor Queue STDCQ

(Privileged Instruction)

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13)¥— CQ.ADDR
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4}- CQ.INSTR
Assembler
Syntax: std %cq, fdddresp
Description: The STDCAQ instruction moves the front entry of the Coprocessor Queue into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one. The address portion of the queue entry is written into memory at the effec-
tive address and the instruction portion of the entry is written into memory at the effective address + 4.
If the PSR’s ECbit is set to zero or if no coprocessor is present, a cp_disabled trap will be gener-
ated. If a data_access_exception trap takes place during the effective address memory access,
memory remains unchanged.
Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.
Traps: cp_disabled
Cp_exception
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 110110 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 110110 rsi i=1 simm13
108 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

STDF

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

STDF

Store Doubleword Floating-Point

[r[rs1] + (r[rs2] or sign extnd(simm1334— f[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4} f[rd + 1]

std fregyg, [addres$

The STDF instruction moves a doubleword from the floating-point register pair, f[rd] and f[rd+1],
into memory. The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’®it equals zero, or the 13-bit, sign-extended immediate op-
erand contained in the instructiori #quals one. The most significant word in the even-numbered
destination register is written into memory at the effective address and the least significant memory
word in the next odd-numbered register is written into memory at the effective address + 4.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If a trap takes place, memory remains unchanged.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

fp_disabled

fp_exception*
memory_address_not_aligned
data_access_exception

31 .30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100111 rsi i=0 ignored rs2

31 .30 29 25 24 19 18 14 13 12 0
11 rd 100111 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS

109

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

STDFQ Store Doubleword Floating-Point Queue STD FQ

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(Privileged Instruction)

[r[rs1] + (r[rs2] or sign extnd(simm1334— FQ.ADDR
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4}~ FQ.INSTR

std %fq, pddres$

The STDFQ instruction moves the front entry of the floating-point queue into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one. The address portion of the queue entry is written into memory at the effec-
tive address and the instruction portion of the entry is written into memory at the effective address + 4.
If the FPU is in exception mode, the queue is then advanced to the next entry, or it becomes empty (as
indicated by thgnebit in the FSR).

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If a trap takes place, memory remains unchanged.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

fp_disabled

fp_exception*
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100110 rsi i=0 ignored rs2

31 .30 29 25 24 19 18 14 13 12 0
11 rd 100110 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

110

MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

ST F Store Floating-Point register ST F

SPARC V7.0

Operation: [r[rs1] + (r[rs2] or sign extnd(simm1334— f[rd]
Assembler
Syntax: st fregyy, [addres$

Description: The STF instruction moves a word from a floating-point register, f[rd], into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’si bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If STF takes a trap, memory remains unchanged.

Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 100100 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

MATRA MHS 111
Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

ST FSR Store Floating-Point State Register STFSR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

[r[rs1] + (r[rs2] or sign extnd(simm1334— FSR

st %fsr, pddres$

The STFSR instruction moves the contents of the Floating-Point State Register into memory. The
effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction’s bit equals zero, or the 13-hit, sign-extended immediate operand contained
in the instruction if equals one. This instruction will wait for all pending FPops to complete execu-
tion before it writes the FSR into memory.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be
generated. If STFSR takes a trap, the contents of the memory address remain unchanged.

Programming note: 1frsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.

fp_disabled

fp_exception*
memory_address_not_aligned
data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 100101 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0
11 rd 100101 rsi i=1 simm13

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

112

MATRA MHS
Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

STH

Store Halfword ST H

Operation: [r[rs1] + (r[rs2] or sign extnd(simm213)d— r[rd]
Assembler
Syntax: sth regyq, [addres} synonyms: stuh, stsh
Description: The STH instruction moves the least significant halfword from the destination register, r[rd], into
memory. The effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instructionidit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instructioniifequals one.
If STH takes a trap, the contents of the memory address remain unchanged.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be written to without setting up a register.
Traps: memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000110 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000110 rsi i=1 simm13
MATRA MHS 113

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

STHA

Store Halfword into Alternate space STHA

(Privileged Instruction)

Operation: address spaee— asi
[r[rs1] + (r[rs2] or sign extnd(simm213)4— r[rd]
Assembler
Syntax: stharegy, [addres$
synonyms: stuha, stsha
Description: The STHA instruction moves the least significant halfword from the destination register, r[rd], into
memory. The effective memory address is a combination of the address space value givasi in the
field and the address derived by summing the contents of r[rs1] and r[rs2].
If STHA takes a trap, the contents of the memory address remain unchanged.
Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception
Format:
3130 29 25 24 19 18 14 13 12 5 4 0
11 rd 010110 rsi i=0 asi rs2
114 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

SUB

Subtract S U B

Operation: r[rd] =— r[rs1] - (r[rs2] or sign extnd(simm13))

Assembler

Syntax: sub regrs1, reg_or_imm, reg

Description: The SUB instruction subtracts either the contents of the register named#2 tfield, r[rs2], if the
instruction’s i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction ifi equals one, from register r[rs1]. The resultis placed in the register specifieddn the
field.

Traps: none

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd ooo0100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000100 rsi i=1 simm13

MATRA MHS 115

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

S U BCC Subtract and modify icc S U BCC

Operation: r[rd] =— r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z=— if r[rd] =0 then 1, else O
v=— (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND operand2<31> AND r[rd]<31>)
c=— (not rrs1]<31> AND operand2<31>)
OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Assembler

Syntax: subcc regrsi, reg_or_imm, regrd

Description: The SUBcc instruction subtracts either the contents of register r[rs2] (if the instructioib'squals
zero) or the 13-bit, sign-extended immediate operand contained in the instruciioedfifals one)
from register r[rs1]. The resultis placed in register r[rd]. In addition, SUBcc modifies all the integer
condition codes in the manner described above.
Programming note: A SUBcc instruction with rd = 0 can be used for signed and unsigned inte-
ger comparison.

Traps: none

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010100 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010100 rsi i=1 simm13

116 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

SUBX

Subtract with Carry

SUBX

Operation: r[rd] <— r[rs1] - (r[rs2] or sign extnd(simm13)) - c

Assembler

Syntax: subx regrs1, reg_or_imm, reg

Description: SUBX subtracts either the contents of register r[rs2] (if the instructidnsequals zero) or the
13-hit, sign-extended immediate operand contained in the instructioeqgfifals one) from register
r[rs1]. Itthen subtracts the PSR’s carry bjtffom that result. The final result is placed in the register
specified in thed field.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4
10 rd 001100 rsi i=0 ignored rs2
31 .30 29 25 24 19 18 14 13 12
10 rd 001100 rsi i=1 simm13

MATRA MHS 117

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

SUBXcc

Subtract with Carry and modify icc

SUBXcc

Operation: r[rd] =— r[rs1] - operand2 - c, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z=— if r[rd] =0 then 1, else O
v=— (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>)
OR (not r[rs1]<31> AND operand2<31> AND r[rd]<31>)
c=— (not rrs1]<31> AND operand2<31>)
OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))
Assembler
Syntax: subxcc regrs, reg_or_imm, reg
Description: SUBXcc subtracts either the contents of register r[rs2] (if the instruciidmitsequals zero) or the
13-bit, sign-extended immediate operand contained in the instructioeqgiifals one) from register
r[rs1]. Itthen subtracts the PSR’s carry bjtifom that result. The final result is placed in the register
specified in thed field. In addition, SUBXcc modifies all the integer condition codes in the manner
described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 011100 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 011100 rsi i=1 simm13
118 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

SWAP

SWAP

Swapr registerwith memory

Operation: word-=— [r[rs1] + (r[rs2] or sign extnd(simm13))]
temp=— r[rd]
r[rd] <«— word
rfrs1] + (r[rs2] or sign extnd(simm13¥— temp
Assembler
Syntax: swap pourcé, regyq
Description: SWAP atomically exchanges the contents of r[rd] with the contents of a memory location, i.e., with-
out allowing asynchronous trap interruptions. In a multiprocessor system, two or more processors
executing SWAP instructions simultaneously are guaranteed to execute them serially, in some order.
The effective memory address is derived by summing the contents of r[rs1] and either the con-
tents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended immediate oper-
and contained in the instruction if i equals one.
If SWAP takes a trap, the contents of the memory address and the destination register remain
unchanged.
Programming note: Ifrsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes
of an address space can be accessed without setting up a register.
Traps: memory_address_not_aligned
data_access_exception
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
11 rd 001111 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
11 rd 001111 rsi i=1 simm13
MATRA MHS 119

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

SWAPA Swapr registerwith memory in Alternate space SWA PA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(Privileged Instruction)

address spaee— asi
word-e— [r[rs1] + r[rs2]]
temp=— r[rd]

r[rd] <«— word

[r[rs1] + r[rs2]]=— temp

swapa fegsourcé asi, regq

SWAPA atomically exchanges the contents of r[rd] with the contents of a memory location, i.e.,
without allowing asynchronous trap interruptions. In a multiprocessor system, two or more
processors executing SWAPA instructions simultaneously are guaranteed to execute them seri-
ally, in some order.

The effective memory address is a combination of the address space value given in the asi field
and the address derived by summing the contents of r[rs1] and r[rs2].

If SWAPA takes a trap, the contents of the memory address and the destination register remain
unchanged.

illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

3130 29 25 24 19 18 14 13 12 5 4 0

11 rd 011111 rsi i=0 asi rs2

120

MATRA MHS
Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

TADDcc

TADDcc

Tagged Add and modify icc

Operation: r[rd] =— r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd]=0 then 1, else O
v=— (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)
OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0>%£ 0 OR operand2<1:05 0)
c=— (r[rs1]<31> AND operand2<31>
OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))
Assembler
Syntax: taddccregs, reg_or_imm, reg
Description: TADDcc adds the contents of r[rs1] to either the contents of r[rs2] if the instrudtimnézjuals zero,
or to a 13-bit, sign-extended immediate operancduals one. The result is placed in the register
specified in thad field. In addition to the normal arithmetic overflow, an overflow condition also
exists if bit 1 or bit O of either operand is not zero. TADDcc modifies all the integer condition codes in
the manner described above.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100000 rsi i=0 ignored rs2
31 .30 29 25 24 19 18 14 13 12 0
10 rd 100000 rsi i=1 simm13
MATRA MHS 121

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

TAD DCCTV Tagged Add (modify icc) Trap on OverflowTAD DCCTV

Operation: resulte— r[rs1] + operand2, where operand 2 = (r[rs2] or sign extnd(simm13))
tv<— (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)
OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0>% 0 OR operand2<1:0% 0)
if tv = 1, then tag overflow trap; else
n-— r[rd]<31>
z=—if r[rd]=0 then 1, else O
V= tv
c=— (r[rs1]<31> AND operand2<31>
OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))
r[rd] =— result
Assembler
Syntax: taddcctvregrss, reg_or_imm, reg
Description: TADDccTV adds the contents of r[rs1] to either the contents of r[rs2] if the instrudtinih'squals
zero, or to a 13-bit, sign-extended immediate operaretjdials one. In addition to the normal arith-
metic overflow, an overflow condition also exists if bit 1 or bit O of either operand is not zero.
If TADDccTV detects an overflow condition, a tag_overflow trap is generated and the destina-
tion register and condition codes remain unchanged. If no overflow is detected, TADDccTV
places the result in the register specified in the rd field and modifies all the integer condition
codes in the manner described above (the overflow bit is, of course, set to zero).
Traps: tag_overflow
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100010 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 100010 rsi i=1 simm13
122 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

Ticc

Trap on integer condition codes

Ticc

Operation: If condition true, then trap_instruction;
tt=— 128 + [r[rs1] + (r[rs2] or sign extnd(simm13))]<6:0>
else PGe— nPC
NPC<—nPC + 4
Assembler
Syntax: ta{,a} label
tn{,a} label
tne{,a} label synonym: tnz
te{,a} label synonym: tz
tg{,a} label
tle{,a} label
tge{,a} label
tl{,a} label
tgu{,a} label
tleu{,a} label
tec{,a} label synonym: tgeu
tes{,a} label synonym: tlu
tpos{,a} label
tneg{,a} label
tve{,a} label
tvs{,a} label
Description: A Ticc instruction evaluates specific integer condition code combinations (from the R&Risld)
based on the trap type as specified by the value in the instruatimmfield. If the specified com-
bination of condition codes evaluates as true, and there are no higher-priority traps pending, then a
trap_instruction trap is generated. If the condition codes evaluate as false, the trap is not generated.
If a trap_instruction trap is generated, the # field of the Trap Base Register (TBR) is written
with 128 plus the least significant seven bits of r[rs1] plus either r[rs2] (bit field i =0) or the
13-bit sign-extended immediate value contained in the instruction (bit field i =1). See Section
NO TAG for the complete definition of a trap.
Traps: trap_instruction
MATRA MHS 123

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

Ticc

Trap on integer condition codes

Ticc

Mnemonic | Cond. Operation icc Test
TN 0000 |[Trap Never No test
TE 0001 | Trap on Equal z
TLE 0010 | Trap on Less or Equal zOR (n XOR V)
TL 0011 |[Trap on Less n XORv
TLEU 0100 | Trap on Less or Equal, Unsigned cORz
TCS 0101 | Trap on Carry Set (Less then, Unsigned) |[c
TNEG 0110 | Trap on Negative n
TVS 0111 | Trap on oVerflow Set v
TA 1000 | Trap Always No test
TNE 1001 | Trap on Not Equal not z
TG 1010 | Trap on Greater not(z OR (n XOR
v))
TGE 1011 [Trap on Greater or Equal not(n XOR v)
TGU 1100 | Trap on Greater, Unsigned not(c OR z)
TCC 1101 | Trap on Carry Clear (Greater than or not ¢
Equal, Unsigned)
TPOS 1110 |Trap on Positive notn
TVC 1111 |Trap on oVerflow Clear notv
Format:
31 30 29 28 25 24 19 18 14 13 12 5 4 0
1 0fign.|condf 111010 rsi i=0 ignored rs2
31 30 29 28 25 24 19 18 14 13 12 0
1 0]ign.|cond.| 111010 rsi i=1 simm13
ign. = ignored
cond. = condition
124 MATRA MHS

Rev. A (10/09/96)

TEMIC

SPARC V7.0

Semiconductors

TSUBCcC

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

TSUBCcC

r[rd] =— r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n-— r[rd]<31>
z<—if r[rd]=0 then 1, else O
v=— (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>) OR (not r[rs1]<31>
AND operand2<31> AND r[rd]<31>) OR (r[rs1]<1:G% 0 OR operand2<1:03= 0)
c=— (not r[rs1]<31> AND operand2<31>
OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Tagged Subtract and modify icc

tsubccregsy, reg_or_imm, regy

TSUBcc subtracts either the contents of register r[rs2] (if the instructibitequals zero) or the
13-hit, sign-extended immediate operand contained in the instructioeqgfifals one) from register
r[rs1]. The resultis placed in the register specified indfield. In addition to the normal arithmetic
overflow, an overflow condition also exists if bit 1 or bit O of either operand is not zero. TSUBcc
modifies all the integer condition codes in the manner described above.

none
19 18 14 13 12 5 4 0

31 30 29 25 24

10 rd 100001 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0

10 rd 100001 rsi i=1 simm13

MATRA MHS

125

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

TSU BCCTV Tagged Subtract (modify icc) TSU BCCTV

Trap on Overflow

Operation: result=— r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))

tv<— (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>) OR (not r[rs1]<31>
AND operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0>% 0 OR operand2<1:0 0)

if tv = 1, then tag overflow trap; else

n-— r[rd]<31>

z =— if r[rd]=0 then 1, else O

V- tv

c=— (not(r[rs1]<31>) AND operand2<31> OR

(r[rd]<31> AND (not(r[rs1]<31>) OR operand2<31>))

r[rd] <— result

Assembler
Syntax: tsubcctv regs1, reg_or_imm, reg

Description: TSUBCccTV subtracts either the contents of register r[rs2] (if the instructidritsequals zero) or the
13-bit, sign-extended immediate operand contained in the instructiore@fials one) from register
r[rs1]. In addition to the normal arithmetic overflow, an overflow condition also exists if bit 1 or bit O
of either operand is not zero.

If TSUBccTV detects an overflow condition, a tag_overflow trap is generated and the destina-
tion register and condition codes remain unchanged. If no overflow is detected, TSUBccTV
places the result in the register specified in the rd field and modifies all the integer condition
codes in the manner described above (the overflow bit is, of course, set to zero).

Traps: tag_overflow

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 100011 rsi i=0 ignored rs2
31 .30 29 25 24 19 18 14 13 12 0
10 rd 100011 rsi i=1 simm13

126 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

U N I M P Unimplemented instruction U N I M P

SPARC V7.0

Operation: illegal instruction trap

Assembler

Syntax: unimp const22

Description: Executing the UNIMP instruction causes an immediate illegal_instruction trap. The value in the

const22 field is ignored.

Programming note: UNIMP can be used as part of the protocol for calling a function that is ex-
pected to return an aggregate value, such as a C-language structure.

1. An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in
the calling function.

2. If the called function is expecting to return a structure, it will find the size of the structure
that the caller expects to be returned as the const22 operand of the UNIMP instruction. The
called function can check the opcode to make sure it is indeed UNIMP.

3. If the function is not going to return a structure, upon returning, it attempts to execute
UNIMP rather than skipping over it as it should. This causes the program to terminate. The
behavior adds some run-time checking to an interface that cannot be checked properly at
compile time.

Traps: illegal_instruction
Format:
3130 29 25 24 22 21 0
0 0| ignored 000 const2
2
MATRA MHS 127

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

WR P S R Write Processor State Register WR P S R

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(Privileged Instruction)

PSR<=— r[rs1] XOR (r[rs2] or sign extnd(simm13))

W' regdrs1, reg_or_immopsr

WRPSR does a bitwise logical XOR of the contents of register r[rs1] with either the contents of r[rs2]
(if bit field i=0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field
i=1). The result is written into the writable subfields of the PSR. However, if the result's CWP field
would point to an unimplemented window, an illegal_instruction trap is generated and the PSR re-

mains unchanged.

WRPSR is a delayed-write instruction:

1.

If any of the three instructions following a WRPSR uses any PSR field that WRPSR modi-
fied, the value of that field is unpredictable. Note that any instruction which references a
non—global register makes use of the CWP, so following WRPSR with three NOPs would be
the safest course.

If a WRPSR instruction is updating the PSR’s Processor Interrupt Level (PIL) to a new val-
ue and is simultaneously setting Enable Traps (ET) to one, this could result in an interrupt
trap at a level equal to the old PIL value.

If any of the three instructions after a WRPSR instruction reads the modified PSR, the val-
ue read is unpredictable.

If any of the three instructions after a WRPSR is trapped, a subsequent RDPSR in the trap
handler will get the register’s new value.

Programming note: Two WRPSR instructions should be used when enabling traps and changing
the PIL value. The first WRPSR should specify ET=0 with the new PIL value, and the second
should specify ET=1 with the new PIL value.

illegal_instruction
privileged_instruction (if S=0)

31 30 29 25 24 19 18 14 13 12 5 4 0

1

0| ignored | 110001 rsi i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 0

1

0| ignored | 110001 rsi i=1 simm13

128

MATRA MHS
Rev. A (10/09/96)

TEMIC

Semiconductors

WRT B R Write Trap Base Register WRT B R

(Privileged Instruction)

SPARC V7.0

Operation: TBR =— r[rs1] XOR (r[rs2] or sign extnd(simm13))
Assembler
Syntax: Wr regs1, reg_or_imm %tbr

Description: WRTBR does a bitwise logical XOR of the contents of register r[rs1] with either the contents of r[rs2]
(if bit field i=0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field
i=1). The result is written into the Trap Base Address field of the TBR.

WRTBR is a delayed-write instruction:

1. If any of the three instructions following a WRTBR causes a trap, the TBA used may be ei-
ther the old or the new value.

2. If any of the three instructions after a WRTBR is trapped, a subsequent RDTBR in the trap
handler will get the register’s new TBA value.

Traps: privileged_instruction (if S=0)
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 0| ignored | 110011 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 0| ignored | 110011 rsi i=1 simm13
MATRA MHS 129

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

WRWIM

Write Window Invalid Mask register

(Privileged Instruction)

WRWIM

Operation: WIM =— r[rs1] XOR (r[rs2] or sign extnd(simm13))
Assembler
Syntax: Wr regs1, reg_or_imm%wim
Description: WRWIM does a bitwise logical XOR of the contents of register r[rs1] with either the contents of r[rs2]
(if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field
i=1). The result is written into the writable bits of the WIM register.
WRWIM is a delayed-write instruction:
1. If any of the three instructions following a WRWIM is a SAVE, RESTORE, or RETT, the
occurrence of window_overflow and window_underflow is unpredictable.
2. If any of the three instructions after a WRWIM instruction reads the modified WIM, the
value read is unpredictable.
3. Ifany of the three instructions after a WRWIM is trapped, a subsequent RDWIM in the trap
handler will get the register’s new value.
Traps: privileged_instruction (if S=0)
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
1 O ignored | 110010 rs1 i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
1 0| ignored | 110010 rsi i=1 simm13
130 MATRA MHS

Rev. A (10/09/96)

TEMIC

Semiconductors

SPARC V7.0

WRY Write Y register

Operation: Y <— r[rs1] XOR (r[rs2] or sign extnd(simm13))
Assembler
Syntax: Wr regrs1, reg_or_imm %y

Description: WRY does a bitwise logical XOR of the contents of register r[rs1] with either the contents of r[rs2] (if
bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field
i=1). The result is written into the Y register.

WRY is a delayed-write instruction:

WRY

1. If any of the three instructions following a WRY is a MULScc or a RDY, the value of Y used

is unpredictable.

2. If any of the three instructions after a WRY instruction reads the modified Y register, the

value read is unpredictable.

3. If any of the three instructions after a WRY is trapped, a subsequent RDY in the trap han-

dler will get the register’s new value.

Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4
1 0| ignored | 110000 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12
1 0 ignored | 110000 rsi i=1 simm13
MATRA MHS 131

Rev. A (10/09/96)

SPARC V7.0

TEMIC

Semiconductors

X N O R Exclusive-Nor

Operation: r[rd] <— r[rs1] XOR not(r[rs2] or sign extnd(simm13))
Assembler
Syntax: XNOr regys1, reg_or_imm, reg

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with the one’s comple-
ment of either the contents of r[rs2] (if bit field i=0) or the 13-bit sign-extended immediate value

XNOR

contained in the instruction (if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000111 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 000111 rsi i=1 simm13

132 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

XNORCC Exclusive-Nor and modify icc XNORCC

Operation: r[rd] <— r[rs1] XOR not(r[rs2] or sign extnd(simm13))
n <— r[rd]<31>
z «— jfr[rd] =0 then 1, else O
Ve 0
c=— 0
Assembler
Syntax: XNorcc regrs1, reg_or_imm, reg
Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with the one’s comple-
ment of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value
contained in the instruction (if bit field i=1). The resultis stored in register r[rd]. XNORcc also modi-
fies all the integer condition codes in the manner described above.
Traps: none
Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010111 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010111 rsi i=1 simm13
MATRA MHS 133

Rev. A (10/09/96)

SPARC V7.0 TEMIC

Semiconductors

XOR

Exclusive-Or XO R

Operation: r[rd] <«— r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler

Syntax: XOr regrs1, reg_or_imm, reg

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with either the contents
of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if
bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 .30 29 25 24 19 18 14 13 12 5 4 0
10 rd 000011 rs1 i=0 ignored rs2
31 .30 29 25 24 19 18 14 13 12 0
10 rd 000011 rsi i=1 simm13

134 MATRA MHS

Rev. A (10/09/96)

TEMIC SPARC V7.0

Semiconductors

XO RCC Exclusive-Or and modify icc XO RCC

Operation: r[rd] <— r[rs1] XOR (r[rs2] or sign extnd(simm13))
n <— r[rd]<31>
z «— jfr[rd] =0 then 1, else O
Ve 20
c= 0
Assembler
Syntax: XOrcc regs1, reg_or_imm, reg
Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with either the contents
of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if
bit field i=1). The result is stored in register r[rd]. XORcc also modifies all the integer condition
codes in the manner described above.
Traps: none
Format:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 rd 010011 rsi i=0 ignored rs2
31 30 29 25 24 19 18 14 13 12 0
10 rd 010011 rs1 i=1 simm13
MATRA MHS 135

Rev. A (10/09/96)

	Instruction Set
	1. Assembly Language Syntax
	2. Definitions

