TEMIC

Semicon ductors

TSC691E
Integer Unit

User’s Manual

for Embedded Real time 32-bit Computer
(ERC32)
for SPACE Applications

TEMIC TSCB91E

Table of Contents

L INtrodUCHION . . . 1.....
2. TSCBILE OVEIVIBW. . . o ettt e e e e e e e e e e e e 2
2.1. SRRC RISC Standard FUNCHONS...o e e 2.....
2.2. Fault Tolerant andeBt Mechanism Improvements & e 2...
2.3. Presentation of the ERC32 COMPULING COTe ot ti e eeeeeieees 2
2.3 L. CONCE L. . . et 2
2.3.2. Functional DeSCrPtioN. oo 3...
3. Standard IU FUNCLION 4. ...
3. INtrOAUCHION . . o oo e 4
3.2, Description Of Parts.o e 5
3.3. Programming MoOdel. oo e 5
3.3.1. Register AOWS 5.
3.3 L L WINAOWING . . oo oo e 6
3.3.1. 1.1 Parameter PasSing.o vttt it e 7..
3.3.1.1.2. Window Overflow and Underflow. 8.
3.3.1.1.3. Alternate Registerifdow Usage.ttt 9...
3.3.1.2. Special RegiSterS . . . ot 9...
33,2, PrOCESSOr StAlES . . o o o et 11
3.3.3. SUPEIVISOIIUSEr MOUES. . . . o e e e 11. ...
3.3.4. Control/Status RegiStarS.t 1. ...
3.3.4.1. Program Counters (PC and NPC). 11
3.3.4.2. Processor State Register (PSR).o 12
3.3.4.3. Window Invalid Mask Register (WIM) e 14
3.3.4.4. Tap Base Register (TBR).o 14 ...
3.3 4.5 Y ReQISIEr. . . 15
3.3 0. DAt TYPES . . ot 15
3.3.5.1. Data @anization IN ReQIStErS. i e 16. ..
3.3.5.2. Data Organization In MemOrY.o e 17.
3.3.5.3. Extended Precision. 17.. ..
34 INSHIUCHION SeL. . . .o 18
3.4.1. INStrUCtioN FOrMALSt e e 18.
342, AAArESSING . . o ot 20
342, 0. WO REIS T . . o 20
3.4.2.2. Register Plus 13-Bit Immediate 20
3.4.2.3. 13-BitImmediate. 20. ..
B4 2.4, CALL. .o 21
34,2 5. BranCh. . . . 21
B4, 2.6, AL . 22
3.4.3. INSIIUCHON TYPES . . o o ot e e e e e e e e 22
3.4.3. 1. Load/StOre . . . v et 22
B4 3.0 L. ASL. o 22
3.4.3.1.2. Multiprocessing INStruCtioNS.t 23...
3.4.3.2. Arithmetic/Logical/Shift e 24 ..
3.4.3.2. L. Register I[0] . . .ttt e e e 24. ...
MATRA MHS tocl

Rev. G (10/09/96)

TEMIC

TSCO91E emiconductors

3.4.3.2.2, SETHL . . o e 25
3.4.3.2.3. Tagged ArithmetiC e 25. .
3.4.3.3. Control Transfer. 25. ..
3.4.3.3.1. Branching and the Condition Codes.t 26..
3.4.3.3.2. Trap INStrUCHIONS.o 27..
3.4.3.3.3. Callsand RetUINS.ot e 28 ...
3.4.3.4. Delayed Control Transfer.o e 29.
3.4.3.4.1. PCand NP C e 29. ..
3.4.3.4.2. Delay INSITUCLION.ot 29..
34.3.4.3. ANNUI Bt . . o 30.
3.4.3.4.4. Delayed Controkdnsfer Couples e 30..
3.4.3.5. Read/Vite Control REQIStErSt 34..
3.4.3.6. Floating-Point-Operate and Coprocessor-Operate e e e 34
3.4.3.7. MISCEIlAN@OUS o oo 35.
344, OP COUBS . . oottt 35
3.4.4.1. Load/Store INSIrUCIONSttt 35.
3.4.4.2. Arithmetic/Logical/Shift Instructions. 37.
3.4.4.3. Control Transfer INStruCtioNS. e e 39.
3.4.4.4. Read/Vite Control Register INStruCtions.t 41
3.4.4.5. Floating-Point/Coprocessor INStruUCtionSo oottt e 41
3.4.4.6. Miscellaneous INSITUCHIONS.t o it e 42 ..
3.4.4.7. Opcodes In Ascending NUMENC Order oottt e 43
3.5..SIgnal DESCIIPLON. e 51
3.5.1. Memory Subsystem Interface Signals 54
3.5.1.1. A<31:0>—Address Bus (OULPUL).ottt 54. ..
3.5.1.2. APAR—Address Bus Parity (OULPUL)ot 54
3.5.1.3. AOE—Address Output Enable (input). e e 54
3.5.1.4. ASI<7:0>—Address Space Identifier (QUtPUL) 54
3.5.1.5. ASPAR—ASI and SIZE Parity (OUtPUL) 55
3.5.1.6. BHOLD—BUS Hold (INPUL).ot e e e 55..
3.5.1.7. COE—Control Output Enable (input). 55
3.5.1.8. D<31:0>—Data Bus (bidirectional). 55
3.5.1.9.DPAR—Data Bus Parity (bidirectional). e 56
3.5.1.10. DOE—Data Output Enable (input). 56
3.5.1.11. DXFER—Data Transfer (OUtPUL).ot e 56
3.5.1.12. IFT—Instruction Cache Flush Trap (input) e 56
3.5.1.13. INULL—Integer Unit Nullify Cycle (output). e 56
3.5.1.14, LDSTO—Atomic Load—Store (OUtPUL).ottt e e 56
3.5.1.15. LOCK—BUS LOCK (OULPUL). . . . oo e e e e 57. .
3.5.1.16. MAO—Memory Address Output (INPUL)ot e e 57
3.5.1.17. MDS—Memory Data Strobe (input). o 57
3.5.1.18. MEXC—Memory Exception (iNPUL)ot 57.
3.5.1.19.MHOLD(A/B)—Memory Holds (iNpULS)o e YA
3.5.1.20. RD—Read ACCEeSS (OULPUL). . . . vttt et e e e e e e e 57...
3.5.1.21. SIZE<1:0>—Bus Transaction Size (OUIPULS) oottt e e 58
3.5.1.22. WE—Write Enable (OUtPUL).ot 58.
3.5.1.23. WR—Advanced Write (OULPUL).o e e e B8 .
3.5.1.24. IMPAR—IU to MEC Control Parity (OUtpUt)o e 58
3.5.2. Floating-Point/Coprocessor Interface Signals. 58
3.5.2.1. CCC<1:0>—Coprocessor Condition Codes (iINput).ot 58.
3.5.2.2. CCCV—Caoprocessor Condition Codedid/(input) i e 59.
toc2 MATRA MHS

Rev. G (10/09/96)

TEMIC TSCB91E

3.5.2.3. CEXC—Coprocessor Exception (INPUL). oottt e e 59
3.5.2.4. CHOLD—Coprocessor Hold (iNput).ot e 59
3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output). 59
3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output). i 59
3.5.2.7. FP—Coprocessor Unit Present (iNpUL)o 59
3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output). 59
3.5.2.9. FCC<1:0>—Floating-Point Condition Codes (iNput).t e 59
3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input). i 59
3.5.2.11. FEXC—Floating-Point Exception (input). e 60
3.5.2.12. FHOLD—Floating-Point Hold (input). e e e 60
3.5.2.13. FIPAR—FPU to IU Control Parity (INPUL) oot e 60
3.5.2.14. FINS1—Floating-Point Instruction In Buffer 1 (output). 60
3.5.2.15. FINS2—Floating-Point Instruction In Buffer 2 (output). 60
3.5.2.16. FLUSH—Floating-Point/Coprocessor Instruction Flush (output). 60
3.5.2.17. FP—Floating-point Unit Present (INPUL).ottt 60
3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output). it 60
3.5.2.19. INST—Instruction Fetch (OUtpUL) o e e e 61
3.5.2.20. IFPAR—IU to FPU Control Parity (OUtPUL)o e 61
3.5.3. Interrupt and Control SIgNals.o 61.
3.5.3.1. ERROR—ETrror State (OULPUL).ottt e e e 6.1
3.5.3.2. HWERROR—Hardware error (OULPLIL). ottt e e e e e e e e 61
3.5.3.3. FLOW —Enable FLOW Control (input).t e e 61
3.5.3.4. MCERR—Comparison error (OULPUL).ottt e e et 61
3.5.3.5. 601MODE—Normal 601MODE Operation (INPUL).ot e 61
3.5.3.6. CMODE—checker Mode (iNPUL).ot e 61.
3.5.3.7. FPSYN—Floating-point Synonym Mode (iNpL).o e 61
3.5.3.8. INTACK—Interrupt Acknowledge (OULPUL) oottt e 62
3.5.3.9. IRL<3:0>—Interrupt Request Level (input). 62
3.5.3.10. RESET—Integer Unit reset (INPUL).ottt e e e 62
3.5.3.11. TOE—Test Mode Output Enable (input). e 62
3.5.3.12. HALT—HALT (INPUL). . . o ot et et e e e e e e e e e e e e e e 62. ..
3.5.4. AP SIgNaAIS . . . 62
3.5.4.1. TCLK—Test Clock (INPUL)o oot e e 62. .
3.5.4.2. TRST—TEST reSet (INPUL) vttt e e e e e e 62.
3.5.4.3. TMS—Test Mode Select (INPUL)ot e 62
3.5.4.4. TDI—Test Data Input (INPUL).ot 62.
3.5.4.5. TDO—@st Data OULPULo vt e e 63 ...
3.5.5. Power and ClocK Signalsot 63. ...
3.5.5.1. CLK—CIOCK (INPUL). . . ottt e e e e e e e e e e e 63. ..
3.5.5.2. VCCO, VCCI, VCCT—PoWer (INPULS). . .« o o vttt et e e e e e e e e 63
3.5.5.3. VSSO, VSSI, VSST—Ground (INPULS). . . .« vttt e e e e e e 63
3.6. Pipeline and Instruction Execution TIMINGottt 63
B0, L O AR, . . it e 64
3.6.1.1. Internal OpCodEs.o 64...
3.6.2. Multicycle INSIrUCHIONS.ot 65...
3.6.2.1. Register InterloCKS oo 67....
3.6.2.2. BranChing. s 67
3.6.3. PIpelinge Freezes.o 69
BB TS - v v e e ——— 69
3.7. Bus Operation and Timing.ttt e e 69..
3.7.1. InStruction FetCh. e 72
MATRA MHS toc3

Rev. G (10/09/96)

TEMIC

TSCO91E emiconductors

G T 7 X o T T 72
3.7.3. Load with Interlock. 72.
3.7.4. Load Double. e 73
BT D, SHOr. . o 73
3.7.6. Store DoUbBIe. —— 74
3.7.7. AtOMIC LOAO—SIOreo 75.
3.7.8. Floating-Point Operations.ot e e e e e e e OB
3.7.9. BUS Arbitration 77
3.7.10. Load with Cache MiSS. e e e 78. ...
3.7.10. Store with Cache MiSS.t 79....
3.7.12. Load/Store instruction With Trapot e 81.
3.7.13. MemMOry EXCEPLIONS.ttt e e 82..
3.7.14. Floating-Point EXCEPLIONS. oot e 93 .
B 7 LS INEITUPDES. .« . ottt e e 93
3.7.16. ReSet CONitioNt 94
3707, Error Condition.o 94
3.8, EXCeption MOdel oo e 96
B8 RES L . .o ——— 96
3.8.2. SYNCNIONOUS TraPS . . o o vt ettt e e e e e e e e e e e e a6
3.8.2. 1. External Signals.o e e 9. .
3.8.2.2. HArdWAre EITOL. . . . o o ot e e e e e 97 .
3.8.2.3. INStruction acCess eXCePLiON. vt it e 97. ..
3.8.2.4. Data acCess eXCePLiON.o v it 97....
3.8.2.5. Internal/Software. 97. ..
3.8.2.6. lllegal INStrUCtion e 97. ..
3.8.2.7. Privileged iNSIrUCLION. 97..
3.8.2.8. Fpdisabled. 97
3.8.2.9. Cpdisabled e 97
3.8.2.10. WINdOW OVEIflOW. oo 98....
3.8.2. L. Window underflow 98...
3.8.2.12. Memory address not aligned. 98...
3.8.2.13. Tag OVErfloW. 98 .
3.8.2. 14, Trap INStIUCHON oo e e e e 98...
3.8.3. Interrupts (ASYNChIONOUS TrapS) . « . v v v vt vttt ettt e e e et e e e e e 99.
B8 3 L. PNy, e 99
3.8.3.2. RESPONSEMIE . . . o ottt e 100.
3.8.3.2.1. Instruction Response Time on conditional branch instruction (CBI). 101
3.8.3.3.Interrupt ACKnowledge. e 101.
3.8.4. Floating-Point/CoproCeSSOr Traps. v v vt ettt et et e e e e e e e e e e 101
3.8.4.1. Floating-Point EXCEPLIQNot e 102
3.8.4.2. Coprocessor EXCepliQNo oo 102
3.8.5. Trap OPeratioN . . . v vt ettt e 102
3.8.5.1. RECOgNItION 102
3.8.5.2. Tap AdAreSSINg . . . o oot 103...
3.8.5.3. Trap Types and Priority.o o o 103
3.8.5.4. RetUrn From Trapo oot e 104. ..
3.9. Coprocessor INterface e e 104
39,0, ProtOCOl. . . 105
3.9.1.1. Coprocessor Interface SIgnals 105
3.9.2. Register Model. s 106
3.0.3. EXCEPIIONS. .« . vttt e 106
toc4 MATRA MHS

Rev. G (10/09/96)

TEMIC TSCB91E

4. Fault Tolerant and Test Mechanism. e 107
4.1. Fault Tolerant ande®t SUPPOrt SIgNalS oo 108. .
4.2. Program FIow CoNtrol oo 109
4.2, 0. INtrOdUCHION. e ——— 109
4.2.2. Example of Program Flow Control 109
4.3, Parity ChecCKing.ot 110
4. 3.0, INtrodUCHION. . . . o e e —— 110
4.3.2. Trap handlingo e e 110
4.3.3. Priority within hardware traps for IU 111
4.3.4. Parity Checking on Register File and Control/Status Registers 111
4.3.5. Parity Checking on Control Signal forthe FRU. 112
4.3.5.1. Output control Signals. e 112
4.3.5.2. Input control SIgNAIS oo 112.
4.3.6. Parity Checking on Control Pads for the TSC693E (MEC). i 112
4.3.6.1. Output CoNtrol SIgNALS.t 112
4.3.6.2. Input control Signalso e 112.
4.3.7. Parity Checking on Control Pads for the Coprocessar. 112
4.3.8. Parity Generation on ADDRESS BUS.t 112
4.3.9. Parity Checking 0N DATBUSottt e e e e e e 112 ..
4.3.10. NON R 601 MOUE. . . oottt e e e 113.
4.3.11. Error Type for external signals parity errors. e e 113
4.4, Master/checker Operation 113.
4.4.1.BasiC fUNCHON 113
4.4.1.1. Master/Checker Signal description. 114. .
4.4.1.1.1. MCERR—Comparison Error (OUtPUL).o i it e e e 114
4.4.1.1.2.CMODE—checker Mode (input).t 114
4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture. 114
A D L T AP, L e e e 114
4.5. 0.0, TCLK (INPUD). .« o ottt e e e e e 115
A5.1.2. TMS (INPULY . . oo oo e e e e e e e e 115
4.5.0.3. Tl (INPUD v ot e e e e 115
45,04, TRST (INPULY . o ottt e e e e 115
4.5.1.5. TDO (OUIPUL) .« . v ottt e e e e e e e e e e e e e e e e e e 115
4.5.2. TAP CoNntroller . . .o e 115
4.5.3. The InStruction RegISIEr 115.
4.5.3.1. Design and Construction of the instructionregister. 115
4.5.3.2. BYPASS INStrUCHION oo 116.
4.5.3.3. EXTEST INSrUCHION oo e e e e e e 116.
4.5.3.4. INTEST INStrUCHION e e e e e e 116 .
4.5.3.5. SAMPLE/PRELOAD INStrUCHION.ottt e e e e 116
4.5.4. The Device Identification Register. e e 116
455, Internal Scan Path. 116
4.5.6. Boundary sCan teSt registerttt e 116. ..
4.6.Interleaving register file bitS e 117. ..
5. Electrical and Mechanical Specification. 118
5.1.Maximum rating and DC CharacteristiCS.ot e e 118..
5.1.1. Maximum Ratingso oo e 118
5.1.2. 0perating Rangeo 118
5.1.3. DC Characteristics Over the Operating Range. e 118.
5.1.4. Capacitance Ratings [7,8] oo oo e e 119. ..
MATRA MHS toch

Rev. G (10/09/96)

TSCO91E

TEMIC

Semiconductors

5.1.5. AC Bst Loads and @/eforms
5.2. TSC691E AC Characteristics

5.2.1. AC Characteristics Over the Operation Range.[1]

5.2.2. Waveforms
Clock and ERRORRESET Timing
Clock and HWERRORing for Parity Error Type
OE De-assertiofAssertion
Load TiMming.
Store TIMING. . .. oo
Load with Cache Miss.

5.2.2.1.
5.2.2.2.
5.2.2.3.
5.2.2.4.
5.2.2.5.
5.2.2.6.
5.2.2.7.
5.2.2.8.
5.2.2.9.

Memory Exception Timing

Bus Arbitration Timing
Floating-Point Timing
5.2.2.10. TAP Signals
5.2.2.11. PARITY Signals
5.2.2.12. MASTER/CHECKER Signals
5.2.2.13. IRL[3:0] Signals
5.2.2.14. HALT Signal timing
5.3. Package Description

5.3.1. 256-Pin MQFP_F Package

5.3.2. 256-Pin MQFP_F Pin Assignments.

toc6

MATRA MHS
Rev. G (10/09/96)

TEMIC

Semiconductors

TSCO691E

List of Figures

Figure 1. ERC32 ArChiteCtUre. e e 3.
Figure 2. Integer Unit BIOCK Diagram.ot e 4...
Figure 3. SRRC Register MOdel. 5....
Figure 4. Circular Stack of Overlapping WINAOWS. e e e e e 6.
Figure 5. Overlapping WINAOWSo e e e ...
Figure 6. Registers as Seen by @ Procedureo 8
Figure 7. Register Banks for Fast Context SWitChingot e 10
Figure 8. Processor State RegiSteLttt 12....
Figure 9. WWhdow Invalid Mask 14. ..
Figure 10. Tap Base RegiSter. o e e e e e e e 14 .
Figure 11. Processor Data TYPES. . vttt e et ettt e e e e e e e e 16. ..
Figure 12. Byte Operand Load and STQre. 17
Figure 13. Data Organization in MEMOIY.ottt e e e 17.
Figure 14. Extended—Precision Datg@nization in Registers. i 18..
Figure 15. Extended—Precision Data Organization in MEmMOry e 18
Figure 16. Instruction FOrmat SUMMATYttt e e e e e 19.
Figure 17Address GENEerationttt e e e e 21..
Figure 18. Tagged Data EXample. e e e e 25...
Figure 19. Ticc Trap Address Generation.ottt e e e 28
Figure 20. Delayed Control Transfer. 30 .
Figure 21. Delayed Controkdnsfer Couples.t e e 33...
Figure 22. TSCB91E External Signals.o 51.
Figure 23. ASI timing with a WRPSR INStruction. e 55
Figure 24. Processor Instruction Pipeline. 63
Figure 25. Pipeline with All Single—Cycle InStructions i e 64
Figure 26. Pipeline with One Double—Cycle Instruction (Laad). e 65
Figure 27. Pipeline with One Triple—Cycle Instruction (Store). e 66
Figure 28. Pipeline with Hardware Interlock (Load). i e e 67
Figure 29. Pipeline During Branch InStruction. 68
Figure 30. Branch with Annulled Delay INStruction e 68
Figure 31. Pipeline Frozen During Bus Arbitration e 69
Figure 32. Pipeline Operation for Taken Trap (Internal). e 70
Figure 33. Data Bus Contents During Data Transfers. e 71
Figure 34. Instruction FetCh. 72
Figure 35. Load Single Integer TiMiNgGo oo e e e e e e 72 .
Figure 36. Load Single with Interlock TiMing. 73.
Figure 37. Load Double Integer TimMing.ottt e e 73.
Figure 38. Store Single Integer TIMINg vt 4.
Figure 39. Store Double Integer TiMiNgGottt e e e e e 75.
Figure 40. Atomic Load—Store Timing.ot B
Figure 41. Floating—Point Operation TIMINg. oottt e e e e e 77.
Figure 42. Bus Arbitration TImiNg.o e e 78. ...
MATRA MHS fig.1

Rev. G (10/09/96)

TEMIC

TSCO91E emiconductors

Figure 43. Load with Cache MisSs TImMiNgttt e e e e e e 79.
Figure 44. Store with Cache Miss TIming (1 0f 2) i e e e e 80
Figure 45. Store with Cache Miss Timing (2 0f 2) 81
Figure 46. Ld, LdSt, Stand Swap Instwith Trap Taken e e e 82
Figure 47. Load with Memory Exception Timing (1 0f 2) oo 83
Figure 48. Load with Memory Exception Timing (2 0f 2) i e e e 84
Figure 49. Instruction Memory Access Exception TIMING.o oottt 85
Figure 50. Instruction Memory Access Exception Timing (LD in Execute stage). 86
Figure 51. Store with Memory Exception Timing (page 1 0f 2) i e 87
Figure 52. Store with Memory Exception Timing (page 2 0f 2)ot e 88
Figure 53. Store double with Memory Exception on 1st data address (page.1 0f2). 89
Figure 54. Store double with Memory Exception on 1st data address (page.20of2).................... 90
Figure 55. Store double with Memory Exception on 2nd data address (page.Lof2) 91
Figure 56. Store double with Memory Exception on 2nd data address (page20f2) 92
Figure 57. Floating—Point Exception Handshake Timing e 93
Figure 58. Asynchronous INterrupt TIMING oottt e e 93.
Figure 59. Power—0n ReSet TIMiNg.ttt t it e e e e e e e e 94 .
Figure 60. Error/Reset TIMING. o oo e e e Q5.
Figure 61. Best—Case Interrupt Responisarig (one cycle instruction). Q9
Figure 62. Double Cycles Instruction Interrupt Response Timing (ex: Load) 99
Figure 63. Triple-Cycles Instruction Interrupt Response Timing (ex: Stare) 100
Figure 64. Four-Cycles Instruction Interrupt Response Timing (Store Double). 100
Figure 65. Interrupt Response Timing on conditional branch instruction (B*A,a & B*cc,aNT)........... 101
Figure 66. Coprocessor Register Model 106 ..
Figure 67. Master/Checker configuration i e e e 114
Figure 68. Instruction Register Cell. 115.
Figure 69. Boundary Scan Cell. 117. .

fig.2 MATRA MHS

Rev. G (10/09/96)

TEMIC

Semiconductors

TSCO691E

List of Tables

Table 1. Register AdAressingo oot e 6.
Table 2. Floating—Point FOrMaALS. e 15. ..
Table 3. Extended—Precision Floating—Point Format 18
Table 4. op field Coding.o e 20
Table 5. 0p2 Field Coding. 20
Table BASI ASSIONMENTS. 22
Table 7. Load/Store INStrUCtIONS. o e e 23. ..
Table 8 Arithmetic/Logical/Shift INStructions. e e 24. .
Table 9. Control Transfer INStrUCtioNS e 26 .
Table 10. Control Transfer Instruction CharacteristiCsot 26
Table 1L. Bicc and Tcc Condition COUES oottt e 27..
Table 12. FBfcc Condition COUES.ottt e e e 27.
Table 13. CBccc Condition COUESottt e e 27. ...
Table 14. Delayed Control Transfer Instruction Example. e 29
Table 15. Effect of Annul Bit Reset (a=0) 29.
Table 16. Effect of ANNUl Bit RESEt (A=1)ttt e 29.
Table 17. Effect of Annul Bit on Delay InStruction. 30
Table 18. Delayed Control Transfer Couple Instruction Sequence.ttty
Table 19. Execution of Delayed Contrabiisfer Couples. e 32..
Table 20. Read/Vite Control Register INStructions. e 34.
Table 21. Floating—Point—Operate and Coprocessor—Operate Instructions
Table 22. Miscellaneous INStrUCHIONS. oo e e 34. ...
Table 23. Load/Store INStruction OPCOUESo oot e 35
TablE 24, . ——— 37
Table 25Arithmetic/Logical/Shift Instruction Opcodes i e e e e 37
Table 26, . . o 39
Table 27. Control Transfer INStruction OPCOAESottt e e 39
Table 28. Bicc andic Condition COUESottt e 40 . ..
Table 29. FBfcc Condition COUES.ottt e e 40. . ..
Table 30. CBccc Condition COUESottt e e 40. ...
Table 31. Read/Vite Control Register Instruction Opcodes e e 41
Table 32. Floating—PointCoprocessor Instruction Opcodes.ottt e e 41. .
Table 33. Miscellaneous INStruction OPCOAES o oottt e e 42. ..
Table 34. Instruction Opcode NUMENC LiSting.ot e e 43
Table 35. Instruction Opcode Numeric Listing (continued). i iiiinn........ 44
Table 36. Instruction Opcode Numeric Listing (continued). 46
Table 37. Instruction Opcodes Numeric Listing (continued).o e 48
Table 38. Instruction Opcodes Numeric Listing (continued). i e 50
Table 39.TSCG691E External Signal SUmMmary e 52
Table 40TSC691E External Signal Summary (continued). 53
Table 41 AS] ASSIgNMENTS. . . . oo e 55
Table 42. SIZE Bit ENCOUING.t vttt e e e e e e e e 58
MATRA MHS tab.1

Rev. G (10/09/96)

TSCB91E TEMIC

Table 43. Internally Generated OpCOAES.ot e 65
Table 44. Externally Generated Synchronous EXCEption TEapSo vt vttt it i 96
Table 45Trap Type and Priority ASSIGNMENTSo e e 103
Table 46 Trap Type and Priority Assignments (continued). e 104
Table 47. Error Jpe ASSIGNMENTS. . . o . .ottt e e e e 111. ..
Table 48. Hardware Priority.o e e 111
Table 49. Hardware error type for User registers. 112
Table 50. Hardware error type for external signals. e 113
tab.2 MATRA MHS

Rev. G (10/09/96)

TEMIC TSCB91E

TSCG691E RT Integer Unit

1. Introduction

This document presents the specification of the TSC691E RT Integer Unit. It is organized in three main chapters:
e Standard IUTSC691E Functions (Chapter 3)

e Fault MECHANISM and Test MECHANISM (Chapter 4)

® Electrical and Mechanical Specification (Chapter 5)

Chapter 3 presents the SPARC RISC USER’S GUIDE from Cypress Semiconductor including some adaptations due
to the introduction of fault tolerant MECHANISMSs, without losing the full binary compatibility with the enth&EP
V7.0 application software base.

Chapter 4 and Chapter 5 deal with the new added functions introduced in the TSC691E to improve the reliability of
space applications. These new functions also do not impactARCSP7.0 compatibility

MATRA MHS 1
Rev. H (02 Dec. 96)

TSCB91E TEMIC

2. TSC691E OVERVIEW

2.1. SPARC RISC STANDARD FUNCTIONS :

Full binary compatibility with entire S¥RC V7.0 application software base
Architecture diciency that sustains 1.25 to 1.5 clocks per instruction
Large windowed register file

Tightly coupled floating-point interface

User/supervisor modes for multitasking

Semaphore instructions and alternate address spaces for multiprocessing

2.2. Fault Tolerant and Test Mechanism Improvements:

Parity checking on 98.7% of the total number of latches with hardware error traps
Parity checking of address, data pads and control pads

Program flow control

Master/Checker operation

IEEE Standard Test Access Port & Boundary-Scan Architecture

Possibility to disable the bus parity checking

Manufactured using TEMIC Space hardenedud8SCMOS R TECHNOLOGY

Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard RC RISC processor TSC691:

® Several independent fault detection MECHANISMs to support the design of fault tolerant systems
Such as odd parity checking, Program Flow Control and Master/Checker operations.

Support of sophisticated PC board level test using the IEEE Starefr@icEess Port and

Boundary Scan Architecture

Hardening of the process by construction, applying restricted full static CMOS design rules for

all critical blocks of the circuit such as register file, PLAs, ROMs etc...

Hardened device processing using the TEMIQUS8SCMOS-R TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced
the performance of the device nor changed the full binary compatibility with the em{RRECSF7.0
application software.

2.3. Presentation of the ERC32 computing core

The TSC691E Integer Unit is, with the TSC692E Floating Point Unit and the TSC693E (Memory controller), a part
of the ERC32 computing core.

2.3.1. Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconsideration will also
be emphasized.

In addition to the main objective the ERC32 core should be possible to use for performance demanding research
applicationsn deep space probes. The radiation tolerance and error maskthgrafere important. For the real-time

2 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions are provided by the core.

2.3.2. Functional Description

The ERC32 incorporates the followings functions:

® Processor, which consists of one integer unit and one floating point unit. The processor includes concurrent error
detection facilities.

sontrol
debug

~g—P |/O Port

AV AV] [AV]

DATA ~@—®»> Memory Port
Address
~g—P> Address Port
. >
Plf)li(?l?twr?it |~ g Chip Select
TSC692E [——» WE
-~ QE
Memory -~ p /O Select
Controller ——~<—p» /0O RIW
Integer
Unit > g IRQACKk
TSC691E)
-a@—p EDAC checkbit
DMA Port
Figure 1. ERC32 Achitecture
MATRA MHS 3

Rev. H (02 Dec. 96)

TSCB91E TEMIC

3. Standard IU Function

3.1. Introduction

This section describes the workings of the TSC691E Integer processing Unit (IU), the main computing engine in the

SPARC architecture. The TSC691E RT is based on the SPARC 32-bit RISC architecture, which defines a processor
capable of execution at a rate approaching one instruction per clock cycle. The TSC691E supports a tightly-coupled
Floating-Point coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate
concurrently. The TSC691E executes all instructions except floating-point-operate and coprocessor-operate

instructions.

A block diagram of the TSC691E is shown in Figure 2 . The procisssgyanized around the ALU and the shift unit.

These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves. One of the characteristics of the SPARC load/store
architecture is that neither the ALU nor the shift unit directly pass results to the instruction/data bus. Memory data
movesin and out othe register file through alignment units to and from the instruction/data bus. Instructions are taken
directly from the bus and fed to a four-stage instruction pipeline.

Destination
Register File
136 x 32bits
Source 1 Source P
Arithmeti_c
and |-_09|C Shift Unit
Unit
PC Adde + +
b >
Program Y
Counters ign
T

Processor Staje
Window Invali

Trap Base
Multiply Ste

Instruction
Decode

Address Instruction/ Data

Figure 2. IntegerUnit Block Diagram

4 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

IU REGISTER FPU Registers (optional) Coprocessor Registers (optional)
|pROCESSOR SATE REG (pgpi) FLOATING POINT QUEUE COPROCESSOR QUEUE (Cpp
(FPQ) (3)
SUPERVISOR
i | TRAP BASE REG (TBR) |
WINDOW INVALID MASK
(WIM)
MULTIPLY STEP(Y) FLOATINC(BFPS%I)NTSTATUS COPROCESSOR STATUS (CSIF)

WORKING [oUTS (8)

REGISTERS INS(8) FLOATING-POINT REGISTERS$ | | | cOPROCESSOR REGISTERS
Current window LOCALS®@) 32 32

within set of GLOBALS()
136 r Registers—T

Figure 3. SPARCRegister Model

The SPARC architecture uses a “windowed” register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently
supports A/l programming languages such as Prolog, LISP and Smalltalk.

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address busses form
the physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the

synchronizatiorand error handling that enable all three processors to operate concufreotiymoninterface to the

virtual address bus and data bus permits the U to provide all addresses for floating—point and coprocessor load and
storeinstructions.

3.2. Description Of Parts

The integer unit TSC691E contains a 136 x 32 register file divided into eight overlapping windows. It is supplied in
256-pinsMQFP packages, which allows 32-bit address and data busses, an eight-bit ASiuaber of control lines,

and floating-point—coprocessor, second coprocessor interfaces and 29 signals supporting fault tolerance and test
MECHANISM.

3.3. Programming Model

This section describes the TSC691E’s register model, register window MECHANISM, processor states,
supervisor/user modes, control/status registers, and data types. The concepts and properties explained here are centr:
to an understanding of the TSC691E’s operation.

Theregister set shown in Figurei8 a snapshot of the registers the TSC691E sees at any given moment. The working
registers constitute the current window on the register file. Registers within the shaded area are accessible only in the
supervisor mode.

Working registers are used for normal operations and are calgyisters in the TSC691Eregisters in the FPU, and
c registers in the coprocessor. The various control/status registers keep track of and/or control the state of each
processor.

3.3.1. Register Windows

The 136r registers of the TSC691E are 32-bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight setsrefBders called windows.

MATRA MHS 5
Rev. H (02 Dec. 96)

TSCB91E TEMIC

Table 1. Register Addressing

Register numbers Name
r[24] to r[31] ins
r[16] to r[23] locals
r[8] to r[15] outs

r[0] to r[7] globals

The SFARC architecture supports a maximum of 32 windows. The curraotiye window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR)
(see Section 3.3.4.2).

At any given time, a program can address 32 active registers: 24 window registers and tfieleitshBy software
convention, the window registers are divided intm® 8 locals and 8outs Registers are addressed as shown in
Table 1.

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the
currentwindow pointer by one &etsr register addressing by 16. Sincer24gisters can baddressed by a single CWP

value, incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of
window registers is used to pass parameters from one window to the next.

3.3.1.1. Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
TSC691E, window 7 adjoins window O (see Figure 4).

RESTORE
w1l

SAVE

Figure 4. Circular Stack of Overlapping Windows

6 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Previous Window (CWP + 1)
' 31 Save

—>_
. INS
r24 Restore
B e
r23
. LOCALS _
ri6 Current Window (CWP)
ri5 r31
: OUTS : INS
r8 r 24
r23
r16 LOCALS Next Window (CWP - 1)
r15 r31
: OUTS : INS
r8 r 24
r23
. LOCALS
ri6
ris
: ouTS
r8
r7
. GLOBALS
ro

Figure 5. Overlapping Windows

Notethat each window shares its andoutswith adjacent windows (refer to Figure BJutsfrom a previous window
(CWP+1) are thens of the current window, and thauts of the current window are thes of the next window
(CWP - 1). While only adjacent windows shame andouts globalsare shared by all windows. A windowtals
on the other hand, are not shared at all, belonging only to that window.

After power—on reset, thetate of the current window pointer and the WIM register (see Section 3.3.4.3) are undefined.
The power—on reset trap routine must initialize the CWP and WIM register for correct operation.

3.3.1.1.1. Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move
the parameters to be passed intooitss registers, then execute a CALL instruction. A SAVE instruction then
decrements the CWP to activate the next window. The calling procedurts’secome the called procedurés,
makingthe passed parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are movesl into its
registers and it then executes a return, usually with a JIMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called proceduresare still the calling procedure@its thus the results are
available to the calling procedure. Note that the ténsandoutsare defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodateditsatitglobals the additional
parametersnust be passed on the memory stack. One method of handling thpatdekis to dedicate autregister

in the current window to hold the stack pointer (see Figure 6). After a call, this pointer (which is nansiregrster)

canbe used as thieame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
alsoperforms an ADDusing registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current wiaddyacing the result in the previous window.

MATRA MHS 7
Rev. H (02 Dec. 96)

TSCB91E TEMIC

r3l1 (i7) return address
r30 (FP) frame pointer

r29 (i5) incoming param reg b
in r28 (i4) incoming param reg #
r27 (i3) incoming param reg B
r26 (i2) incoming param reg P
r25 (i1) incoming param reg [L
r24 (i0) incoming param reg p
r23 (17) local 7
r22 (16) local 6
r21 (15) local 5
local r20 (14) local 4
r19 (13) local 3
rig (12) local 2
r17 (11) local 1
ri6 (10) local O
r1s (o7) temp
ri4 (SP) stack pointer
rl3 (05) outgoing param reg p
out ri2 (o4) outgoing param reg ¢
ril (03) outgoing param reg B
rlo (02) outgoing param reg P
r9 (01) outgoing param reg L
r8 (00) outgoing param reg P

r7 (97) global 7
ré (g6) global 6
r5 (g5) global 5
global r4 (g4) global 4
r3 (g3) global 3
r2 (92) global 2
rl (91) global 1

ro (g0) 0

f31 floating—point valug¢
floating :
point

fo floating—point value

Figure 6. Registers as Seen by adtedure

3.3.1.1.2. Window Overflow and Underflow

No matter how many windows a register file has, fiassible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest
window as the stack wraps around.

The TSC691E handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used to
mark windows that will trigger an underflow or overflow trap (see Section 3.3.4.3). If a SAVE instruction points the

8 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

CWP to a marked window, a window overflow trap is generated. This means that in the TSC691E, only seven of the
eight windows are available for calls, because the last window must be saved for the trap handler. However, since a
typical overflow trap handlewould transparently save one or more of the oldest windows to metm@iyrogram sees

an apparently infinite number of windows.

The TSC691E automatically decrements the CWP upon encountering a trap. This happens without generating another
window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked by the
WIM register the system is assured of at least one window for use by the trap handler

A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the
WIM register. Execution of a return from Trap (RETT) instruction under the same circumstances will also generate
an under trap. SAVE, RESTORE, and RETT always check the WIM register before completing their actions.

As an example, in Figure 4 , if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bitis set). The overflow trap handler may safely use onljotteds
of w7, because w7’mis are w0’soutsand w7’soutsare weé’sins.

Active window =0 CWP =0

Previous window = 1 CWP+1=1

Next window = 7 CWP-1=7

Trap window =7 WIM = 1000000@hase2)

The overflow trap handler is responsible for saving one or mdtreedéast recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must
be aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it
is faster to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
thewindows containing valid data are saved, and on average this is about half the number of TSC691E windows, minus
one for the reserved trap window.

3.3.1.1.3. Alternate Register Whdow Usage

Althoughthe windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
usefor that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 3.3.1.2), register windows can be viewed and manipulated as needed to fit the
applicationat hand.

For example, the register set can be treated as a flat register file. Access to any particular register in any window is
obtainedby writing its window value into the current window pointer located in the processor state réfpsezver
windowsnaturally segment registers into blocks that could be dedicated to specific purposes and accessed through the
CWP. Register saving and parameter passing could be done with a standard push/pop stack in memory, although this
would substantially increase bus fiaf

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the
WIM register (see Section 3.3.4.3). Switching from one register bank to another is accomplished by writing to the CWP
field of the processor state register. Figure 7 shows the TSC691E register file divided into four banks, each with its
own trap handler window of eight local registésobalsare accessible by all processes.

3.3.1.2. Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[0] and partially fixes the use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available
at all times. In addition, when addressed as a destination operand, r[0] discards the value written to it.

The CALL instruction writes its own address into register r[d5if (egister 7) of the calling procedure’s window. If

a SAVE instruction then activates a new window, r[15] of the old window becomes irf3gf(ster 7) of the new

window and serves as the return address to the calling procedure. However, if the register is needed for some other
purpose, the return address can be saved to a stack or simply overwritten.

MATRA MHS 9
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

\/ WIM Register
& [o 1o rfof 1] o] 1]
124 7.6 5 4 3 2 1 0
Register Bank 3 r23 TheWIM register is usetb separate theregis
(Window 7) . ters into register banks. Register banks are
rié switched by writing into the CWP field of the
rl5 r31 processor state register (PSR).
. . RESERVED
rg r24
re3 Trap registers for bank 3
: (Window 6)
rl6
r31 rl5 . .
UNUSED TheTSC691Eautomatically enters the next window (CWP -
'24 ' s 1) upon encountering a trap, regardless of the state of the
r23 r WIM register. This feature is used to reserve windows for a
Register Bank 2 r trap handler.
Wi ’
(Window 5) 16
ris r31
. . RESERVED
8 r24
r23 Trap registers for bank 2
. (Window 4)
r1l6
r3l ris
. X UNUSED
r24 8
; r23
I?E‘gl(sjter zank 1 . Theupper eight registers of the trap window are reserved for
(Window 3) 16 parameter passing from the register bank, if desired.
ri5 131 /
. . RESERVED
r8 24
r23 Trap registers for bank 1
. (Window 2)
rl6
r31 rl5
. . UNUSED
124 8 \ Thelower eight registers of the trap window are unused, since
) 23 theyare shared with the next register bank. Tluiesebe used
Register Bank 0 to pass parameters to the next register bank, if desired.
(Window 1) :
rl6
r15 r31
.) RESERVED
8 r24
r23 Trap registers for bank 0
. (Window 0)
rl6
ris r7
: REGISTERS
8 .
\//\ 0]
Figure 7. RegisteiBanks for Fast Context Switching
10 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

Two other registers are also used by hardwausave information during a trap. Registers r[17] and r[d8h{s 1 and

2) of the trap window (not the trapping procedure’s window) are used tdtgagentents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap wlndalsare all a trap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler’s usable registers to six.

3.3.2. Processor States

The TSC691E is always in oéthree possible states: execute mode, reset mode, or error mode. Execute mode is the
normal operating mode.

The processor enters error mode (at which point it halts and asserts ERRG@fchronous trap is generated while
trapsare disabled (see Section 3.8). The TSC691E remagrsanmode until the RESESignal is asserted, whereupon
it enters reset mode. The external system is responsible for asBR&E8RJ Whenever the error mode signal, ERROR
is detected.

Reset mode is entered whenever the RESBiial is asserted (see Section 3.5). The processor remains in that mode
until RESETis deasserted. RESET signal must be asserted nine clocks at least. Upon deassertion, the processor enters
executemode, where the first instruction address to be executed is address 0 in the supervisor instruction address space
(see Sections 3.3.3 and 3.4.2.6).

The TSC691E fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

3.3.3. Supervisor/User Modes

In support of multitasking, the TSC691E employs a supervisor/user model of operhgqirocessor is in supervisor
modewhen the S bit in the Processor State Register (PSR) is set, and in user mode when(Sde ®setion 3.3.4.2).

The state of this bit determines which address space is accessed with the ASI bits (see Section 3.4.2.6) and whethel
or not privileged instructions maye used. Privileged instructions restrict control register access to supervisor software,
preventing user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor
modeto gain access to the PSFCWP field and other control registers. The only way a program running in user mode
may enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by
executing a Return from Trap (RETT) instruction, which restores the state of the S bit to what it was before the trap
wastaken. A commonly used trap return is the IMPL, RETT delayed control transfer couple (refer to Section 3.4.3.4.4).
This restores both the PC and nPC and the previous state of the S bit.

3.3.4. Control/Status Registers

TSCG691E control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL, JMPL, software tragc{Tand Return from fap (RETT). The Processor

State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step @Qisiee all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and progragaciairiée mode fields.
In Figure 8 and Figure 10 , the read-only status fields appear in lowdtadiasgor examplejmpl) while the writable
mode fields appear in UPPER CASE (for example, PIL).

3.3.4.1. Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is no
control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein the
instruction that immediately follows a control transfer may be executed before control is transferred to the target
addresgsee Section 3.4.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.

MATRA MHS 11
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

3.3.4.2. Processor State Register (PSR)

Trap Enable (ET) —j
Previous Supervisor Mode (PS) —
Supervisor Mode (S)
Enable Floating-Point Unit (EF)
Enable Coprocessor (EC)*

|) U, Integer Processor Current
Implementation Version Condition Interrupt Window
Number Number Codes Level Pointer
(impl) (ver) (Ico) Reserved (PIL) (CwP)
L+ 1 4+ 1 4 1 6 [ele] & Jafe]s] 5 1
31 2827 24 14 13 1211 8 7 6 ™% 0

I neg\%tivel (zZ%ro I 02/\(/3)rﬂow| (8?rry I
23 22 21 20

Figure 8. Processor State Register

This is the TSC691E’s key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any
instruction that modifies the condition code fieldc]. Any hardware or software action that generates a trap will
modify the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and
WRPSR. The PSR is made up of the following fields:

imp—Implementation
Bits 28 through 31 contain the processdmplementation numbeFheimplementation number for tHESC691E
is 001. WRPSR does not modify this field.

ver—\ersion
Bits 24 through 27 contain thESC691Es version numbelWWRPSR does not modify this field. The current version
number for th& SC691Eis 0001.

icc—Integer Condition Codes
Bits 20 through 23 hold the integer usitondition codes. These bits are modified by arithmetic and ldggtalc
tionswhose names end with the lettecg(for example, ANDcc), and can be overwritten by the WRPSR instruction.
The Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N—Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.
0 = not negative
1 = negative
Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.
0 = result was nonzero
1 = result was zero
V—Overflow

Bit 21 indicates whether an arithmetic overflow occurred during thddashodifying instruction. The
overflow bit is alsoset if a tagged operation (TADDcc, TSUBcc, etc.) is performed on non—-tagged operands
(refer to Section 3.4.3.2.3). Logical instructions that modify the icc field always set the overflow bit to 0.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur
C—Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition

or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify
the icc field always set the carry bit to 0.

0 = a carry/borrow did not occur

12 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

1 = a carry/borrow did occur

Reserved
Bits 14 through 19 are reserved. A WRPSR should write only Os to this field.

EC—Coprocessor Enabled
This bit determines whether the optional second coprocessor is enabled or disabled.

0 = disabled
1 = enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re—enabled or reset.
Evenwhen disabled, the coprocessor can continue to execute instructions if it contains a queue.

EF—Floating-Point Unit Enabled
Bit 12 determines whether the FPU is enabled or disabled.

0 = disabled
1 = enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re—enabled or reset. Even
whendisabled, it can continue to execute any instructions in its queue.

PIL—Processor Interrupt Level
Bits 8 through 11 identify the processor’s external interrupt priority level. The processor will only accept external
interrupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.

S—Supervisor
Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only avalil
able in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.

0 = user mode
1 = supervisor mode

PS—Previous Supervisor
Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.

ET—Enable Traps
Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchro-
nous or floating-point/coprocessor trap occurs while traps are disablebdS@891E halts and enters the error
mode (see Section 3.8).

0 = traps disabled
1 = traps enabled

CWPR—Current Window Pointer
Bits 0 through 4 contain a pointer to the curreittyive register file windowCWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple
processes. By disabling the EF bit while running a process that doesn'’t require the FPU, software would not have to
save and restore the FPU'’s registers across context switches. If the FPU is not present, as signaled by the input signal
FP, the EF bit can be used to provoke floating-point instruction set emulation by generating a floating-point-disabled
trap if execution of a floating-point instruction is attempted. This techniquéoenaged with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET=0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was
interrupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result
whenthe interrupteRDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which
is overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to geneltasg anstruction” trap with aitc instruction. A taken
trap automatically sets ET to O, disabling further traps.

MATRA MHS 13
Rev. H (02 Dec. 96)

TSCB91E TEMIC

Window 0
Window 1
Window 2
Window 3
indows = |

----- Future Expansion for Additional Windows

31 7 6 54 3 210

Figure 9. Window Invalid Mask

Trap Base Address (TBA) Trap Type
20 (t) 8 ojojojo

31 12 4 3 21 O

Figure 10. Tap Base Register

3.3.4.3. Window Invalid Mask Register (WIM)

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by
the CWP as the result of a &, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 9) corresponds to a window; if a bit is set to 1, the window corresponding
to that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
traphandler uses tHecal registers of the invalidated window.

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest
window. The overflow or underflow trap prevents previous windows from being overwritten or restores previous
windows from memory. WIM can also be used to mark off register banks for fast context switching (see Section
3.3.1.1.3).

WIM is read by the RDWIM instruction, and written by the WM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software.

3.3.4.4. Trap Base Register (TBR)

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 10). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base
Address field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by
a write. The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap
operationsee Section 3.8.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on
the type of trap being taken (see Section 3.8.5.3). This field retains its value until the next trap is taken.

14 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

3.3.4.5. Y Register

The Y register is used by the multiply step instruction (MULScc) to create 64-bit products. This register is read and
written using the non-privileged RDY and WHhstructions.

Table 2. Floating—Point Formats

Single—Precision Floating—Point Format

s =sign (1)
e = hiased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): 1y 26-127% 1 f
subnormal (e=0): f#0 (-8 2-126x 0 f
zero (e=0): f#0 -B*0
signaling NaN: f#0 s=u; e=255 (max); f=.0uuu-uu

(at least one bit must be nonzero)
quiet NaN: f#0 s=u; e=255 (max); f=.1uuu-uu
infinity: s=0 or 1, depending upon sign;

e=255 (max); f=.00-00 (all zeros)

Double—Precision Floating—Point Format

s =sign (1)
e = biased exponenti(L
f = fraction (52)

normalized number (0 < e < 2047): G 26-1023+ 1 §

subnormal (e=0): f#0 (-8 2-1022x o f

zero (e=0): f#0 -B*0

signaling NaN: f#0 s=u; e=2047 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f#0 s=u; e=2047 (max); f=.1uuu-uu

infinity: s=0 or 1, depending upon sign;

e=2047 (max); f=.00-00 (all zeros)

3.3.5. Data Types

The TSC691E supports ten data types (eleven with extended-precision floating-point, see Section 3.3.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are
16 bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64
bits. Table 2 shows the formats for single-precision and double-precision floating—point numbers.

MATRA MHS 15
Rev. H (02 Dec. 96)

TSCB91E TEMIC

BYTE | SSS e sss [s| evie |

31 876 0
DYSIGNED | 000 eumneeeenn.. 000 | BYTE |

31 87 0
HALFWORD | ggg. sss |s| HaFworD |

31 16 15 14 0
UNSIGNED
UNSIGNED |31 000......... 000 16| _ HALFWORD 0|
SIGNED | S| WORD |
WORD - -
UNSIGNED
UNSIG |31 WORD 0|
TAGGED | WORD [7AG |
DATA - 510
DRVBLE WORD 0 (MOST SIGNIFICANTWORD) r(N)

WORD 1 (LEAST SIGNIFICANTWORD) r(N+1)

31 0
SINGLE
o N EP |381| _ EXPONENT 23| _ FRACTION 0|

s| ExPONENT | HIGH-ORDER BITS OF FRACTION f(N)
DOUBLE- LOW-ORDER BITS OF FRACTION f(N+1
PRECISION FP L— s 5)

Figure 11. Processor Data Types

3.3.5.1. Data Organization In Registers

The organization of the ten data types when loaded into registers is shown in Figure 11 .

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower
eightbits of a registeiOn a load, bits 8 through 31 are sign-exterfdea byte or zero-extended for an unsigned byte.
Halfwords are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended
for a halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are
loaded from or stored to memory. Stores of byte and halfword data are not sign—extended. Tagged data is handled as
an unsigned word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n+1], with r[n]
containing the most significant word. Figure 12 illustrates the relationship between the way data is stored in memory
andthe way it is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of
exponent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the
upper-order register (r[n]) containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The
lower-order register (r[n+1]) contains the low-order bits of the fractiotal Traction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers witfhethe

destination register must be at an even address or the hardware will force such an address. For example, an attempted
load double to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the
least significant word in r[9]. A load double to r[0] would result in the loss of the most significant word.

16 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Address N N+1 N+2 N+3
Memory location [31 24 |23 16 15 8 |7 q
Destination Register 31 Zeroes or Sign Extension [7 q
Byte Load Example (From Address N+1)
Address N N+1 N+2 N+3
Data Bus (31 24123 16 15 87 d
Source Register |31 Don't Care [7 d
Byte Store Example TAddress N+2)
Figure 12. Byte Operand Load and Store
63 Doubleword 0
31 Word ol 31 Word 0
15 Halfword ol 15 Halfword ol 15 Halfword ol 15 Halfword 0
7 Byte ol 7 Byte o| 7 Byte |7 Byte g|7 Byte g| 7 Byte ol 7 Byte 7 Byte g
N N+1 N+2 N+3 N+4 N+5 N+6 N+7

Figure 13. Data Organization in Memory

3.3.5.2. Data Organization In Memory

Organizatiorandaddressing of data in memory follows the “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 13). For a stored word, address N corresponds to the most significant byte of the
word, and address N+3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is
also the address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit
<0> = 0), which is evenly divisible by 2. Similarly, a word must be located on a word boundary (address bits <1:0>

= 0) evenly divisible by 4, and a doublewardist be located on a doubleword boundary (address bits <2:0> = 0) evenly
divisible by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap.

3.3.5.3. Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 3). When loaded to the working registers, extended-precision operands require a
registerquadruple (see Figure 14). The upper-order register (r[N]) contains thatsigri5-bit exponent, and a 16-bit
reserved field. The next register (rf[N+1]) contains the one-bit integer part and 31 high-order bits of the fraction. The
next register (rf[N+2]) holds the 32 low-order bits of the fraction. Total fraction size is 63 bits. The fourth
extended-precision register (rf[N+3]) is reserved. As with double-precision operands, when loading an
extended-precision operand, the destination register must be at an even address or the hardware will force an even
address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 15).
An extended-precision datum must be located on an extended-precision boundary (address bits <3:0> = 0), which is
evenly divisible by 16.

MATRA MHS 17
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

Table 3. Extended—Precision Floating—Point Format

s =sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb f-Ish = f = fraction (63)

normalized number (0 <e <32767;j=1): (-1) s&+1P383« j £

subnormal number (e =0;j=0) (f# 0): (-1) s 49383 j

zero(s=0;e=0)(f#0)(#0): (-1)s*0

signaling NaN: f#0 s=u;e=32767 (max); = u;
f=.0 uuu uu (at least one bit

must be nonzero)

quiet NaN: f#0 s=u;e=32767 (max); = u;
f=.1uuuuu

infinity: s =0 or 1, depending upon sign;

e = 32767 (max); j = u;
f=.000 00 (all zeroes)

EXTENDED PRECISION FP 1[N] S EXPONENT RESERVED
MN+1] | J HIGHORDER BITS OF FRACTION
1N + 2] LOWORDER BITS OF FRACTION
1N + 3] RESERVED
3130 16 15 0

Figure 14. Extended—Precision Data Organization in Registers

128 Extended — Precision Data 0

63 Doubleword 0| 63 Doubleword 0

31 Word 0| 31 Word 031 Word 0|31 Word 0
Addres$\ N+4 N+8 N+12

Figure 15. Extended—Precision Data Organization in Memory

3.4. Instruction Set

This section describes the TSC691E instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. A specific document, SPARC V7.0
InstructionSet contains a description of the assembly language syntax and a complete set of instruction definitions.

3.4.1. Instruction Formats

Thereare only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI! and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor
instructions. Figure 16 shows each format with its fields, bit positions, and the instructions that use that format. All
instructionsare one word long and aligned on word boundaries in memory. For most instructions, operands are located
in source registers (representeddyandrs?). The remaining instructions use one source register plisplacement

or immediate operand contained within the instruction itself.

Note:

1. See chapter 4.2 for application of this instruction in Program Flow Control.

18 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

CALL
FORMAT 1 O?SS)de 30-Bit Displacement (disp30)
31 30 0
— SETHI
or(aocg)de Destination (rd) 00"3;)2(;9 22-Bit Immediate (imm22)
31 30 25 22 0
FORMAT 2 BRANCH
Ol(agg)de a| Test Cond. oo%%‘;e 22-Bit Displacement (disp22)
31 3029 25 22 0
_ OTHER INTEGER INSTRUCTIONS
o?gg)de Destination (rd) 00%03(;(9 Source 1 (rs1) 0| Alternate Space (asi)| Source 2 (rs2)
o?gg)de Destination (rd) oo?)%(;e Source 1 (rsl) 1 13-Bit Immediate (simm13)
31 30 25 19 14 13 5 0
FORMAT 3
FLOATING POINT/COPROCESSOR OPERATIONS
opcode M opcode FP Opcode (opf
fop) | Destination (rd) o) Source 1 (rs1) s O%co de ((o%g) Source 2 (rs2)
— 31 30 25 19 14 5 0
Figure 16. Instruction Format Summary
a Thea (annul) bit is used in branch instructions to control the execution of the delay instruction that imme
diately follows a control transfer instruction (see Section 3.4.3.4.3).
asi The address space identifier is an eight-bit field used in load/store alternate instructions. See Section
3.4.2.6.
cond This field identifies the condition code used for a branch instruction.
disp22 This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is
sign extended to full-word size when used.
disp30 This field contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.
i Thei (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be
r[rs2] (i = 0), or a sign-extendesimm13(i = 1).
imm22 This field contains the 22-bit constant used by the SETHI instruction. (See Chapter 4.2 for Program Flow
Control)
op Theop field selects the instruction format as shownabl& 4 .
op2 Theop2field (Table 5) contains the instruction opcode for format 2 instructions (op=0).
op3 The 6-bitop3field contains the instruction opcode for a format 3 instruction (op = 2 or 3).
opc The 9-bitopcidentifies a coprocessor—operate (CPop) instruction. The relationship beéthwepnfield
andCPop instructions is described in Section 3.4.3.6.
opf The 9-bit opfidentifies a floating-point-operate (FPop) instruction. The relationship betweepfttield
and FPop instructions is described in Section 3.4.3.6.
rd Ther register (or register pair) of register (oif register pair) specified in thd field serves as the source
during store instructions. For all other instructions, the identified register (register pair) serves as the des-
tination. Note that r[0] as a source supplies the value 0, and as a destination causes the result to be dis-
carded. Note thatl mustbe ar register for integer instructions and must beegister for floating—point
instructions.
rsl The 5-hitrs1 field identifies the register containing the first source operand. The sourcedgister for
integerinstructionsaf registerfor floating—point instructions, or@registerfor coprocessor instructions.
rs2 The5-bitrs2field identifies the register containing the second source operand. The sourcegster for
integerinstructionsaf registerfor floating—point instructions, or@register for coprocessor instructions.
MATRA MHS 19

Rev. H (02 Dec. 96)

TSCB91E TEMIC

simm13 Thisfield holds the 13-bit immediate value used as the second ALU operand when i = 1. It is sign-extended
to full-word size when used.

Table 4. op field Coding

op Value Instruction
00 Bicc, FBfcc, CBccc, SETHI
01 Call
100r11 Other

Table 5. op2 Field Coding

op2 Value Instruction
000 Unimplemented
010 Bicc
100 SETHI
110 FBfcc
111 CBccc

Unused (reserved) bit patterns which are used inghep2, op3ori (wrong bit used) fields of instructions will cause

an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns useapfrothepc fields of a
floating—point or coprocessor instruction cause an fp exception or a cp exception.

3.4.2. Addressing

Because it uses a load/store architecture, the TSC691E needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Pragramtefrelative addressing is generated only

for calls and branches and is word-boundary oriented because it is addressing instructionsirRigstaddressing

appliesto jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 17 .

3.4.2.1. Two Register

Two-register addressing uses te& andrs2 fields (instruction format 3) to specify two source registers whose 32-bit
contents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

3.4.2.2. Register Plus 13-Bit Imnmediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated
by adding the 32-bit source register specifieddly(format 3) to a 13-bit, sign-extended immediate value contained
in the instruction. This is a load/store (or register-indirect) addressing mode.

3.4.2.3. 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this celsspéuified register

is r[0] (whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this
special case allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the
13-bit immediate value. Immediate addressing is the simplest method of addressing because no registers need be set
up beforehand.

20 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

31 0

| Register Source 1

Memory Address

= (Program Counter)

| Register Source 2

31

| Register Source 1

a1 13 Memory Address
(Program Counter)

| Sign Extension | 13-Bit Immediate

31 13

| Sign Extension | 13-Bit Immediate Memory Address

(Program Counter)
LOAD/STORE(JMPL, RETT)

Y

31

| Program Counter + 4

31 1 0 Program Counter
| 30-Bit Displacement | 0|0

CALL

31
| Program Counter + 4

o

a1 ” 21 0 Program Counter

| Sign Extension 22-Bit Displacement |O|O
BRANCH

Figure 17. Address Generation

3.4.2.4. CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the
programcounter Because th@ SC691E is a delayed-control-transfer machine (see Section 3.4.3.4), before the address
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 17).

An address is generated by adding this PCralde to the 30-bit word displacement contained in the CALL instruction.

The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control
transfers to any word-boundary location in the virtual memory instruction space. The result of the address generation
becomeghe new nPC.

3.4.2.5. Branch

Branchinstructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the
branch instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word
boundariesThe generated address becomes the new nPC.

MATRA MHS 21
Rev. H (02 Dec. 96)

TSCB91E TEMIC

Table 6. ASI Assignments

TSC691E Address Space Identifier (ASI) Address Space
00001000 (08 H) User Instruction
00001010 (OA H) User Data
00001001 (09 H) Supervisor Instruction
00001011 (0B H) Supervisor Data
3.4.2.6. ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)

is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces,
which may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four
ASI values for user instructions, user data, supervisor instructions, and supervisor data (see Table 6). These four ASI
values all map to the same 32-bit address space, and are used to implement access—level protection. ASI values are
commonly used to identify user/supervisor accesses, to identify special protected memory accesses such as boot
PROM,and to access resources such as TSC693E control registers, TLB entries, cache tag entries, etc...

The ASI value is supplied by the TSC691E for each instruction fetch and each data access encountered. The TSC690
family assigns a number of these ASI values to the TSC693E and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system.

3.4.3. Instruction Types

TSCG691E instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer,
read/write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information
on each instruction, see Chapter 6 of the TEMIC SPARC RISC USER’S GUIDE.

3.4.3.1. Load/Store

Load and store instructions (see Table 7) move bytes, halfwords, words, and doublewords between the
byte-addressable main memory and a register in either the IU, FPU, or CP. They are the only instructions that access
data memory. For floating-point and coprocessor loads and stores, the TSC691E generates the memory address and
the FPU or CP receives or supplies the data.

The TSC691E implements a hardware-interlocked delay when an instruction immediately following a load tries to read
the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition
to the 32-bit address, the TSC691E also generates an eight-bit address space identifier.

3.4.3.1.1. ASI

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly gawing the

from alternate space” and “store to alternate space” instructions. These instructions use two-register addressing and
theasifield in instruction format 3. The address space specified iadifeeld overrides the automatic ASI assignment

madeby the processor, giving access to such resources as system control registers that are invisible to the user. Because
the ASI is intended for use by the system operating software, the alternate space instructions are privileged and can
only be executed in supervisor mode.

22 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC

Semiconductors

TSCO691E

Table 7. Load/Stoe Instructions

Name Operation Cycles
LDSB (LDSBA¥) Load Signed Byte (from Alternate Space) 2
LDSH (LDSHA¥*) Load Signed Halfword (from Alternate Space) 2
LDUB (LDUBAY) Load Unsigned Byte (from Alternate Space) 2
LDUH (LDUHA¥*) Load Unsigned Halfword (from Alternate Space) 2
LD (LDA*) Load Word (from Alternate Space) 2
LDD (LDDAY) Load Doubleword (from Alternate Space) 3
LDF Load Floating—Point 2
LDDF Load Double Floating—Point 3
LDFSR Load Floating—Point Status 2
LDC Load Coprocessor 2
LDDC Load Double Coprocessor 3
LDCSR Load Coprocessor Status Register 2
STB (STBA¥) Store Byte (into Alternate Space) 3
STH (STHA¥) Store Halfword (into Alternate Space) 3
ST (STA®) Store Word (into Alternate Space) 3
STD (STDAY¥) Store Doubleword (into Alternate Space) 4
STF Store Floating—Point 3
STDF Store Double Floating—Point 4
STFSR Store Floating—Point Status Register 3
STDFQ* Store Double Floating—Point Queue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB (LDSTUBAY*) Atomic Load—Store Unsigned Byte (in Alternate Space) 4
SWAP (SWAPA¥*) Swapr Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

3.4.3.1.2. Multiprocessing Instructions

In addition to alternate address spaces, the TSC691E provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents ofragister with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reada byte from memory into anregister and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is
usedto construct semaphores.

MATRA MHS 23
Rev. H (02 Dec. 96)

TSCB91E TEMIC

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are
guaranteed that the competing instructions will execute in serial order.

3.4.3.2. Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
(r[rd]). One of the source operands is always a register, r[rs1], and the other depends on the state of the instruction’s
“i” (immediate) bit. If i = 0, the second operand is register r[rs2]. If i = 1, the operand is the 13-bit, sign-extended
constant in the instructiemsimm13field. SETHI is a special case because it is a single—operand instruction.

Table 8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles
ADD (ADDcc) Add (and modify icc) 1
ADDX (ADDXcc) Add with Carry (and modify icc) 1
TADDcc (TADDcCTV) Tagged Add and modify icc (and Trap on oVerflow) 1
SUB (SUBcc) Subtract (and modify icc) 1
SUBX (SUBXcc) Subtract with Carry (and modify icc) 1
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on oVerflow) 1
MULScc Multiply Step and modify icc 1
AND (ANDcc) And (and modify icc) 1
ANDN (ANDNCcc) And Not (and modify icc) 1
OR (ORcc) Inclusive Or (and modify icc) 1
ORN (ORNcc) Inclusive Or Not (and modify icc) 1
XOR (XORcc) Exclusive Or (and modify icc) 1
XNOR (XNORcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHIM Set High 22 Bits of Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
thatdoesnt (see Table 8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

Themultiply step instruction, MULScc, is used to generate the signed or unsignedobddhbitt of two 32-bit integers.
For more information on MULScc, refer to its definition in SPARC V7.0 Instruction Set.

Note 1 : See chapter 4.2 for application of this instruction in Program Flow Control.

3.4.3.2.1. Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some
instructions to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is
created using the SUBcc (subtract and set condition codes) with r[0] as its destthafloREST instruction uses

SUBcc with r[0] as both the destination and one of the sources. A register-to-register MOVE is accomplished using
anADD or OR instruction with r[0] as one of the source registers. A negation is done with SUB and r[0] as one source.

If the assembler being used supports pseudoinstructions, it translates the pseudoinstruction into the equivalent
instructionin the native assembly language. Refer to your assembly language manual for details.

Note:

Refer to Program Flow Control for more information. (see 4.2, page 114)

24 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

3.4.3.2.2. SETHI

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate)
to construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register
andclears the lower 10 bits. The arithmetic immediate instruction which follows is used to load th&0dvitsr Note

that the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with
a load or store instruction to construct a 32-bit memory address.

TAGGED | WORD [d d

DATA 31 510

oreen | EE et
31 2 1 0 .

Figure 18. Tagged Data Example

SETHI can also be used in Program Flow Control to compare the precomputed checksum given as a special SETHI
instruction (SETHI 0,%SUM) with the checksum. This special SETHI instruction can be inserted after every branch,
call, and before every branch-in point.

3.4.3.2.3. agged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For
efficient support of such languages, theABE architecture defines tagged data as atypta Tagged data are assumed

to be 30 bits wide witlthe tag bits (the least two significant bits) set to zero (see Figure 18). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has a nonzero tag or if a normal overflow occurs.

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a
tagged add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order
to expedite this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV
and TSUBccTV, which automatically trap if the overflow bit is set during their execution.

3.4.3.3. Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also
includedare the SXE and RESDORE instructions, which dontransfercontrol but are used to save or restore windows

during a call to a new procedure or a return to a calling procedure (see Table 9).

In the TSCB91E, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay
instruction is always fetched. However, the annud bit in conditional branch instructions can cause the instruction

to be annulled (i.e., prevent execution) if the branch is not taken (or always annulled in thieBXasEBA, and CBA).

If a branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 3.4.3.4.3).
Table 10shows the characteristics of each control transfer type.

Program Counter Relative

PC-relative addressing computes the target address by adding a displacement to the program counter. See Sectior
3.4.2.

Register-Indirect

Register-indirecaddressing computes thegar addresas either r[rs1] + r[rs2] if i = 0, or r[rs1]simm13ifi = 1.
See Section 3.4.2.

Delayed

A control-transfer instruction is delayed if it transfers control to thyetaddress after a one-instruction de&se
Section 3.4.3.4.

Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 3.4.3.4.3.

MATRA MHS 25
Rev. H (02 Dec. 96)

TSCB91E TEMIC

3.4.3.3.1. Branching and the Condition Codes

The condition code bits in thec, fcc, andcccfields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are
modified by arithmetic and logical instructions whose names end with the ttensthey may be written directly

with WRPSR. The floating-point condition codes are modified by the floating-point compare instructions, FCMP and
FCMPE,or directly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with
STCSR or by operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as
specified in theondfield. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed
transferto the addresgPC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA
and BN, there is no evaluation; the result is simply forced to true for BA and false for BN.

Table 9. Control Transfer Instructions

Name Operation Cycles

SAVE SAVE caller’s window 1

RESTORE RESTORE caller’'s window 1

Bicc Branch on integer condition codes 1*

FBfcc Branch on floating—point condition codes 1*

CBccc Branch on coprocessor condition codes 1*

CALL Call 1*

JMPL JuMP and Link 2*

RETT RETurn from Trap 2%

Ticc Trap on integer condition codes 1 (4 if taken)

* assumes delay slot is filled with a useful instruction

Table 10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit
Conditional Branch Program Counter Relative yes yes

Call Program Counter Relative yes yes
Jump Register Indirect yes no
Return Register Indirect yes no

Trap Register Indirect no no

If the branch is not taken, then the annul bit is checked. If the “a” bit is set, the delay instruction is annulled. If “a” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is
executed. For more information on delayed control transfer and the annul bit, see Section 3.4.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction).
However,as far as the annul bit is concernBdl, acts like a normal branch instruction, annulling the delay instruction

if a =1 and executing itif a = 0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 3.4.3.4.3 for details.

As illustrated in &ble 1L , Bicc and Ticc instructions test for the same conditions and use thesadf®ld codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC<1:0> signals output by the
floating—point unit (see Table 12). The FCC<1:0> signals are floating—point condition codes which are set by

26 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

executing a floating—point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except
it tests the CCC<1:0> signals supplied by the coprocessor (see Table 13). Bahd=-BRN behave in the same way
asBN.

3.4.3.3.2. Tap Instructions

The“Trap on integer condition codes”i€€) instruction evaluates tlwondition codes specified by itend(condition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false,
Ticc executes as a NOP.

Once the Ticc is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into tht field of the Trap Base Register (TBR), as illustrated in Figure 19 . The trap number is the
leastsignificant seven bits of either “r[rs1] + r[rs2]” if théield is zero, or “r[rs1] + sign extnd(simm13)” if théield

is one. The processor then disables traps (ET=0), saves the state of S into PS, decrements the CWP, saves PC and nP
into thelocalsr[17] and r[18] (respectively) of the new window, enters supervisor mode (S=1), and writes the trap base
registerto the PC and TBR + 4 to nPC.

Table 11. Bicc and Ticc Condition Codes

Cond. Test Cond. Test
0000 Never 1000 Always
0001 Equal to 1001 Not equal to
0010 Less than or equal 1010 Greater than
0011 Less than 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigngd)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 12. FBfcc Condition Codes

Cond. Test Cond. Test

0000 Never 1000 Always

0001 Not equal to 1001 Equal to

0010 Less than or greater than 1010 Unordered or equal to

0011 Unordered or less than 1011 Greater than or equal to

0100 Less than 1100 Unordered or greater than or equal to
0101 Unordered or greater than 1101 Less than or equal to

0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 13. CBccdCondition Codes

Opcode Cond. CCC[1:0] Test Opcode Cond. CCC[1:0] Test

CBN 0000 Never CBA 1000 Always

CB123 0001 lor2or3 CBO 1001 0

CB12 0010 lor2 CB03 1010 Oor3

CB13 0011 lor3 CB02 1011 Oor2

CB1 0100 1 CB023 1100 Oor2or3

CB23 0101 20r3 CB01 1101 Oor1l

cB2 0110 2 CB013 1110 Oorlor3

CB3 0111 3 CB012 1111 Oorlor2

MATRA MHS 27

Rev. H (02 Dec. 96)

TSCB91E TEMIC

Trap Base Register| Trap Base Address (TBA) [Trap Type(tt) [0 0 0 O

31 12 11 4 3 0
128

31 76 0

| Register Source 1 | 7-Bit operand

2 13 tt field of Trap Base Register

| Sign Extension | 13-Bit Immediate

i bit of Ticc instruction = 1 128

31 76

| Register Source 1 | 7-Bit operand

a1 76 tt field of Trap Base Register

| Register Source 2 | 7-Bit operand

i bit of Ticc instruction =0

Figure 19. Ticc Trap Addr ess Generation

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such
as out-of-range array indices, integer overflete.

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETT first increments
the CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of
trap conditions before iallows a return. An illegal_instruction trap is generated if traps are enabled (ET=1) when RETT

is executed. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for
the following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word
aligned. If none of these conditions exist, RETT enables traps (ET=1), restores the previous supervisor state to the S
bit, and writes the tget address into the nPC.

3.4.3.3.3. Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address
using a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing
(the sum of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address.
Either instruction allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
anda SA/E instruction. A procedure that does not need a new wind®e-called “leaf” routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PClinoregister r[15]. When the new window is
activated, this becomaess register r[31] (see Figure 5). The JMPL instruction stores its return address (the contents
of PC, which is the Link) into theregister specified in the destination field,

The primary purpose of the SAVE instruction is to “save” the caller’s window by decrementing the Current Window
Pointer (CWP) by one, thereby activating the next window and making the current window into the previous window.
SAVE also performs a normal ADD, using source registers from the caller's window, but writing the result into a
destination register in the new windofhis can be used to set a new stack pointer from the previous orBe(tien
3.3.1.1.1).

Returnfrom a procedure requiring its own windowdisne with a RESORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALL's or JMPL's delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller’s
window by incrementing the CWP by one, causing the previous window to become the current wWisigath SA/E,
RESTOREperforms an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window
overflow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack
pointer in arr register.

28 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

3.4.3.4. Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control
transfer instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the
instructionthat follows the control transfer instructiora &void creating a hole or bubble in the pipeline, the TSC691E
delays execution of the @&t instruction until the instruction following the control transfer instruction is executed. The
instructionin this delay slot is called the delay instruction.

Table 14. Delayed Contol Transfer Instruction Example

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)
(Transfers control to 40)
40 44

Table 15. Effect of Annul Bit Reset é=0)

PC nPC Instruction Action

8 12 Non-control transfer Executed
12 16 Bicc (a =0) 40 Not Taken
16 20 Delay slot instruction Executed
20 24 Executed

Table 16. Effect of Annul Bit Reset§=1)

PC nPC Instruction Action

8 12 Non-control transfer Executed
12 16 Bicc (a=1) 40 Not Taken
16 20 Delay slot instruction (annuled) Not Executed
20 24 Executed

3.4.3.4.1. PC and nPC

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nR@ints to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction
before transfer of control to the target instruction.

3.4.3.4.2. Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the
delay instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that
preceded the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer
becomes the delay instruction (that's where the nPC will point). For more on delayed control transfer couples, see
Section 3.4.3.4.4.

Table 14 shows theorder of execution for a simple (not back-to-back) delayed control tramkfeprder of execution
is 8,12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

3.4.3.4.3. Annul Bit

Thea (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the
behavior of the delay instruction. dfis set on a conditional branch instruction (except BA, FBA, and CBA) and the
branch isnottaken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state
of the TSC691E nor can a trap occur during an annulled instruction. If the branch is takeit thégnored and the

delay instruction is executed. Table 15 and Table 16 show the effect of the annul bit when it is reset or set.

MATRA MHS 29
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

The “branch always” instructions (BA, FBA, and CBA) are a special case. éfltitas set in these instructions, the

delay instruction is annulled, even though the branch is taken. Effectively, this gives a “traditional” non-delayed
branch. When a = 0 in a “branch always” instruction, it behaves the same as any other conditional branch; the delay
instruction is executed. Figure 20 displays the effectatbé has on any branch for either the set or reset state.
Table 17 summarizes the effect the annul bit has on the execution of delay instructions.

Table 17. Effect of Annul Bit on Delay Instruction

a bit Type of branch Delay instruction executed?
a=1 Always No
Conditional, taken Yes
Conditional, not taken No
a=0 Always Yes
Conditional, taken Yes
Conditional, not taken Yes
ANNUL =0 ANNUL =1
Code Code
| Control Transfer Instl Branch | Control Transfer InStl Untaken
Always T Conditional
Taken | Delay Inst. | Taken Delay Inst. |
Conditional Conditional |
< Untaken -«
Conditional +

Figure 20. Delayed Contol Transfer

3.4.3.4.4. Delayed Contl Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 18 , and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 19 .

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing after the delayed control
transferinstruction. Howevelin the case of a delayed control transfer couple, tgettastruction of the first delayed

control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that
targetinstruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer

instruction.

In the following tables, “delayed control transfer instructienédbbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not
indicated, it may be either O or 1.

30 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC

Semiconductors

TSCO691E

Case 1 of Table 19 includes the “JMPL, RETT” couple, which is the normal method of returning from a trap handler.
The JMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 3.4.3.4.2). The case of a trap caused by a delay slo
instructionis one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JIMPL, RETT
couple allows the choice of re—executing the trapped instruction or executing the instruction following the trap
occurrence. Refer to the RETT entry in SPARC V7.0 Instruction Set for further information.

Table 18. Delayed Contol Transfer Couple Instruction Sequence

Address Instruction Target
8: Non DCTI
12: DCTI 40
16: DCTI 60
20: Non DCTI
24:
40: Non DCTI
44
60: Non DCTI
64:
Table 19. Execution of Delayed Contl Transfer Couples
Case DCTI at Location 12 DCTI at Location 16 Order of Execution
1 DCTI Unconditional DCTI Taken 12, 16, 40, 60, 64, ...
2 DCTI Unconditional B*cc(a = 0) Untaken 12, 16, 40, 44, ...
3 DCTI Unconditional B*cc(a = 1) Untaken 12, 16, 44, 48, ...(40 annuled)
4 DCTI Unconditional B*A(a=1) 12, 16, 60, 64, ...(40 annuled)
5 B*A(a =1) any CTI 12, 40, 44, ...(40 annuled)
6 B*cc DCTI Not Supported
B*A BA, FBA, or CBA
B*cc ... Bicc, FBicc, or CBicc (except B*A)
DCTIUncond..................... CALL, JMPL, RETT, or B*A(a=0)
DCTITaken...................... CALL, JMPL, RETT, B*cc taken, or B*A(a=0)

Cases 1-5 described imfle 19 are illustrated in Figure 21 . In case 1, the first DCTI is fetched at address 12 and the
target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been
calculated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address
40. The target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore it
is the delay slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched
afterthe delay slot instruction for tremcond DCTI (which is also the gt address for the first DCTI) has been fetched.

Case2 differs from case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a
branch the instruction fetch continues to address 44.

Case3 is an interesting case in which they&rinstruction of the first DCTI is annulled by the second DCTI. This causes
theinstruction at address 40 to be annulled. Since the second DCTuigadken conditional branch, instruction fetch
continues after the annulled target instruction (address 44).

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target
instruction of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second
DCTI at address 60.

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI,
sinceit is annulled, has nofefct on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

Whenthe first instruction of a delayed control transfer coupledsralitional branch, control transfer is undefined (case
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise
undefined Execution of this sequence does not change any other aspect of the processor state.

MATRA MHS 31
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

Inst. Case 1 Inst. Case 2 Inst. Case 3
Address Address Address
12H| DCT Inst. 1 12H| DCT Inst. 1 12H| DCT Inst. 1 I
Delay Slot #1 [y Delay Slot #1| Delay Slot #1
16H|(DCT Inst. 2 16H || B*cc (untaken) 16H [B*cc (untaken)
a=0 a=1
[| .
Delay Slot #2 Delay Slot #2) Dela \‘\@
40H | DCT #1 Targef] 401 |[DCT #1 Targe] 40H[[\DCT#1 Target
annulled by DCTI #2

44H| Next Inst.l

60H| DCT #2 Targetl

Next Inst.

Inst.
Address

12H| DCT Inst. 1
Delay Slot #1
B*A (a=1)

W

64H

Case 4

16H

Gek
3CT 2 Targe]

annulled by DCTI #2

6OH| DCT #2 Targeﬂ

40H

44H| Next Inst.l

Inst.
Address

R TR
SN

annulled by DCTI #1

Case 5

16H

Figure 21. Delayed Contol Transfer Couples

MATRA MHS
Rev. H (02 Dec.96)

32

TEMIC TSCB91E

Table 20. Read/Write Contiol Register Instructions

Name Operation Cycles

RDY Read Y Register 1
RDPSR* Read Processor State Register 1
RDWIM* Read Window Invalid Mask 1
RDTBR* Read Trap Base Register 1

WRY Write Y Register 1
WRPSR* Write Processor State Register 1
WRWIM* Write Window Invalid Mask 1
WRTBR* Write Trap Base Register 1

* denotes supervisor instruction

Table 21. Floating—Point—Operate and Copscessor—Operate Instructions

Name Operation Cycles
FPop Floating—Point Operations 1 to launch
FPop Coprocessor Operations 1 to launch

Table 22. Miscellaneousnstructions

Name Operation Cycles
UNIMP Unimplemented Instruction 1
IFLUSH Instruction Cache Flush 1

3.4.3.5. Read/Write Control Registers

This class of instruction reads or writes the contents of the various control registers (see Table 20). The source (read)
or destination (write) is implied by the instruction name. Read/write instruaiengrovided for the PSR, WIM, TBR,

FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in
supervisor mode only.

3.4.3.6. Floating-Point-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are
register-to-register instructions that compute some result as a function of one or two source operands (see Table 21).
The result is always placed in a destination register (i.e., source operands are not overwritten). The source and
destination registers afeegisters from the FPU’s register file. If no FPU is present, or if the EF bit of the PSR is not
set, executing a floating—point instruction will generate aig&bled trap.

Coprocessor-operate instructions (FPops) are executed by the attached coprocessor. Coprocessor instructions use th
c registerslocated in the coprocessor's register file as source and destination registers. If there is no attached
coprocessor, attempted execution of a coprocessor instruction generattisabliee trap.

Floating-pointand coprocessor load/store instructions are not operate instructions; they fall uT&C 64 Es load
[store instruction category (see Section 3.4.3.1).

Except forop andop3 which specify the particular floating-point-operate or coprocessor-operate instruction to be
executed, the instruction fields of an FPop or CPop are interpreted by the FPU or coprocessor. Floating-point-operate
instructions execute concurrently withSC691E instructions. FPops can also execute concurrently with both
TSC691Eand FPop instructions if they are designed to do so.

MATRA MHS 33
Rev. H (02 Dec.96)

TSCB91E TEMIC

Becauseéhe TSC691Eand FPU can execute instructions concurremthen a floating-point exception occurs, the PC
DOEs contain the address of an FPop instruction, but not the one that caused the exception. However, the front entry
of the floating-point queue contains théeofding instruction and its address.

If the coprocessor executes instructions concurrently witi 8@691E the architecture will support a coprocessor
queue that functions in the same fashion as the floating-point queue.
3.4.3.7. Miscellaneous

Instructions in this category handle special circumstances within the integer unit (see Table 22). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in SPARC V7.0 Instruction Set.

The IFLUSH instruction is used to flush a word from an internal (t@ 8@691F) instruction cache. Current integer
unitimplementationsTSC691E) do not incorporatan internal instruction cache, so IFLUSH would normally execute
asa NOP However if there is an external instruction cache, IFLUSH causes an illegal instruction trap if thighall

is LOW (see Section 3.5)

3.4.4. Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in
ascending numeric order.

3.4.4.1. Load/Store Instructions
Table 23. Load/Store Instruction Opcodes

_ Opcodes with Format
Mmnemaonc
3130 29 25 24 19 18 14 13 12) 4 0

LD 11 rd 000000 rsl i=0 ignored rs2
i=1 simm13

LDA 11 rd 010000 rsl i=0 asi rs2

LDC 11 rd 110000 rsi i=0 ignored rs2
i=1 simm13

LDCSR 11 rd 110001 rsl i=0 ignored rs2
i=1 simm13

LDD 11 rd 000011 rsl i=0 ignored rs2
i=1 simm13

LDDA 11 rd 010011 rsl i=0 asi rs2

LDDC 11 rd 110011 rsl i=0 ignored rs2
i=1 simm13

LDDF 11 rd 100011 rsl i=0 ignored rs2
i=1 simm13

LDF 11 rd 100000 rsi i=0 ignored rs2
i=1 simm13

LDFSR 11 rd 100001 rsi i=0 ignored rs2
i=1 simm13

34 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Opcodes with Format
Mnemonic
3130 29 25 24 19 18 14 13 12 5 4 0

LDSB 11 rd 001001 rsl i=0 ignored rs2
i=1 simm13

LDSBA 11 rd 011001 rsl i=0 asi rs2

LDSH 11 rd 001010 rsl i=0 ignored rs2
i=1 simm13

LDSHA 11 rd 011010 rsl i=0 asi rs2

LDSTUB 11 rd 001101 rsl i =0 ignored rs2
i=1 simm13

LDSTUBA 11 rd 011101 rsl i=0 asi rs2

LDUB 11 rd 000001 rsl i=0 ignored rs2
i=1 simm13

LDUBA 11 rd 010001 rsl i=0 asi rs2

LDUH 11 rd 000010 rsi i= ignored rs2
i=1 simm13

LDUHA 11 rd 010010 rsl i=0 asi rs2

ST 11 rd 000100 rsl i=0 ignored rs2
i=1 simm13

STA 11 rd 010100 rsl i=0 asi rs2

STB 11 rd 000101 rsl i =0 ignored rs2
i=1 simm13

STBA 11 rd 010101 rsl i=0 asi rs2

STC 11 rd 110100 rsi i=0 ignored rs2
i=1 simm13

STCSR 11 rd 110101 rsl i=0 ignored rs2
i=1 simm13

STD 11 rd 000111 rsl i=0 ignored rs2
i=1 simm13

STDA 11 rd 010111 rsl i=0 asi rs2

STDC 11 rd 110111 rsl i=0 ignored rs2
i=1 simm13

STDCQ 11 rd 110110 rsl i=0 ignored rs2
i=1 simm13

STDF 11 rd 100111 rsl i=0 ignored rs2

MATRA MHS 35

Rev. H (02 Dec.96)

TSCB91E TEMIC

Opcodes with Format
Mnemonic
3130 29 25 24 19 18 14 13 12 5 4 0

i=1 simm13

STDFQ 11 rd 100110 rsl i=0 ignored rs2
i=1 simm13

STF 11 rd 100100 rsl i=0 ignored rs2
i=1 simm13

STFSR 11 rd 100101 rsl i=0 ignored rs2
i=1 simm13

STH 11 rd 000110 rsi i=0 ignored rs2
i=1 simm13

STHA 11 rd 010110 rsl i=0 asi rs2

SWAP 11 rd 001111 rsl i=0 ignored rs2
i=1 simm13

SWAPA 11 rd 011111 rsl i=0 asi rs2

3.4.4.2. Arithmetic/Logical/Shift Instructions
Table 25. Arithmetic/Logical/Shift Instruction Opcodes

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0

ADD 10 rd 000000 rsl i=0 ignored rs2
i=1 simm13

ADDcc 10 rd 010000 rsl i=0 ignored rs2
i=1 simm13

ADDX 10 rd 001000 rsl i=0 ignored rs2
i=1 simm13

ADDXcc 10 rd 011000 rsl i=0 ignored rs2
i=1 simm13

AND 10 rd 000001 rsi i=0 ignored rs2
i=1 simm13

ANDcc 10 rd 010001 rsl i=0 ignored rs2
i=1 simm13

ANDN 10 rd 000101 rsi i=0 ignored rs2
i=1 simm13

ANDNCcc 10 rd 010101 rsl i=0 ignored rs2

36 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0
i=1 simm13
MULScc 10 rd 100100 rsl i =0 ignored rs2
i=1 simm13
OR 10 rd 000010 rsi i=0 ignored rs2
i=1 simm13
ORcc 10 rd 010010 rsi i=0 ignored rs2
i=1 simm13
ORN 10 rd 000110 rsl i=0 ignored rs2
i=1 simm13
ORNcc 10 rd 010110 rsl i=0 ignored rs2
i=1 simm13
SLL 10 rd 100101 rsl i=0 ignored rs2
i=1 shent
SRA 10 rd 100111 rsi i=0 ignored rs2
i=1 shent
SRL 10 rd 100110 rsl i=0 ignored rs2
i=1 shent
SUB 10 rd 000100 rsl i=0 ignored rs2
i=1 simm13
SUBcc 10 rd 010100 rsi i= ignored rs2
i=1 simm13
SUBX 10 rd 001100 rsl i =0 ignored rs2
i=1 simm13
SUBXcc 10 rd 011100 rsi i=0 ignored rs2
i=1 simm13
TADDcc 10 rd 100000 rsi i=0 ignored rs2
i=1 simm13
TADDccTV 10 rd 100010 rsi i=0 ignored rs2
i=1 simm13
TSUBcc 10 rd 100001 rsi i=0 ignored rs2
i=1 simm13
TSUBcCTV 10 rd 100011 rsi i=0 ignored rs2
i=1 simm13
MATRA MHS 37

Rev. H (02 Dec.96)

TSCB91E TEMIC

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0
XNOR 10 rd 000111 rsl i=0 ignored rs2
i=1 simm13
XNORcc 10 rd 010111 rsl i=0 ignored rs2
i=1 simm13
XOR 10 rd 000011 rsl i=0 ignored rs2
XOR 10 rd 000011 rsl i=1 simm13
XORcc 10 rd 010011 rsi i=0 ignored rs2
i=1 simm13
3130 29 25 24 22 21 0
SETHI 00 rd 100 immz22

3.4.4.3. Control Transfer Instructions

Table 27. Control Transfer Instruction Opcodes

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0
JMPL 10 rd 111000 rsl i =0 ignored rs2
i=1 simm13
RESTORE 10 rd 111101 rsl i=0 ignored rs2
i=1 simm13
RETT 10 ignored 111001 rsl i =0 ignored rs2
i=1 simm13
SAVE 10 rd 111100 rsl i=0 ignored rs2
i=1 simm13
3130 29 2825 2422 21 0
Bicc 00 | a| cond 010 disp22
CBccc 00 | a| cond 111 disp22
FBfcc 00 | a| cond 110 disp22
3130 29 2825 24 19 18 14 13 12 5 4 0
Ticc 10 | I* | cond 111010 rsl i =0 ignored rs2
i=1 simm13
CALL 01 disp30
*| = ignored.
38 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Table 28. Bicc and Tcc Condition Codes

Cond. Test
0000 Never
0001 Equal to
0010 Less than or equal to
0011 Less than
0100 Less than or equal to, unsigned
0101 Carry set (less than, unsigned)
0110 Negative
0111 OverFLOWset
1000 Always
1001 Not equal to
1010 Greater than
1011 Greater than or equal to
1100 Greater than, unsigned
1101 Carry clear (greater than or equal, unsigned)
1110 Positive
1111 OverFLOWCclear

Table 29. FBfcc Condition Codes

Cond. Test
0000 Never
0001 Not equal
0010 Less than or greater to
0011 Unordered or less than
0100 Less than
0101 Unordered or greater than
0110 Greater than
0111 Unordered
1000 Always
1001 Equal
1010 Unordered or equal
1011 Greater than or equal
1100 Unordered or greater than or equal
1101 Less than or equal
1110 Unordered or less than or equal
1111 Ordered

Table 30. CBccaCondition Codes

Opcode Cond. Test
CBN 0000 Never
CB123 0001 lor2or3
CB12 0010 lor2
CB13 0011 lor3
CB1 0100 1
CB23 0101 20r3
CB2 0110 2
CB3 0111 3
CBA 1000 Always
CBO 1001 0
CB03 1010 Oor3
CB02 1011 Oor2
CB023 1100 Oor2or3
CBO1 1101 Oor1l
CB013 1110 Oorlor3
CB012 1111 Oorlor2

3.4.4.4. Read/Write Control Register Instructions

MATRA MHS 39
Rev. H (02 Dec.96)

TSCO91E

TEMIC

Semiconductors

Table 31. Read/Write Control Register Instruction Opcodes

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 i 12
RDPSR 10 rd 101001 ignored I* ignored
RDTBR 10 rd 101011 ignored I* ignored
RDWIM 10 rd 101010 ignored [* ignored
RDY 10 rd 101000 ignored [* ignored
3130 29 25 24 19 18 14 13 12 5
WRPSR 10 ignored 110001 rsl i=0 ignored rs2
i=1 simm13
WRTBR 10 ignored 110011 rsl i=0 ignored rs2
i=1 simm13
WRWIM 10 ignored 110010 rsl i =0 ignored rs2
i=1 simm13
WRY 10 ignored 110000 rsl i =0 ignored rs2
i=1 simm13
*| = ignored.
3.4.4.5. Floating-Point/Coprocessor Instructions
Table 32. Floating—Point /Coprocessor Instruction Opcodes
Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 5 4
FPOP1 10 rd 110110 rsl OPC rs2
FPOP2 10 rd 110111 rsl OPC rs2
FABSs 10 rd 110100 ignored 000001001 rs2
FADDs 10 rd 110100 rsl 001000001 rs2
FADDd 10 rd 110100 rsl 001000010 rs2
FADDx 10 rd 110100 rsl 001000011 rs2
FCMPs 10 ignored 110101 rsl 001010001 rs2
FCMPd 10 ignored 110101 rsl 001010010 rs2
FCMPx 10 ignored 110101 rsl 0010 0011 rs2
FCMPEs 10 ignored 110101 rsi 001010101 rs2
FCMPEd 10 ignored 110101 rsl 001010110 rs2
FCMPEXx 10 ignored 110101 rsi 001010 11 rs2
FDIVs 10 rd 110100 rsl 001001 01 rs2
40 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 5 4 0
FDIvd 10 rd 110100 rsl 001001110 rs2
FDIVx 10 rd 110100 rsl 00100111 rs2
FMOVs 10 rd 110100 ignored 00000O0O0OO01 rs2
FMULs 10 rd 110100 rsl 001001001 rs2
FMULd 10 rd 110100 rsl 001001010 rs2
FMULXx 10 rd 110100 rsl 001001011 rs2
FNEGs 10 rd 110100 ignored 00000O01O01 rs2
FSQRTs 10 rd 110100 ignored 00010100 rs2
FSQRTd 10 rd 110100 ignored 00010101 rs2
FSQRTX 10 rd 110100 ignored 000101011 rs2
FSUBs 10 rd 110100 rsl 001000101 rs2
FSUBd 10 rd 110100 rsl 001000110 rs2
FSUBXx 10 rd 110100 rsl 001000111 rs2
FdTOI 10 rd 110100 ignored 011010 0 rs2
FdTOs 10 rd 110100 ignored 011000110 rs2
FdTOX 10 rd 110100 ignored 011001110 rs2
FiTOd 10 rd 110100 ignored 011001000 rs2
FiTOs 10 rd 110100 ignored 011000100 rs2
FiTOx 10 rd 110100 ignored 011001100 rs2
FsTOd 10 rd 110100 ignored 011001001 rs2
FsTOi 10 rd 110100 ignored 011010001 rs2
FsTOx 10 rd 110100 ignored 01100110 rs2
FXTOI 10 rd 110100 ignored 011010011 rs2
FXTOs 10 rd 110100 ignored 011000111 rs2
FxTOd 10 rd 110100 ignored 011001011 rs2
3.4.4.6. Miscellaneous Instructions
Table 33. Miscellaneousnstruction Opcodes
Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0
IFLUSH 10 ignored 111011 rsl i=0 ignored rs2
i=1 simm13
UNIMP 00 ignored 000 const22
MATRA MHS 41

Rev. H (02 Dec.96)

TSCB91E TEMIC

3.4.4.7. Opcodes In Ascending Numeric Order

Table 34. Instruction Opcode Numeric Listing

Mnemonic Opcodes with Format
3130 29 25 24 2221 19 18 14 13 12 5 4 0
UNIMP 00 ignored 000 const22
Bicc 00 | a| cond 010 disp22
SETHI 00 rd 100 imm22
FBfcc 00 | a| cond 110 disp22
CBccc 00 | a| cond 111 disp22
CALL 01 disp30
ADD 10 rd 000000 rsl i =0 ignored rs2
i=1 simm13
AND 10 rd 000001 rsl i =0 ignored rs2
i=1 simm13
OR 10 rd 000010 rsl i =0 ignored rs2
i=1 simm13
XOR 10 rd 000011 rsl i =0 ignored rs2
i=1 simm13
SUB 10 rd 000100 rsl i =0 ignored rs2
i=1 simm13
ANDN 10 rd 000101 rsl i =0 ignored rs2
i=1 simm13
ORN 10 rd 000110 rsl i =0 ignored rs2
i=1 simm13
XNOR 10 rd 000111 rsl i=0 ignored rs2
i=1 simm13
ADDX 10 rd 001000 rsl i =0 ignored rs2
i=1 simm13
SUBX 10 rd 001100 rsl i=0 ignored rs2
i=1 simm13
ADDcc 10 rd 010000 rsl i =0 ignored rs2
i=1 simm13
ANDcc 10 rd 010001 rsl i=0 ignored rs2
i=1 simm13
42 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Table 35. Instruction Opcode Numeric Listing(continued)

Mnemonic Opcodes with Format
3130 29 25 24 22 21 19 18 14 13 12 5 4 0
ORcc 10 rd 010010 rsl i =0 ignored rs2
i=1 simm13
XORcc 10 rd 010011 rsl i=0 ignored rs2
i=1 simm13
SUBcc 10 rd 010100 rsl i =0 ignored rs2
i=1 simm13
ANDNcc 10 rd 010101 rsl i =0 ignored rs2
i=1 simm13
ORNCcc 10 rd 010110 rsl i =0 ignored rs2
i=1 simm13
XNORcc 10 rd 010111 rsl i =0 ignored rs2
i=1 simm13
ADDXcc 10 rd 011000 rsl i=0 ignored rs2
i=1 simm13
SUBXcc 10 rd 011100 rsl i=0 ignored rs2
i=1 simm13
TADDcc 10 rd 100000 rsl i=0 ignored rs2
i=1 simm13
TSUBcc 10 rd 100001 rsl i=0 ignored rs2
i=1 simm13
TADDccTV 10 rd 100010 rsl i =0 ignored rs2
i=1 simm13
TSUBccTV 10 rd 100011 rsl i =0 ignored rs2
i=1 simm13
MULScc 10 rd 100100 rsl i =0 ignored rs2
i=1 simm13
SLL 10 rd 100101 rsl i =0 ignored rs2
i=1 shent
MATRA MHS 43

Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCO91E

Mnemonic Opcodes with Format
3130 29 25 24 22 21 19 18 14 13 12 5 4 0
SRL 10 rd 100110 rsl i =0 ignored rs2
i=1 shent
SRA 10 rd 100111 rsl i=0 ignored rs2
i=1 shent
RDY 10 rd 101000 ignored I ignored
RDPSR 10 rd 101001 ignored I ignored
RDWIM 10 rd 101010 ignored I ignored
RDTBR 10 rd 101011 ignored I ignored
WRY 10 ignored 110000 rsl i =0 ignored rs2
i=1 simm13
WRPSR 10 ignored 110001 rsl i=0 ignored rs2
=1 simm13
WRWIM 10 ignored 110010 rsl i =0 ignored rs2
i=1 simm13
WRTBR 10 ignored 110011 rsl =0 ignored rs2
i=1 simm13
44 MATRA MHS

Rev.

H (02 Dec.96)

TEMIC TSCB91E

Table 36. Instruction Opcode Numeric Listing(continued)

Mnemonic Opcodes with Format
3130 29 25 2422 2119 18 14 i3 12 5 4 0
FPOP1 10 rd 110100 rsl OPF rs2
FMOVs 10 rd 110100 ignored 00000O0O0OO01 rs2
FNEGs 10 rd 110100 ignored 00000O01O0 rs2
FABSs 10 rd 110100 ignored 000001001 rs2
FSQRTs 10 rd 110100 ignored 000101001 rs2
FSQRTd 10 rd 110100 ignored 000101010 rs2
FSQRTxX 10 rd 110100 ignored 000101011 rs2
FADDs 10 rd 110100 rsl 001000001 rs2
FADDd 10 rd 110100 rsl 001000010 rs2
FADDx 10 rd 110100 rsl 001000011 rs2
FSUBs 10 rd 110100 rsl 0010001 1 rs2
FSUBd 10 rd 110100 rsl 001000110 rs2
FSUBXx 10 rd 110100 rsl 001000111 rs2
FMULs 10 rd 110100 rsl 001001001 rs2
FMULd 10 rd 110100 rsl 001001010 rs2
FMULXx 10 rd 110100 rsl 001001011 rs2
FDIVs 10 rd 110100 rsl 0010011012 rs2
FDIVd 10 rd 110100 rsl 001001110 rs2
FDIVX 10 rd 110100 rsl 001001111 rs2
FiTOs 10 rd 110100 ignored 011000100 rs2
FdTOs 10 rd 110100 ignored 011000110 rs2
FxTOs 10 rd 110100 ignored 011000111 rs2
FiTOd 10 rd 110100 ignored 011001000 rs2
FsTOd 10 rd 110100 ignored 011001001 rs2
FxTOd 10 rd 110100 ignored 011001011 rs2
FiTOX 10 rd 110100 ignored 011001100 rs2
MATRA MHS 45

Rev. H (02 Dec.96)

TSCB91E TEMIC

Mnemonic Opcodes with Format
3130 29 25 2422 2119 18 14 13 12 5 4 0
FsTOx 10 rd 110100 ignored 011001101 rs2
FdTOX 10 rd 110100 ignored 011001110 rs2
FsTOi 10 rd 110100 ignored 011010001 rs2
FdTOI 10 rd 110100 ignored 011010010 rs2
FXTOi 10 rd 110100 ignored 011010011 rs2
FPOP2 10 rd 110101 rsl OPF rs2
FCMPs 10 ignored 110101 rsl 001010001 rs2
FCMPd 10 ignored 110101 rsl 001010010 rs2
FCMPX 10 ignored 110101 rsl 001010011 rs2
FCMPEs 10 ignored 110101 rsl 001010101 rs2
FCMPEd 10 ignored 110101 rsi 001010110 rs2
FCMPEx 10 ignored 110101 rsl 001010 11 rs2
FPOP1 10 rd 110110 rsl OPC rs2
FPOP2 10 rd 110111 rsl OPC rs2
JMPL 10 rd 111000 rsl i =0 ignored rs2
i=1 simm13
46 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Table 37. Instruction Opcodes Numeric Listingcontinued)

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 i3 12 5 4 0

RETT 10 ignored 111001 rsl i =0 ignored rs2
i=1 simm13

Ticc 10 |I*| cond 111010 rsl i=0 ignored rs2
i=1 simm13

IFLUSH 10 ignored 111011 rsl i =0 ignored rs2
i=1 simm13

SAVE 10 rd 111100 rsl i =0 ignored rs2
i=1 simm13

RESTORE 10 rd 111101 rsl i =0 ignored rs2
i=1 simm13

LD 11 rd 000000 rsl i =0 ignored rs2
i=1 simm13

LDUB 11 rd 000001 rsl i=0 ignored rs2
i=1 simm13

LDUH 11 rd 000010 rsl i=0 ignored rs2
i=1 simm13

LDD 11 rd 000011 rsl i=0 ignored rs2
i=1 simm13

ST 11 rd 000100 rsl i =0 ignored rs2
i=1 simm13

STB 11 rd 000101 rsl i=0 ignored rs2
i=1 simm13

STH 11 rd 000110 rsl i =0 ignored rs2
i=1 simm13

STD 11 rd 000111 rsl i =0 ignored rs2
i=1 simm13

MATRA MHS 47

Rev. H (02 Dec.96)

TSCB91E TEMIC

Mnemonic Opcodes with Format
3130 29 25 24 19 18 14 13 12 5 4 0
LDSB 11 rd 001001 rsl i =0 ignored rs2
i=1 simm13
LDSH 11 001010 rsl i =0 ignored rs2
i=1 simm13
LDSTUB 11 rd 001101 rsl i =0 ignored rs2
i=1 simm13
SWAP 11 rd 001111 rsl i=0 ignored rs2
i=1 simm13
LDA 11 rd 010000 rsl i=0 asi rs2
LDUBA 11 rd 010001 rsl i =0 asi rs2
LDUHA 11 rd 010010 rsl i=0 asi rs2
LDDA 11 rd 010011 rsl i=0 asi rs2
STA 11 rd 010100 rsl i=0 asi rs2
STBA 11 rd 010101 rsl i=0 asi rs2
STHA 11 rd 010110 rsl i =0 asi rs2
STDA 11 rd 010111 rsl i=0 asi rs2
48 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Table 38. Instruction Opcodes Numeric Listingcontinued)

Mnemonic Opcodes with Format
3130 29 25 24 22 21 19 18 14 13 12 5 4 0

LDSBA 11 rd 011001 rsl i=0 asi rs2

LDSHA 11 rd 011010 rsl i =0 asi rs2

LDSTUBA 11 rd 011101 rsl i=0 asi rs2

SWAPA 11 rd 011111 rsl i=0 asi rs2

LDF 11 rd 100000 rsl i =0 ignored rs2
i=1 simm13

LDFSR 11 rd 100001 rsl i =0 ignored rs2
i=1 simm13

LDDF 11 rd 100011 rsl i =0 ignored rs2
i=1 simm13

STF 11 100100 rsl i=0 ignored rs2
i=1 simm13

STFSR 11 rd 100101 rsl i =0 ignored rs2
i=1 simm13

STDFQ 11 rd 100110 rsl i=0 ignored rs2
i=1 simm13

STDF 11 rd 100111 rsl i =0 ignored rs2
i=1 simm13

LDC 11 rd 110000 rsl i =0 ignored rs2
i=1 simm13

LDCSR 11 rd 110001 rsl i =0 ignored rs2
i=1 simm13

LDDC 11 rd 110011 rsl i =0 ignored rs2
i=1 simm13

STC 11 rd 110100 rsl i =0 ignored rs2
i=1 simm13

STCSR 11 rd 110101 rsl i =0 ignored rs2
i=1 simm13

STDCQ 11 rd 110110 rsl i =0 ignored rs2
i=1 simm13

STDC 11 rd 110111 rsl i=0 ignored rs2
i=1 simm13

MATRA MHS 49

Rev. H (02 Dec.96)

TSCB91E TEMIC

3.5. Signal Description

This section provides a description of f@C691Es external signals. Functionally, the IU’s external signals can be
divided into four categories: memory subsystem interface, floating-point/coprocessor interface, interrupt and control
signals,and power and clock signals.

APAR/ASPAR/DPAR/IMPAR/IFPAR
A[31:0] FIPAR
ASI[7:0 40’%\/ ERRQR
SIZE[1:0] = Froo
FEXC
MAG FXACK
_ > FCCI[1:0]
D[31:0] | FCCV
-~ FINS1
___WDS FNS?2
MHOLDA FPSYN
MHOLDB
BHOLD MCERR
—_— e]

TOE CMODE

COE FLOW

CLK TSC691ESPARC 601IMODE

- Ia—
IRL[3:0] Integer Unit _ HALT
INTACK INST
MEXC
— e FLUSH
ERRROI;? TAP = TCLK/TRST/TMS/TDI/TDO
B =
B
w _

WRT . FP
DXFER | CHOLD
LDSTO CEXC
INULL CXACK

~————
- LOCK | CCCl1.0]

DOE ccev

AOE CINS1

—_—]
= CINS2
—_—_—mm

Figure 22. TSC691E=xternal Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 22 summarizes the
signalsdescribed in this section. Table Povides a summary of the external signals foMBEGI1E

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is
deasserted is inactive. When a signal is HIGH, it is a logical 1; when it is L@V a logical 0. This is true regardless
of whether it is asserted or deasserted.

50 MATRA MHS
Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCOE91E

Table 39. TSC691E External Signal Summary

Memory Subsystem Interface Signals: Impedance of Three—State
Output =20kQ
Signal Name Description Signal Type Active

A<31:0> Address Bus Three—State Output

APAR Address Bus Parity Three—State Output HIGH
AOE Address Output Enable Input LOW
ASI<7:0> Address Space Identifier Three—State Output

COE Control Output Enable Input LOW
BHOLD Bus Hold Input LOW
D<31:0> Data Bus Three—State BiDir.

DPAR Data Bus Parity Three-State BiDir. HIGH
DOE Data Output Enable Input LOW
DXFER Data Transfer Three—State Output HIGH
IFT Instruction Cache Flush Trap Input LOW
INULL Integer Unit Nullify Cycle Three—State Output HIGH
LDSTO Atomic Load-Store Three—State Output HIGH
LOCK Bus Lock Three—State Output HIGH
MAO Memory Address Output Input HIGH
MDS Memory Data Strobe Input LOW
MEXC Memory Exception Input LOW
MHOLDA Memory Bus Hold A Input LOW
MHOLDB Memory Bus Hold B Input LOW
RD Read Access Three—State Output HIGH
SIZE<1:0> Bus Transaction Size Three—State Output

ASPAR ASI and SIZE Parity Three—State Output HIGH
WE Write Enable Three—State Output LOW
WRT Advanced Write Three—State Output HIGH
IMPAR IU to MEC 1] Control Parity Three—State Output HIGH
Floating—Point / Coprocessor Interface Signals:

Signal Name Description Signal Type Active

CCC<1:0> Coprocessor Condition Codes Input

CCccv Coprocessor Condition Codes Valid Input HIGH
CEXC Coprocessor Exception Input LOW
CHOLD Coprocessor Hold Input LOW
CINS1 Coprocessor Instruction in Buffer 1 Three—State Output HIGH
MATRA MHS 51

Rev. H (02 Dec.96)

TSCO91E

TEMIC

Semiconductors

Floating—Point / Coprocessor Interface Signals:

Signal Name Description Signal Type Active
CINS2 Coprocessor Instruction in Buffer 2 Three—State Output HIGH
FP Coprocessor Unit Present Input LOW
CXACK Coprocessor Exception Acknowledge Three—State Output HIGH
FCC<1:0> Floating—Point Condition Codes Input
FCCV Floating—Point Condition Codes Valid Input HIGH
FEXC Floating—Point Exception Input LOW
FHOLD Floating—Point Hold Input LOW
FIPAR FPU to IU Control Parity Input HIGH
FINS1 Floating—Point Instruction in Buffer 1 Three—State Output HIGH
FINS2 Floating—Point Instruction in Buffer 2 Three—State Output HIGH
FLUSH Floating—Point/Coprocessor Instruction Flush Three—State Output HIGH
FP Floating—Point Unit Present Input LOwW
FXACK Floating—Point Exception Acknowledge Three—State Output HIGH
INST Instruction Fetch Three—-State Output HIGH
IFPAR IU to FPU Control Parity Three-State Output HIGH

Note 1: TSC693E= Memory controller system support circuit which contains fault deteatidmperipheral control

function.

Table 40. TSC691H=xternal Signal Summary(continued)

Interrupt and Control Signals:
Signal Name Description Signal Type Active

IRL<3:0> Interrupt Request Level Input

INTACK Interrupt Acknowledge Three—State Output HIGH
RESET Reset Input LOW
ERROR Error State Three-State Output LOW
HWERROR Hardware error Detected Three—State Output LOW
MCERR Comparison error Three-State Output LOW
FLOW Enable Program FLOWZontrol Input LOW
CMODE Checker Mode Input LOW
601IMODE Normal TSC691Mode Input LOW
FPSYN Floating—Point Synonym Mode Input HIGH
TOE Test Mode Output Enable Input LOW
HALT Halt Mode Input LOW
52 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Test Access Port Signals:

Signal Name Description Signal Type Active
TCLK Test Clock Input
TRST Test reset Input LOW
T™MS Test Mode Select Input HIGH
TDI Test Data Input Input
TDO Test Data Output Three-State Output

Power and Clock Signals:

Signal Name Description Signal Type Active
CLK Clock Input
VCCI Main internal VCC Input
VCCO Output driver VCC Input
VCCT Input circuit VCC Input
VSSI Main internal VSS Input
VSSO Output driver VSS Input
VSST Input circuit VSS Input

3.5.1. Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines
(2 bits), and various control signals.

3.5.1.1. A<31:0>—Address Bus (output)

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are ser
outunlatched and must be latched external toftB€691E Assertion of the MAO signal during a cache miss (which

is signaled by pulling one of the MHOLIMeslow) will force the Integer Unit to place the previous (missed) address

on the address bus. The address bus is three-stated (on chip pull_up resi€pw28k the AOEor TOEsignal is
deasserted (HIGH).

3.5.1.2. APAR—Address Bus Parity (output)

This signal contains the odd parity over the 32-bit address bus and is asserted simultaneously with the memory
address.lt is high-Z (on chip pull_up resistor=2pkvhen the AOEor TOEsignal is deasserted.

3.5.1.3. AOE—Address Output Enable (input)

Assertionof this signal enables the output drivessthe address bus, A<31:0>, and the ASI bus, ASI<7:0>, and is the
normal condition. Deassertion of AQRree-states (on chip pull_up resistor=20khe output drivers and should only
be done when the bus is granted to another bus master (i.e., when either BH@HDLDA/B is asserted).

3.5.1.4. ASI<7:0>—Address Space ldentifier (output)

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the
instruction or data access is being directed. The ASI bits are sent out unlatched—simultaneously with the memory
address—ancdhust be latched externallfssertion of the MAO signal during a cache miss (which is signaled by pulling
oneof the MHOLDIines low) will force the integer unit to place the previous address space identifier on the ASI<7:0>
pins.The ASI pins are three-stated (on chip pull_up resistoi@2@khen the AOEr TOE signal is deasserted (HIGH).
Encoding of the ASI bits is shown in Table 41 .

MATRA MHS 53
Rev. H (02 Dec.96)

TSCB91E TEMIC

Table 41. ASI Assignments

TSC691E
Address Space Identifier (ASI) Address Space

00001000 (08 H) User Instruction

00001010 (OA H) User Data

00001001 (09 H) Supervisor Instruction

00001011 (0B H) Supervisor Data

1 2 3 4 5 6
CLK

A<31:0> Al A2 A3 A4 A5 A6
D<31:0> Wr PS Inst 2 Inst 3 Inst 4 Inst 5
ASI[7:0] 09 X 08

Figure 23. ASItiming with a WRPSR Instruction

3.5.1.5. ASPAR—ASI and SIZE Parity (output)

This signal contains the odd parity over the 8-bit address space identifier and 2 bit Bus Transaction Size. It is asserted
simultaneously with the ASI and SIZE and will be high-Z (on chip pull_up resisto@)2@ken the AOECOE or
TOE signal is deasserted.

3.5.1.6. BHOLD—Bus Hold (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHD&Kiernal logic must guarantee that the data at all inputs to the
TSC691Eis the same as it was before BHOMs asserted. This signal is tested on the falling edge (midpoint) of

a cycle and must be valid and stable at the processor for the duration of the specified set—up time prior to the falling
edge of CLK. All HOLD signals are latched in th8C691E (transparent latch with clock high) before they are used.
BecauséMDS and MEXCsignals are recognized while this input is active, BHGhDuld only be used for bascess

requests by an external device. BHO&lbuld not be asserted when LOCK is asserted.

3.5.1.7. COE—Control Output Enable (input)

Assertion of this signal enables the output drivers for SIZE<1:0>, RD, WW#ET, LOCK, LDSTO, and DXFER
outputs, and is the normal condition. Deassertion of @®&e-states (on chip pull_up resistor=2pkhese output
drivers and should only be done when the bus is granted to another bus master (i.e., when eitheroBHOLD
MHOLDA/B is asserted).

3.5.1.8. D<31:0>—Data Bus (bidirectional)

These signals form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory.
The data bus is only driven by ti6&C691Eduring the execution of integer store instructions and the store cycle of
atomic-load-store instructions. Similarly, the FPU drives the data bus only during the execution of floatisgpoint
instructions.

54 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Storedata is sent out unlatched and must be latched externally before it is used. Once latched, store datariisgvalid
the second data cycle of a store single access, the second and third data cycle of a store double access, and the thir
datacycle of an atomic-load-store access.

Alignmentfor load andstore instructions is performed by the proced3oublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store
instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and
operands are always expected to reside in a 32-bit wide memory. D<31> corresponds to the most significant bit of the
most significant byte of a 32-bit word going to or from memory.

The Data bus is three-stated (on chip pull_up resisto@PR@ken the DOBr TOEsignal is deasserted (HIGH)

3.5.1.9.DPAR—Data Bus Parity (bidirectional)
This signal contains the odd parity over the 32-hit bidirectional data bus.

In case of store data operations the parity bit is generated and launched in parallel by the IU. In case of load data
operations the parity is checked by the IU.

This signal will be high-Z (on chip pull_up resistor=20kwvhen the DOEr TOEsignal is deasserted.

3.5.1.10. DOE—Data Output Enable (input)

Assertion of this signal enables the output drivers for the data bus, D<31:0>, and is the normal condition. Deassertion
of DOE three-states (on chip pull_up resistor=Q0khe data bus output drivers and should only be done when the bus
is granted to another bus master (i.e., when either BHQUBDHOLDA/B is asserted).

3.5.1.11. DXFER—Data Transfer (output)

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of date
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both
cyclesof store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must
be latched externally before it is used.

3.5.1.12. IF—Instruction Cache Flush Trap (input)

The state of this signal determines whether or not execution of the IFLUSH instruction generates a trap, thesr
execution of IFLUSH causes an illegal instruction trap. If9ETthen IFLUSH executes like a NOP with no side
effects.

3.5.1.13. INULL—Integer Unit Nullify Cycle (output)

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in the same
cycle in which the address being nullified is active (though no longer on the address bus, the address is held in the
external address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable
memoryexception generation for the current memory access. This means thaidD&XCshould not be asserted

for a memory access in which INULL=1. INULL is a latched output and should not be latched externally. If a
floating-pointunit or coprocessor is present in the system, INShauld be Ored with the FNULL and CNULL signals

to generate a final NULL signal.

INULL is asserted under the following conditions:

2. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occur-
renceof the store address.

3. Onall traps, tonullify the third instruction fetch after the trapped instruction. For reset, it nullifies thepeoauc-
ing address.

4. On aload in which the hardware interlock is activated.
5. JMPL and RETT instructions.

3.5.1.14. LDSTO—Atomic Load—-Store (output)

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally before it is used.

MATRA MHS 55
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.5.1.15. LOCK—Bus Lock (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle
transactions (Load Double, Store Single and Double, Atomic Load—Store). The bus will not be granted to another bus
masteras long a$ OCK is asserted. Note that BHOLEhould not be asserted in the processor clock cycle which follows
acycle in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used.

3.5.1.16. MAO—Memory Address Output (input)

This signal is asserted during an MHOIcbndition to force the previous (missed) memory access parameters back
ontheir various busses and control lines. The miss parameters are those that werethalidsing edge of the clock,
onecycle before the cycle in which MHOLWas asserted. A logic HIGlue at this signal during a cache miss causes
the integer unit to put A<31:0>, ASI<7:0>, SIZE<1:0>, RD, W&RT, LDSTO, LOCK, and DXFER values
correspondingo the missed memory address on the bus.

Normally, MAO is kept at a LOW level, thereby selecting the access parameténs frrrent memory address. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE

MAO must be driven LOW while RESE$ LOW.

3.5.1.17. MDS—Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit's instruction register (during an
instruction fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDA/B

In a system with cache, MDIS used to signal the processor when the missed data (cache miss) is ready on the data
bus.In a system with slow memories, M@&Is the processor when the read data is available on the bus. During a cache
line replacement, MDS3nay be asserted anywhere within the MHOL{xle and deasserted before MHOLD
releasedFor example, if a cache miss occurs on word 2 of a 4-word cache linesMid& only be driven active while

word 2 is being replaced in the cache.

MDS is also used to strobe in the MEXx@mory exception signal. MDi®ay only be asserted when the pipeline is
frozenwith MHOLDA/B. TheTSC691Esamples MDSwith an on-chip transparent latch before it is used.

3.5.1.18. MEXC—Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap
and indicates to thEeSC691Ethat the memory system was unable to supply a valid instruction or data. If NSEXC
asserted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data
cycle,it generates a data access exception trap.

MEXC is used as a qualifier for the MB®ynal, and must be asserted when both MHOLD&B MDSare already
asserted. If MDSs applied without MEXCthe TSC691E accepts the contents of the data bus as valid. If MEXC
accompanieMDS, an exception is generated and the data bus content is ignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEX®e
deasserteth the same clock cycle in which MHOLDA/B deasserted.

3.5.1.19.MHOLD(A/B)—Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cacffemsigstems with

cache memory) or when accessing a slow memory. The processor pipeline is frozen while MisGisBérted and

the TSC691E outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable
at the processor for the duration of the specified set—up time prior to the falling edge of CLK.

MHOLDB behaves in the same fashion as MHOLRAd either can be used to stop the processor dugaghe miss

or memory exception. The pipeline is actually frozen by a “final” hold signal that is the logical OR of all hold signals
(MHOLDA, MHOLDB, and BHOLD. All HOLD signals are latched in tHESC691E (transparent latch with clock
high) before they are used.

Note that MHOLDmust be driven HIGH while RESE$ LOW.

3.5.1.20. RD—Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD=1)
or a write (RD=0) operation. RD is set to “0” only during the address cycles of store instructions. For atomic load-store

56 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

instructionsRD is “1” during the load address cycle and “0” during the two store address ttyidesgnt out unlatched
by the Integer Unit and must be latched externally before it is used.

RD is used in conjunction with SIZE<1:0>, ASI<7:0>, and LDSTO to determine the type and to check the read/write
accessights of bus transactions. It may also be used to tdith@utput drivers of data RAMs duriagstore operation.

3.5.1.21. SIZE<1:0>—Bus Transaction Size (outputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size bits during a given cycle relates only to the memory address which appeassfe81:0> simultaneously
with the size outputs. It DGEnot apply to data which may be on the data bus during that same cycle.

Sizebits are sent out unlatched and must be latched external T&@@&91Ebefore they are used. SIZE<1:0> remains

valid during the data address cycles of loads, stores, load doubles, store doubles, and atomic load-stores. The
SIZE<1:0> pins are three-state (on chip pull_up resistor@20hen the COBr TOEsignal is deaserted. Encoding

of the size bits is shown irable 42 For example, during an instruction fetch, SIZE<1:0> is set to “10”, because all
instructions are 32 bits long. For doubleword instructions, SIZE<1:0> is “11” for all data address cycles.

Table 42. SIZE Bit Encoding

SIZE<1> SIZE<0> Data Transfer Type
0 0 Byte
0 1 Halfword
1 0 Word
1 1 Word (Load/Store Double)

3.5.1.22. WE—Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single
instruction, this is during the second store address cycle; the second and third store address cycles of store double
instructions, and the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must
belatchedexternally before it is used. To avoid writing to memory during memory exceptionsjWtbe externally

qualified by the MHOLDA/Bsignals.

3.5.1.23. WRT—Advanced Write (output)

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single or double
store instructions, the first store address cycle of floating-point single or double store instructions, and the second
load-store address cycle of atomic load-store instructions. WRT is sent out unlatched and must be latched externally
beforeit is used.

3.5.1.24. IMPAR—IU to MEC Control Parity (output)

This signal contains the odd parity over the DXFER, LDSTO, LOCK, RD, al@ WRT bits. The parity bit is
generated by the IU and will be checked by the MEC.

It will be high-Z (on chip pull_up resistor=20k when the COEBr TOEsignal is deasserted.

3.5.2. Floating-Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
IU to the FPU and coprocessor. The interfaces consist of the following signals:

3.5.2.1. CCC<1:0>—Coprocessor Condition Codes (input)

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the
CCCV signal. When CCCV=1, these bits are valid. During the execution of a CBccc instruction, the processor uses
CCC<1:0>to determine whether or not to take the branch. These bits are latched by the processor before they are used.

MATRA MHS 57
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.5.2.2. CCCV—Coprocessor Condition Codes Valid (input)

This signal is a specialized hold used to synchronize coprocessor compare instructions with coprocessor branch
instructionslt is asserted (the normal condition) whenever the CCC<1:0> bits are valid. A coprocessor would deassert
CCCV (CCCV=0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is
detected (see Section 3.9). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from
entering the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are
valid, thus ensuring that the condition codes match the proper compare instruction. CCCV is latchE8 Q6 &id=

beforeit is used.

3.5.2.3. CEXCGC—Coprocessor Exception (input)

CEXC is used to signal the integer unit that a coprocessor exception has occurredmOEX€Emain asserted until

the TSC691E takes the trap and acknowledges the coprocessor exception via the CXACK signal. Although
coprocessoexceptions can occur at any time, they are taken by$i@691Eonly during the execution of a subsequent

FPop, a CBfcc instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert
CHOLD if it detects an exception while CHOLP asserted. In such a case, CEstfould be asserted one cycle before
CHOLD is deasserted. CEXS latched in th@ SC691Ebefore it is used.

3.5.2.4. CHOLD—Coprocessor Hold (input)

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor
checks all dependencies in the decode stage of the instruction and asserts fH@té&ssary) in the next cycle. If

the integer unit receives a CHOLD freezes the instruction pipeline in the same cycle. Once the conditions causing
the CHOLDare resolved, the coprocessor deasserts CH@lBasing the instruction pipeline. CHOL®Ilatched in

the TSC691Ebefore it is used.

The conditions under which the coprocessor asserts CHid& Iimplementation dependent.

3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output)

CINSL1 is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the D1 buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the D1 instruction, and to
latch it into its execute-stage registeiNS1 and CINS2 are never asserted in the same cycle.

3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer
of the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and
to latch it into its execute-stage registeiNS1 and CINS2 are never asserted in the same cycle.

3.5.2.7. FR—Coprocessor Unit Present (input)

When pulled low, Findicates that a coprocessor is available to the system. It is normally pulled up to VDD through
aresistor, and then grounded by connection to the coprocessor. The integer unit will genedisabl&dPtrap if FR1
during the execution of an FPop, CBfcc, or coprocessor load or store instruction.

3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output)

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert®EXGn turn causes the to
deasser€XACK. CXACK is a latched output and should not be latched externally.

3.5.2.9. FCC<1:0>—Floating-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU’s Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV=1, these bits are valid. During the execution of an FBfcc instruction, the processor uses
FCC<1:0> to determine whether or not to takelttench.These bits are latched by the processor before they are used.

3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input)

This signal is a specialized hold used to synchronize FPU compare instructiofigatitig-point branch instructions.
It is asserted (the normal condition) whenever the FCC<1:0> bits are valid. The FPU deasserts FCCV (FCCV=0) as
soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected.

58 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Deasserting-CCV freezeshe integer unit pipeline, preventing any further compares from entering the pipeline. FCCV
is reasserted when the compare is completed and the floating-point condition codes are valid, thus ensuring that the
condition codes match the proper compare instruction. FCCV is latchedli8@&91Ebefore it is used.

3.5.2.11. FEXG—Floating-Point Exception (input)

FEXC is used to signal the integer unit that a floating-point exception has occurred.mirEs{@main asserted until

the TSC691E takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by$i@691Eonly during the execution of a subsequent FPop, an
FBfcc instruction, or a floating-point load or store instruction. The FPU deasserts FH@Idetects an exception
while FHOLD is asserted. In such a case, FEX@sserted one cycle before FHOlDeasserted. FEXS latched

in theTSC691Ebefore it is used.

3.5.2.12. FHOLD—Floating-Point Hold (input)

This signal is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks
all dependencies in the decode stage of the instruction and asserts Kifl@¢d@ssary) in the next cycle. If the integer

unit receives an FHOLDIt freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
areresolvedthe FPU deasserts FHOl| Eeleasing the instruction pipeline. FHOLDlatched in thd SC691Ebefore

it is used.

An FHOLD is asserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending in the queue,
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being
executed, or (3) if the floating-point queue is full.

3.5.2.13. FIPAR—FPU to IU Control Parity (input)

This signal contains the odd parity over the FCC<1:0>, FCCV,FaxXCFHOLDbits. The parity bit is generated by
the FPU and will be checked by the I1U.

3.5.2.14. FINS1—Floating-Paint Instruction In Buffer 1 (output)

FINS1 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D1 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D1 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH s asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.15. FINS2—Floating-Poaint Instruction In Buffer 2 (output)

FINS2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH s asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.16. FLUSH—Floating-Point/Coprocessor Instruction Flush (output)

This signalis asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulletiSC68d Es

pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap
was caused by a floating-point (or coprocessor) exception, tHerAP queue must be emptied before the FPU
(coprocessorgan resume execution.

3.5.2.17. FRP—Floating-point Unit Present (input)

When pulled low, FRndicates that a floating-point unit is available to the system. It is normally pulled up to VDD
through a resistor, and then grounded by connection to the FPU. The integer unit will generatiisahl&dPtrap if
FP=1 during the execution of an FPop, FBfcc, or floating-point load or store instruction.

3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output)

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently
asserted FEXGignal. Receipt of the asserted FXACK causes the FPU to deassert FEXCK is a latched output
and should not be latched externally.

MATRA MHS 59
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.5.2.19. INST—Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the
floating-point unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor
instruction buffer. SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2)
to save the last two fetched instructions. When INST is asserted, a new instruction efeei3lband the instruction
thatwas in D1 moves to bigr D2. INST is a latched output and should not be latched externally.

3.5.2.20. IFPAR—IU to FPU Control Parity (output)

This signal contains the odd parity over the FINS1, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the IU and will be checked by the FPU. It will be high-Z (on chip pull_up resistof)20ken the TOEsignal is
deasserted.

3.5.3. Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

3.5.3.1. ERROR—Error State (output)

This signal is asserted when the integer unit enterseth@ ‘modé state. This happens if a synchronous trap occurs

while traps are disabled (the PSR’s ET bit =0). Before it enters the error mode sta®C88LE saves the PC and

nPC and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts theigRiRai

halts. The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET
signal.

3.5.3.2. HWERROR—Hardware error (output)

The HWERRORoutputs indicate a parity error occurs, except Master/Checker errors. When asserted low, the U trap
with Trap Type value depending of the internal parity error (see Table 47 , page 116). It is deasserted when the parity
error is removed (i.e. by resuming this instruction), or by a reset cycle.

3.5.3.3. FLOW—Enable FLOW Control (input)
Forcing this input low will enable the program FLGahtrol. It is a static signal and shall not change when running.

3.5.3.4. MCERR—Comparison error (output)

This signal is asserted low in checker mode when a comparison error occurs on the internal output signals vis-a-vis
the output signal (excepted TAP, MCERRWVERRORand ERRORsignals) of the master IU. It is deasserted when
the error disappears. See chapter 4.4 for more information.

This signal is also asserted in master mode when the outpwrX@iatch the value of the pin.
This output is high-Z (on chip pull_up resistor=2)kwvhen the TOEignal is deasserted.

3.5.3.5. 601MODE—-Normal 601MODE Operation (input)

Forcing this input low will disable the parity checking of all input signals. This means the IU will operate with the
standard input signals. Nevertheless generation and checking of internal parity bit is still active. Parity on the data bus
is generated internally and parity checking on the control bus is disabled.

3.5.3.6. CMODE—checker Mode (input)

Assertionof this signal will set the 1U to act as a checker to support master/checker operation. All output signals except
ERROR HWERROR MCERRand TAP signals will be high-Z (on chip pull_up resistor=2JKt is a static signal

and shall not change when running. CMOSEIgnal can change when RESEifinal is asserted or when the U is in
HALT mode.

3.5.3.7. FPSYN—Floating-point Synonym Mode (input)

This is a mode signal which will be used to allow execution of additional instructions in future designs. For the
TSC691E it should be kept grounded.

60 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

3.5.3.8. INTACK—Interrupt Acknowledge (output)

INTACK is a latched output that is asserted by the integer unit when an external inteakiptisot when it is sampled
andlatched.

3.5.3.9. IRL<3:0>—Interrupt Request Level (input)

The state of these pins defines the External Interrupt Level (IRL). IRL<3:0>=0000 indicates that no external interrupts
are pending and is the normal state of the IRL pins. IRL<3:0>=1111 signifies a nonmaskable interrupt. All other
interrupt levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The
integer unit uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for
two consecutive cycles to be recognized. External interrupts should be latched and prioritized by external logic before
they are passed to tH&ECE691E Logic must also keep an interrupt valid until it is taken and acknowledged. External
interruptscan be acknowledged by system software or by 8691Es INTerrupt ACKnowledge (INACK) signal.

3.5.3.10. RESE+-Integer Unit reset (input)

Assertion of this signal will reset the integer unit. RES&{st be asserted for a minimum of nine processor clock
cycles. After RESETs deasserted, the integer unit starts fetching from address 0. REBEhed by th& SC691E
beforeit is used.

The RESETsignal input is protected by a glitch removal filter and pulses whickoaseort that they are detected only
during one clock period are not influencing the IU. RESijhal is also protected with two-rail coding and an error
detected will lead to error mode.

3.5.3.11. TOE—Test Mode Output Enable (input)

Whendeassertedthis signal will three-state all integer unit output drivers (on chip pull_up resistd@F20kus, in
normal operation, this signal should always be asserted (tied to ground). Deassertionisblat@g thef SC691E
from the system for debugging purposes.

3.5.3.12 HALT—HALT (input)

When asserted this input will freeze the IU pipeline and the clock. All information placed in the registers of the 1U
remainsunchanged. By deasserting HRlexecution of the IU will resume. (see 5.2.2.14, page 135)

When the IU is in HALTmode, the TAP is still operating.

3.5.4. TAP signals

The following Test Access Port interface (IEEE standard 1149.1-1990) is used to perform boundary scan for test and
debuggingpurposes.

3.5.4.1. TCLK—Test Clock (input)

This clock signalpermits test data to be shifted into or out of the instruction or test data register cells without interfering
with the on chip system logic.The IEEE standards requires that To@hke stopped at 0 indefinitely without causing
anychange to the state of the test logic.

3.5.4.2. TRSFTEST reset (input)
The TAPS test logic is reset when a logical 0 is applied to this port.

3.5.4.3. TMS—Test Mode Select (input)
The TMS input signal is interpreted by the TAP controller to control the test operations.
The received signal is sampled at the rising edge of the TTilsés.

3.5.4.4. TDI—Test Data Input (input)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previously applied to the TMS input.

The received input data is sampled at the rising edge of the PpGlsk.

MATRA MHS 61
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.5.4.5. TDO—Test Data Output

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or the
data register are serially shifted out toward the TDO.

Thedata out of the TDO is clocked at the falling edge of the T@ulses. TDO should be in the inactive state except
when scanning is in progress. (Use of 3 state driver)

3.5.5. Power and Clock Signals

The signals listed below provide clocking and power to the integer unit.

3.5.5.1. CLK—Clock (input)

CLK is a 50%-duty-cycle clock used for clocking the integer unit’s pipeline registers. The rising edge of CLK defines
the beginning of each pipeline stage and a processor cycle is equal to a full clock cycle.

3.5.5.2. VCCO, VCCI, VCCT—Power (inputs)

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins
supply the output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit
bus.

3.5.5.3. VSSO, VSSI, VSST—Ground (inputs)

Thesepins provide ground return for the power sign@lsund is supplied on three féifent busses to match the power
signals to each section: VSSO pins for the output driver bus; VSSI pins for the main internal circuitry bus; and VSST
pins for the input circuit bus.

3.6. Pipeline and Instruction Execution Timing
One of the major contributing factors to th&€C691Es very high performance is an instruction execution rate

approaching one instruction per clock cycle. To achieve that rate of executidig@e®1E employs a four-stage
instruction pipeline that permits parallel execution of multiple instructions.

B B D E
o | L]0 — ¢ x W
Instruction f f ¢ . i
from Memory e——degpd { |j—d (| —m——epy 8 — ||]
e e
r r e ; €
Internally Generated Opcode (IOP)
Figure 24. Processor Instruction Pipeline
62 MATRA MHS

Rev. H (02 Dec.96)

TEMIC TSCB91E

Fetch Inst 1 Inst 2 Inst 3 Inst 4
Decode Inst 1 Inst 2 Inst 3 Inst 4
Execute Inst 1 Inst 2 Inst 3 Inst 4
Write Inst 1 Inst 2 Inst 3
CLK
A<31:0> Al A2 A3 A4

| | | |
D<31:0> Inst 1 Inst 2 Inst 3 Inst 4 XXXXXXXXXXXXX><

Figure 25. Pipeline with All Single—Cycle Instructions

3.6.1.Stages

Instruction execution is broken into four stages corresponding to the stages of the pipeline:
2. Fetch—The processor outputs the instruction address to fetch the instruction.

3. Decode—The instruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

4. Execute—The processor executes the instruction and saves the results in temporary registers. Pending traps are
prioritized and internal traps taken during this stage.

5. Write—If no trap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic “single-cycle”
instruction enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more
instructions have entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle
instruction exits the pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 25).

Of course, a “single-cycle” instruction actually takes four cycles to complete, but they are called single cycle because
with this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

3.6.1.1. Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (IOPs) into the decode stage as they move
into the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 26 ,
the data load in cycle four can be thought of as the fetch for the IOP that starts in cycle three; together they make a
complete four-cycle instruction that balances out the pipeline. JMPL and RETT also generate an IOP, but have no
externaldata cycle.

Multicycle instructions may generate up to three IOPs to complete execution. Table 43 lists the instructions that
require IOPs and the number generated.

Because instructions continue to be fetched even though IOPs occupy the decode stage, a two-stage prefetch buffer
is used to hold instructions until they can move into the decode stage (see Figure 24). This enables the processor to
fully utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum

of two cycles are available for instruction fetching for any multicycle instruction.

MATRA MHS 63
Rev. H (02 Dec.96)

TSCB91E TEMIC

Table 43. Internally Generated Opcodes

Instruction Number of Internal Opcodes
Single Loads 1
Double Loads 2
Single Store 2
Double Stores 3
Atomic Load-Store 3
Jump 1
Return from Trap 1

3.6.2. Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to
complete A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three
buscycles), and so on.

In most cases, the extra cycles required by multicycle instructions result from data bus usage (elgadaaiatore

to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 26 , the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 27 , the store sequence delays the Inst 3
fetchby two cycles.

Fetch Load Inst 1 Inst 2 Load Data Inst 3 Inst 4
Decode Load IOPy Inst 1 Inst 2 Inst 3
Execute Load I0Py Inst 1 Inst 2
Write Load I0OPy Inst 1
CLK

A<31:0> (] LD Al A2 | D A A3 A4 XX
D<31:0> D Inst Inst 1 nst 2 Dats nst 3 XX
DXFER / \

INST \ /

Figure 26. Pipeline with One Double—Cycle Instruction (Load)

64 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Fetch Store Inst 1 Inst 2 Tag Check Store Data Inst 3
Decode Store 10P; 10P, Inst 1 Inst 2
Execute Store 0P, 10P; Inst 1
Write Store 10P; IOP,

CLK

|
pesro EOYETDEMIDCETHE AR EHOOE IETTIR
X

D<31:0>

RD \ /
WE \ /

DXFER

/
Lock /T \
—

-\

INULL /____
INST \ /_—

Figure 27. Pipeline with One Triple—Cycle Instruction (Store)

WRT

MATRA MHS 65
Rev. H (02 Dec.96)

TSCB91E TEMIC

Eetch Load Inst 1 Inst 2 Load Data m Inst 3 Inst 4

Decode Load 10P_4 10Pt. Inst 1 Inst 2 Inst 3
Execute Load 10P g4 10Pt. Inst 1 Inst 2
Write Load I0P. g4 I0OP|t. Inst 1

CLK I I I I I

A[31:0] {JL

o OO ax OO 22 MO Lo AMPOOM s MO 22 X
ﬁ | |
T DI DR

XLo ind)DOOInst XD

DXFER /_ _\
INULL /_ ___
INST \ /_

D[31:0]

Figure 28. Pipeline with Hardware Interlock (Load)

3.6.2.1. Register Interlocks

The pipeline holds several instructions at any given time, isgpibssible that an instruction may try to use the contents

of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the
pipeline of theTSC691Emake the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock
hardware prevents an instruction following a load instruction from reading the register being loaded until the load is
complete(see Figure 28). This also applieat€ALL instruction with a delay slot instruction using r[15] and a JMPL

with a delay slot instruction using the same register specified as the r[rd] of the JMPL. To maximize performance,
compilers and assembly language programmers should avoid loads followed immediately by instructions using the
loadedregister’s contents.

3.6.2.2. Branching

The TSC691Es delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating a
bubblein the pipeline (see Figure 29). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay
instruction is required between the branch and the target instruction (or the next instruction, if thés maintztken).

See Section 3.4.3.3.1 for a discussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instructiatvit. The result is shown in Figure 30 .

66 MATRA MHS
Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCOE91E

Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst 4
Decode Branch Delay Target Inst 1 Inst 2 Inst 3
Execute Branch Delay Target Inst 1 Inst 2
Write Branch Delay Target Inst 1
cLK I I I I I I |

A[31:0] 4:5
D[31:0] X

XX

Figure 29. Pipeline During Branch Instruction

) 24 KX

HIAQAQEHA DO A3 X
g MY K HI'Q'Q' IH}'Q" QinstaPOXK
1 A AVAYA AVAVA AVAYA

Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst 4
Decode Branch Annulled Target Inst 1 Inst 2 Inst 3
Execute Branch Annulled Target Inst 1 Inst 2
Write Branch Annulled Target Inst 1
CLK I I I I I I L
Ar3L:0K{Br A XXX XIXbetay HKMH arg ‘N KMH AL WIMH A2 OO A3 XXX
10 XM= MO0y MO N

ns

Figure 30. Branchwith Annulled Delay Instruction

MATRA MHS

Rev. H (02 Dec.96)

67

TSCB91E TEMIC

Decode Inst O Inst 1 Inst 1 Inst 1 Inst 1 Inst 1 Inst 2
Execute Inst O Inst O Inst O Inst O Inst O Inst 1
Write Inst O

Figure 31. Pipeline Frozen During Bus Arbitration

3.6.3. Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MHOEBAIBLD, the instruction

pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 31 shows the pipeline frozen by a BHO&®the result of bus arbitration initiated by another bus master in

the system.

3.6.4. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.

3.7. Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load
integer, load double integer, load floating-point, load double floating-point, store integer, store double integer, store
floating-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops).
Non-standard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions.
Coprocessor loads, coprocessor stores, and coprocessor operations are identical in timing to their floating—point
counterpartand are not repeated as a separate case in this section.

68 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Fetch Inst 1 Trap 2 Trap 3 Trap 4

Decode Inst 0 Annulled Trap 2 Trap 3

Execute Trap Detected Annulled Annulled A Trap 1 Trap 2
7

Write Annulled Annulled Annulled A Trap 1

CLK

A[31:0] Al A2 TrapAl Trap Trap AK Trap 4

D[31:0] {JInstO Inst 1 Inst 2 Trap 1 Trap Trap XXX

INULL / \

INST \ /

FLUSH / \

Figure 32. Pipeline Operation for Taken Trap (Internal)

Each of the following sections describes a type of bus transaction along with appropriate timing diagrams. The timing
diagramsshow multiple instructions being fetched for the pipeline. Instruction add@gsssnt out in the cycle before
theinstruction fetch. Instruction fetatycles begin with the instruction address latched by the memory at the beginning

of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching
of the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution
requires an interlock, IOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like
a fetched instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted o
deasserted; in other words, undefined.

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In supp®©&C681Es
high-speedperation, many signals are sent out unlatched. Refer to S8ditor further details omSC691Esignals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 12 . Figure 33 shows

the relationship between the data transferred during byte, halfword, and word operations and the pins of the data bus.
For byte and halfword data transfers, T®C691E repeats the byte or halfword on each eight—bit or 16—bit section

of the bus. In other words, the undefined portions of the bus illustrated in Figuree3&tually a repeat of the data

driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be

supportecn other SPARC processors.

MATRA MHS 69
Rev. H (02 Dec.96)

TSCB91E TEMIC

CLK]
A<31:0> X+0 X+1 X+2 X+3
SIZE<1:0> 0 0 0 0
D<31:24> BYTEO undef. undef. undef. >
D<23:16> undef. BYTEL undef. undef. >
D<15:8> undef. undef. BYTE2 undef. >
D<7:0> undef. undef. undef. BYTE3 >

Byte Data Alignmert

CLK |

A<31:0> X+0 X+2 X
SIZE<1:0> 1 1 2
D<31:16> HWRDO undef. HWRDO
D<15:0> undef. HWRD1 HWRD1
Half Word Data Alignment Word Data Alignment

X = word boundary address

Notel: The parity bit of undef data infout must match with the data Note2 :This illustration depicts data alignment and is not in-
tended to illustrate a timing case.

Figure 33. Data Bus Contents During Data Transfers

70 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

1 2 3 4 5
CLK
A<31:0> Al A2 A3 A4 A5 A6
D<31:0> Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Inst
Figure 34. Instruction Fetch
1 2 3 4 5 6
ck | L L | | | | |
A<31:0> LD Al A2 LD A A3 Ad
D<31:0> LD Ins| Inst 1 Inst 2| Data Inst

DXFER / \
INST \ /

Figure 35. LoadSingle Integer Timing

3.7.1. Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are

active on their respective busses (see Figure 34). The instruction address on A<31:0> is actually sent out in the
previous cycle, but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data
busat the very end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register

at the beginning of the decode cycle.

3.7.2. Load

Figure 35 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth
cycle, this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent
out, while INST is inactive in the cycle in which the load data is on the data bus.

3.7.3. Load with Interlock

In a load with interlock situation, the instruction following the load tries to use the contents of the load’s destination
registerbefore the load daia available. This requires the insertion of an IOP into the decode stage of the pipeline (see
Section3.6.5.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(see Figure 36).

MATRA MHS 71
Rev. H (02 Dec.96)

TSCB91E TEMIC

1 2 3 4 5 6

CLK | | | | | | | | ‘_,
a0 { Lo Al A2 LD A A3 A3 Ad
pzo] POXOXXXXN

DXFER

INULL

INST \ /

Figure 36. LoadSingle with Interlock Timing

3 4 5 6

1 2
ol (10 XXX At RO 22 KX = OO -0 2 PO ~2 XXX 4+)

DXFER / \

LOCK /—\
INST \ /_

Figure 37. Load Double Integer iming

3.7.4. Load Double

The timing for a load double integer is shown in Figure 37 . The timing is essentially the same as a load single except
for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. The most-significant
word is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during
the address portion of both loads and that the bus is locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

3.7.5. Store

Storetransactions involve more bus activity than loadgsshown in the store single integer timing in Figure 38 . Store
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for
thestore address. This extra cycle also gives the processor and the memory systerthtieeestate (on chip pull_up
resistor=20R)the data bus and turn it around for the store. The store address is sent out again in the fifth cycle to
complete the data transfer. Note that the store data is generated by the processor off the falling edge of CLK and is
therefore only available at the very end of the first data cycle.

72 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag
check cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it
is a triple— cycle instruction, LOCK is asserted to retain control of the busses.

1 2 3 4 5 6

e | L L I I I 1T

D<31:0>
RD \ /
e ____/
DXFER / \
LOCK /—\

WRT /—\

INULL / \
INST \ /_

Figure 38. StoreSingle Integer Timing

3.7.6. Store Double

The timing for a store double integer is shown in Figure 39 . The timing is essentially the same as store single except
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored

in cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion
of all three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL

is not active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn’t
oneon the tag check cycle, unless the cache line is less than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

MATRA MHS 73
Rev. H (02 Dec.96)

TSCB91E TEMIC

2 3 4 5 6

1
o \ Vo
WE \ /—

DXFER / —

LOCK / \

WRT / \

INULL /—_
INST \ /‘

Figure 39. StoreDouble Integer Timing

3.7.7. Atomic Load-Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction
pipeline, it cannot be interrupted. Because atomic operations are four-cycle instructidi®C 88 Easserts LOCK

for as long as necessary to make sure that no interruption occurs on the bus. Figure 40 applies to the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SWAPA). Note that, as with any store,
INULL is active on the second occurrence of the store address.

74 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

3 4

SV s T e H e M e M e N e M

acavo> (A1 POON A2 PO A PO XS A IO 22 IXKK 4 |

WE \ /
LDSTO / \

DXFER / \

LOCK / \
WRT /—\

INULL /—_
INST \ /—

Figure 40. Atomic Load—Stoe Timing

3.7.8. Floating-Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINS1 and
FINS2signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 41).

FINS1/2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also
makes use of the INST signal to latch instructions into its decode buffers.

MATRA MHS 75
Rev. H (02 Dec.96)

TSC691E TEMIC

Semiconductors

1 2 3 4
CLK |
A<31:0> Al A2 A3 A4 A5
ASI<7:0> SUN ASIa2 ASIa3 ASIag ASIas
D<31:0> -- FPop Inst 2 Inst 3 Inst 4
SIZE<1:0> EC: 10 10 10 10

FINS1/FINS2 / \

Figure 41. Floating—Point Operation Timing

3.7.9. Bus Arbitration

TheTSC691Edoes not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. Therefore,
external circuitry must arbitrate between external bus requests ah8GIBO1E When theTSC691Eneeds to retain

the busses it asserts the LOCK signal. The arbitration circuitry should assert BildrDit needs to keep the
TSC691Eoff thebusses. When BHOLI3 asserted, the processor’s instruction pipeline is frozen until it is deasserted.
The arbitration circuitry should also deassert the DAEBE, and COEsignals to three-state ti6SC691Es address

bus (on chip pull_up resistor=2Qk, data bus and control signal output drivers so they may be driven by an external
source (see Figure 42).

76 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

2 3 4 5 6

1
e [LT LT LT L I 1L T 1
asi<z.0> QasaPOON] Asne | ST XDOODERS a3)
p<a:o> {inst PPOOP] st | - MOOOD st 2))
size<to> {10 PO 10 | 10 DO 20)

RD

-

WE

LDSTO

DXFER

LOCK

BHOLD

S:EEEL:
T

lw)
m

b
m

Q
m

VNN BBBREE

Figure 42. BusArbitration Timing

3.7.10. Load with Cache Miss

Figure 43 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA
or MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address
busrather than the instruction that caused the miss. In order to retrieve the promaténdde memory system needs
themissed address on the bus. To do ttésmemory system must send an MAO signal, forcing the processor to output
the previous address (the address that was on the bus in the cycle before Mid®ha8serted). The MHOLSgnal

must be maintained while the missed data is strobed into the processor with theidviBIS(it must be strobed
externallybecause the internal processor clock is frozen by the MBOLD

MATRA MHS 77
Rev. H (02 Dec.96)

TSCB91E TEMIC

1 2 3 4 5

6 7
e L L4 1 1 L L1 L
<3100 1Yt AR s O 021D M- MO o=H
size<1:04] 10 DO 10 O] Lo sik
DXFER / \ / \
MHOLD \ /_
MDS _/_
MAO /—\
INST \ /

Figure 43. Loadwith Cache Miss Timing

3.7.11. Store with Cache Miss

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO aan@ MDS
not required (see Figure 44). Because the processor outputs the store address twice, it already has the proper address
onthe bus when it's stopped by MHOLMDS is not required because nothing needs to be strobed into the processor.

INULL is asserted for the second occurrence of the store address so that ittdggenthe miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.

78 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

CLK

A<31:0> A1 A2 STA stA

ASI<7:0> ASIng ASIn2 ASlsT ASIsT ASIsT

D<31:0> Inst 0 Inst 1 Irist 3 ' ST Data

SIZE<1:0> 1%0 1;0 ST; Si S‘;’ Si ; ST Size
e ——
we | BN 5
DXFER /
=
wr /o 5
MHOLD \
-—

Figure 44. Storewith Cache Miss Timing (1 of 2)

MATRA MHS 79
Rev. H (02 Dec.96)

TSCB91E TEMIC

: 6 ' ! ' 8 ' 9 - 10 -
CLK I
—r X ! ! ')
A<31:0> STA A:3 A:4 A:5 AG:
ASI<7:0> ; ASlsT ; AS;|A3 AS§|A4 AS'EAS ASf'AG
D<31:0> : ST Data : : Instf 3 In;t 4 Insft -
SIZE<1:0> é ST Size é 1é)];0 1(5) 1%
o YA Z | ;
I e e e
DXFER é é | | | 5
LOCK
WRT
MHOLD /

Figure 45. Storewith Cache Miss Timing (2 of 2)

3.7.12. Load/Store instruction with Trap

Figure 46 gives the timing for a load instruction with a trap taken. This timing is similar for the load double, for the
load-store, for the store and for the swap instructions.

80 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

w ML

A<31:0> (] LD Al A2 LD A rap A Trap

D<31:0>

DXFER

INST

INULL

FLUSH / \

Figure 46. Ld,LdSt, St and Swap Inst with Tap Taken

3.7.13. Memory Exceptions

Load with memory exception timing is shown in Figure 48 . As with a cache miss, memory logic must stop the
processor by asserting MHOLDé& MHOLDB in the next cycle. The MHOLBIignal must be maintained while the
memory exception (MEXETsignal is strobed into the processor with the Milifhal (it must be strobed in externally
because the internal processor clock is frozen by the MHOUBXC must be deasserted in the same clock cycle in
which MHOLD is deasserted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is
the same action shown in cycle 2 of Figure 32 for an internal trap. Store with memory exception has the same timing
(see Figure 52) except INULL is asserted from the second store address through to the annulled cycle 8 instruction
fetch.

MATRA MHS 81
Rev. H (02 Dec.96)

TSCO91E

TEMIC

Semiconductors

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

DXFER

MHOLD

INULL

FLUSH

1 2 3 4 5

Al a2 LDA A3 A3
RN MR s
LD;Ins Ins;t 1 In;st p Daitta
210

—

Figure 47. Loadwith Memory Exception Timing (1 of 2)

82

MATRA MHS
Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCO691E

A:Tl
ASlTy

AS|rg

|||||||

CLK

A<31:0>
ASI<7:0>

D<31:.0>

SIZE<1:0>
DXFER

= ADD (LD Inst)
ADD (LD |

R17
R18

st) + 4

MHOLD

INULL

X
INST

FLUSH

Figure 48. Loadwith Memory Exception Timing (2 of 2)

83

Rev. H (02 Dec.96)

MATRA MHS

TSC691E TEMIC

Semiconductors

2 3 4 5

CLK _| | | I I I I I | |
A<31:0> 4»0‘0‘0‘0«HI'Q'Q'MW‘N‘Mm‘“‘m As |
p<a1:0> {{nst PRPOXXI st PO st RPN et PO+ IXXXIN -

MHOLD \

INULL

MDS

MEXC

INST

FLUSH

. 6 7 8 o

o _| | '_I_
pssios | 5 R
D<31:0> I
MHOLD | | / EIE =

INULL I I I I /—-_

INST I I I I \—/7
FLUSH : : : V2R

Figure 49. Instruction Memory Access Exception iming

84 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

A<31:0> <m 01_»0}0‘0‘0«.&»0}0‘0‘045@ OO LDadd |

p<aro> (oKX MR MR TENR XERC
E E / | |

DXFER

MHOLD : ' '\ :

INULL 1 1 1 1 1

MDS

6 7 8 9 10

CLK_’_‘!IIIIIIII_|

A<31:0>

D<31:0>

MHOLD . ; / ; gig IAE .

OxFER — -\ | | | |

INULL : : : : ./ \

Z‘
v,
nl

<
m
X
@

o T
FLUSH E E E E E / Co\

Figure 50. Instruction Memory Access Exception iming (LD in Execute stage)

MATRA MHS 85
Rev. H (02 Dec.96)

TSCB91E TEMIC

1 2 3 4 5
CLK
A<31:0> Al A2 STA STA STA
ASI<7:0> ASIa1 ASla2 ASIsT ASIsT ASIsT
D<31:0> ST Inst Inst 1 Inst 2 ST Data
SIZE<1:0> 10 10 ST SiZ ST Si ST Size

RD \
WE \
DXFER /

LOCK / \
WRT / \

INULL

MHOLD

MDS

MEXC

INST \

FLUSH

Figure 51. Store with Memory Exception Timing (page 1 of 2)

86 MATRA MHS
Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCO691E

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

RD

WE

DXFER

LOCK

WRT

INULL

MHOLD

<
O
wnl

MEXC

INST

FLUSH

STA A3 ATB ATL
ASlsT ASIa3 A\SlTg ASIT,
ST Data - TB Inst
ST Size 10 10 10

R17 = Add Store

R18 = Add Store + 4

n

Figure 52. Store with Memory Exception Timing (page 2 of 2)

MATRA MHS
Rev. H (02 Dec.96)

87

TSCB91E TEMIC

1 2 3 4 5
CLK
A<31:0> Al A2 STA STA STA
ASI<7:0> ASlpa1 ASlaz ASlsT ASlsT ASlsT
D<31:0> ST Inst] Inst 1 Inst 2 ST Data
SIZE<1:0> 10 10 ST Si ST Si ST Size

D \
we \
Lock /
wr I\
/

MHOLD \

MDS

MEXC

INST \

FLUSH

Figure 53. Store double with Memory Exception on 1st data address (page 1 of 2)

88 MATRA MHS
Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCO691E

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

RD

WE

DXFER

LOCK

WRT

INULL

MHOLD

<
O
wnl

MEXC

INST

FLUSH

STA ST A+ ATB ATL
ASlst ASI St ASlTg ASIT1
ST Data - TB Inst]
ST Size 10 10 10

R17 = Add Store
R18 = Add Store + 4

n

Figure 54. Store double with Memory Exception on 1st data address (page 2 of 2)

MATRA MHS
Rev. H (02 Dec.96)

89

TSC691E TEMIC

Semiconductors

2 3

1 4 5
ST e e e O e O O
acaro> 2 QO 22 IOOIET ApOONET A MO ~2 A3
rsi<ro oM M= |

SIZE<1:0>

& \ /
we \ /
DXFER / \
Lock / \
e ST\
T/ \

MHOLD \

MDS
MEXC
INST \ /
FLUSH
Figure 55. Store double with Memory Exception on 2nd data address (page 1 of 2)
90 MATRA MHS

Rev. H (02 Dec.96)

TEMIC

Semiconductors

TSCO691E

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

RD

WE

DXFER

LOCK

WRT

INULL

MHOLD

<
O
wnl

MEXC

INST

FLUSH

A3 A4 ATB ATl
ASl a3 ASIag ASITg ASIT,
Inst 3 TB Inst
10 10 10 10

R17 = Add Store

R18 = Add Store + 4

n

Figure 56. Store double with Memory Exception on 2nd data address (page 2 of 2)

MATRA MHS
Rev. H (02 Dec.96)

91

TSCB91E TEMIC

A L
s T\ y /

//
FXACK // / \
1/
FLUSH // / \
2/

Figure 57. Floating—Point Exception Handshake Timing

1 ‘ 2 3 4 ‘ 5 ‘ 6
e | L[1 L L 1 |
A<31:0> {| Al A2 A3 A4 TO T1
| | | | | |
D<31:0> {JInst 0 Inst 1 Inst Inst Inst Trag
| | | | | |
IRL<3:0> OH Interrupt Asserted /(

Don't care until RETT

INTACK /_ \

Figure 58. Asynchonous Interrupt Timing

3.7.14. Floating-Point Exceptions

The floating—point unit asserts FEXG notify theTSC691Ethat a floating-point exception has occurred and that it
should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 57).
TheTSC691Easserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out thdde®dés
buffers.From this point on, the FPU will execute only floating-point store queue instructions until its qeeysied

by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted B$GBO1E after FEXCis
deasserted.

3.7.15. Interrupts

The asynchronous IRL<3:0> inputs are sampled on the rising edge of every clock. If the interrupt value represented
by those inputs is greater than the masking value in the processor, and no higher priority trap supersedes it, the
TSC691Ewill take the interrupt. The IRL input level shouldeld stable until the processor assertsANK.When
the trap is taken, IRL line are ignored until ET=0 (until RETT instruction is executed). Figushds the timing

92 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

for the best case response time where the IRL input value is asserted one clock and a set—up time before the execute
stage of a single-cycle instruction. Refer to Section 3.8.3 for more information on interrupts.

ax _|] 7/ [

/ /.
A<31:0> 0000 H // 0000 H Al
//
ASI<7:0> 09 H // 09 H ASI 1

D<31:0> - //// - Inst 0

/ L

SIZE<1:0> 10 // 10 10

4

/ L

INULL // \
RESET // /

7’7/

MAO //

Figure 59. Power—OnReset Timing

3.7.16. Reset Condition

Figure 59 shows the timing for a power-on reset. RES&Istbe asserted for at least nine cycles so that the processor
can synchronize the reset input and initialize its internal state. For R&&SteTsynchronized, the CLK signal must
beactive.

During the initialization, the processor disables traps (ET=0), sets the supervisor mode (S=1), and sets the program
counter to location zero (PC=0, nPC=4).

3.7.17. Error Condition

error mode is one of the three states in which®€691Ecan exist. To get into this error mode, a synchronous trap

must occur while traps are disabled (the processor state register’s ET bit is set to zero). This essentially means that a
trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be
serviced, the processor goes through the normal operations of a trap (see Section 3.8), including $ekitsgtthe

identify the trap type. It then enters error mode, halts, and asserts the ERfR@Rsee Figure 60).

The only way to leave error mode is to receive an external RE®fBal, which forces the processor into reset mode.

All information placed in th€SC691Es registers from the last execute mode (the tyagration) remains unchanged

and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.

MATRA MHS 93
Rev. H (02 Dec.96)

TSCO91E

TEMIC

Semiconductors

1 2

CLK J

D<31:0> T.Ints>< ><

A

A.Ints
A<31:0> | +4

X
X

Trap Add >< Trap Add + 4

INST *

INULL

FLUSH

ERROR

RESET*

T.Inst = Traping Instruction
* |f T.Inst is a control transfert instruction

RESETmust be asserted for a minimum of 9 clocks

Figure 60. Error/ResetTiming

(continued) 1 5

e _| L |

D<31:0 ><

7

> 77
A<31:0> Trap Add + 4 >< A=0000 H, SIZE=01 / / X 0004 H
7
ASI ASI >< ASI=09 H //
7
i
INST / /
Yy
INULL / / / \
FLUSH //
/7
ERROR

RESET* \

94

MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

Table 44. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition
Data Access Exception MEXC Memory error during data access
Instruction Access Exception MEXC Memory error during instruction access
Floating—Point Exception FEXC Floating—point unit error
Coprocessor Exception CEXC Coprocessor unit error

3.8. Exception Model

The TSC691E supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the Trap on integer
condition code (Ticc) instructions; they occur during the instruction that caused them.

Floating—point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop)
instruction occur before that instruction is complete. However, because floating—point (and coprocessor) exceptions
are pended until the next floating—point (coprocessor) instruction is executed, other non-floating-point (coprocessor)
instructions may have executed before the trap is taken.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular
instruction and occur between the execution of instructions. See Section 3.8.3.

3.8.1. Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by
assertinghe RESETinput signal. But from that point on, its behavior is entirely different from that of an asynchronous
interrupt (see Section 3.8.3).

As soon as th&@ SC691Erecognizes the RESEdignal, it enters reset mode and stays there until the RESEIB
deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from th
normal action of a trap (Section 3.8.5) by modifying the enable traps bit (ET=0), and the supervisor bit (S=1). It then
sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 4, and transfers control to Kitation 0.
other PSR fields, and all other registers retain their values from the last execute mode.

Note : Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed,
including setting thét field to reflect the cause of the error mode. Because this field is not changed by the reset trap,

a post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever &
synchronous trap occurs while traps are disabled.

3.8.2. Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
TSC691Eor from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is abdotfdreit changes any state in the processor.

A new type of trap has been added: Hardware traps. This trap occurs when a hardware errof’(i.en $&gister)
is detected by the IU. The trap type depends of the internal parity error (see Table 47 , page 116). In case of hardware
trapsthe HWERRORsignal is asserted low

The external signals that can cause a synchronous trap are listed in Table 44

3.8.2.1. External Signals

Synchronous traps generated by the input signal MEBXE&mory Exception) occur during the execute phase of an
instruction or occur immediately for data accesses. Traps generated by theaREXZEXCsignals belong to the
special floating-point/coprocessor category, and may not occur immediately.

Note 1 : SEU = Single Event Upset, a flip of register or memory cells, forced by heavy ions.

MATRA MHS 95
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.8.2.2. Hardware error

When a hardware error is detected, the trap handling routine saves the error information which the MEC has sampled.

Thetrap routine then resumes the instruction by returning from the trap routine. If the cause of the error was a transient
fault, it may be removed by just resuming the instruction. If the error was caused by a fault that is not removable by
resuming the instruction, another hardware error trap is generated and the trap handling routine propagates the error
to a higher level of the application.

If the fault is in a critical register or latch which the trap handling routine uses, another hardware error trap is generated.
A synchronous trap during the time when traps are disabled is a critical error and the 1U enters the error mode and halts.

This means that the error detection mechanism has to detect the error when the faulty instruction is in tretagescute
in order to handle the trap normally, i.e. correct PC for the faulty instruction.

When an error trap occurs, the HWERRE&gnal is asserted (s@éable 47 , pagelb).

3.8.2.3. Instruction access exception

An instruction access exception trap is generated if a memory exception occurs (theidpaX€ignal is asserted)
during an instruction fetch.

3.8.2.4. Data access exception

A data access exception trap is generated if a memory exception occurs (theilpEX€ignal is asserted) during
the data cycle of any instruction that moves data to or from memaory.

3.8.2.5. Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected
during the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.
3.8.2.6. lllegal instruction

An illegal instruction trap occurs:

e when the UNIMP instruction is encountered,

e when an unimplemented instruction is encountered (excluding FPops and CPops),

® in any of the situations below where the continued execution of an instruction would result in an illegal processor
state:

1. Writing a value to the PSR’s CWP field that is greater than the number of implemented windows (with a
WRPSR)

2. Executing an Alternate Space instruction with b set to 1
3. Executing a RETT instruction with traps enabled (ET=1)
4. Executing an IFLUSH instruction with TED

Unimplementedloating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

Floating-point instructions are coded with : op=10 & op3=11010x
Coprocessor instructions are coded with : op=10 & of@B%1x
The IU decodes the fields op and op3 and generates FINS's or CINS's even if the instruction is unimplemented.

3.8.2.7. Privileged instruction
This trap occurs when a privileged instruction is encountered while the PSR'’s supervisor bit is reset (S=0).

3.8.2.8. Fp disabled

A fp disabled trap is generated when an FPop, FBfcc, or floating-point load/store instruction is encountered while the
PSR'’s EF bit =0, or if no FPU is present (Rput signal =1).

3.8.2.9. Cp disabled

A cp disabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the
PSR'’s EC bit =0, or if no coprocessor is presenti(@Bt signal =1).

96 MATRA MHS
Rev. H (02 Dec.96)

TEMIC TSCB91E

3.8.2.10. Window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window
marked invalid in the WIM register.

3.8.2.11. Window underflow

Thistrap occurs when the continued execution of a REFH instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETT
instruction, but the trap taken is a reset. See Section 3.8.1 on reset traps and SPARC V7.0 Instruction Set for the
instruction definition for RETT.

3.8.2.12. Memory address not aligned

Memoryaddress not aligned trap occurs when a load or store instruction generates a memory address that is not properly
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits
nonzero).

3.8.2.13. Tag overflow

Thistrap occurs if execution of &ADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 3.4.3.2.3 for details.
3.8.2.14. Trap instruction

This trap occursvhen a Tcc instruction is executed and the trap conditions are met. There are 128 programmable trap
types available within the trap instruction trap (see SPARC V7.0 Instruction Set, Ticc instruction).

MATRA MHS 97
Rev. H (02 Dec.96)

TSCB91E TEMIC

3.8.3. Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL<3:0>) inputs. This type of trap is not
associated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps,
an interrupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 61). Any
instruction that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be
restarted again after returning from the trap.

3.8.3.1. Priority

The level, or priority, of the interrupt is determined by the value on the IRL<3:0> pins. For the interrupt to be taken,
theIRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR).A value of 0 indicates that rninterrupt is requested. A value of 15 represents a non-maskable interrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (t) for each level is shown in Table 45 .

Y,
Fetch Inst 2 ->r17 Inst 3 ->r18 Inst 4 m Trap 1 Trap 2
Z
7
Decode Inst 1 Inst 2 Inst 3 Annulled / Trap 1
Execute Inst 1 Inst 2 Annulled Annulled %

Write Inst 1 Annulled Annulled Annulled
IRL<3:0> A A T
Taken
Prioritized
: Latched
Sampled
INTACK

Figure 61. Best—Castnterrupt Response Timing (one cycle instruction)

Load Tag
Fetch Load Inst 1 Inst 2 Inst 3 / Trap 1 Trap2 | Trap 3
>r17 | ->r1g| Pata %/ Check
,/
Decode Load 10P; Inst 1 Inst2 |Annulled Trap 1 10Py 10P,

Execute Load IOP; Inst1 |Annulled | Annulled % Trap 1 IOPy
f/
Write Load I0P; |Annulled |Annulled | Annulled /Trapl
/.

IRL<3:0> A X AT T
Latched

Prioritized
‘Sampled
INTACK | |

Figure 62. DoubleCycles Instruction Interrupt Response Tming (ex: Load)

Taken

s

98 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Store Tag Store V/ Tag
Fetch Inst1 | Inst2 Inst 3 Trap 1 Trap2 | Trap 3
>r17| ->r18 Check Data A Check

Decode Store 10Py 10P, Inst 1 Inst 2 |Annulled A Trap 1 10P, 10P,

Store I0P; IOP, Inst1 |Annulled | Annulle // Trap 1 10P;
//
Write Store 10Py IOP, |Annulled |Annulled Annulled % Trap 1
4

=

Prioritized

Execute

IRL<3:0> '

e R B -1

Taken

------)—
------)-

— Latched
Sample

INTACK | |

Figure 63. Tiple-Cycles Instruction Interrupt Response Timing (ex: Store)

Store Tag Store | Store Tag
Fetch Inst1 | Inst 2 Inst 3 Trapl | Trap 2| Trap 3
double | "17| _>1g Check | D1 D2 A Check
Store V
Decode 10P; I0P, IOP3 | Inst1 | Inst2 JAnnullec Trap 1| I0P; I0P,
double 7/
Execute Store | \5p | jop, | 10P; | Inst1 Annulled Annulledy Trap1 | 1OP;
double /
Write Store IOP IOP. I0P; |Annulled Annulled| Annulle Trap 1
double ! 2 3 /)
IRL<3:0> A A CA AA
e R ' ' f}
X . Taken
' X —Prioritized
L Latched
Sampled - - -+

INTACK | |

Figure 64. Four-Cyclesinstruction Interrupt Response Timing (Store Double)

3.8.3.2. Response Time

The TSC691E samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these
asynchronougputs, they are put through two synchronizing levels of D-type flip-flops. The outputs of the two levels
must agree before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic
serves to filter transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges
to be accepted as valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 61). In this case, the first instruction of
theinterrupt service routine is fetched during the fifth clock following the application of an IRL value greater than the
PIL field of the processor status register (PSR). This also holds for an IRLof&Eé&l, which acts as a non—maskable
interrupt.

The worst case interrupt response occurs when the detection of the IRL input just missesftheicutof the execute
stageof a fourcycle instruction, such as a store double or atomic load-store (see Figure 63). In this case, the interrupt

MATRA MHS 99
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is
fetched in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped via the application
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

3.8.3.2.1. Instruction Responseiie on conditional branch instruction (CBI)

When the instruction preseintthe decode stage during sampling of IRL<3:0> is a CBI, the response time is the same
than described in Figure 61 except when the delay instruction is annulled:

1 BA, FBA, and CBA with annul bit = 1 (B*A,a)
2_ Bicc, FBicc, and CBicc not taken with annul bit = 1 (B*cc,aNT)

Forthose two cases, the INTK signal and the first instruction of the interrgetrvice routine will be valid one cycle
later (see Figure 65, page 106).

Target Inst 1 ,/

Fetch

Delay Inst > R17 > R18 Inst 2 / Trap 1 Trap 2

Decode CBI Annulled Target Inst 1 Annulled m Trap 1
7

Execute CBI Annulled Target Annulled Annulled A

Write CBI Annulled Annulled Annulled Annulled
IRL<3:0> A J A
Taken
— Prioritized
Latched
—— Sampled
INTACK

Figure 65. Interrupt Response iming on conditional branch instruction (B*A,a & B*cc,aNT)

3.8.3.3.Interrupt Acknowledge

As shown in Figure 61 ,Figure 65 and more clearly in Figure 63 , the INTerrupt ACKnowledge (INTACK) output
signal is asserted when the interruptalken not when it is first detected and latched. Because of this delay, if the
IRL<3:0> inputs are changed to reflect another interrupt condition before the corresponding INTACK for the latched
condition is received, there could be some question as to which interrupt the INTACK is responding to. Therefore,
external hardware should ensure that the IRL<3:0> inputs are held stable until an INTACK is received.

When trap is taken the PC and nPC are saved into r[17] and r[18] respectively see Figure 61 , Figure 63 and
Figure 65 .Care must be taken in case of Response Timing on conditional branch instruction (B*A,a & B*cc,aNT),
the PC value of instl instead of the Delay Instruction is saved in r17. If Branch is taken, r17 and r18 contain the 2 first
addresses of the branch routine.

For the Best—Case Interrupt Response Timing (Figure 61), r18 contains the value of the first address of the branch
routine if instl if a Branch instruction (different than B*A,a & B*cc,aNT).

3.8.4. Floating-Point/Coprocessor Traps

Floating-point/coprocessor exception traps are considered a separate class of traps because they are both synchronous
and asynchronous. They are asynchronous because they are triggered by an external sigral GEXXS and are

taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the TSC691Eand the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they are

100 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

tied to an instruction—the next floating-point or coprocessor instruction encountered in the instruction stream after
thesignal is received.

When the FPU (coprocessor) recognizes an exception condition, it enters an “exception pending mode” state. It
remains in this state until tHeESC691Esignals that it has taken an fp exception (cp exception) trap by sending back
an FXACK (CXACK) signal. The FPU (coprocessor) then enters the “exception mode” state, remaining there until
the floating-point (coprocessor) queue has been emptied by execution of one or more STDFQ (STDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it
doesn'’t point to the instruction that caused the exception. However, the instruction that did cause the exception is
always the front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its
addressThe remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed.
Once the queue has been emptied, these can be re-executed or emulated.

3.8.4.1. Floating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store
instruction is encountered. The type of exception is encoded infiblel of the Floating-point State Register (FSR).

3.8.4.2. Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store
instruction is encountered. The type of exception should be encodedtiri¢te of the Coprocessor State Register
(CSR). The nature of the exception is implementation dependent.

3.8.5. Trap Operation

Once a trap is taken, the following operations take place:

Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).
The S bit of the PSR is copied into the PS bit; the S bit is then set to 1.

The CWP is decremented by one (modulo the number of windows) to activate a trap window.

The PC and nPC are saved into r[17] and r[18], respectively, of the trap window.

Thett field of the TBR is set to the appropriate value.

If the trap is not a reset, the PC is written with the contertteeof BR and the nPC is written with TBR + 4. If the
trap is a reset, the PC is set to address zero and the nPC to address four

Unlike many otheprocessors, the BRC architecture does not automatically save the PSR into memory during a trap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory.

3.8.5.1. Recognition

In most cases, traps are “recognized” in the pipeline’s execute stage. For a synchronous trap, the trap criteria are
examined during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that
instructiontakes place. This includes thedjzabled and cp disabled trap type. The special cases occur with those traps
generated by external signals. A memory exception on an instruction fetch is detected at the beginning of the execute
stage of instruction execution. Memory exceptions occurring on data accesses are detected on the rising clock edge
of the data cycle.

Because asynchronous traps happen “between” instructions, their timing is slightly different. As long as the ET bit is
set to one, th& SC691Echecks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next

rising clock edge. The processor compares the IRL<3:0> input value against the PIL field of the PSR, and if IRL is

greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the IRL level occurs after the write stage completes.

Floating-point/coprocessor exception traps are not recognized when the &#E3&XC signal is first sampled. The
processowaits until it encounters a floating-point or coprocessor instruction in the instruction sindahren handles
it as if it were an internal synchronous trap.

MATRA MHS 101
Rev. H (02 Dec. 96)

TSCB91E TEMIC

3.8.5.2. Trap Addressing

TheTrap Base Regist€TBR) is made up of two fields, thedp Base Address (TBA) and the trap tygie The TBA

contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which
waswritten by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR

is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits of TBR are zero), the program must jump from the trap
table to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 84biield, half are dedicated to hardware traps (0-127), and half are dedicated
to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculhteatbe from the fields

givenin the instructionwhile the hardware traps can be set from a table such as the one below. See the Ticc instruction
definition for details.

Thett field remains valid until another trap occurs.

3.8.5.3. Trap Types and Priority

Each type of trap is assigned a priority (see Table 45). When multiple traps occur, the highest priority trap is taken,
and lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order
to be recognized and taken.

Table 45. Tap Type and Priority Assignments

Trap Priority Trap Type (tt) Synchronous or Asynchronous
Reset 1 - Async.
Hardware error 201 97-102 Sync.
Instruction Access 30 1 Sync.
lllegal Instruction 411 2 Sync.
Privileged Instruction 5[1] 3 Sync.
Floating—Point Disabled 6l 4 Sync.
Coprocessor Disabled 6l 36 Sync.
Window Overflow 711 5 Sync.
Window Underflow 7 6 Sync.
Memory Address not Aligned 8 7 Sync.
Floating—Point Exception 9 8 Sync.
Coprocessor Exception 9 40 Sync.
Data Access Exception 10 9 Sync.
Tag Overflow 11 10 Sync.
Trap Instructions (Ticc) 12 128 - 255 Sync.

Note 1: the priority of those traps have changed in relation to the 90C601.

102 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Table 46. Tap Type and Priority Assignments(continued)

Trap Priority Trap Type (tt) Synchronous or Asynchronous
Interrupt Level 15 13 31 Async.
Interrupt Level 14 14 30 Async.
Interrupt Level 13 15 29 Async.
Interrupt Level 12 16 28 Async.
Interrupt Level 11 17 27 Async.
Interrupt Level 10 18 26 Async.
Interrupt Level 9 19 25 Async.
Interrupt Level 8 20 24 Async.
Interrupt Level 7 21 23 Async.
Interrupt Level 6 22 22 Async.
Interrupt Level 5 23 21 Async.
Interrupt Level 4 24 20 Async.
Interrupt Level 3 25 19 Async.
Interrupt Level 2 26 18 Async.
Interrupt Level 1 27 17 Async.

3.8.5.4. Return From Trap

On returning from a trap with the RETT instruction, the following operations take place:

e The CWP is incremented by one (modulo the number of windows) to re-activate the previous window.

® The return address is calculated

e Trapconditions are checked. If traps have already been enabled (ET=1), an illegal instraptistaken. If traps
arestill disabledbut S=0, or the new CWP points to an invalid windomthe return address is not properly aligned,
then an error mode/reset trap is taken.

e If no traps are taken, then traps are re-enabled (ET=1).

e The PC is written with the contents of the nPC, and the nPC is written with the return address.

® The PS bit is copied back into the S bit.

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple causes a
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction,
whichever is desired. See the RETT instruction definition for details.

3.9. Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
TSC691E one of these instruction and signal interface extensions is dedicated to floating-point operations and the
otheris designated for a secondprocessoeither user defined or some future devidered by MA'RA MHS and/or

Cypress. Although signals and instructions have been named to reflect the assumption of how these two extensions
will be used, either instruction set extension/signal interface may be used in any way desired.

In order for theTSC691Eto support a user-defined coprocessor, the coprocessor should contain certain elements
defined by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, ant
a set of compatible interface pins. These elements are identical to the floating—point interface, and it is recommended

MATRA MHS 103
Rev. H (02 Dec. 96)

TSCB91E TEMIC

that a user desiring to use the coprocessor interface thoroughly study the floating—point interface as an example of a
coprocessor interface application.

3.9.1. Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating—point unit. To keep operations synchronized, address and data busses are shared. The
initial TSC691Einstruction decode determines which unit should execute the instructiomSTI&91Eexecutes its

own instructions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor
instruction.For coprocessor loads and stores,tBE691Esupplies the memory address and the coprocessor receives

or supplies the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the
TSC691EDby freezing the instruction pipeline with the CHOEkIgnal.

The signal interface between th&C691E and the coprocessor consists of shared address, data, clock, reset, and
control signals, plus a special set of signals that provide synchronization and minimal status information between the
coprocessoand theTSC691E

3.9.1.1. Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessdo&CahEE
assignne set of coprocessor signals for specific use bftaagng—point unit, and the other set of coprocessor signals

for a user—defined coprocessAll floating—point interface signal names begiith anF, and all coprocessor interface
signal names begin with @ Both sets of interface signals share the INST signal, which identifle3C&91E
instruction fetch. The two groups of signals are symmetric, have identical timing requirements, and are listed in
Table 39 .

Instruction fetch is signaled by ti&C691Eusing the INST signal. The coprocessor uses INST as an input to enable
latchingof an instruction on the data bus. The coprocessor latches all instructions fetthe@d®@691E regardless

of instruction type. Th@ SC691Easserts CINS1 or CINS2 at the beginning of the decode stage of instruction execution

of a coprocessor instruction. The CINS1 or CINS2 signals are used to start the execution of a coprocessor instruction
and select which of the two most recently fetched instructions stored in the two—stage instruction buffer is to be
executedy the coprocessor

The TSC691E requires the CRignal to be driven low in order for the integer unit to recognize the presence of a
coprocessor. Attempting to execute coprocessor instructions withigbRwill cause th& SC691Eto execute &p
disabledtrap.

Hardware interlocking for coprocessor instruction execution is provided with the CH@rial. This signal is
assertedby the coprocessor to freeze T®C691E This signal is asserted in cases whereftB€691Emust be halted

to prevent it from causing a condition from which the coprocessor cannot redowexample of this would be fetching
multiple coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be
expectedo assert CHOLuntil it could handle additional instructions.

Coprocessointerrupts are asserted with the CEXignal. This signal is asserted by the coprocessor upon the detection
of an exception case. THSC691Ewill continue normal execution until the execution stage of the next coprocessor
instruction. At that time, th& SC691E will acknowledge the interrupt with CXACK, and begin coprocessor trap
execution.

Coprocessor branch on condition code (CBcc) instructions are executed ByAGB81E integer unit based on the

value of the CCC<1:0> signals supplied by the coprocessor. These signals are typically set by the execution of a

coprocessor compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates

whether the state of the CCC<1:0> signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor
compare instruction is executed and remains deasserted until that instruction is completed. The deassertion of this
signal causes th&SC691E to halt execution. This interlock prevents th8C691E from branching on invalid

condition codes. The SPARC architecture requires at least one non—coprocessor instruction between a coprocessor
compare and a coprocessor branch on condition code (CBcc) instruction.

104 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

32-Word by 32-Bit Register
File

32-Bit Status Register

Address Decode Register 1 Instruction Decode Register 1
Address Decode Register 2 Instruction Decode Register 2
Address Queue Register N Instruction Queue Register N
Address Queue Register 1 Instruction Queue Register 1
Address Queue Register 0 Instruction Queue Register 0

Figure 66. Coprocessor Register Model

3.9.2. Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 66 . The coprocessor has its
own 32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results
return. The contents of these registers are transferred to and from memory under contrd@S&£68&E using
coprocessor load/store instructions.

The Coprocessor State Register (CSR) contains the current stdhescoprocessor The exact nature of the exception
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queuerecords all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains
unfinished CPops which would be restarted or emulated after the trap handler returns control to the main program.

Theaddress and instruction decodefers hold instructions and their addresses untilMB€691Edetermines if they

belongto the coprocessolf one of the held instructions belongs to the coprocesFSC691Esends the appropriate

CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.

Whena trap is taken, thESC691Easserts the FLUSH signal, causing the coprocessor to dump any instructions in the
decode buffers. FLUSH does not affect instructions which are already in the queue.

3.9.3. Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most
implementationsvould probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceede
the capabilities of the coprocessor and/or has generated an inappropriate result.

MATRA MHS 105
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

4. Fault Tolerant and Test Mechanism

Fault Tolerant Mechanism:

Parity checking on 98.7% of the total number of latches with hardware error traps

Program Flow Control

Master/Checker operation
Interleaving of the register file bits for better detection of SEU

Parity checking of address, data pads and control pads

Manufactured using TEMIC Space hardened®d8SCMOS R TECHNOLOGY

Test Mechanism:

e |EEE Standard Test Access Port & Boundary-Scan Architecture
e Internal Scan Path to test the internal parity error detection during off-line test
® Possibility to halt the IU by an external signal

ERRTYP Destination
PARITY Register File
Control Erro 136 x 32bits
ERROR Source 1 Source 2
ey
Y
[cn] Y Y
‘ Arithmetic
Pchigram and Logic Shift Unit
ow Unit
Control PC + +
* Program ﬁ Y G >|
,—(|3—| Counterg - I—_—I |
MCERR
Master Processor Sta lign -
Checke Window Invalid| Instruction
Control Trap Base Decode
_L Multiply Step I__(I'}_.I *
[[
| ' Boundary Scan Path |—| TAP
I
control deress Instruction/ Datd A
CMODE
CPAR APAR DPAR TAP control
Parity Checkers
Parity Generators
106 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

4.1. Fault Tolerant and Test Support signals

Somesignals have been added for faolerant and test mechanism improvement. These new signals can be classified
as follows:

Address Parity Generation:

APAR—Address Bus Parity (output)

ASPAR—ASI and SIZE Parity (output)

Data Parity Generation/Checking:
DPAR—Data Bus Parity (bidirectional)

MEC control signal Parity Generation:
IMPAR—IU to MEC Control Parity (output)

FPU control signal Parity Generation/Checking:
IFPAR—IU to FPU Control Parity (output)
FIPAR—FPU to IU Control Parity (input)

Parity Checking Error Output

HWERROR—Hardware Error Occurs (outputs)

Odd parity definitionThe number of one in a word, including the parity bit, is alway odd.
(e.g. 00000000 --> P=1, 00000001 --> P=0)

Master/Checker Mode
CMODE—checker Mode (input)
MCERR—Comparison Error (output)

Test Access Port

TCLK—Test Clock (input)
TRST—TEST Reset (input)
TMS—Test Mode Select (input)
TDI—Test Data Input (input)
TDO—Test Data Output

Miscellaneous

601MODE—Normal 601Mode Operation (input)

HALT —Halt (input)

FLOW—enable or disable Program Flow Control

A more detailed description of these signals is provided in Chapter 3.5

MATRA MHS 107
Rev. H (02 Dec. 96)

TSCB91E TEMIC

4.2. Program Flow Control

4.2.1. Introduction

A very high proportion of transient faults can cause errors in the program flow (75% in a traditional microprocessor).
This type of error is detected by the MHS TSC691E using Embedded Signature-Monitoring (ESM) techniques.

A program using ESM is partitioned in branch free basic blocks and branch instructioesclirexecuted instruction,
thelU calculates a checksum of 32 hiffisthe operation code during the execution. The checksum result consist of the
logic XOR of the instruction words with the previous checksum. The 16 MSBs are XORed with the 16 LSBs to provide
a signature word.

This 16 bits signature is compared with the correct value, precombutig compilerwhenever a SETHI instruction
(SETHI g0,%PRE_CHECKSUM) is executed. After the comparison, the checksum is reseted to zero.

The 6 MBSs in the immediate value of the SETHI instruction must be setlb1d®1
In case of a comparison error, a hardware trap is taken with ¥pss86H and HWERRORSsserted.
There are three cases when the subsequent check is disabled:

1. When a trap is taken.

2. When executing a RETT instruction.

3. When executing a SETHI instruction to R[0] with the immediate value set to zero. This SETHI instruction
does not perform a comparison but zero the checksum. It is reserved as a NOP instruction.

For these cases the subsequent check is disabled, and will not signal an error, but will enable the checking again with
checksum equal to zero.

The Program Flow Control is enabled by the FL@GMhal input. After reset the Program Flow Control is enabled (if
FLOW signal is low), and the checksum is reseted to zero.

4.2.2. Example of Program Flow Control

SETHI(g0,%CH3) SETHI(g0,%CH4) SETHI(g0,%CH?7)
FLOW | |
| | I
6 7 D
Pgm start
(add=0) SETHI(g0,%CH1) : . | SETHI(g0,%CHE) J SETHI(g0,%CHS8)
| | [E— } } |
1! P 3 "4 TRAP RETT 9 '10 11 13JMPL, 14
ETHI(g0,% ETHI(g0,%6CH2 ETHI(g0,%CH CALL, RESTORE
S (90,%0) S (90,%CH?2) S (90,%CH5) SETHI(g0,%CH7)

1- Program starts at address=0x0 with Program Flow Control enabled and Checksum=0.

2- No comparison performed, next checking disabled and Checksum is reseted to zero. (NOP)
3- No comparison performed, next checking enabled and Checksum is reseted to zero.

4- Comparison performed, next checking enabled and Checksum is reseted to zeroomparison.
5- TRAP instruction disables the next checking.

6- No comparison performed, next checking enabled and Checksum is reseted to zero.

7- Comparison performed, next checking enabled and Checksum is reseted to zero.

8- RETT instruction disables the next checking.

9- No comparison performed, next checking enabled and Checksum is reseted to zero.

10- Comparison performed, next checking enabled and Checksum is reseted to zero.

108 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

11- When a CALL instruction is encountered, the delay instruction must be a SETHI instruction to perform a
comparisongnable the next checking and reset the Checksum.

12- Comparison performed, next checking enabled and Checksum is reseted to zero.

13- When the JMPL instruction is encountered the Program Flow Control is not disabled and next checking is
enable since the delay instruction is a RESTORE.

14- Comparison performed (checksum is calculated from the last SETHI encountered in the subroutine).
Conclusion In this example, the sequences 3 to 4, 6 to 7 and 9 to 14 are checked.

Programming Note:

1- When returning from a CALL routine (13), the delay instruction is a RESTORE so, when encountering the
next SETHI(g0,%CHS) (14), the comparison is performed with a checksum calculated from the last
SETHI(g0,%CHS) of the subroutine (12).

2- All the delay instruction (instruction after a control transfer instruction: Bicc, FBfcc, CBccc, CALL, JMPL,
Ticc or RETT) are added in the checksum even this instruction is annuled.

4.3. Parity Checking

4.3.1. Introduction

In the TSCB691E 98.7% of all registers are protected by a odd parity bit (100% of the register file is protected). The
checking of registers and busses is be performed only if the registers or the busses are used by the current instruction.
With this approach, unused registers/busses will not cause an error and decreasing the uptime of the system will be
limited.

Addresshus, Sizeand ASI busses, Data bus, Control signals of the MEC and of the FPU are also protected with parity
bits.Control signals for coprocessor are not protected by parity bit. The parity checking is disabled during reset. Care
has to be taken not to read a register before it has been written and its parity bits initialized.

When an error occurs, the HWERRGRnal is asserted low and a trap is taken depending of the parity error type
(seeTable 47 page 16).

Definition of odd parity bit The number of one in a word, including the parity bit, is alway odd.
(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.3.2. Trap handling

Whena hardware error is detected the HWERRShal is asserted then a trap routine is taken depending @rfrtine

type (see Table 47). The HWERRGRnal is asserted until the error trap is taken.This software routine reviews the
failing instruction. If the cause of the error was a transient fault, it may be removed by just resuming this instruction.
In this case, HWERROR deasserted (see 5.2.2.2, page 127).

If the error was caused by a non removable egrmther hardware error trap is generated. Because a synchronous trap
is taken during a time when traps are disabled, the IU enters the error mode, asserts $grRO&d halts
(HWERRORwill stay asserted until removed by reset).

This means that the error detection mechanism will detect the error when the failing instruction is in the execute stage
in order to handle the trap normally, i.e. correct PC for the failing instruction.

The trap are grouped into the following Error-Type:

- Restartable, precise error: Errors that can be removed by retrying the instruction and with correctly saved PC
and nPC. These errors can be removed by simply returning from the trap routine.

- Non-restartable, precise error: Errors that will remain even after an instruction retry, but with correctly saved
PC and nPC. These errors are not removable and the trap routine should not attemfirrceethe address
of failing instruction is knowthe kernel can attempt a local clean-ug, not having to restart the application.

- Restartable, late error: Errors that can be removed by retrying the instruction but with PC and nPC pointing to
the following instruction (was data load error). The trap routine can emulate the failing instruction or retry
afterthe PC and nPC have been adjusted.

MATRA MHS 109
Rev. H (02 Dec. 96)

TSCB91E TEMIC

- Non-restartable, imprecise error: Error that can not be associated with a particular instruction and cannot be
removed by instruction retry. These errors are typically quite severe and will require a re-boot.

- Reqister file error: Error that occurred in the register file (special case of Non-restartable, precise error)
- Program flow error: Error detected by the program flow control.

Table 47. Error Type Assignments

Trap Type Error Type Error Signal
61H Restartable, precise error HWERROR
62H Non-restartable, precise error HWERROR
63H Restartable, late error HWERROR
64H Non-restartable, imprecise error HWERROR
65H Register file error HWERROR
66H Program flow error Trap only

Master / Checker error MCERR
Error mode ERROR

4.3.3. Priority within hardware traps for U

Whenmultiple hardware traps ocguhe highest priority trap igken, and lower priority traps are ignored. The priority
applied on the harware traps of the IU are define as follow:

Table 48. Hardware Priority

Trap Type Error Type Error Signal

61H Restartable, precise error 5
62H Non-restartable, precise error 2
63H Restartable, late error 4
64H Non-restartable, imprecise error 1
65H Register file error 3
66H Program flow error 6

IU synchronous traps 7

Remark: Priority 1 is for highest priority and 5 for the lowest priority. All other synchronous traps (caused by the
actions of an instruction) has a lower priority.

4.3.4. Parity Checking on Register File and Control/Status Registers

The register file and the control/status registers of the TSC691E are protected by a parity bit. Hardware error on those
registers shall lead to hardware error trap as defined in .

110 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Table 49. Hardware error type for user registers

Register Error type Trap type
RegisterFile Register file error 65H
FPC Restartable, precise error 61H
DPC Non-restartable, precise error 62H
EPC/WPC Non-restartable, imprecise error 64H
PSR Non-restartable, imprecise error 64H
WIM Non-restartable, precise error 62H
TBR Non-restartable, precise error 62H
Y Restartable, precise error 61H

4.3.5. Parity Checking on Control Signal for the FPU
The control signals between the IU and the FPU are protected by a parity bit.

4.3.5.1. Output control signals

The control bus contains five bits: FINS1, FINS2, FLUSH, FXACK, INST. The parity output for these five signals is
IFPAR (IU to FPU PARIty). This parity bit is generated by the 1U.

IFPAR is a three-state (on chip pull_up resistor£20&utput controlled by TOEignal.

4.3.5.2. Input control signals

Theinput control signals are: FCC<1:0>, FCEGEXC, FHOLD,FP The parityinput for these signals is AR (FPU
to IU PARIty). This parity bit is generated by the FPU and checked by the IU when a FBfcc instruction is executed.
FCCV and FHOLD are re-synchronized on the rising edge of the clock to check the parity.

4.3.6. Parity Checking on Control Pads for the TSC693E (MEC)
The 13 control signals between the IU and the MEC are protected by a parity bit.

4.3.6.1. Output control signals

The output control bus contains six bits: DXFER, LDSTO, LOCK, RD, WIRT. The parity output for these five
signalsis IMPAR (IU to MEC PARIty). This parity bit is generated by the IU.

IMPAR is a high_Z (on chip pull_up resistor=ZDkoutput controlled by the CO& TOESsignal.

4.3.6.2. Input control signals
No parity is performed on the input control signals: MAO, MDIEXC, MHOLDA, MHOLDB, BHOLD.

4.3.7. Parity Checking on Control Pads for the Coprocessor

No parity is performed on the input and output control signals.

4.3.8. Parity Generation on ADDRESS Bus

The 32 bit address bus contains a parity bit calculated by the IU and sent out oi\t@aAP
The ASI<7:0> and SIZE<1:0> busses contain also a parity bit calledRA®Rich is calculated by the IU.
APAR and ASPRR are three-state (on chip pull_up resistor=2Pp&utputs controlled by AOBr TOESsignal.

4.3.9. Parity Checking on DATA Bus
The DPAR bidirectional signal contains the odd parity over the 32-bit data bus.

MATRA MHS 111
Rev. H (02 Dec. 96)

TSCB91E TEMIC

When the IU receives a data (LOAD) or an instruction, the parity bit is checked by the 1U. In case of a STORE data
instruction, the parity bit is generated and launched in parallel by the IU.

4.3.10. Non RT 601 Mode

To be able to use a standard FPU (i.e. TSC692E), parity on the data bus has to be generated internally and parity
checking on the control bus must be turned off.

This feature is controlled by asserting the 601MODEUt signal. This signal is static and shall not change when
running.
4.3.11. Error Type for external signals parity errors

Data inputs (Ints and Load) and FPU to IU control signals receive a parity bit which is checked by the IU. If an error
is detected, the IU takes a trap depending of the error gige 50 .

Table 50. Hardware error type for external signals

Register Error type Trap type

Data (inst) Restartable, precise error 61H

Data (load) Restartable, late error 63H
FIPAR Floating—Point Disablet! 04H

Note I The parity is only checked when a FBfcc instruction is executed.

4.4. Master/checker operation

The MHSTSC691E includes comparator circuits at the outputs to support fault detection. Applications requiring a
high level of reliability can use this Master/Checker operation to introduce fault detection on a system level. By
duplication of units without the use of external comparators, 100% of the internal errors can be detected, especially
those errors which are not detected by the internal unit concurrent error detection mechanism.

4.4.1. Basic function

By asserting the signal CMODEEe TSC691Ecan be configured either as master or checker. This signal is static and
shall not change when running. Assertion of this signal will set the IU to act as a checker to support master/checker
operation. All output signals except ERRGIRVERROR MCERRand TAP signals will be high-Z (on chip pull_up
resistor=20K). The master and at least one checker circuit are working in parallel and execute the same program.
Whenthe master is forcing the address and data bus, the checker is in a read and compare mode. Thi®uatpahs the
buffersare disable@nd the external busses are compared by the checker with its internal results. If a mismatch occurs
on any output, then the MCERSgnals are asserted until the mismatch disappears. In this case, the system hardware
and/or software can take appropriate action.

If the master IU signals an internal error before a comparison error is indicated, it is possible to stop execution of the
two IUs by asserting the HALTEignal, disable the master 1U, change the checker IU to master IU and continue
executionCMODE signal can be changed when RES#ignal is asserted or when the IU is in halt mode.

On a master processor, the three-state control signals (e.g,:@@H: DOE, TOE) disable the checker mode of the
three-stated buffers.

An external/internal mismatch can occur for two reasons:

1- In a system with only one master processor, a short or other electrical failure can force the output signal to a
fixed voltage. For example, a bus signal can be shorted to ground. When the circuit drives a high voltage on
the bus, the external signal will be pulled low and a mismatch will occur and he IU asserts the
CMPERRsignals.

2- An external/internal mismatch can occur in the master/checker mode. Figure 67 shows a basic master/checker
configurationusing twoTSC691Edevices.

112 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

Using the master/checker solution there is a possibility that the system can continue with only the correct
remaining unit, or with both after the restoration of state of the faulty unit. If an internal error is indicated in
the checkerit could be ignored. The MEC requires error signals from both the master aricbtherin case
of corruption the system behavior is defined by the MEC.

Control
Address
Data
HALT > <——— HALT
ERROR=«———| MASTER IU CHECKER IU ———» ERROR
HWERROR €«———— ————» HWERROR
CMODE=1———> «—— CMODE=0
TAP 4—/ _> TAP
MCERR «——— | L » MCERR

Figure 67. Master/Checkerconfiguration

4.4.1.1. Master/Checker Signal description

4.4.1.1.1 MCERR—Comparison Error (output)

This signal is asserted in the checker mode when a comparison error occurs on the internal output signals (except
ERROR HWERROR MCERRand TAP signals) vis-a-vis the output signal of the master IU. It is deasserted when
the error disappears.

This output is high-Z (on chip pull_up resistor=2)kvhen the TOEignal is deasserted.

4.4.1.1.2.CMODE—checker Mode (input)

Assertionof this signal will set the 1U to act as a checker to support master/checker operation. All output signals except
ERROR HWERROR and TAP signals will be high-Z (on chip pull_up resistor=2Ht is a static signal and shall
not change when running. It can change only during reset cycle or halt mode.

4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture

The IU includes a Boundary Scan using a Test Access Port (TAP) intdiE#&de tandard 1149.]. This interface
is used for debugging and test purposes.

This interface provides standardized approaches to :

e testing the interconnections between integrated circuits once they have been assembled on a printed circuit board
or other substrate.

support of testing the integrated circuit itself.
observing or modifying activity during the component’s normal operation.

4.5.1. TAP

The Test Access Port includes the following connections : TCLK, TMS, TR®I and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.

MATRA MHS 113
Rev. H (02 Dec. 96)

TSCB91E TEMIC

4.5.1.1. TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard. TCK is active high. The IEEE
standardsequires that TCLK can be stopped at 0 indefinitely without causing any change to the state of the test logic.
When TCLK is active, CKL must be held to one.

4.5.1.2. TMS (input)
The signal received by TMS is decoded by the TAP controller to control test operation.

TMS is sampled on the rising edge of TCLK and has to change on the falling edge of TCLK.

4.5.1.3. TDI (input)
Serial test instructions and data are received by the test logic by TDI.
TDI is sampled on the rising edge of TCLK and has to change on the falling edge of TCLK.

4.5.1.4. TRST(input)
The TRSTinput provides for asynchronous initialization of the TAP controller.

4.5.1.5. TDO (output)
TDO is the serial output for test instructions and data from the test logic defined in the standard.

4.5.2. TAP Controller

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.5.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
definedby the standard. The instructions SAMPLE/PRELOMDTEST, EXTEST and BYRSS are implemented on

this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.
4.5.3.1. Design and Construction of the instruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 68 illustrates an example implementation of an
InstructionRegister Cell.

Shift IR ——|G1 1D |5 Instruction
bit
Datd — | 1 5 >C1
From last cell ———| 1
—>»1R
|—>-> c1
Clock IR »- 10 next cell

Update IR

Reset

Figure 68. Instruction Register Cell

114 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

4.5.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.

4.5.3.3. EXTEST Instruction

The EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.5.3.4. INTEST Instruction

Intest instruction allows testing of tba-chip system logic while the component is assembled on the board, with each
test pattern and response being shifted through the boundary-scan register.

4.5.3.5. SAMPLE/PRELOAD Instruction

The SAMPLE instruction allows normal operation if the system logic with the ability to sample signals entering and
leaving the component without affecting circuit operation.

PRELOAD allows a value to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.

4.5.4. The Device Identification Register

The Device Identification Register is implemented on the chip. It contains the TSC691E’s assigned component
identifier: 0OxOB6400B1. It is selected by the IDCODE instruction.

4.5.5. Internal Scan Path

An Internal Scan Path will be implemented to provide tlfidireé test of the internal parity error detection. Tinternal
Scan Path will be controlled by th&F and will force some nodes in the generation circuit of the gaiti&y This would
thenresult in a value with the wrong patriti/hen this value isead again an error will be detected if the error detection
works correctly. This chain would have one bit for each parity generator.

4.5.6. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scat
testing principles.

Figure 68 illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g., the input pin), or driven from the register through the
Signal-out port of the cell (e.g., into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

MATRA MHS 115
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

Scan out
Mode ’El J
Signal in > 1 Signal
1 = out

Shift/Load ; |Gl |

g 1

— 1 311D 1D

> c1 > c1
Scanin Clock A

Clock B

Figure 69. Boundary Scan Cell

4.6.Interleaving register file bits

It is known that the impact from an SEU will flip adjacent bits in a register file. These multiple bit errors might be
impossibleto detect with one parity bit errdFhough these cases with multiple bit errors due to SEU are probably more
rarethan one bit errors, they cannot be neglected, especially in the register file, which corresponds to 70% of the entire
amount of registers in the 1U.

Onesolution to this problem is to interleave the bits of one word with the bits of another word. This is done in the register
file and will remove all multipldit errors due to SEU and full error detection is possible with a single parity bit checker

5. Electrical and Mechanical Specification

5.1. Maximum rating and DC Characteristics

5.1.1. Maximum Ratings

Storage TeMPEIatUIe. oot e -8% to +150° C
Ambient Temperature with Power Applied 56 to +125 C
Supply Voltag® :0.5.Vi0 +7.0V
INpPUEVOItAgE o -0.5Vto+7.0V

5.1.2. Operating Range

Range Ambient Temperaturé?! Vee

Military _55° C to 1258 C 5V +/- 10%

116 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC

Semiconductors

TSCO691E

5.1.3. DC CharacteristicSover the Operating Range

Parameters Description Test Conditions Min. Max. Units
Vou Output HIGH Voltage Vce=Min, loy =-2.0 mA 2.4 V
VoL Output LOW Voltage Vce = Min,, lo. =4.0 mA 0.5 V
ViH Input HIGH Voltage 21 Vce \%
VL Input LOW Voltage -0.5 0.8 \%
liz Input Leakage Current Vce= Max., Vss< VN <Vce -10 10 HA
lozH OUtbUt Leakade C . Vce= Max., \out=Vee -10 10 HA
utput Leakage Curren
lozL P d Veo= Max., Vour= Vss 502 | 2403l
Isc Output Short Circuit Current Ve = Max., Wyt = 0V -30 -350 mA
Iccop Supply Current Vce= Max., f = 14 MHz - 200 mA
lccsh Stand By Current Vce = Max, f=0Mhz - 1 mA
Notes:
1. All power and ground pins must be connected before power is applied.
2. Ambient temperature is defined as the ‘instant on’ case temperature.
3. on chip pull_up resistor=20k
5.1.4. Capacitance Rating& 5l
TSC691E
Parameters Description Max. (pF)
CiN Input Capacitance 10
Cout Output Capacitance 12
Cio Input/Output Bus Capacitance 15
5.1.5. AC Test Loads and Waveforms
R1 470Q
5V (o] 3V
90%
10%
OUTPUT O ov
<3ns
R2 319Q
TEST LOAD WAVEFORM

Notes:

4. Tested initially and after any design or process changes that may affect these parameters.
5. Test conditions are:3&=5.0V, Ta=25° C, f=1MHz

6. C = 30 pF (for FINS <Ii> signal)

MATRA MHS
Rev. H (02 Dec. 96)

TSCB91E TEMIC

5.2. TSC691E AC Characteristics

5.2.1. AC Characteristics Over the Operation RangE!

Reference TSC691E-14
Parameter Description Edge Min Max Unit
1 tcy Clock cycle 71 ns
2 tcHL Clock high and low 33 ns
3 tcRE Clock rise and fall 1 V/ns
4 tAD Address/Control?l output delay CLK+ 55 ns
5 taH Address/Control2] output valid CLK+ 7 ns
6 tbobp D<31:0> output delay CLK- 35 ns
7 tboH D<31:0> output valid CLK- 4 ns
8 tois D<31:0> input setup CLK+ 7 ns
9 toiH D<31:0> input hold CLK+ 9 ns
10 tMES MEXC input setup CLK+ 12 ns
11 tMEH MEXC input hold CLK+ 4 ns
12 tus MHOLDA, B input setup CLK- 4 ns
13 tHH MHOLDA, B input hold CLK- 9 ns
12 ths YHOLD Bl input setup CLK- 10 ns
13 tHH YHOLD [3] input hold CLK- 7 ns
14 tHoD XHOLD [3]to Address/Control output delay XHOLD- 40 ns
15 tHOH XHOLD [to Address/Control output valid XHOLD+ 0 ns
16 toe AOE, COE DOEt o output enable delay XOE- 27 ns
17 top AOE, COE DOEt o output disable delay XOE+ 27 ns
18 troe TOE asserted to output enable delay TOE- 38 ns
19 ttop TOE deasserted to output disable delay TOE+ 38 ns
20 tssp INST, FXACK, CXACK, INTACK,ERRORoutput delay CLK+ 36 ns
21 tssH INST, FXACK, CXACK, INTACK, ERRORoutput valid CLK+ 3 ns
22 trs RESETinput setup CLK+ 27 ns
23 trH RESETinput hold CLK+ 3 ns
24 tFD FINS<1:0> output delay CLK+ 30 ns
25 tFH FINS<1:0> output valid CLK+ 35 ns
24 tFD CINS<1:0> output delay CLK+ 40 ns
25 trH CINS<1:0> output valid CLK+ 35 ns
26 tris FCC<1:0>, CCC<1:0> input setup CLK+ 18 ns
27 triH FCC<1:0>, CCC<1:0> input hold CLK+ 4 ns
28 tpxp DXFER output delay CLK+ 51 ns
29 toxH DXFER output valid CLK+ 2 ns
118 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

Reference TSC691E-14

Parameter Description Edge Min Max Unit
30 tHDXD XHOLD [3] asserted to DXFER output delay XHOLD- 36 ns
31 tHDXH XHOLD [3] deasserted to DXFER output valid XHOLD+ 0 ns
32 tNUD INULL output delay CLK+ 36 ns
33 tNUH INULL output valid CLK+ 3 ns
34 tmps MDS input setup CLK- 4 ns
35 tMDH MDS input hold CLK- 5 ns
36 tFLs FLUSH output delay CLK+ 30 ns
37 tFLH FLUSH output valid CLK+ 3 ns
38 tcevs FCCV, CCCV input setup CLK- 13 ns
39 tcevH FCCV, CCCV input hold CLK- 5 ns
40 txEs FEXC, CEXCinput setup CLK+ 18 ns
41 tXEH FEXC, CEXCinput hold CLK+ 4 ns
42 tMAD MAO Asserted to Address/Control Output Delay MAO+ 36 ns
43 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns
44 terD HWERRORoutput delay CLK+ 45 ns
45 tERH HWERRORoutput valid CLK+ 5 ns
46 ttmMs TMS input setup TCLK+ 20 ns
47 tTMH TMS input hold TCLK+ 25 ns
48 trois TDI input setup TCLK+ 20 ns
49 tTDIH TDI input hold TCLK+ 25 ns
50 tTRs TRSTinput setup TCLK+ 20 ns
51 tTRH TRSTinput hold TCLK+ 25 ns
52 tTDoD TDO output delay TCLK- 45 ns
53 tTDOH TDO output valid TCLK- 5 ns
54 trey TCLK clock cycle 100 1000 ns
55 tXAPD XAPAR] output delay CLK+ 55 ns
56 tXAPH XAPARI4! output valid CLK+ 7 ns
57 topoD DPAR output delay CLK- 45 ns
58 tDPOH DPAR output valid CLK- 4 ns
59 topis DPAR input setup CLK+ 6 ns
60 tDPIH DPAR input hold CLK+ 4 ns
61 tiEPD IFPAR output delay CLK+ 53 ns
62 tiFPH IFPAR output valid CLK+ 3 ns
63 trips FIPAR input setup CLK+ 18 ns
64 tFIPH FIPAR input hold CLK+ 4 ns

MATRA MHS 119

Rev. H (02 Dec. 96)

TSCB91E TEMIC

Reference TSC691E-14

Parameter Description Edge Min Max Unit
65 tiMPD IMPAR output delay CLK+ 60 ns
66 tiMPH IMPAR output valid CLK+ 7 ns
67 tMCED MCERR output delay®! CLK+ 45 ns
68 tMCEV MCERR output valid®! CLK+ 5 ns
69 tstars | BOIMODEFLOW/CMODE/EP input setui®! CLK+ 18 ns
70 tHAS HALT input setup CLK- 13 ns
71 tHAH HALT input hold CLK- 4 ns
72 tirLS IRL<3:0> input setup CLK+ 2 ns
73 tiRLH IRL<3:0> input hold CLK+ 6 ns
NOTES:

1. Test conditions assume signal transition times of 3 ns or less, a timing reference level of 1.5V, input levels ofdhtb@&iut loading of
50pF

2. Address/Control signals include: A<31:0>, ASI<7:0>, SIZE<1:0>, RD, WRT, WE, LOCK, and LDSTO.

3. YHOLD includes BHOLD, FHOLD, and CHOLD.

4. XAPAR includes APAR and ASPAR.

5. When an error occurs on D[31:0] or DAAICERRmay be delayed for 1 cycles depending of frequency.

6. 60IMODEFLOW/CMODE/FP shall be change to be related to positive clock edge during reset active oradfhe.

7. XHOLD includes BHOLD, MHOLDA, MHOLDB, FHOLD and CHOLD.

5.2.2. Waveforms

5.2.2.1. Clock and ERROR RESET Timing
@ |

DV/Dt =0.8 V/ ns

2 D Ve

N
\
9 CLK Cycles |
Minimum
EP
601MODE “
FLOW
CMODE ’7* ® < <(
Reseneeds to be synabmized with
CLK only if the pocessor must be in
stepwith other devices in the system.
120 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

5.2.2.2. Clock and HWERRORTiming for Parity Error Type

CLK
)))))
1 1 1 1
I I I — | I
HWERROR [[N ' 0
' ' - ' //I’ '
) 4)
: :) @) ’)
)))))
| | | : |
A[31:0] A0 Al A2 Trap 1 Trap 2
: : : : :
D[31:0] DO D1 D2 --- D3
)))))
! Parity error ¢ ' ' '
' on this data | ' . '
INULL/FLUSH - V4 AN .
1 1 1) 1
; ; ; ; ;
INST | | v
)))
)))

Note: The IU check the parity on internal register when the instruction is in the execute stag.

5.2.2.3. TOEDe—-assertion /Assertion

a [L L L 7L I LI L
ot COEN p—r D D
ooups NG N &) Vi
S MO\ RN N RN

—l@ - @
AN
Toe (

MATRA MHS 121
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

5.2.2.4. Load Timing

CLK

A<31:0>

ASI<7:0>

SIZE<1:0>

RD

D<31:0>

DXFER

INST

| D INS] Al A2 LD A3
ADR DATA
ADR.
ASIa0 ASla1 ASlao ASIap ASla3
SIZEao SIZEa1 51ZE2 SIZEap 5173
LD 11 12 D1

e

Y

I*@j\ o

122

MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCE91E

Semiconductors

5.2.2.5. Store Timing

«—— C) —

e [L L [LI L LT L

@06
Ao s ROOIK A1 IO 22 IO e IOOOIRERE DO 22 IXXX0

ADR

ATt XS »«m« R0 oK RO 20 XN
size<1.0> (SZER XXX ZEn XXX ZEn IR XN 2RI ZEOOPE ZE XXX

e N/ LN | N NN X N
v AN AR LAY R AN

D<31:0>

DXFER

INST

INULL

O 46

PR L IOQOM DOXAIXL IXDOOD XX XD—loara pariry

MATRA MHS 123
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

5.2.2.6. Load with Cache Miss

CLK

A<31:0>

ASI<7:0>

SIZE<1:0>

DPAR

MAO

— yall

<|A1|>®

)) LD DATA
N ADR

N
// ASlap
NN

AN

// SIZEap

\\

(el

C OOEEHX
B
Lo~

14

T @

C\

oy

N\

\

=
el —

——&9

O XX

LD Data Parity

(*ﬁ

124

MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

5.2.2.7. Memory Exception Timing

cw I 01 e N I ey Iy

_ N
he /4 PP 23 OO 78 XD
\\
. N
ASI<r:0> ASz /) MO MO0 XXX
\\
AN
size<1o-EZEMOOVE =MW sizew /) MO0 2= P00 =000
NN B) = @
INULL))
, INY -

1
i@
o
T
N

MHOLD

MDS
1)
MEXC ((
5.2.2.8. Bus Arbitration Timing

i) —C = NN

SIZE<1:0>

:UE‘

om
z
.
N

=
N

oK 26 N g /R

AOE, ‘l@'" NEls
oo (

TOE can replace the combined function of AGED

~

and DOE

m

MATRA MHS 125
Rev. H (02 Dec. 96)

TSC691E TEMIC

Semiconductors

5.2.2.9. Floating-Point Timing

e [LI LI I I I °L_I
a<sro> (AL OO A2 IO 23 MO 2 PEOON 25 MO 26 MOOD a7 MO 2)
o<s20> (EEorl KX N NN MR EH RN NN =)

T K NN WY N N

O e
FCC<1:0> ﬁ_‘é
e T
jroer

5.2.2.10. TAP Signals

e []
el
(o)
frod -4
el

CLK=1

126 MATRA MHS
Rev. H (02 Dec. 96)

TEMIC TSCB91E

5.2.2.11. PARITY Signals

- (Q)—>
(D> |
CLK — 6 ‘___
-
>) -
> ® >@
APAR Wm 'APAR APW APAR A‘ APAR A4)m

D[31:0]

DPAR

FIPAR

IFPAR

Ty Y=y Ty Sy Ty

IMPAR

5.2.2.12. MASTER/CHECKER Signals

<@»

CLK — L I

5 - @\l i
MCERR /)\

error error

MATRA MHS 127
Rev. H (02 Dec. 96)

TSCO91E

TEMIC

Semiconductors

5.2.2.13. IRL[3:0] Signals

CLK —_ I
@ >
IRL[3:0] ‘
5.2.2.14. HALT Signal timing
- ()—>
CLK — _’_|_ I
INTERNAL ‘
CLK —_— I
ADD Al >< A2 >< A3 ‘ A3 >< Ad
OUTPUT
"| ~ »| (G0 <
HALT T\» @|—< ‘)_@| <
FP
60IMODE
FLOW -<
CMODE i
128 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC

Semiconductors

TSCO691E

5.3. Package Description

5.3.1. 256-Pin MQFP_F Package

° 1 [
- D 1 -
u _[Ej r—
T :
E e L . | i o [-A-] .
NNz
: . f
N f z
R 256 ;I A
INDEX CORNER L
3 B 1
N1 _/ -D- Colle
mm mils
Min Max Min Max
A 2.41 3.18 .095 125
c 0.10 0.20 .004 .008
D 53.23 55.74 2.095 2.195
Di 36.83 37.34 1.450 1.470
E 53.23 55.74 2.095 2.195
E1 36.83 37.34 1.450 1.470
e 0.508 BSC .020 BSC
f 0.15 0.25 .006 .010
Al 2.06 | 2.56 081 | 101
A2 0.05 0.36 .002 014
L 8.20 | 9.20 323 | .362
N1 64 64
N2 64 64
MATRA MHS 129

Rev. H (02 Dec. 96)

TSCB91E TEMIC

5.3.2. 256-Pin MQFP_F Pin Assignments

Pin Signal Pin Signal Pin Signal Pin Signal
1 IMPAR 65 VSSO 129 VCCI 193 VSSO
2 VCCO 66 VSSO 130 VCCO 194 VSSO
3 COE 67 VSSI 131 D11 195 IFT
4 VCCI 68 VCCO 132 VCCO 196 VSSI
5 DXFER 69 Al6 133 D12 197 FLUSH
6 LOCK 70 A15 134 D10 198 IFPAR
7 VSSO 71 A18 135 VSSO 199 VCCO
8 WRT 72 Al7 136 D13 200 ERROR
9 SIZE1 73 A19 137 D15 201 CXACK
10 MAO 74 VSSO 138 D14 202 INTACK
11 ASPAR 75 A20 139 D16 203 FXACK
12 SIZEO 76 VCCI 140 VSSI 204 VSSO
13 VCCO 7 VSSI 141 D17 205 ccc1
14 HWERROR 78 A21 142 VCCO 206 CCCo
15 ASI1 79 VCCO 143 D18 207 FPSYN
16 ASIO 80 A22 144 D19 208 FCC1
17 VSSI 81 A24 145 -NC- 209 VSSI
18 ASI2 82 A23 146 -NC- 210 FCCO
19 ASI3 83 A25 147 -NC- 211 IRL3
20 VSSO 84 A26 148 -NC- 212 IRL2
21 ASl4 85 VSSO 149 D20 213 -NC-
22 VCCI 86 A27 150 D21 214 -NC-
23 ASI5 87 A28 151 VSSO 215 IRL1
24 ASI6 88 A29 152 -NC- 216 -NC-
25 ASI7 89 VSSI 153 -NC- 217 IRLO
26 VCCO 90 VSST 154 VCCI 218 -NC-
27 VSST 91 A30 155 D22 219 -NC-
28 CLK 92 VCCO 156 -NC- 220 CCcCV
29 -NC- 93 A3l 157 D23 221 FIPAR
30 VSSI 94 VCCI 158 VSST 222 VCCI
31 -NC- 95 601MODE 159 -NC- 223 FCCV
32 -NC- 96 -NC- 160 VSSI 224 CMODE

130 MATRA MHS

Rev. H (02 Dec. 96)

TEMIC TSCB91E

Pin Signal Pin Signal Pin Signal Pin Signal
33 AOE 97 FLOW 161 -NC- 225 VSST
34 APAR 98 MCERR 162 D24 226 RESET
35 A0 99 HALT 163 -NC- 227 VSSI
36 Al 100 DPAR 164 D25 228 CHOLD
37 VCCI 101 -NC- 165 VCCO 229 FHOLD
38 A2 102 -NC- 166 VCCI 230 BHOLD
39 -NC- 103 DO 167 D26 231 -NC-
40 -NC- 104 VSSO 168 D27 232 MHOLDB
41 VSSO 105 D1 169 D28 233 MHOLDA
42 A3 106 D2 170 VSSO 234 MDS
43 -NC- 107 -NC- 171 D29 235 -NC-
44 -NC- 108 VSSI 172 D30 236 FP
45 A4 109 D3 173 VSSI 237 CEXC
46 A5 110 VCCO 174 VCCl 238 MEXC
47 -NC- 111 D4 175 D31 239 -NC-
48 -NC- 112 D5 176 DOE 240 -NC-
49 A6 113 -NC- 177 VCCl 241 FEXC
50 VCCO 114 D6 178 FINS2 242 -NC-
51 A7 115 VCCl 179 FINS1 243 VssI
52 A8 116 D8 180 CINS1 244 VSSO
53 A9 117 D7 181 VCCO 245 INST
54 A10 118 -NC- 182 TOE 246 RD
55 VssI 119 -NC- 183 VSSI 247 VCCI
56 VSSO 120 D9 184 TRST 248 LDSTO
57 -NC- 121 VCCO 185 CINS2 249 VCCO
58 Al2 122 -NC- 186 TDI 250 WE
59 All 123 -NC- 187 TCLK 251 cP
60 Al4 124 VSSI 188 VSSI 252 VCCT
61 A13 125 VCCT 189 T™S 253 INULL
62 VCCI 126 VSSO 190 VCCI 254 VSSO
63 VCCI 127 VSSO 191 TDO 255 VSSI
64 VCCO 128 -NC- 192 VCCO 256 VSSO

MATRA MHS 131

Rev. H (02 Dec. 96)

	1. Introduction
	2. TSC691E OVERVIEW
	2.1. SPARC RISC STANDARD FUNCTIONS :
	2.2. Fault Tolerant and Test Mechanism Improvements:
	2.3. Presentation of the ERC32 computing core

	3. Standard IU Function
	3.1. Introduction
	3.2. Description Of Parts
	3.3. Programming Model
	3.4. Instruction Set
	3.5. Signal Description
	3.6. Pipeline and Instruction Execution Timing
	3.7. Bus Operation and Timing
	3.8. Exception Model
	3.9. Coprocessor Interface

	4. Fault Tolerant and Test Mechanism
	4.3. Parity Checking
	4.1. Fault Tolerant and Test Support signals
	4.2. Program Flow Control
	4.4. Master/checker operation
	4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture
	4.6.Interleaving register file bits

	5. Electrical and Mechanical Specification
	5.2. TSC691E AC Characteristics
	5.1. Maximum rating and DC Characteristics
	5.3. Package Description

