
Version 1.3.2
August 1998

The ERC32 GNU Cross-Compiler System

Jiri Gaisler
European Space Research and Technology Centre (ESA/ESTEC)

2 ERC32 GNU Cross-Compiler system

European Space Agency

jgais@ws.estec.esa.nl

The ERC32 GNU cross-compiler system

Copyright 1998 European Space Agency.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions.

Introduction 3

1 Introduction

1.1 General

This document describes the ERC32 GNU cross-compiler system version 1.3. Discussions are provid-
ed for the following topics:

• contents and directory structure of ERC32CCS

• compiling and linking ERC32 applications

• usage of SIS and MKPROM

• debugging ERC32 application with GDB/SIS

The ERC32 GNU cross-compiler system is a multi-platform development system based on the GNU
family of freely available tools with additional ‘point’ tools developed by Cygnus, OAR and ESTEC.
The ERC32CCS consists of the following packages:

• EGCS/GCC C/C++ compiler

• GNAT Ada95 compiler

• GNU binary utilities

• RTEMS C/C++ real-time kernel

• Newlib standalone C-library

• SIS ERC32 simulator

• GDB debugger with ERC32 remote debugging monitor (rdbmon)

• DDD graphical front-end for GDB

• MKPROM boot-prom builder

1.2 News in version 1.3.2

This version of ERC32CCS contains the following changes with respect to 1.3:

• DDD version 3.0

• Mprom version 1.2

• Egcs-1.0 C/C++ compiler

• RTEMS 4.0 beta release with simplified compile procedure

• Experimental Ada95 compiler based on gnat-3.10 and rtems-4.0

• Re-compiled floating-point library (libm.a) to incorporate the FPU fixes

• GDB version 4.17 with gnat support

• SIS version 3.0

4 ERC32 GNU Cross-Compiler system

2 Installation and directory structure

2.1 Obtaining ERC32CCS

ERC32CCS is only distributed via anonymous ftp. The primary home of ERC32CCS is the ESTEC
ftp-server at ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32/erc32ccs. Two platforms are supported: SUN
Sparcstaion (SunOS & Solaris) and PC/Linux. Sources for rdbmon and mkprom are provided with
ERC32CCS, the remaining sources can be found at the usual GNU sites.

2.2 Installation

The ERC32CCS directory tree is compiled to reside in/usr/local/erc32 . After obtaining the compressed tar-
file with the binary distribution, un-compress and un-tar it in a suitable location - if this is not/usr/local/erc32
then a link have to be created to point to the location of the ERC32CCS directory. The distribution can be installed
with the following command:

gunzip -c erc32ccs-1.3.2.tar.gz | tar xf -

This will create theerc32 directory in the current directory. Theerc32 contains the following sub-directories:

bin executables
doc documentation
include host includes
lib host libraries
man man pages
rtems rtems libraries
rtemsnp rtems libraries (no posix)
sparc-rtems target libraries (ERC32)
src various sources

Documentation for the various packages can be found indoc , while unix-style man-pages are inman.

2.3 Environment

ERC32CCS does not longer require any environment variables to be set; just add /usr/local/erc32/bin
to your search path.

2.4 Support

For technical support regarding GNU tools, contact Cygnus at http://www.cygnus.com/. For RTEMS
support contact OAR at http://www.oarcorp.com/. For SIS and MkProm support, contact J.Gaisler
(ESTEC) at jgais@ws.estec.esa.nl.

Using ERC32CCS 5

3 Using ERC32CCS

3.1 ERC32CCS tools

The following tools are included in ERC32CCS:

ddd graphic X11 front-end to GDB
fcheck utility to check for FPU rev.B bugs
mkprom boot-prom builder
protoize GNU protoize utility
sis ERC32 simulator
sis64 ERC32 simulator (with 64-bit time)
sparc-rtems-ar library archiver
sparc-rtems-as modified cross-assembler (FPU rev.B fixes)
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt utility to demangle C++ symbols
sparc-rtems-g++ same as sparc-rtems-c++
sparc-rtems-gasp assembler pre-processor
sparc-rtems-gcc C/C++ cross-compiler
sparc-rtems-gdb debugger with ERC32 simulator and remote target interface
sparc-rtems-gdb64 debugger with ERC32 simulator (64-bit time)
sparc-rtems-gnatcmd Utility to print all GNAT command switches
sparc-rtems-gnatmake Ada make utility
sparc-rtems-gnatbind Ada binder
sparc-rtems-gnatf Ada syntax checker and cross-reference generator
sparc-rtems-gnatprep Ada pre-processor
sparc-rtems-gnatbl Ada bind and link
sparc-rtems-gnatkr Ada file name kruncher
sparc-rtems-gnatpsta Utility to print the Standard package
sparc-rtems-gnatchop Ada source code splitter
sparc-rtems-gnatlink Ada linker
sparc-rtems-gnatpsys Utility to display the System package
sparc-rtems-gnatchp Ada source code splitter
sparc-rtems-gnatls Ada library lister
sparc-rtems-ld GNU linker
sparc-rtems-nm utility to print symbol table
sparc-rtems-objcopy utility to convert between binary formats
sparc-rtems-objdump utility to dump various parts of executables
sparc-rtems-ranlib library sorter
sparc-rtems-size utility to display segment sizes
sparc-rtems-strings utility to dump strings from executables
sparc-rtems-strip utility to remove symbol table
unprotoize GNU unprotoize utility

6 ERC32 GNU Cross-Compiler system

3.2 Documentation

An extensive set of documentation for all tools can be found in doc and man. The following documents
are provided:

as.bdf Using as - the GNU assembler
bfd.pdf Libbfd - the binary file description
binutils.pdf The GNU binary utilities
cpp.pdf The C Preprocessor
ddd.pdf DDD - The Data Display Debugger
gcc.pdf Using and porting GCC
gdb.pdf Debugging with GDB
gnat_rm.pdf GNAT reference manual
gnat_ug.pdf GNAT User’s guide
ld.pdf Using ld - the GNU linker
mkprom.pdf Mprom manual page
rtems_dev.pdf RTEMS Development environment guide
rtems_relnotes.pdf RTEMS Release notes
rtems_sparc.pdf RTEMS SPARC Applications supplement
rtems_user.pdf RTEMS C User’s manual (this is the one you want!)
sis.pdf SIS - SPARC instruction set simulator manual
sparcv7.pdf SPARC V7 Instruction set manual

Data sheets for the ERC32 chip-set are also provided:

mecspec.pdf MEC rev.A Device specification
tsc961e.pdf TSC961 Integer Unit User’s manual
tsc962e.pdf TSC962 Floating-point Unit user’s manual
sysover.pdf ERC32 System overview

The documents are all provided in PDF format, with searchable indexes. The GNU documents have
embedded hyper-links and searchable document text. A free PDF viewer (‘acrobat’) can be down-
loaded from Adobe (http://www.adobe.com/).

3.3 Development flow

The compilation and debugging of an ERC32-based applications is done in the following steps:

1. Compile and link program with gcc

2. Debug program in standalone simulator (SIS) or with gdb

3. Debug program on remote target with gdb

4. Create boot-prom for a standalone application

The ERC32CCS-1.3.2 supports three types of applications; ordinary sequential C-programs, multi-
tasking real-time C--programs based on the RTEMS kernel, and Ada-95 programs. Compiling and
linking is done in much the same manner as with the host-based gcc and GNAT.

Using ERC32CCS 7

3.4 RTEMS applications

The primary application type for ERC32CCS is now RTEMS programs. As of ERC32CCS-1.3, com-
piling and linking of RTEMS applications is greatly simplified. The usage of a RTEMS specific make-
file is no longer required, the gcc compiler driver supplies all necessary paths and libraries. To
compile and link a RTEMS application, use ‘sparc-rtems-gcc’:

sparc-rtems-gcc -g -O3 rtems-hello.c -o rtems-hello.exe

The various compilation switches are explained in the gcc manual (gcc.pdf) and the man-pages.
RTEMS is provided in two versions; with and without POSIX threads interface. If applications are
written with the POSIX interface, add the -posix switch during compilation and linking:

sparc-rtems-gcc -posix -g -O3 posix-app.c -o posix-app.exe

The default load address is start of RAM, i.e. 0x2000000. Any load address can be specified through
the -Ttext option (see gcc manual).

Extensive documentation is provided on RTEMS in doc/rtems_user.pdf.

3.5 Compiling sequential C-programs

Ordinary sequential C programs are still supported by providing the -nortems switch to the compiler
driver:

sparc-rtems-gcc -nortems -g -O2 hello.c -o hello.exe

3.6 Compiling Ada95 programs

Compiling and linking an Ada95 program is easiest done through gnatmake:

sparc-rtems-gnatmake -g -O3 -gnatp dais.adb

Individual units can be compiled through gcc:

sparc-rtems-gcc -c -g -O3 -gnatp dais.adb

If linking is done through gnatbl, the -posix and -qgnat flags has to be added:

sparc-rtems-gnatbl -posix -qgnat -g -O3 -gnatp dais.adb

For details on how to use gnat, see the GNAT User’s Manual (gnat_us.pdf) and GNAT Reference
Manual (gnat_rm.pdf). NOTE: the gnat compiler is only provided for testing purposes, and is not
by any means validated or guaranteed. A commercial, validated version is available from Ada Core
Technology (http://www.gnat.com/).

The gnat compiler is configured for a maximum of 20 tasks and 30 mutexes. If you need a different
configuration, go to the erc32/src/libio directory, edit gnatinit.c and do a ’make install’.

3.7 Making boot-proms

Both sequential C-programs and RTEMS applications are linked to run from beginning of ram at ad-
dress 0x2000000. To make a boot-prom that will run on a standalone target, use the mkprom utility.
This will create a compressed boot image that will load the application to the beginning of ram, ini-
tiate various MEC register, and finally start the application. mkprom will set all target dependent

8 ERC32 GNU Cross-Compiler system

parameters, such as memory sizes, number of memory banks, waitstates, baudrate, and system
clock. The applications do not set these parameters themselves, and thus do not need to relinked for
different board architectures. The the example below creates a boot-prom for a system with 1 Mbyte
RAM, one waitstate during write, 3 waitstates for rom access, and 12 MHz system clock. For more
details see the mkprom manual

mkprom -ramsz 0x100000 -ramws 1 -romws 3 hello.exe -freq 12 hello.srec

To let the real-time clock generate the correct time base, the loader passes board frequency to the
program via the memory location at %tbr[0x7e0]. When running programs on top of sparcmon with-
out using mkprom, this is not done and the default frequency of 14 MHz is assumed. This can be
changed by setting the first word in trap 0x7e to the value of the clock frequency (in MHz) after the
program has been loaded but before it is started. This needs to be done only to get the time correct,
the run-time system will not modify the UART baudrate if it already has been set. The example be-
low sets the clock frequency to 10 MHz for a program that is linked to run from address 0x2020000:

monitor> ex -l 20207e0
0x020207e0: 0x91d02000 ? a

3.8 Simple examples

Following example compiles the famous ‘hello world’ program and creates a boot-prom in SRECORD
format:

tellus > sparc-rtems-gcc -nortems -g -O2 hello.c -o hello
tellus > mkprom hello -o hello.exe
tellus> sparc-rtems-objcopy -v -O srec hello.exe hello.srec
copy from prom.out(a.out-sunos-big) to hello.srec(srec)
tellus>

An Ada application compiled through gnatmake:

tellus > sparc-rtems-gnatmake -g -O3 -gnatp dais.adb
sparc-rtems-gcc -c -g -O3 -gnatp dais.adb
sparc-rtems-gnatbind -aO./ -I- -r -x dais.ali
sparc-rtems-gnatlink -g -posix -qgnat dais.ali
tellus >sparc-rtems-size dais
text data bss dec hex filename
204720 6392 32268 243380 3b6b4 dais

Several example C, C++ and Ada program can be found in src/examples . The RTEMS validation
tests can be found in src/examples/RTEMS .

3.9 FPU rev.B bugs

The FPU rev.B have a bug that will make certain lddf/stdf sequences fail. The compiler only rarely
emits these sequences. The occurrence of such sequence can be check with the provided fcheck pro-
gram. A modified assembler is also provided which will automatically insert NOPs in the failing se-
quences to correct this problem. The modified assembler also emits NOPs between ldf/fpop sequences
with dependencies to circumvent a second FPU bug which is only occur if waitstates are used.

Execution and debugging 9

4 Execution and debugging

The applications built by ERC32CCS can be executed in four different ways; on the standalone sim-
ulator, on gdb with integrated simulator, on a remote target connected to gdb and on a standalone
target board from prom.

4.1 Standalone simulator

The standalone simulator can run both application produced by the compiler and srecord images pro-
duced by MkProm. The following example shows how the ‘hello world’ program is run:

tellus > sis hello

 SIS - SPARC instruction simulator 2.7.6, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello:
section .text at 0x02000000 (26032 bytes)
section .data at 0x020065b0 (1304 bytes)
section .bss at 0x02006ac8 (40 bytes)(not loaded)
serial port A on stdin/stdout
sis> go
Hello world
IU in error mode (257)
 2567 02000800 91d02000 ta 0
sis>

Note that the program was started from address 0x2000000, the default start address. Programs al-
ways halt the IU after they have terminated, that is why the IU goes into error mode. The boot-prom
image can also be simulated:

tellus > sparc-rtems-sis hello.srec

SIS - SPARC instruction simulator 2.7.6, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello.srec:
section .sec1 at 0x00000000 (16784 bytes)
serial port A on stdin/stdout
sis> run
ERC32 boot loader v1.0

 initialising RAM
 decompressing .text
 decompressing .data

 starting hello

Hello world!
IU in error mode (257)
sis>

10 ERC32 GNU Cross-Compiler system

4.2 GDB with simulator

To do symbolic debugging of both C and Ada applications, use gdb. After gdb is started, the simulator
has to attached and the program loaded. It is important that the applications have been compiled
with the -g switch. Below is a sample session:

tellus > sparc-rtems-gdb hello
(gdb)tar sim

 SIS - SPARC instruction simulator 2.7.6
 Bug-reports to Jiri Gaisler ESA/ESTEC (jgais@ws.estec.esa.nl)
serial port A on stdin/stdout
Connected to the simulator.
(gdb)
(gdb) load
(gdb) break main
Breakpoint 1 at 0x20014e4: file hello.c, line 4.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello

Breakpoint 1, main () at hello.c:4
4 printf(“Hello world!\n”);
(gdb) cont
Continuing.
Hello world!

Program exited normally.
(gdb)

4.3 GDB with remote target

To attach gdb to a remote targets similar to attaching to the simulator. The baud rate for the serial
port has to be specified and the remote target monitor has to run on the target. Also, a tip window
should be connected to UART A to see the application output. Below is a sample session with a re-
mote target:

tellus> xterm -e tip -38400 /dev/ttya &
[234]
tellus > sparc-rtems-gdb hello
(gdb) set remotebaud 38400
(gdb) tar erc32 /dev/ttyb
Remote debugging using /dev/ttyb
0x2000000 in trap_table ()
(gdb) lo
Loading section .text, size 0x65e8 vma 0x2000000
Loading section .data, size 0x4d0 vma 0x20065e8
(gdb) bre main
Breakpoint 1 at 0x20014e4: file hello.c, line 3.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello
main () at hello.c:4

Execution and debugging 11

3 printf(“Hello world!\n”);
(gdb) cont
Continuing.

Program exited with code 03.
(gdb)

Note that the program has to be loaded each time before it is started with ‘run’. This is to initialise
the data segment to the proper start values. It is possible to switch between several targets (real or
simulated) in the same GDB session. Use the GDB command detach to disconnect from the present
target before attaching a new one.

4.4 Using DDD

DDD is a graphical front-end to gdb, and can be used regardless of target. To start DDD with the
debugger use:

ddd --debugger sparc-rtems-gdb --attach-window

A small script, dddx , is provided to start DDD in this configuration. You might need the full path in
front of DDD if you already have a version of ddd installed. To get the source code displayed in the
ddd window, click on locate(). The required gdb commands to connect to a target can be entered in
the command window. See the GDB and DDD manuals for how to set the default settings. If you have
problems with getting DDD to run, run it with --check-configuration to probe for necessary libraries
etc. DDD has many advanced features, see the manual in erc32/doc (ddd.pdf) or the on-line manual
under the ‘Help’ menu.

4.5 Remote target monitor

The directory src/rdbmon contains the remote monitor which needs to be running on the target
board to allow remote target debugging with gdb. The monitor supports ‘break-in’ into a running pro-
gram by pressing Ctrl-C in GDB or interrupt in DDD. The two timers are stopped during monitor
operation to preserve the notion of time for the application. Note that the remote debugger monitor
only works with programs compiled with ERC32CCS, and thus NOT with programs compiled with
Aonix Ada, VxWorks or similar.

Type make to build the monitor. Depending on desired baudrate type either ‘make m38k4’, ‘make
m19k2’ or ‘make m9k6’. Program the resulting *.srec file to you boot-prom. The remote debugger will
be attached via UART B, console is on UART A. The maximum baudrate depends on the system clock
of the target, 38K4 has been successfully used with a zero-waitstate ERC32 system running at 10
MHz. The monitor installs it self into the top 32K of ram. It therefore needs to know how large the
ram is. The default ram size for the monitor is 2 Mbyte, adjust the Makefile if your system has dif-
ferent size.

12 ERC32 GNU Cross-Compiler system

5 Internals (sequential C-programs)

Below is some information you might need if you wish to modify the way sequential C-programs are
built.

5.1 Memory allocation

The resulting executables are in a.out format and has three segments; text, data and bss. The text
segment is at address 0x2000000, followed immediately by the data and bss segments. The stack
starts at top-of-ram and extends downwards.

The link script ram.M in erc32/share/sparc-erc32-aout/lib contains the setting for the available mem-
ory. The default setting is 2Mbyte. The applications are not compiled for a specific ram size, the ini-
tialisation sequence in the boot-prom (or remote target monitor) will set the top of stack to the
highest available memory. The area between the data segment and the stack is used for the heap.

5.2 Libraries

A posix compatible C-library and math library is provided with ERC32CCS. However, no file or other
I/O related functions will work, with the exception of I/O to stdin/stdout. Stdin/stdout are mapped on
UART A, accessible via the usual stdio functions. UART B can be accessed via file handle 3 (input)
or 4 (output). The following function call will write size character from buf to UART B:

write(4,buf,size);

At startup of a program, the MEC real-time counter is programmed to increment one per microsec-
ond. The function clock() will return the value of the counter. The sources to the board-specific part
of the C-library is provided in erc32/src/libio . A user can modify the I/O functions according to
his needs and install them into the C-library location (erc32/sparc-rtems/lib).

Figure 1: ERC32CCS applications memory map

Standalone app

Stack

Heap

Data

Text

0x2000000

Top-of-Ram
Remote debugger app

Stack

Heap

Data

Text

RDB interface

