
ERC32 Tool Set Evaluation

CRI Doc. no.: CRI/ERC32/TN/001

Date: 27.06.97

Issue: 1

Revision: -

Distribution: ESTEC, CRI

Prepared by: Christian Maegaard

Approved by: Lars Behrendt - QA

Authorised by: Carsten Jørgensen

ERC32 Tool Set Evaluation

June 1997

c
COMPUTER RESOURCES INTERNATIONAL A/S, 1997.

The copyright of this document is vested in Computer Resources International A/S.

This document may only be reproduced in whole or in part, stored in a retrieval
system, transmitted in any form, or by any means electronic, mechanical,
photocopying, or otherwise, with the prior permission of Computer Resources
International.

CRI/ERC32/TN/001/1

iii

Document Change Record

Issue Date Change

1 27.06.97 Initial issue of document

Document Status Sheet

Page Issue

i–vi 1
1–22 1

CRI/ERC32/TN/001/1

iv

Table of Contents
1 Introduction 1

1.1 Scope . 1
1.2 Abbreviations and Acronyms . 2
1.3 Terms and Definitions . 2
1.4 Document Outline 2

2 Document References 3
2.1 Applicable Documents . 3
2.2 Reference Documents . 3

3 Evaluation Overview 4

4 AdaWorld Compiler System for ERC32 5
4.1 Description . 5
4.2 Porting Experiences . 5
4.3 DelayUntil . 6
4.4 Passive Tasks . 7

4.4.1 Immediate Priority Ceiling Inheritance 8

5 WCETE for ACS 10
5.1 Description . 10
5.2 Evaluation . 10

6 Schedulability Analyzer 13
6.1 Description . 13
6.2 Evaluation . 13

6.2.1 Describing the System Model 14
6.2.2 Performing the Analysis 15

7 Scheduler Simulator 17
7.1 Description . 17
7.2 Evaluation . 17

8 ERC32 Target Simulator 18
8.1 Description . 18
8.2 Evaluation . 19

8.2.1 Testing with the ERC32 Target Simulator. 19
8.2.2 Performance .. 19
8.2.3 Timing Verification 20

CRI/ERC32/TN/001/1

v

8.2.4 Debugging . .. 21

9 Evaluation Summary 22

A Protected Object Test A.1

B Schedulability Analysis Results B.1
B.1 Input to CRI Schedule Program (null RTS) B.2
B.2 Output from CRI Schedule Program (null RTS) B.3
B.3 Input to SpaceBel Schedulability Analyzer (null RTS) B.5
B.4 Output from SpaceBel Schedulability Analyzer (null RTS) B.9
B.5 Input to CRI Schedule Program (AdaWorld RTS). B.10
B.6 Output from CRI Schedule Program (AdaWorld RTS) B.12
B.7 Input to SpaceBel Schedulability Analyzer (AdaWorld RTS) B.14
B.8 Output from SpaceBel Schedulability Analyzer (AdaWorld RTS) . . . B.14

C Scheduler Simulator Results C.1

CRI/ERC32/TN/001/1

vi

1 Introduction
1.1 Scope

This report documents the evaluation of the ERC32 tool set performed by CRI for
ESTEC as described in [Proposal].

The evaluation covers:

1. ERC32 Ada World Compilation System
Version: V5.5.4

2. WCET Estimator
Version: AdaWorld V5.5.4

3. Schedulability Analyzer
Version: HRT tools V2.2

4. Scheduler Simulator
Version: HRT tools V2.2

5. ERC32 Target Simulator
Version: V2.2

The evaluation uses the ERA on-board software as reference - specifically the
delivered ASW SL V0 software is used.

A debugger and a target H/W was not available for the evaluation activities. These
are very crucial parts of an SDE. It is therefore outside the scope of this evaluation to
assess if afull SDE for ERC32 based on these tools can be used professionally.

The evaluation is performed as a product evaluation and not as a project evaluation.
This means that it only evaluates whether tools would be useful in developing
real-time on-board software and not if the projects developing the tools have reached
a reasonable level given their development constraints.

CRI/ERC32/TN/001/1

1

1.2 Abbreviations and Acronyms

ADS Arbitrary Deadline Scheduling
ASW Application Software
BSP Board Support Package
DMS Deadline Monotonic Scheduling
ERA European Robotic Arm
ESF Execution Skeleton File
HRT Hard Real-Time
HRTAF Hard Real-Time Attributes File
ICPI Immediate Priority Ceiling Inheritance
LRM Language Reference Manual
RMS Rate Monotonic Scheduling
RTCF Run Time Characteristics File
SDE Software Development Environment
SL Service Layer
UCF User Configuration File
WCET Worst Case Execution Time
WCETE Worst Case Execution Time Estimator
WCCT Worst Case Computation Time
WCRT Worst Case Response Time

1.3 Terms and Definitions

There are no special terms and definitions used in this document.

1.4 Document Outline

Chapter 2 contains a list of reference documents.

Chapter 3 contains an overview of the activities performed during the evaluation.

Chapters 4 to 8 provide a detailed description of the experience obtained when using
each of the tools.

Chapter 9 provides an overall summary of the evaluation.

Appendix A provides some example sources used in the AdaWorld evaluation.

Appendix B provides some examples of runs with the SpaceBel Schedulability
Analyser and the equivalent CRI tool.

Appendix C provides some examples of runs with the SpaceBel Scheduler Simulator.

CRI/ERC32/TN/001/1

2

2 Document References
2.1 Applicable Documents

The document which is applicable for this document is:

[Proposal] Evaluation of ERC32 tool set, CRI/OBSD/97/ERA/FAX/048

2.2 Reference Documents

The documents, except for the applicable document, which are referenced in this
document are:

[TS] Target Simulator User’s Manual, 32B-SBI-SUM-0189-003, Issue
2.1

[HRT] Schedulability Analyser and Scheduler Simulator Software User
Manual, 32B-SBI-SUM-0189-001/2, Issue 1.3

[VHDL] ERC32 VHDL models user’s manual, Version 1.0

[WCETE] Worst Case Execution Time Processing Preliminary User’s Guide,
RAT-ALS-WP20-PUG-001, Issue 2.0

[RMA] A Practitioners Handbook to Real-Time Analysis, Mark H. Klein
et al, Kluwer Academic Publishers

CRI/ERC32/TN/001/1

3

3 Evaluation Overview
As defined in [Proposal] the evaluation covered by this report consists of the
following activities

1. Porting relevant parts of the SL software and tests to the AdaWorld compiler
and using the ERC32 Target Simulator to execute the tests.

2. Applying the WCET extractor to the relevant SL software to obtain WCETs
for protected operations and cyclic threads.

3. Compare the WCET extractor to the method used previously by CRI.

4. Apply the Schedulability Analyser and the CRI developed scheduling analysis
program to the HRT attributes of the ERA ASW, and compare the results.

5. Apply the scheduler simulator to obtain a graphical representation of the
obtained scheduling and compare it with the results found by the analysis
above.

The evaluation is structured as one chapter for each tool being evaluated and a
summary of the complete evaluation in the end.

CRI/ERC32/TN/001/1

4

4 AdaWorld Compiler System for
ERC32

4.1 Description

The AdaWorld compilation system is a full cross development environment. It
consists of

1. Compiler

2. Binder/Linker

3. Debugger

4. Make facility

5. Cross reference tool

6. Math library

7. Real-time extensions

8. Additional tools of minor importance

It is out of the scope of this evaluation to have a full walk-through of the complete
product. Here it should suffice to say that the product seems very complete, and the
only tool missing would be a statistical profiler (like the one included in VADS).

Instead the activities required to port the ERA ASW SL V0 software, and a more
detailed evaluation of the real-time extensions is described.

The real-time extensions comprise absolute delays (delayuntil) and protected
objects (passive tasks).

4.2 Porting Experiences

As it was to be expected it took some time to get acquainted with all the different
tools of the compiler system, in order to build executables of the ERA ASW SL V0
acceptance tests.

CRI/ERC32/TN/001/1

5

Specifically the library manager is much more complex than really needed. It
therefore took some time to set up an appropriate library structure. The problem is
that both library to library links as well as unit to unit links are possible. But one
library can only link to one other library (parent) so you often have to use both
mechanisms. The solution used in e.g. VADS where each library can depend on
several others (a network) seems more elegant and easy to use.

After solving the library problems, the main remaining problems related to the
passive task implementation that was a little bit different from the VADS
implementation (see also below). One passive task had to be active in order to allow
timed entry call, and all other passive task specifications had to be moved from
package specifications to package bodies.

The last problem is that the test driver typically was not assigned a priority so it
would get assigned a default one. This lead to a ceiling priority violation and
programerror in most tests.

After correcting these problems, it was possible to execute 5 out of 7 tests correctly
except for file IO, which was not supported by the board support package used. The
remaining 2 resulted in programerror apparently occurring during a memory
allocation in the Ada run-time. This was not further investigated since no debugger
was available.

4.3 Delay Until

For cyclic activities with a fixed period it is required to be able to make absolute
delays.

In Ada83 this is typically done by a scheme like

Next := Calendar.Clock + Period;
loop

delayNext - Calendar.Clock;
SomeProcessing;
Next := Next + Period;

end loop;

This way drifting is avoided (the reason for introducing DelayUntil according to the
AdaWorld documentation). But one problem remains if interrupts are not disabled
during the complete execution of the delay statement. In that case the cyclic task
could be suspended right after calling Calendar.Clock but before executing the delay,
then the relative delay would be wrong when the delay was eventually executed.
This race condition is what is avoided by the Ada95 constructdelay until.

Instead of extending the language, a new library package RealTime is provided with
AdaWorld. This package provides a new definition of time (corresponding to
Calendar.Time) and TimeSpan corresponding to duration and conversion routines
for the new types. Further it provides a DelayUntil procedure that accepts

CRI/ERC32/TN/001/1

6

RealTime.Time as well as Calendar.Time;

The only problem when comparing to Ada95 is that DelayUntil cannot be used as
an alternative in a select statement.

Some Ada83 implementations actually disable interrupts during execution of delay
statements and thus provide a functionality similar to Ada95.

Often the use ofdelay until in select alternatives can be avoided, and the chosen
implementation is therefore fine for most purposes.

4.4 Passive Tasks

The passive tasks have been introduced to cover 2 functionalities:

� Data protection (critical region)

� Sporadic release of one task by another (similar to binary semaphore)

Both of these could be covered by the standard Ada rendezvous mechanism. This
construct is however very time consuming and therefore to be avoided in real-time
applications.

To solve the problem there were in principle 3 options:

� Extend the language with the Ada95 constructprotected object.

� Stay within the Ada83 syntax and use a specific pragma (PASSIVE) to instruct
the compiler not to generate a real thread for a task but instead a passive set of
procedures guarded by semaphores.

� Stay within the Ada83 syntax and provide direct access to a semaphore type
and semaphore operations, through an Ada package (equivalent to the package
SynchronousTaskControl defined in the real-time annex D.10 of Ada95
LRM).

In AdaWorld the pragma is chosen and the same pragma as used in VADS is used.
This is consistent, since an extension with the Ada95 protected objects would mean
a compiler that is neither Ada83 nor Ada95. However the possibility of a direct
access to the semaphores would have been easy to provide and given added
flexibility to the user.

Since the Ada83 tasking model with rendezvous is much more powerful than
providing the 2 functionalities above, a set of restrictions apply when pragma passive
is specified for a task. These restrictions are documented in Appendix F of the LRM.

When compiling and running the ERA ASW sources only 2 of these restrictions
were a problem (the same restrictions did not apply for VADS, nor Ada95 protected
objects):

CRI/ERC32/TN/001/1

7

1. Task specification of a passive task must only occur in a package body.

2. Timed entry calls are not allowed.

The first restriction is not mentioned in the appendix F and was quite difficult to
identify since the compiler only gave the message “****MAN Compilation stopped
in EXPANDER at line 584 due to a compiler limitation.” and then a message that
this was an internal exception in the compiler (apparently occurring in a module
called EXPANDER). In the ERA ASW the protected object specifications have
generally been placed in the package specifications to allow renaming of the entries.
The cure is of course straight forward - move all passive task specifications to the
package bodies and replace the rename by an in-line procedure call. The only
problem with this is that it creates some extra body dependencies in the compilation
order.

The second restriction is problematic when handling of non-nominal cases are
required. For example in the ERA ASW it has to be detected if no telecommand has
been received for 200ms. Generally the TC handler is activated sporadically by the
TC buffer when something has been entered. Therefore it calls the TC buffer with a
timed entry call, and starts an action to bring the arm into a safe state, if a timeout
occurs. Several similar applications of this construct are used in the ERA ASW.
There is no easy workaround, but probably if the restriction was known in advance a
different design could have been made - e.g. based on cyclic checking of task
activities.

4.4.1 Immediate Priority Ceiling Inheritance

In order to have an upper bound on the blocking each task in a set of tasks can
experience due to access to protected objects, theImmediate Priority Ceiling
Inheritance(IPCI) protocol is used (equivalent to the locking policyCeiling Locking
of Ada95).

The mechanism is that the passive task can be assigned a priority that all its
operations will be executed with, independently of the priority of the caller. When
this priority is always selected to be at least the maximum priority of any of the
callers (restriction) and all tasks have unique priorities (restriction if using the
deadline monotonic scheduling model) this will ensure that each task will only be
blocked once after each activation.

Unfortunately this mechanism in connection with barriers is not well described in
appendix F. To test this, a test program is provided in appendix A.

The program contains 2 tasks, one having a low priority and one having a high
priority. The low priority task calls a wait operation (entry with barrier) in a
protected object. Then the high priority task calls a signal operation (opening the
barrier) 2 times.

CRI/ERC32/TN/001/1

8

The low priority task registers itself when the wait is being performed and after the
wait. The high priority task registers itself when it calls signal and between the 2
calls. The registration means adding a task identification (the priority is used since it
is unique) to the sequence of registrations. The output is:

Registration order: 2, 1, 2, 2, 1.

It can be seen that immediately after exiting the signal operation of the high priority
task, the low priority task takes over. This means that the priority is raised even
while the task is waiting on the barrier or at least as soon as the barrier becomes true.
This also means, as it can be seen, an extra double context switch. The low priority
task is switched in only to complete the wait operation and then the high priority
task continues its operation. When the high priority task is completed, the low
priority task is switched in again to complete its operation. It is obvious that the
desired output would have been:

Registration order: 2, 2, 2, 1, 1.

This means that the low priority task is only switched in when the high priority task
is suspended. This behavior would appear if the low priority task were only made
ready by the end of the signal operation but not considered inside the protected
object. In this case it could have kept its priority. With the current implementation
there is not much gain in using sporadic release from a passive task over a normal
Ada rendezvous, where the overhead will also be 2 context switches. Another maybe
even more important point is that the priority inversion is not very well bounded (see
section 6.2.2).

A possible workaround could be to delete the pragma priority from the passive task.
It would then be expected that each operation would be executed with the priority of
the calling task. The expected output would therefore be (assuming that the signal
operation still lets any waiting task get immediate access to the protected object):

Registration order: 2, 2, 1, 2, 1.

This behavior would be acceptable for all situations where the processing performed
after a wait was released must always complete before the next signal. This is the
most usual way to use sporadic activation. Unfortunately the output remains the
same as when a fixed priority is specified.

This shows an obvious need for a direct access to a simple semaphore type as found
in other Ada environments (e.g. TLD, VADS, and DDC-I) and incorporated in
Ada95 real-time annex.

CRI/ERC32/TN/001/1

9

5 WCETE for ACS
5.1 Description

To know whether a given application can satisfy its timing constraints the first step is
independently of the design and/or scheduling model to determine the time spent by
execution of the different fragments of the code.

The Worst Case Execution Time Estimator [WCETE] is intended to provide an
upper bound on the execution time for each of the critical threads of an application.

This output is an essential input to the overall schedulability analysis - see section 6.

Though the WCET for the different code fragments are interesting for any real-time
system, the WCETE is directed specifically towards systems based on one of the
scheduling theories, DMS or ADS.

The WCETE is built as a part of the AW compiler (ref. section 4). This means that
when a specific compile option is given, the compiler will generate an execution
skeleton that can be read by the Schedulability Analyser (ref section 6).

The tool uses an instruction timing file that describes the number of cycles used by
each instruction in the instruction set. In the current version this file cannot be
altered. This means that instructions with a variable execution time will have a fixed
execution time in the estimator. It would be reasonable to be able to select between
worst case and typical numbers.

For the estimator to work, a number of restrictions must be obeyed by the source to
be analyzed. Some of the restrictions are introduced to make the job easier for the
WCETE (referred as WCET Ada Application Restrictions and WCET Ada HRT
Restrictions) - these restrictions match quite well with the restrictions of the
Schedulability Analyzer. The remaining restrictions are to exclude constructs that
result in unbounded execution time.

5.2 Evaluation
In principle there are two ways to obtain the WCET of the different operations.

� Theoretical calculation based on WCET for the instructions used.

� Measurement of the execution time, using the input to select different branches.

CRI/ERC32/TN/001/1

10

The WCETE uses the first approach. The second approach is what is normally used
since it is completely unrealistic to perform the theoretical calculation without tool
support.

The plan for evaluating the WCETE was to take some fragments of the ERA ASW
on-board software and apply both methods. Comparing the results would then give
some idea on the usefulness of the WCETE.

However the restrictions in the current version (prototype) are so severe that any
practical example is not allowed. The example that was selected was a routine to
determine the pose of ERA from a pixel image produced by one of the ERA
cameras. This was selected because it was relatively simple to separate from the
remaining ERA software. However the restrictions of not using array/record
assignment, bit level representation clauses, exponential operators, and integer
arithmetic were all violated. There was no way of working around these restrictions.
The work-arounds proposed in [WCETE] could have solved a few of the problems
but only at the cost of extremely bad performance, others could not be solved.
Instead of making up a toy example it was decided to discuss only how the tool could
be used in a development situation if all the prototype restrictions were removed.

The remaining restrictions which would be applicable also for operational versions
of the tool also seem a bit too severe. It is of course reasonable to exclude any
operations resulting in unbounded execution time. However the list of these
constructs includes operations on composite types as assignment, comparison, and
relational, and logical operators. If it is really true that these operations are
unbounded it is a serious problem in using the Ada World compilation system for
real time systems. In any case this restriction must be removed for the tool to have
any practical use. The “Application” and “HRT” restrictions also appear to be over
restrictive. However, if all restrictions are known from the beginning of a project and
the tool is used right from the start, it may be possible to cope with these restrictions.
One should however keep in mind that when producing a HRT system, performance
is often very important. Too many restrictions may lead to less performant
implementations.

It is not described in [WCETE] how the estimation is performed. It must be assumed
that the method is to make a recursive decent through the parse tree until the
instruction level is reached and then for each branch point select the highest WCET
for any of the possible branches. This will ensure an upper bound. This may
however be unrealistically high. For example

if A > B then
B:=A;

end if;
if A < B then

A:=B;
end if;
In this situation the theoretical worst case is of course the worst case of one if
statement plus the best case (condition evaluation only) of one if statement and not

CRI/ERC32/TN/001/1

11

the sum of the two worst cases. It would therefore be nice to know in more detail
how the tool works.

It is in general doubtful if a WCET produced by theoretical calculations based on
instruction execution time can be used to gain a realistic upper bound - i.e. a bound
that is not too far from the WCET that can result by applying actual data. The true
number would in principle be the maximum number obtained by applying all
possible combinations of input data and measuring the execution time for each run.
In practice you would probably have to use a combination of the 2 methods.

The implemented WCETE has a number of advantages. It is directly integrated with
the Ada World compiler and provides output that is readable by the Schedulability
Analyzer. Therefore even if the produced values cannot be used at least it can be
used to generate a template for the Execution Skeleton. Even here it is however a
problem that it will only do that if all the severe restrictions were met.

CRI/ERC32/TN/001/1

12

6 Schedulability Analyzer

6.1 Description

When developing a hard real-time system, based on several tasks, verification of the
timing constraints is not trivial. Specific theories -rate monotonic scheduling
(RMS),deadline monotonic scheduling(DMS) - have been developed to facilitate a
static verification that all tasks meet their deadlines, i.e. the system isschedulable.

The analysis required to determine if a system is schedulable is to look at the
properties of each task (WCET, deadline, potential blocking time, period/minimal
inter-arrival time) and derive the the worst case response time (WCRT).

The theory for performing this analysis is well known but complex, and therefore it
is helpful to have a tool with this capability.

The schedulability analyzer implements these algorithms, and also helps in
determining the blocking time and run-time system overhead to take into account.

The input to the tool is auser configuration file(UCF), anexecution skeleton file
(ESF), and arun time characteristics file(RTCF). The UCF describes the overall
properties (not expected to change during development) of each task: name,
deadline, and period/minimal inter-arrival time. The ESF describes the dynamic
properties of each task and each protected object in the design by giving WCET and
list of protected calls for each task and WCET for each protected object. The RTCF
describes the time used by the RTS for its different activities such as context
switching.

The potential blocking for each task is determined by looking at each protected
object it calls and the WCETs for each operation in this object.

The WCET for the task is then increased by the RTS overhead determined from the
RTCF.

Now the basic input for the schedulability analysis is ready and all WCRTs are
calculated and a schedulability report is generated including sensitivity margins.

6.2 Evaluation

The evaluation of the tool is performed by entering the data for the ERA ASW.
Previously on the ERA project we have used a proprietary CRI tool, and we will

CRI/ERC32/TN/001/1

13

compare the two in this evaluation.

6.2.1 Describing the System Model

Before activating the tool we need to describe the system model. The first step is to
describe the static properties of the model. The UCF does that for the Schedulability
analyzer. The CRI schedule tool takes only one combined input file -HRT Attributes
File (HRTAF). An example of equivalent files for the 2 tools can be found in
appendix B. As it can bee seen most of the information in the UCF is identical to the
information in the HRTAF. The main difference is that the HRTAF does not
distinguish between minimal inter arrival time and period, since it is treated
identically by the analysis theory.

Then we need to describe the dynamic properties of the now defined thread set. This
is done by specifying WCET for all threads and potential blocking. For the
SpaceBel tool this is done by specifying

1. WCET for all threads (excluding access to protected objects and RTS
overhead)

2. Call sequence of protected operations for all threads

3. WCET for all protected operations and barrier evaluations

For the CRI tool this is specified by

1. WCET for all threads (excluding access to protected objects and RTS
overhead)

2. Potential blocking time for each thread (must be determined based on Call
sequence of protected operations for all threads and WCET for all protected
operations).

3. the mode in which the numbers apply.

As it is seen, the main difference here is that the SpaceBel tool derives the potential
blocking time, while the user must perform this analysis himself for the CRI tool.
Further the user has to deduct from the thread WCET the different overheads when
using the SpaceBel tool. This is no problem when using the WCETE of course, but
is quite tedious if measurements were used.

Another difference is that the CRI tool allows different numbers to be specified for
different modes of the system. For example when ERA makes a proximity move
(using image processing) the task cpreparevis tac is part of the thread set otherwise
not. But the WCET of c2hz checks is highest during free motion due to an
otherwise inactive singularity check. It is therefore not possible to say which of the 2

CRI/ERC32/TN/001/1

14

modes will be the worst case without performing the analysis. The tool then takes as
input the mode for which the analysis shall be performed. A similar facility in the
SpaceBel tool would be beneficial.

In the example we have entered in the HRTAF the blocking time that the SpaceBel
tool reports after Analysis.

6.2.2 Performing the Analysis

To validate the analysis performed, the 2 tools where activated with these inputs.
Their inputs and outputs can be found in appendix B. The CRI tool is based on the
theory described in [RMA] for deadline monotonic analysis with arbitrary deadlines
and blocking. The same seems to apply for the SpaceBel tool (the theory is called
ADS in [HRT]) and the same WCRT can also be observed.

From the SpaceBel tool we further get a sensitivity analysis, telling how much room
there is for extending the WCET of each task. This feature is quite useful.

Let’s now look into the figures produced by the tool - ref. appendix B.4. In this
example we have used a null RTCF and the analysis is therefore simple to follow.

For example we can see that the WCCT for task 1 is the WCET for the thread plus
the WCET for the protected entries it calls. It can also be observed that when calling
a protected object with a barrier expression, the barrier evaluation time is included
twice for calls to the guarded entry, and not included in the call to the unguarded
entry. However the implementation of the pragma passive makes one evaluation at
the entry of the guarded action and one at the exit of the unguarded action
(documented in LRM appendix F). Therefore the WCCTs are not correct.

Then we can look at the blocking time. Blocking of a thread A occurs if a thread B
with lower priority is executing after the activation but before the completion of A.
This can only happen when protected objects are being accessed. For example task 1
is accessing three “Synchro” protected objects and one “Resource” protected object.
The worst case scenario is then that one task (13) has just entered the someentry
protected action, and that 3 tasks (3,5,11) are all waiting on guarded entries. That
would lead to a blocking corresponding to the execution of each of these 4 entries -
i.e. 1.0 ms + 1.0 ms + 0.2 ms + 0.9 ms = 3.1 ms. This follows from the AdaWorld
implementation of the ICPI described previously (section 4.4.1). So it seems that
also the blocking times are not correct since the SpaceBel tool produced 1.5 ms.

In the real world the RTS of course has an overhead. Therefore we now make a new
run with the RTCF corresponding to a 10 MHz ERC32 using the AdaWorld RTS.

The tool now calculates the WCCT for each thread as the WCET + overheads. This
value was copied to the HRTAF to see if the new analysis would still show equal
WCRTs. It is observed that now the 2 tools show different WCRTs. Whether this is a
problem or not is difficult to assess since it is not obvious how the RTS overheads
have been included.

CRI/ERC32/TN/001/1

15

In assessing the validity of the results it is a problem that the translation from the
system model in the UCF, ESF and RTCF to a model that can be treated by well
known schedulability analysis theories (RMS, DMS, ADS) is not provided. The tool
is presented as a magic black box that tells you if the system is schedulable or not.

The fact that RTS overheads are handled by the tool in general makes life easier for
the user. In some situations it is however better to have the freedom to specify them
manually. For example In the ERA ASW the task cmotion execution is actually
also performing the activities of cpreparevis tac (which is not really a task).

This means that the WCET of cmotion execution is toggling between 3.1 and 18.1.
This could of course be modeled as one task with a period of 50 ms and an execution
time of 18.1, but it would lead to a utilization that is too high and maybe even not
schedulable threads. Instead it is modeled as 2 threads and RTS overhead is only
included for the 50 ms thread. Such a model is not possible with the SpaceBel tool.

CRI/ERC32/TN/001/1

16

7 Scheduler Simulator
7.1 Description

The Scheduler Simulator is a tool that shows to the user the dynamic behavior of a
thread set defined as for the Schedulability Analyser.

It simply schedules all tasks to start at time 0 and then continues using their WCCT
and period/minimal inter arrival time. It reports the sequence of events where the
RTS is involved.

It is possible to view the report in text or graphically as a Gantt chart. It is possible
also to filter the threads and events that should be reported.

7.2 Evaluation

The Scheduler Simulator is probably mostly relevant as an educational tool to help
the understanding of scheduling a thread set. To a person who is familiar with these
problems it will not provide any new insight not available from the Schedulability
Analyser.

It is always scheduling starting from the so calledcritical instantwhere all tasks are
activated at time 0. However to show the worst case scenario for task 1 as discussed
above, 4 of the lower priority tasks should already have reached protected entries.

To benefit from the simulator it should be possible to select a thread from the thread
set and have the worst case scenario for this thread simulated. The critical instant in
our example is actually only the worst case for the soft thread with the lowest
priority and therefore of less interest.

In appendix C the output generated from the tool using the same input files as for the
Schedulability Analyser (AdaWorld RTCF) can be found. It appears that the system
that was reported schedulable by the Schedulability Analyser has missed deadlines
according to the Scheduler Simulator!

In general the WCRTs does not seem to match the event log.

CRI/ERC32/TN/001/1

17

8 ERC32 Target Simulator

8.1 Description

A target simulator is in general used to replace the actual target hardware in the
development process. The reasons for doing that can be several:

� Non-availability of target hardware.

� Added execution control.

� Better interface to the host development environment.

The use of the simulator is approximately the same as for the hardware:

� Testing

� Timing verification

� Debugging

The ERC32 target simulator [TS] supports all these areas. It is constructed as a
simulation process that connects to other UNIX processes through pipes. This
flexible design allows one to connect either the user interface that is part of the
simulator product or the AdaProbe debugger part of the Ada World Compilation
system. Further it is possible to connect it to a user interface developed by the user,
though this is not well described.

The hardware can be described in a configuration file and the operation can be
commanded through the selected user interface.

The commands include what will be expected by any debugger like: execution,
breakpoints, single stepping, and memory/register read and write. Further it has
more advanced controls named markers and watchpoints. Using these it is possible
to log the time when a certain address is accessed or to break the execution at that
moment. This can be valuable for timing measurements or debugging.

CRI/ERC32/TN/001/1

18

8.2 Evaluation

For the purpose of the evaluation of the target simulator, it was attempted to use it
for testing and timing measurements. Debugging was not possible since the
AdaProbe was not available for the evaluation.

8.2.1 Testing with the ERC32 Target Simulator

It was attempted to port all the SL V0 acceptance tests to the ERC32 target and run
them under the simulator. The port and the problems involved are described in
chapter 4.

The tests were first run by using the user interface. It was quite easy to operate the
simulator.

A normal test setup is however based on the following

� An automated test execution

� An automated verification of the test output

The first problem encountered was to make an automated execution by a UNIX
script. This very usual application was not described in [TS]. It was however
possible to make a working setup, though it was quite complicated due to the many
pipes that had to be kept open. In this situation the flexible design was not very user
friendly and it would have been helpful if a script for executing an ERC32 program
from the UNIX prompt was provided.

The next problem was to get the output. Normally these tests would write their
output to a named file. This concept is however not handled by the combination of
simulator and the IO packages (BSP) in the executable. The problem has no easy
solution, one possibility could be to write the test results in a specific memory area
and then use the debugger dump command. The problem is that the dump is done in
hexadecimal and therefore not readable. A post processing is therefore needed. This
solution can however only be used if the test harness is developed by the user. If a
commercial test harness - e.g. AdaTEST - is used, IO must be performed through the
normal TextIO package. This means that all communication must be sent via the
serial channel mapped to standard input and output. That excludes some usage of
AdaTEST but the tool can be generally used even in this configuration. The serial
communication has one problem - it is extremely slow on the target simulator.

8.2.2 Performance

When running a test it is of course of primary importance that the execution time is
not too high. Unfortunately this is a very weak point for the Target Simulator.

CRI/ERC32/TN/001/1

19

A comparison to the ESA developed SIS 2.7.1 simulator showed a performance ratio
of about 1:13. The simulated time/real time ratio was measured to approximately
1:100 when executed on a 170 MHz UltraSPARC. On a SPARCstation 4 (110 MHz
microSPARC) which is a normal development station on the ERA ASW team, the
ratio is about 1:500.

This means that the simulator needs a very high level of optimization before it can
be used in a development environment.

On the contrary the SIS 2.7.1 simulator has a performance that makes it realistic to
use for development, unfortunately its features and interface are quite primitive.

8.2.3 Timing Verification

For assuring the system’s timing properties the basic values to determine are the
WCET for the different activities in the software.

As discussed in section 5 there are in principle 2 ways of obtaining these numbers:
Measurement and theoretic calculations. When measurements are used it is of
course important that the simulator timing is correct compared to the real hardware.

The problem with ERC32 is that the FPU has different execution speed for different
input for multiplication and divisions. It is not mentioned in [TS] how this problem
is solved in the target simulator. It is mentioned that the tool is validated against the
VHDL model - it is unclear whether this assures correct timing for these
instructions. In [VHDL] it is stated that “In the real device, FPU instructions execute
in a varying number of cycles depending on the operands. In the model, the FPU
instructions execute in the number of cycles as defined in the typical case in the FPU
data sheet.” When comparing to the SIS 2.7.1 (which uses always typical values)
there is a difference that could indicate that the target simulator uses correct values.
It is essential that the instruction timing is not too optimistic (it is for SIS 2.7.1).

For performing the timing verification you can use either coded traces where calls
are made to RealTime.Clock or use the time markers provided by the target
simulator. The problem with the time markers is to find the correct addresses. The
simulator does not know the symbolic names used in the Ada source.

In this evaluation we therefore used the approach where calls were inserted in the
code to obtain the system time. In general the simulator proved useful for the
purpose of timing verification.

CRI/ERC32/TN/001/1

20

8.2.4 Debugging

When debugging a real-time system using a target debugger, there are in principle 2
different implementations:

� Intrusive debugging

� Non-intrusive debugging

Intrusive debugging is characterized by the need to have special debugger software
(e.g. ALSYMONITOR) loaded on the target together with the software under test.
This monitor software then communicates with the debugger over a serial (or other)
communication channel. Breakpoints are created by modifying the code to have
special traps inserted.

Non-intrusive debugging is characterized by having a controller separated from the
target, that can detect memory fetches execution address etc. Further it is able to halt
the processor by stopping the clock. This controller then communicates with the
debugger over a dedicated channel.

The clear advantage of the non-intrusive debugging is that the system behavior is not
changed because it is being debugged. Problems with the intrusive debugger could
be

1. Time spent by the monitor is not included in the schedulability analysis.

2. The clock ticks while the software is stopped e.g. at a breakpoint.

3. The available memory is different because parts are used for the monitor.

4. The monitor changes the code when inserting breakpoints - i.e. we are testing
instrumented code.

Non-intrusive debugging on real hardware is always difficult because it requires
special hardware solutions to allow the required level of external control of the target
processor. Also the use of a pipeline makes breakpoint control difficult. However,
the advantage of a simulator is that it is quite easy to get full control of the “target”.
The target simulator provides a non-intrusive interface to AdaProbe, which is
expected to be very helpful in a development process.

This is a clear advantage over the DEM32 boards and the SIS simulator that allows
only the intrusive version using ALSYMONITOR. How well integrated AdaProbe
and the target simulator (i.e. what is the level of control that can be obtained from
AdaProbe) is, is not evaluated since AdaProbe was not available for the evaluation.

CRI/ERC32/TN/001/1

21

9 Evaluation Summary
As a general statement most of the evaluated tools show good potentials while still
having some flaws that must be removed before they are fully ready for professional
use.

The AdaWorld compiler is a very complete Ada compiler and the number of
problems faced during the port was not alarming. The mode of operation is a bit
cumbersome compared to other products (command interface and library structure).
The real time extensions need some consideration as it was shown. Specifically a
need for direct access to simple synchronization primitives like semaphores is
required. This should not be a complex extension to implement.

The WCETE is very immature, it is difficult to say what the potential is. It will
probably be difficult to find practical use for it.

The Schedulability Analyser is a very useful tool. It suffers a bit from the
requirement to be compatible with the WCETE, which makes production of the
input less obvious. A some alarming errors must be removed before it can be used in
a project. For the use in the ERA ASW development the method and tool already
used for WCET estimation and schedulability analysis is considered superior to the
use of WCETE and/or Schedulability Analyser.

The Scheduler Simulator is found useful only for educational purposes. It is thus a
less important tool in the suite. It seems to be erroneous and must be corrected
before use.

The ERC32 target simulator is a very powerful simulator with great potential
(unfortunately partly limited by AdaProbe). However, a performance improvement
is a must before it can be used for real.

CRI/ERC32/TN/001/1

22

Protected Object Test

Appendix A

packageProtectedExampleis

type Ids T is array (1..10)of Integer;
Ids: IdsT := (others =>0);
Id Count: Integer := 0;
procedure Signal

(Id : in Integer);
procedure Wait

(Id : in Integer);
procedure Register

(Id : in Integer);

endProtectedExample;

package bodyProtectedExampleis

Signalled : Boolean := False;

procedure Register
(Id : in Integer)is

begin
Id Count := IdCount+1;
Ids(Id Count) := Id;

end Register;

task ProtectedObjectis

pragma Passive;

pragma Priority(4);

entry Signal
(Id : in Integer);

entry Wait
(Id : in Integer);

end ProtectedObject;

task bodyProtectedObjectis

begin
loop

select
acceptSignal

(Id : in Integer)do
Signalled := True;
Register(Id);

end Signal;

or
when Signalled =>
acceptWait (Id : in Integer)do

Register(Id);
end Wait;

or
terminate ;

end select;
end loop ;

end ProtectedObject;

procedure Signal
(Id : in Integer)is

begin
ProtectedObject.Signal(Id);

end ;

procedure Wait
(Id : in Integer)is

CRI/ERC32/TN/001/1

A.2

begin
ProtectedObject.Wait(Id);

end ;

endProtectedExample;
with Text IO;
useText IO;
with ProtectedExample;

procedure ProtectedTestis

packageInt IO is newText IO.IntegerIO(Integer);
useInt IO;

task Low is
pragma Priority(1);
entry Quit;

end Low;

task bodyLow is

begin
ProtectedExample.Wait(1);
ProtectedExample.Register(1);
acceptQuit;

end ;

task High is
pragma Priority(2);
entry Quit;

end High;

task bodyHigh is

begin
delay 0.5;
ProtectedExample.Signal(2);
ProtectedExample.Register(2);
ProtectedExample.Signal(2);
acceptQuit;

end High;

begin
Low.Quit;
High.Quit;

Put(”Registration order: ”);
Put(ProtectedExample.Ids(1));
Put(”, ”);
Put(ProtectedExample.Ids(2));
Put(”, ”);
Put(ProtectedExample.Ids(3));
Put(”, ”);
Put(ProtectedExample.Ids(4));
Put(”, ”);
Put(ProtectedExample.Ids(5));

end ;

CRI/ERC32/TN/001/1

A.3

Schedulability Analysis Results

Appendix B

B.1 Input to CRI Schedule Program (null RTS)
Task : c_subsystem_bus_scheduler

period : 50.0
WCET : 7.7
Blocking : 1.5
deadline : 41.00

Task : c_issa_bus_scheduler
period : 100.0
WCET : 2.8
Blocking : 1.5
deadline : 42.0

Task : c_motion_execution
period : 50.0
WCET : 3.1 -- T_Prox = 1.257*1.164*T_proto + 1.2
Blocking : 1.5
deadline : 32.0

mode : proximity

Task : c_motion_execution
period : 50.0
WCET : 4.1 -- T_Compl = 1.257*1.164*T_proto + 1.2 + 1.0
Blocking : 1.5
deadline : 32.0

mode : compliant

Task : c_motion_execution
period : 50.0
WCET : 1.9 -- T_Free = 1.164*T_proto + 1.2
Blocking : 1.5
deadline : 32.0

mode : free

Task : c_prepare_vis_tac
period : 100.0
WCET : 15.0
Blocking : 1.5
Deadline : 32.0

Mode : proximity

Task : s_event_handler
period :1000.0
WCET : 2.0
Blocking : 1.0
deadline : 50.0

Task : s_tc_handler
period : 200.0
WCET : 8.9
Blocking : 1.0
deadline : 50.0

Task : c_vhf_check
period : 50.0
WCET : 2.5
Blocking : 1.0
deadline : 50.0

Task : c_usd_ecc_collection
period : 50.0
WCET : 1.5
Blocking : 1.0
deadline : 50.0

Task : c_mf_check
period : 200.0

CRI/ERC32/TN/001/1

B.2

WCET : 2.0
Blocking : 1.0
deadline : 200.0

Task : c_telemetry_generation
period : 500.0
WCET : 21.0
Blocking : 1.0
deadline : 500.0

Task : c_2hz_check
period : 500.0
WCET : 7.5 -- 4.5 + 2 * 1.164 * T_proto
Blocking : 1.0
deadline : 500.0

mode : free

Task : c_2hz_check
period : 500.0
WCET : 4.5 -- 4.5 (Wouters measurement)
Blocking : 1.0
deadline : 500.0

mode : proximity

Task : c_2hz_check
period : 500.0
WCET : 4.5 -- 4.5 (Wouters measurement)
Blocking : 1.0
deadline : 500.0

mode : compliant

Task : s_action_ack_handler
period :1000.0
WCET : 2.0
Blocking : 1.0
deadline :1000.0

Task : c_lf_checks
period :1000.0
WCET : 12.0
Blocking : 0.0
deadline :1000.0

B.2 Output from CRI Schedule Program (null
RTS)

Schedule - Deadline Monotonic Analysis, (C) CRI A/S 1995.

Object name : c_subsystem_bus_scheduler
Period : 50.0 ms.
Worst-case execution time : 7.7 ms.
Blocking delays : 1.5 ms.
Deadline : 41.0 ms.

Max response time : 9.2 ms.

Object name : c_issa_bus_scheduler
Period : 100.0 ms.
Worst-case execution time : 2.8 ms.
Blocking delays : 1.5 ms.
Deadline : 42.0 ms.

Max response time : 12.0 ms.

CRI/ERC32/TN/001/1

B.3

Object name : c_motion_execution
Period : 50.0 ms.
Worst-case execution time : 3.1 ms.
Blocking delays : 1.5 ms.
Deadline : 32.0 ms.

Max response time : 15.1 ms.

Object name : c_prepare_vis_tac
Period : 100.0 ms.
Worst-case execution time : 15.0 ms.
Blocking delays : 1.5 ms.
Deadline : 32.0 ms.

Max response time : 30.1 ms.

Object name : s_event_handler
Period : 1000.0 ms.
Worst-case execution time : 2.0 ms.
Blocking delays : 1.0 ms.
Deadline : 50.0 ms.

Max response time : 31.6 ms.

Object name : s_tc_handler
Period : 200.0 ms.
Worst-case execution time : 8.9 ms.
Blocking delays : 1.0 ms.
Deadline : 50.0 ms.

Max response time : 40.5 ms.

Object name : c_vhf_check
Period : 50.0 ms.
Worst-case execution time : 2.5 ms.
Blocking delays : 1.0 ms.
Deadline : 50.0 ms.

Max response time : 43.0 ms.

Object name : c_usd_ecc_collection
Period : 50.0 ms.
Worst-case execution time : 1.5 ms.
Blocking delays : 1.0 ms.
Deadline : 50.0 ms.

Max response time : 44.5 ms.

Object name : c_mf_check
Period : 200.0 ms.
Worst-case execution time : 2.0 ms.
Blocking delays : 1.0 ms.
Deadline : 200.0 ms.

Max response time : 46.5 ms.

Object name : c_telemetry_generation
Period : 500.0 ms.
Worst-case execution time : 21.0 ms.
Blocking delays : 1.0 ms.
Deadline : 500.0 ms.

CRI/ERC32/TN/001/1

B.4

Max response time : 82.3 ms.

Object name : c_2hz_check
Period : 500.0 ms.
Worst-case execution time : 4.5 ms.
Blocking delays : 1.0 ms.
Deadline : 500.0 ms.

Max response time : 86.8 ms.

Object name : s_action_ack_handler
Period : 1000.0 ms.
Worst-case execution time : 2.0 ms.
Blocking delays : 1.0 ms.
Deadline : 1000.0 ms.

Max response time : 88.8 ms.

Object name : c_lf_checks
Period : 1000.0 ms.
Worst-case execution time : 12.0 ms.
Blocking delays : 0.0 ms.
Deadline : 1000.0 ms.

Max response time : 99.8 ms.

Total CPU load : 59.5 %
The system is schedulable.

B.3 Input to SpaceBel Schedulability Analyzer
(null RTS)

User Configuration File:

-- This file defines the characteristics of the ASW realtime constraints

PREFERENCES -- THE SCHEDULING PREFERENCES
DMS -- DEADLINES MUST BE BEFORE NEXT RELEASE
BLOCKING PROTOCOL IPCI -- IMMEDIATE CEILING PRIORITY INHERITENCE
END

TARGET CHARACTERISTICS
NO ATAC -- THE ATAC IS NOT PRESENT
PRIORITY LOW 1 -- NON-INTERRUPT PRIORITY ASSIGNED LEAST IMPORTANT FIRST
PRIORITY HIGH 128 -- INTERRUPT PRIORITIES START HERE AND DOWNWARDS
CPU CLOCK FREQUENCY 10 MHz -- CLOCK FREQUENCY CHOSEN AT 0.1 Microsecond
WAIT STATES READ 0 WRITE 1 -- NUMBER OF READ WRITE STATES
END

THREAD DEFINITION

THREAD c_subsystem_bus_scheduler -- Cyclic THREAD
CRITICALITY HARD
PERIOD 500000

CRI/ERC32/TN/001/1

B.5

DEADLINE 250000
END

THREAD c_issa_bus_scheduler
CRITICALITY HARD
PERIOD 1000000
DEADLINE 300000

END

THREAD c_motion_execution
CRITICALITY HARD
MINIMUM 500000
DEADLINE 320000

END

THREAD c_prepare_vis_tac
CRITICALITY HARD
PERIOD 1000000
DEADLINE 320000

END

THREAD s_event_handler
CRITICALITY HARD
MINIMUM 10000000
DEADLINE 500000

END

THREAD s_tc_handler
CRITICALITY HARD
MINIMUM 2000000
DEADLINE 500000

END

THREAD c_vhf_check
CRITICALITY HARD
PERIOD 500000
DEADLINE 500000

END

THREAD c_usd_ecc_collection
CRITICALITY HARD
PERIOD 500000
DEADLINE 500000

END

THREAD c_mf_check
CRITICALITY HARD
PERIOD 2000000
DEADLINE 2000000

END

THREAD c_2hz_check
CRITICALITY HARD
PERIOD 5000000
DEADLINE 5000000

END

THREAD c_telemetry_generation
CRITICALITY HARD
MINIMUM 5000000
DEADLINE 4000000

END

THREAD s_action_ack_handler
CRITICALITY HARD
MINIMUM 10000000
DEADLINE 10000000

END

CRI/ERC32/TN/001/1

B.6

THREAD c_lf_checks
CRITICALITY SOFT
PERIOD 10000000
DEADLINE 10000000

END

END

WCET DATA

END

Execution Skeleton File:

-- This file defines the execution characteristics of the ASW.

PROGRAM ASW

THREAD c_subsystem_bus_scheduler -- Cyclic THREAD
TYPE CYCLIC
WCET 40000,0,0
CALL_PO pr_event_buffer raise_event
CALL_PO pr_synch2 release_motion
CALL_PO pr_synch release_tm
CALL_PO some_object long_entry

END

THREAD c_issa_bus_scheduler
TYPE CYCLIC
WCET 23000,0,0
CALL_PO pr_tc_handler signal_new_issa_tc

END

THREAD c_motion_execution
TYPE SPORADIC
WCET 27000,0,0
CALL_PO pr_synch2 wait_motion
CALL_PO pr_acknowledge send_action_response

END

THREAD c_prepare_vis_tac
TYPE CYCLIC
WCET 150000,0,0

END

THREAD s_event_handler
TYPE SPORADIC
WCET 10000,0,0
CALL_PO pr_event_buffer get_event

END

THREAD s_tc_handler
TYPE SPORADIC
WCET 79000,0,0
CALL_PO pr_tc_handler get_tc

END

THREAD c_vhf_check
TYPE CYCLIC
WCET 15000,0,0
CALL_PO some_object some_entry

END

THREAD c_usd_ecc_collection
TYPE CYCLIC
WCET 5000,0,0

CRI/ERC32/TN/001/1

B.7

CALL_PO some_object some_entry
END

THREAD c_mf_check
TYPE CYCLIC
WCET 10000,0,0
CALL_PO some_object some_entry

END

THREAD c_telemetry_generation
TYPE SPORADIC
WCET 200000,0,0
CALL_PO pr_synch wait_for_tm

END

THREAD c_2hz_check
TYPE CYCLIC
WCET 40000,0,0
CALL_PO pr_event_buffer raise_event

END

THREAD s_action_ack_handler
TYPE SPORADIC
WCET 17000,0,0
CALL_PO pr_acknowledge get_action_response

END

THREAD c_lf_checks
TYPE CYCLIC
WCET 110000,0,0
CALL_PO some_object some_entry

END

PROTECTED pr_synch
TYPE SYNCHRO
ENTRY release_tm

WCET 1000,0,0
BARRIER WCET 1000,0,0
ENTRY wait_for_tm

WCET 8000,0,0
END

PROTECTED pr_synch2
TYPE SYNCHRO
ENTRY release_motion

WCET 1000,0,0
BARRIER WCET 1000,0,0
ENTRY wait_motion

WCET 1000,0,0
END

PROTECTED pr_event_buffer
TYPE SYNCHRO
ENTRY raise_event

WCET 5000,0,0
BARRIER WCET 0,0,0
ENTRY get_event

WCET 10000,0,0
END

PROTECTED pr_acknowledge
TYPE SYNCHRO
ENTRY send_action_response

WCET 1000,0,0
BARRIER WCET 1000,0,0
ENTRY get_action_response

WCET 1000,0,0
END

CRI/ERC32/TN/001/1

B.8

PROTECTED pr_tc_handler
TYPE SYNCHRO
ENTRY signal_new_issa_tc

WCET 5000,0,0
BARRIER WCET 1000,0,0
ENTRY get_tc

WCET 8000,0,0
END

PROTECTED some_object
TYPE RESOURCE
ENTRY some_entry

WCET 10000,0,0
ENTRY long_entry

WCET 30000,0,0
END

END

Null runtime characteristics file:

CONTEXT SWITCH TIME 0,0,0
SCHEDULER SELECT TIME (0,0,0)
TIMER INTERRUPT OVERHEAD 0,0,0
READY AFTER DELAY 0,0,0
ENTER DELAY UNTIL OVERHEAD AT HEAD (0,0,0)
ENTER DELAY UNTIL OVERHEAD NOT AT HEAD (0,0,0)
EXIT DELAY UNTIL OVERHEAD 0,0,0
ENTER PASSIVE TASK 0,0,0
EXIT PASSIVE TASK 0,0,0
ENTER SOFTWARE SPORADIC WAIT (0,0,0)
EXIT SOFTWARE SPORADIC WAIT 0,0,0
ENTRY QUEUE SERVICING (0,0,0)
INTERRUPT HANDLING OVERHEAD 0,0,0
ENTER INTERRUPT SPORADIC WAIT (0,0,0)
EXIT INTERRUPT SPORADIC WAIT 0,0,0

MAXIMUM NON PREEMPTION 0,0,0

B.4 Output from SpaceBel Schedulability
Analyzer (null RTS)

Schedulability Analyser

Beginning of the Offline Analyser Report

Current date and time : 19/6/1997::15:36:42

Name of the input files :
UCF Files : /home/cma/ERC32/analyzer/asw.ucf
ESF Files : /home/cma/ERC32/analyzer/asw.esf
RTS Files : /home/cma/ERC32/analyzer/NULL.rts

Scheduling Policy : DMS Blocking Protocol : IPCI ATAC Mode : Not selected

List of defined threads

In the following report, all threads are defined by a numeric identifier :

Identifier Thread
1............C_SUBSYSTEM_BUS_SCHEDULER
2............C_ISSA_BUS_SCHEDULER
3............C_MOTION_EXECUTION
4............C_PREPARE_VIS_TAC
5............S_EVENT_HANDLER

CRI/ERC32/TN/001/1

B.9

6............S_TC_HANDLER
7............C_VHF_CHECK
8............C_USD_ECC_COLLECTION
9............C_MF_CHECK
10...........C_2HZ_CHECK
11...........C_TELEMETRY_GENERATION
12...........S_ACTION_ACK_HANDLER
13...........C_LF_CHECKS

List of defined Protected Objects

In the following report, all Protected Objects are defined by a numeric identifier :

Identifier Protected Object
1............PR_EVENT_BUFFER
2............PR_SYNCH2
3............PR_SYNCH
4............SOME_OBJECT
5............PR_TC_HANDLER
6............PR_ACKNOWLEDGE

List of all schedulable and non schedulable threads :

__
Sch	Th#	Criticality	Deadline	Prio	WCCT FR	WCCT SR	Period	Response	Blocking	Blocking	Utilisation	Margin
							MIAT	Time	Time	Origin	Factor	Analysis
yes	1	HARD	25000	15	7700	N/A	50000	9200	1500	PO # 1	1.54000E-01	2.47E+01
yes	2	HARD	30000	13	2800	N/A	100000	12000	1500	PO # 1	1.82000E-01	6.79E+01
yes	3	HARD	32000	11	3100	N/A	50000	15100	1500	PO # 1	2.44000E-01	6.13E+01
yes	4	HARD	32000	10	15000	N/A	100000	30100	1500	PO # 1	3.94000E-01	1.27E+01
yes	5	HARD	50000	9	2000	N/A	1000000	31600	1000	PO # 3	3.96000E-01	2.75E+02
yes	6	HARD	50000	8	8900	N/A	200000	40500	1000	PO # 3	4.40500E-01	6.18E+01
yes	7	HARD	50000	7	2500	N/A	50000	43000	1000	PO # 3	4.90500E-01	2.20E+02
yes	8	HARD	50000	6	1500	N/A	50000	44500	1000	PO # 3	5.20500E-01	3.67E+02
yes	9	HARD	200000	5	2000	N/A	200000	46500	1000	PO # 3	5.30500E-01	4.00E+03
yes	11	HARD	400000	4	21000	N/A	500000	82300	1000	PO # 4	5.72500E-01	7.84E+02
yes	10	HARD	500000	3	4500	N/A	500000	86800	1000	PO # 4	5.81500E-01	4.48E+03
yes	12	HARD	1000000	2	2000	N/A	1000000	88800	1000	PO # 4	5.83500E-01	2.02E+04
yes	13	SOFT	1000000	1	12000	N/A	1000000	99800	0	RTS	5.95500E-01	3.37E+03
__

List of all protected objects

__
PO #	Prio	Protected Type	PO User List
1	19	SYNCHRONISATION	T#1, T#5, T#10,
2	18	SYNCHRONISATION	T#1, T#3,
3	17	SYNCHRONISATION	T#1, T#11,
4	16	RESOURCE	T#1, T#7, T#8, T#9, T#13,
5	14	SYNCHRONISATION	T#2, T#6,
6	12	SYNCHRONISATION	T#3, T#12,
__
Thread Set Utilisation Factor

The Utilisation factor for the whole thread set is : 5.95500E-01

B.5 Input to CRI Schedule Program (AdaWorld
RTS)

Task : c_subsystem_bus_scheduler
period : 50.0
WCET : 7.956
Blocking : 1.562
deadline : 41.00

Task : c_issa_bus_scheduler
period : 100.0
WCET : 2.941
Blocking : 1.562
deadline : 42.0

Task : c_motion_execution
period : 50.0
WCET : 3.216 -- T_Prox = 1.257*1.164*T_proto + 1.2
Blocking : 1.562

CRI/ERC32/TN/001/1

B.10

deadline : 32.0
mode : proximity

Task : c_motion_execution
period : 50.0
WCET : 4.1 -- T_Compl = 1.257*1.164*T_proto + 1.2 + 1.0
Blocking : 0.3
deadline : 32.0

mode : compliant

Task : c_motion_execution
period : 50.0
WCET : 1.9 -- T_Free = 1.164*T_proto + 1.2
Blocking : 0.3
deadline : 32.0

mode : free

Task : c_prepare_vis_tac
period : 100.0
WCET : 15.093
Blocking : 1.562
Deadline : 32.0

Mode : proximity

Task : s_event_handler
period :1000.0
WCET : 2.068
Blocking : 1.068
deadline : 50.0

Task : s_tc_handler
period : 200.0
WCET : 8.968
Blocking : 1.068
deadline : 50.0

Task : c_vhf_check
period : 50.0
WCET : 2.612
Blocking : 1.068
deadline : 50.0

Task : c_usd_ecc_collection
period : 50.0
WCET : 1.612
Blocking : 1.068
deadline : 50.0

Task : c_mf_check
period : 200.0
WCET : 2.112
Blocking : 1.068
deadline : 200.0

Task : c_telemetry_generation
period : 500.0
WCET : 21.068
Blocking : 1.019
deadline : 500.0

Task : c_2hz_check
period : 500.0
WCET : 7.5 -- 4.5 + 2 * 1.164 * T_proto
Blocking : 1.0
deadline : 500.0

mode : free

Task : c_2hz_check
period : 500.0

CRI/ERC32/TN/001/1

B.11

WCET : 4.641 -- 4.5 (Wouters measurement)
Blocking : 1.019
deadline : 500.0

mode : proximity

Task : c_2hz_check
period : 500.0
WCET : 4.5 -- 4.5 (Wouters measurement)
Blocking : 1.0
deadline : 500.0

mode : compliant

Task : s_action_ack_handler
period :1000.0
WCET : 2.068
Blocking : 1.019
deadline :1000.0

Task : c_lf_checks
period :1000.0
WCET : 12.112
Blocking : 0.13
deadline :1000.0

B.6 Output from CRI Schedule Program
(AdaWorld RTS)

Schedule - Deadline Monotonic Analysis, (C) CRI A/S 1995.

Object name : c_subsystem_bus_scheduler
Period : 50.0 ms.
Worst-case execution time : 8.0 ms.
Blocking delays : 1.6 ms.
Deadline : 41.0 ms.

Max response time : 9.5 ms.

Object name : c_issa_bus_scheduler
Period : 100.0 ms.
Worst-case execution time : 2.9 ms.
Blocking delays : 1.6 ms.
Deadline : 42.0 ms.

Max response time : 12.5 ms.

Object name : c_motion_execution
Period : 50.0 ms.
Worst-case execution time : 3.2 ms.
Blocking delays : 1.6 ms.
Deadline : 32.0 ms.

Max response time : 15.7 ms.

Object name : c_prepare_vis_tac
Period : 100.0 ms.
Worst-case execution time : 15.1 ms.
Blocking delays : 1.6 ms.
Deadline : 32.0 ms.

Max response time : 30.8 ms.

CRI/ERC32/TN/001/1

B.12

Object name : s_event_handler
Period : 1000.0 ms.
Worst-case execution time : 2.1 ms.
Blocking delays : 1.1 ms.
Deadline : 50.0 ms.

Max response time : 32.3 ms.

Object name : s_tc_handler
Period : 200.0 ms.
Worst-case execution time : 9.0 ms.
Blocking delays : 1.1 ms.
Deadline : 50.0 ms.

Max response time : 41.3 ms.

Object name : c_vhf_check
Period : 50.0 ms.
Worst-case execution time : 2.6 ms.
Blocking delays : 1.1 ms.
Deadline : 50.0 ms.

Max response time : 43.9 ms.

Object name : c_usd_ecc_collection
Period : 50.0 ms.
Worst-case execution time : 1.6 ms.
Blocking delays : 1.1 ms.
Deadline : 50.0 ms.

Max response time : 45.5 ms.

Object name : c_mf_check
Period : 200.0 ms.
Worst-case execution time : 2.1 ms.
Blocking delays : 1.1 ms.
Deadline : 200.0 ms.

Max response time : 47.6 ms.

Object name : c_telemetry_generation
Period : 500.0 ms.
Worst-case execution time : 21.1 ms.
Blocking delays : 1.0 ms.
Deadline : 500.0 ms.

Max response time : 84.1 ms.

Object name : c_2hz_check
Period : 500.0 ms.
Worst-case execution time : 4.6 ms.
Blocking delays : 1.0 ms.
Deadline : 500.0 ms.

Max response time : 88.7 ms.

Object name : s_action_ack_handler
Period : 1000.0 ms.
Worst-case execution time : 2.1 ms.
Blocking delays : 1.0 ms.
Deadline : 1000.0 ms.

CRI/ERC32/TN/001/1

B.13

Max response time : 90.8 ms.

Object name : c_lf_checks
Period : 1000.0 ms.
Worst-case execution time : 12.1 ms.
Blocking delays : 0.1 ms.
Deadline : 1000.0 ms.

Max response time : 135.4 ms.

Total CPU load : 61.1 %
The system is schedulable.

B.7 Input to SpaceBel Schedulability Analyzer
(AdaWorld RTS)

AdaWorld runtime characteristics file:

-- RTS Characteristics for DEM32 at 10 MHz (non-ATAC runtime)
-- Characteristics are in Processor Cycles

ENTER PASSIVE TASK 80,0,0
EXIT PASSIVE TASK 110,0,0
ENTER SOFTWARE SPORADIC WAIT (70,0,0)
EXIT SOFTWARE SPORADIC WAIT 30,0,0
ENTRY QUEUE SERVICING (60,0,0)
CONTEXT SWITCH TIME 340,0,0
SCHEDULER SELECT TIME (50,0,0)
ENTER DELAY UNTIL OVERHEAD AT HEAD (390,0,0)
ENTER DELAY UNTIL OVERHEAD NOT AT HEAD (220,0,0) + (30,0,0) * C
EXIT DELAY UNTIL OVERHEAD 80,0,0
TIMER INTERRUPT OVERHEAD 210,0,0
READY AFTER DELAY 120,0,0
INTERRUPT HANDLING OVERHEAD 670,0,0
ENTER INTERRUPT SPORADIC WAIT (30,0,0)
EXIT INTERRUPT SPORADIC WAIT 30,0,0
MAXIMUM NON PREEMPTION 1300,0,0

B.8 Output from SpaceBel Schedulability
Analyzer (AdaWorld RTS)

Schedulability Analyser

Beginning of the Offline Analyser Report

Current date and time : 19/6/1997::15:37:12

Name of the input files :
UCF Files : /home/cma/ERC32/analyzer/asw.ucf
ESF Files : /home/cma/ERC32/analyzer/asw.esf
RTS Files : /home/cma/ERC32/analyzer/adaworld.rts

Scheduling Policy : DMS Blocking Protocol : IPCI ATAC Mode : Not selected

List of defined threads

CRI/ERC32/TN/001/1

B.14

In the following report, all threads are defined by a numeric identifier :

Identifier Thread
1............C_SUBSYSTEM_BUS_SCHEDULER
2............C_ISSA_BUS_SCHEDULER
3............C_MOTION_EXECUTION
4............C_PREPARE_VIS_TAC
5............S_EVENT_HANDLER
6............S_TC_HANDLER
7............C_VHF_CHECK
8............C_USD_ECC_COLLECTION
9............C_MF_CHECK
10...........C_2HZ_CHECK
11...........C_TELEMETRY_GENERATION
12...........S_ACTION_ACK_HANDLER
13...........C_LF_CHECKS

List of defined Protected Objects

In the following report, all Protected Objects are defined by a numeric identifier :

Identifier Protected Object
1............PR_EVENT_BUFFER
2............PR_SYNCH2
3............PR_SYNCH
4............SOME_OBJECT
5............PR_TC_HANDLER
6............PR_ACKNOWLEDGE

List of all schedulable and non schedulable threads :

__
Sch	Th#	Criticality	Deadline	Prio	WCCT FR	WCCT SR	Period	Response	Blocking	Blocking	Utilisation	Margin
							MIAT	Time	Time	Origin	Factor	Analysis
yes	1	HARD	25000	15	7956	N/A	50000	9821	1562	PO # 1	1.62024E-01	1.07E+01
yes	2	HARD	30000	13	2941	N/A	100000	12801	1562	PO # 1	1.91434E-01	2.89E+01
yes	3	HARD	32000	11	3216	N/A	50000	16089	1562	PO # 1	2.55754E-01	2.65E+01
yes	4	HARD	32000	10	15093	N/A	100000	31149	1562	PO # 1	4.06684E-01	5.64E+00
yes	5	HARD	50000	9	2068	N/A	1000000	32795	1068	PO # 3	4.08752E-01	1.94E+02
yes	6	HARD	50000	8	8968	N/A	200000	41763	1068	PO # 3	4.53592E-01	4.47E+01
yes	7	HARD	50000	7	2612	N/A	50000	44342	1068	PO # 3	5.05832E-01	1.53E+02
yes	8	HARD	50000	6	1612	N/A	50000	45993	1068	PO # 3	5.38072E-01	2.49E+02
yes	9	HARD	200000	5	2112	N/A	200000	48144	1068	PO # 3	5.48632E-01	3.58E+03
yes	11	HARD	400000	4	21068	N/A	500000	84847	1019	PO # 4	5.90768E-01	7.39E+02
yes	10	HARD	500000	3	4641	N/A	500000	89455	1019	PO # 4	6.00050E-01	4.11E+03
yes	12	HARD	1000000	2	2068	N/A	1000000	91595	1019	PO # 4	6.02118E-01	1.85E+04
yes	13	SOFT	1000000	1	12112	N/A	1000000	136575	130	RTS	6.14230E-01	3.16E+03
__

List of all protected objects

__
PO #	Prio	Protected Type	PO User List
1	19	SYNCHRONISATION	T#1, T#5, T#10,
2	18	SYNCHRONISATION	T#1, T#3,
3	17	SYNCHRONISATION	T#1, T#11,
4	16	RESOURCE	T#1, T#7, T#8, T#9, T#13,
5	14	SYNCHRONISATION	T#2, T#6,
6	12	SYNCHRONISATION	T#3, T#12,
__
Thread Set Utilisation Factor

The Utilisation factor for the whole thread set is : 6.14230E-01

CRI/ERC32/TN/001/1

B.15

Scheduler Simulator Results

Appendix C

__
TIME	EVENT	THREAD	PO	PRIORITY
50000	EXPIRED_DEADLINE	C_USD_ECC_COLLECTION		6
50000	EXPIRED_DEADLINE	C_VHF_CHECK		7
60500	EXPIRED_DEADLINE	S_TC_HANDLER		8
__				

__
THREAD	TIME	ACHIEVED DEADLINE	MISSED DEADLINE					
	CPU	RTS	min	max	min	max		
______________________	___SUM____	____%____	___SUM____	____%____				
______________________	__________	_________	__________	_________	____________	____________	____________	____________
C_SUBSYSTEM_BUS_SCHE	15400	22.19%	0	0.00%	16100	17300	----	----
C_ISSA_BUS_SCHEDULER	2800	4.03%	0	0.00%	19500	19500	----	----
C_MOTION_EXECUTION	8900	12.82%	0	0.00%	15700	25800	----	----
C_PREPARE_VIS_TAC	15000	21.61%	0	0.00%	700	700	----	----
S_EVENT_HANDLER	5000	7.20%	0	0.00%	15700	41700	----	----
S_TC_HANDLER	16800	24.21%	0	0.00%	----	----	10500	10500
C_VHF_CHECK	5000	7.20%	0	0.00%	----	----	----	----
C_USD_ECC_COLLECTION	500	0.72%	0	0.00%	----	----	----	----
C_MF_CHECK	0	0.00%	0	0.00%	----	----	----	----
C_2HZ_CHECK	0	0.00%	0	0.00%	----	----	----	----
C_TELEMETRY_GENERATI	0	0.00%	0	0.00%	----	----	----	----
S_ACTION_ACK_HANDLER	0	0.00%	0	0.00%	----	----	----	----
C_LF_CHECKS	0	0.00%	0	0.00%	----	----	----	----
__								

Simulation_Time : 69400
Processing_Time : 69400
Overall CPU : 100.00
Overall RTS : 0.00

CRI/ERC32/TN/001/1

C.2

0u
s

10
m

s
20

m
s

30
m

s
40

m
s

50
m

s
60

m
s

1

4
4

5

6

1

1
1

5

5

C
_S

U
B

S
Y

S
TE

M
_B

U
S

C
_I

S
S

A
_B

U
S

_S
C

H
E

C
_M

O
TI

O
N

_E
X

E
C

U
T

C
_P

R
E

P
A

R
E

_V
IS

_T

S
_E

V
E

N
T_

H
A

N
D

LE
R

S
_T

C
_H

A
N

D
LE

R

C
_V

H
F_

C
H

E
C

K

C
_U

S
D

_E
C

C
_C

O
LL

E

C
_M

F_
C

H
E

C
K

C
_2

H
Z_

C
H

E
C

K

Figure 1

Gantt chart

CRI/ERC32/TN/001/1

C.3

