

IFIP WG 10.5

v1.2.0

Benchmark Circuits for
Hardware Verification

1 Introduction...1

2 The Benchmark Circuits ..2
2.1 Releases ... 2

2.2 Verification Problem Presentation ... 3
2.2.1VHDL .. 3
2.2.2Storage Elements and Multiplexers ... 3
2.2.3Base Module Library ... 4
2.2.4Graphical Notation .. 5

2.3 Classification of the Verification tasks... 6

2.4 Circuit Classification ... 6

3 How to get the benchmark circuits..8
3.1 Physical Organization.. 8

3.2 Using the benchmarks ... 9

3.3 Please Contact us if … .. 9

3.4 Email list.. 9

4 Present and Future Activity ...9

5 Acknowledgments ...10

6 Literature...10

7 Single Pulser ..11
7.1 Introduction ... 11

7.2 Specification .. 11

7.3 Implementation.. 11

7.4 Status and Acknowledgments .. 12

7.5 Literature ... 12

8 Traffic Light Controller..13
8.1 Specification .. 13

8.2 Implementation.. 13

8.3 Status and Acknowledgments .. 13

8.4 Literature ... 13

9 N-bit Adder..14
9.1 Introduction ... 14

9.2 Specification .. 14

9.3 Implementation.. 14

9.4 Status and Acknowledgments .. 14

9.5 Literature ... 14

10 Min_Max Circuit ..18
10.1Introduction .. 18

10.2Specification ... 18

10.3Implementation .. 18

10.4Status and Acknowledgments... 20
10.4.1Comments to the Specification of MIN_MAX ... 20

10.5Literature .. 22

11 Black-Jack Dealer ...23
11.1Specification ... 23

11.2Implementation .. 23

11.3Status and Acknowledgments... 25
15.7.96 III

11.4Literature .. 25

12 Arbiter..29
12.1Introduction .. 29

12.2Specification ... 29
12.2.1Formal specification example .. 29

12.3Implementation .. 29

12.4Status and Acknowledgments... 31

12.5Literature .. 31

13 Rollback Chip..34
13.1Specification ... 34

13.2Implementation .. 34

13.3Status and Acknowledgments... 34

13.4Literature .. 34

14 The TAMARACK Processor..35
14.1Specification ... 35

14.2Implementation .. 35

14.3Status and Acknowledgments... 35

14.4Literature .. 35

15 Stop-Watch ..36
15.1Specification ... 36

15.2Implementation .. 36

15.3Status and Acknowledgments... 37

15.4Literature .. 37

16 GCD - Greatest Common Divisor ...41
16.1Introduction .. 41

16.2Specification ... 41
16.2.1Low-Level Specification.. 41
16.2.2High-Level Specification ... 41

16.3Implementation .. 42
16.3.1Controller... 42
16.3.2Data Path.. 43
16.3.3Simulations .. 43

16.4Status and Acknowledgments... 45

16.5Literature .. 45

17 Multiplier...46
17.1Specification ... 46

17.2Implementation .. 46
17.2.1Algorithm .. 46
17.2.2Global Realization Architecture .. 46
17.2.3Detailed Description .. 46

17.3Status and Acknowledgments... 49

17.4Literature .. 49

18 Divider..50
18.1Specification ... 50

18.2Implementation .. 50
18.2.1Algorithm .. 50
18.2.2Global Realization Architecture .. 50

18.3Detailed Implementation Description .. 52
15.7.96 IV

18.4Status and Acknowledgments... 55

18.5Referencee.. 56

19 FIFO ..57
19.1Specification ... 57

19.2Implementation .. 57

19.3Status and Acknowledgments... 57

19.4Literature .. 57

20 Assoc (Associative Memory) ..60
20.1Specification ... 60

20.1.1General Specification... 60

20.2Implementation .. 61
20.2.1General architecture... 61
20.2.2Implementation of one cell of AssocMemArray ... 62
20.2.3Implementation of a Storage Cell Array (AssocMemArray).. 62
20.2.4Implementation of the whole Associative memory (AssocMemCirc) 62

20.3Status and Acknowledgments... 63

20.4Literature .. 63

21 1Syst (Filter) ..67
21.1Introduction .. 67

21.2Specification ... 67

21.3Implementation .. 67
21.3.1General architecture... 67
21.3.2Implementation of one stage ... 68

21.4Status and Acknowledgments... 68

21.5Literature .. 68

22 2Syst (Matrix Multiplication) ..71
22.1Specification ... 71

22.1.1General Specification... 71
22.1.2Timing Requirements .. 72

22.2Implementation .. 73
22.2.1General architecture... 73
22.2.2Implementation of one cell .. 74
22.2.3Actual Realization and Example ... 75

22.3Status and Acknowledgments... 75

22.4Literature .. 75
15.7.96 V

Benchmark-Circuits for Hardware -Verification

v1.2.1

Thomas Kropf
Institut für Rechnerentwurf und Fehlertoleranz

Universität Karlsruhe, Kaiserstr. 12, 76128 Karlsruhe, Germany
email: Thomas.Kropf@informatik.uni-karlsruhe.de

WWW: http://goethe.ira.uka.de/hvg/

This document describes the IFIP WG10.5 hardware-verification
benchmark circuits, intended for evaluating different approaches and
algorithms for hardware verification. The paper presents the rationale
behind the circuits, describes them briefly and indicates how to get
access to the verification benchmark set.

1 Introduction

Although having many drawbacks, benchmark circuits allow a more succinct and direct com-
parison of different approaches for solving a certain problem. This has lead to sets of widely
accepted circuits e.g. in the area of testing [BrPH85, BrBK89] or high-level synthesis
[VRMK91].

In the area of hardware verification, this has lead e.g. to the suggestion of “interesting” cir-
cuits, like Paillet’s set of seven sequential circuits [Pail85]. One of the first efforts to provide
circuits for a broader community has been done by Luc Claesen for the 1990 International
Workshop on Applied Formal Methods for VLSI Design [FMVD90]. The most prominent cir-
cuit evolving from this effort was the “Min_Max-Circuit”.

The lack of additional, generally available verification benchmark circuits got aware in the
preparation of the 2nd International Conference on Theorem Provers in Circuit Design
(TPCD94). The motivation to provide additional benchmark circuits together with already
ongoing standardization efforts of IFIP, coordinated by Jørgen Staunstrup [Stau93], has led to
an enhanced set of circuits. Thanks to J. Staunstrup, in the meantime these circuits have
become the official “IFIP WG10.2 Hardware Verification Benchmark Circuit Set”. It will be
maintained and enhanced on a long term basis to promote a standardized benchmark set in the
hardware verification community.

For the circuits a complete and self-contained implementation is provided, done in a com-
mercial design system [Fram92] (leading e.g. to additional timing diagrams for clarification) as
well as a clear specification using the standardized hardware description language VHDL (see
Section 2.2 “Verification Problem Presentation”). This puts a comparison of different verifica-
tion approaches on a sound basis, since - if the given implementations are used - identical cir-
cuits are verified instead of different designs implemented in a way especially suited for a
certain approach. Moreover, people are not forced to tediously design the circuits before they
can be verified - the latter being the main interest of people looking into these circuits. Natu-
rally, when dealing with formal synthesis, the implementations provided here are less interest-
ing and the specifications are the main thing to deal with.
15.7.96 1

A set of verification benchmark circuits has to provide easily usable circuits to evaluate and to
compare different approaches to hardware verification. This comprises:

• availability via the World Wide Web and anonymous ftp,

• a high degree of diversity with regard to the underlying verification task (see Section 2.3
“Classification of the Verification tasks”),

• circuit descriptions without ambiguity, which are succinct and self-contained and

• circuits which span a wide range from introductory examples to real verification chal-
lenges [Stau93].

2 The Benchmark Circuits

Currently, there is the set of benchmark circuits given in table 2-1. The main sources for these
circuits have been the previous IFIP benchmark set [Stau93] and various textbooks on circuit
design.

2.1 Releases

Each release of the circuit is labeled with a version number, release number and patch level in
the form v<Version>.<Release>.<Patchlevel>.

A version number is provided to make the inclusion of new circuits more explicit. Unfortu-
nately we did not succeed in providing full implementation descriptions for all circuits in the
first release. As these are provided, the release number is incremented.

Although the circuits have been designed with much care, reality-driven pessimism sug-
gests that there will be the necessity for “patches” (i.e. bug fixes) at least in the first stage of the
release process.

Circuit Name Short Circuit Description

Single Pulser cuts input pulses to a fixed length

Traffic Light Controller simplified controller for a traffic light

N-bit Adder sum of two bitvectors of length N

Min_Max the mean value of incoming integers

Black-Jack Dealer the dealer’s hand of a card game

Arbiter access to shared resources for N clients

Rollback Chip coprocessor for distributed simulation

Tamarack Processor simplified microprocessor

Stop-Watch digital stopwatch with 3 digits and 2 buttons

GCD Greatest Common Divisor

Multiplier N-bit Multiplier

Divider N-bit Divider

FIFO asynchronous FIFO queue with N places

Assotiative Memory simple assotiative memory

1dim Systolic Array onedimensional systolic filter array

2dim Systolic Array two-dimensional systolic array for matrix multiplication

Table 2-1: Current Benchmark Circuits

N M×
15.7.96 2

All changes are documented in a history file, patches are also explained in the documenta-
tion of the relevant circuits. You may want to be added to an emailing list dedicated to inform
people about the actual verification benchmark status (see Section 3.4 “Email list”).

2.2 Verification Problem Presentation

Unambiguously specifying circuits in a general way without being forced to a certain descrip-
tion philosophy by the underlying notation is a challenge itself. The only way to circumvent a
fixed description formalism is to use only informal descriptions (natural language, drawings1,
timing diagrams, etc.). However, then the descriptions are often not as crisp and exact as it is
necessary especially for formal verification, where the information given here has to be trans-
lated into formal description languages like predicate logics, temporal logics, process algebras,
Z and so forth.

Besides all drawbacks, we decided to provide more (and more formal) information for each
circuit. This comprises for each circuit of:

• a description of the specification and the implementation in plain English,

• schematic diagrams of the implementation2,

• a netlist of the implementation based on structural VHDL and

• a specification of the circuit in VHDL.

2.2.1 VHDL

The decision to use VDHL as a formalization means especially for specifications is probably
the most disputable one for obvious reasons: the lack of a clean VDHL semantics, the danger
of imposing a certain specification style, impossibility for expressing nondeterminism and so
forth. However, in our opinion the advantages of providing a standardized (and simulatable)
specification outweighs the disadvantages. Moreover, we tried to avoid ambiguous VDHL con-
structs and VHDL specifications may further encourage VHDL based verification (or at least
the discussion about the “right” specification language is stimulated).

We use a restricted set of VHDL which should be sufficiently simple so that no semantic
ambiguities occur.

2.2.2 Storage Elements and Multiplexers

A register is treated as a base module (see Section 2.2.3 “Base Module Library”). It is used as
follows: The inputs S is connected to input lines named Store(Name). A signal is stored, if
Store(Name) =1 and there is a transition at the clock input.

Lines named SelectXY are controlling a multiplexer or a demultiplexer: SelectXY = 0 con-
nects input 0 of a multiplexer to the output (output 0 of a demultiplexer) and SelectXY = 1
connects input 1 to the output (output 1 of a demultiplexer).

Busses are provided with their names and number of signal lines: DataIn<31:0> denotes a
32 bit bus for reading data.

1. For some circuits, original schematics of a realization in the semi-custom design system CADENCE have
been added. However, to fit these drawings on a single page they had to be shrunk in many cases so that labels
etc. may not be well readable anymore. Nevertheless, the remaining circuit documentation without these fig-
ures is completely sufficient as an implementation description.

2. Schematics are based on an implementation of each circuit using a commercial semi-custom design system.

0 1→
15.7.96 3

2.2.3 Base Module Library

Most circuit implementations use a predefined base module library which contains parameter-
ized modules. Parameters are delay time and, for certain elements, the bitwidth. The library
contains mainly simple gates and storage elements, listed in table 2-2. The respective VHDL
descriptions can be found in the file GateLib.vhd.

Module Name Description Variable Bitwidth

INV inverter no

BUF buffer no

nBUF generic n bit buffer yes

NAND2 two input nand no

NAND3 three input nand no

AND2 two input and no

AND3 three input and no

AND4 four input and no

AND5 five input and no

NOR2 two input nor no

NOR3 three input nor no

OR_2a two input or no

OR3 three input or no

OR4 four input or no

OR5 five input or no

NXOR2 two input equal no

XOR2 two input exor no

MUX two input, one output, one select multiplexer no

DMUX one input, two output, one select demultiplexer no

DL D-latch no

DFF D-flipflop no

DFFs setable D-flipflop no

DFFsr setable and resetable D-flipflop no

RSFFR resetable RS-flipflop no

RSFF RS-flipflop no

nMUX generic n-bit 2:1 multiplexer yes

nDMUX generic n-bit 2:1 demultiplexer yes

nREG generic n-bit register with enable yes

nREGr generic n-bit register with enable and reset yes

HA half adder no

FA full adder no

nINC n-bit incremented yes

CRA n-bit carry ripple adder yes

AddSub n-bit carry ripple adder and subtractor yes

nSREG n-bit shift register yes

nCMPO n-bit equal zero test yes

Table 2-2: Elements of the Base Module Library
15.7.96 4

2.2.4 Graphical Notation

The schematic diagrams consist of modules which are drawn according to the notation given in
table 2-3.

a. underscore necessary due to name conflicts in SYNOPSIS

cCMPN compare tow n-bit vectors yes

nLSH n-bit left shift yes

nRSH n-bit right shift yes

expand expand bit vector by adding zeros yes

priority lower bit has priority others are suppressed yes

Module type Graphical Notation

Inverter

AND gates

EXOR gate

NAND gates

NOR gates

OR gates

Demultiplexer 1:2

Register

Arithmetic Logic
Unit

RS-Flipflop

Register with n
Flipflops

Table 2-3: Schematic Drawing Symbols

Module Name Description Variable Bitwidth

Table 2-2: Elements of the Base Module Library

1

& &

=1

&&

1≥1≥

1≥ 1≥

DMux
0
1S

Reg
S

ALU

R
S

Q
Q

RSFF

D Q
nDFF
15.7.96 5

2.3 Classification of the Verification tasks

There are mainly three verification tasks to be distinguished when talking about hardware veri-
fication:

1. verifying that a circuit specification is what it should be,

2. verifying that a given implementation behaves identically to a given specification and

3. verifying important (e.g. safety critical) properties of a given implementation.

According to [Stau93], the first is called requirements capture, the second implementation ver-
ification and the third design verification.

The three tasks are often expressed in terms of a specification S and an implementation I,
where a complete verification denotes some form of equivalence between S and I (,

,) and a partial verification denotes some form of implication (, ,
):

The first task is a partial verification (with S describing properties of the circuit specification
and I being the circuit specification), the second is a complete verification (with S being the
specification and I being the implementation) and the third is again a partial verification (with S
describing the properties of the circuit implementation and I being the circuit implementation).

It is to be noted that if e.g. exact computation times are not stated in a specification then we
have to cope with a verification problem of the third kind, since in that case an equivalence
proof is not possible.

All three verification tasks are covered by the benchmark circuits.

2.4 Circuit Classification

Every classification scheme has its drawbacks, but we found the following circuit properties
especially useful for classification purposes.

A circuit may be classified in several dimensions as depicted in table 2-4. Most of the crite-
ria are self-explaining, besides complexity. In the area of testing usually the number of internal
lines is directly used as a complexity measure [BrPH85, BrBK89], motivated by the designated
application of the circuits: test pattern generation. Using a classical stuck-at fault model, the
set of faults to be treated equals the number of internal lines. Hence a circuit s713 denotes a
sequential circuit with 713 internal lines [BrBK89].

In the area of hardware verification a similar complexity measure is not as obvious (at least
we did not found any meaningful). Hence we use the coarse measure, proposed by J. Staun-
strup: an example is either introductory, illustrative or a real challenge [Stau93].

Classification Criterion Value Set

Abstraction level

system (s)
algorithmic (a)
register-transfer (r)
gate (g)
transistor (t)

Synchronicity of the implementation
synchronous (s)
asynchronous (a)
combinational (c)

Hierarchy of the implementation
hierarchical (h)
flat (f)

Table 2-4: Possible Circuit Classifications

S I=
S I≈ S I⇔ I S⇒ I S⊇
I |- S
15.7.96 6

The abbreviations given in table 2-4 may be used to characterize each circuit using the follow-
ing “signature”:

<Name>:<Spec>-<Imp>.<Sync>.<Hier>.<Det>.<Gener>.<Type>.<Compl>

A circuit GCD.a-r.s.h.d.g.m.i denotes the Greatest Common Divisor circuit, which
has a specification on algorithmic level and an implementation on register-transfer level. It is a
synchronous, hierarchical and deterministic design with arbitrary bit width. Consisting of a
controller and a data path it is a small, i.e. an introductory example.

Using this classification scheme, we can characterize all circuits as shown in table 2-5.

Determinism
deterministic (d)
nondeterministic (n)

Genericity
generic (g)
concrete with (optional) bitwidth n (cn)

Type
controller (c)
data path (d)
mixed (both) (m)

Complexity
introductory (i)
standard illustrative (s)
challenge (c)

Circuit Name Classification

Single Pulser Pulser.g-g.s/a.f.d.c1.c.i

Traffic Light Controller TLC.r-g.s.f.d.c1.c.i

N-bit Adder Adder.a-g.c.h.d.g.d.i

Min_Max Min_Max.a-g.s.h.d.c8/g.d.s

Black-Jack Dealer Dealer.a-g.?.f.n.c.c.s

Arbiter Arbiter.r-g.s.f.n.g.c.s

Rollback Chip Rollback.?-?.?.h.d.?.m.s

Tamarack Processor Tamarack.a-g.s.h.d.?.m.s

Stop-Watch Stopwatch.r-g.s.h.d.c.m.s

GCD GCD.a-g.s.h.d.g.m.i

Multiplier Mult.a-g.c.h.d.g.d.s

Divider Div.a-g.c.h.d.g.d.s

FIFO FIFO.a-g.a.h.d.g.m.s

Assotiative Memory Assoc.r-g.s.h.d.g.d.s

1dim Systolic Array 1Syst.a-g.s.h.d.g.d.s

2dim Systolic Array 2Syst.a-g.s.h.d.g.d.s

Table 2-5: Classification of the Benchmark Circuits

Classification Criterion Value Set

Table 2-4: Possible Circuit Classifications
15.7.96 7

3 How to get the benchmark circuits

The most convenient way to a get access to the benchmark suite is via the World Wide Web.
Using a WWW browser like Mosaic you can get the latest informations using the URL
http://goethe.ira.uka.de/benchmarks/.

You can also directly use an anonymous FTP-server. All benchmark circuits as well as
PostScript versions of the documents (including this paper) have been made available there in
the directory pub/benchmarks. The FTP-server is reachable as goethe.ira.uka.de
(current IP address: 129.13.18.22). The server will always hold the newest benchmark
version (see Section 2.1 “Releases”).

Simple ASCII-files end in .txt, Postscript files always end in .ps, .ps.Z or ps.gz.
The files with endings .gz (.Z) has been compressed using the UNIX gzip (compress)
command. They must be transferred using binary ftp mode and must be expanded using the
UNIX gunzip (uncompress) command before they are readable or printable. Tar-Files end
in .tar (compressed .tar.gz or .tar.Z) and contain a whole directory in one file. The
directory content may be rebuild by executing tar -xfv <name>.tar after having
expanded the respective file.

3.1 Physical Organization

The main directory /pub/benchmarks contains:

• README how to use and retrieve the benchmarks

• It_is_version_x.y.z an empty dummy file indicating the current version,
release and patchlevel

• Introduction.ps this document as a PostScript file

• Whole_documentation.psthis document plus all (currently available) circuit
descriptions as a single PostScript File

• History.txt the version history of the benchmarks

• GateLib.vhd behavioral descriptions of all base modules (see Section
2.2.3 “Base Module Library”)

• ELEMpack.vhd interface and componemt declaration of all base elements

• <circuit> a directory for each benchmark circuit

• documentation a directory containing the whole documentation in its
original FrameMaker 4 format (for those who want to get
the document “sources”)

• pending a directory containing circuits which will probably be
included in future releases of the benchmark circuits.1

Each circuit directory <circuit> contains at least:

• <circuit>.ps a PostScript file describing the circuit

• <circuit>.vhd different VHDL files covering the implementation
(<circuit>struc.vhd), a behavioral specification
(<circuit>behave.vhd), a testbench for simula-

1. For these circuits the documentation may be incomplete, inconsistent or completely missing.
15.7.96 8

tion (<circuit>tb.vhd or <circuit>test-
bench.vhd) as well as various other files and scripts
useful for simulation and synthesis.

3.2 Using the benchmarks

You can use the benchmark circuits in any way which suits your needs. Especially when speci-
fying the problems, you are in no way obliged to use VHDL. The VHDL specifications are
mainly provided to clarify the intended proof goals.

However, if for example, you use an implementation completely different from the ones
given here (e.g. a simplified version) you should state this clearly whenever you refer to the cir-
cuits provided here.

Some of the circuits have been designed hierarchically. If you are flattening the circuits in
order to verify them, you should state this also.

3.3 Please Contact us if …

Please contact us if you have any problems, especially

• if you have questions of any kind concerning the benchmarks,

• if you have comments or proposals for changes, additions or even new circuits,

• if you can provide “better” implementations for the circuits,

• if you have problems in printing the PostScript files,

• if you detect errors, inconsistencies or ambiguities, which should be fixed or

• if you have problems in accessing the files.

The easiest way is to send a brief email to Thomas Kropf or to Jørgen Staunstrup (Tho-
mas.Kropf@informatik.uni-karlsruhe.de, jst@id.dth.dk).

3.4 Email list

To inform people about the latest release and patches of the benchmark circuits, we do main-
tain an informal emailing list. If you want to be added (or deleted) from this list, send a short
note to Thomas.Kropf@informatik.uni-karlsruhe.de.

4 Present and Future Activity

At the moment, we are busy simply with completing all proposed circuits and — probably —
by making the current set consistent.

The current set of circuits falls short of asynchronous verification examples. Moreover proto-
col verification problems are not covered, which may also be viewed at as important sub-
aspects of circuit verification. To cover lower description levels, we also would like to add
some switch-level or transistor level verification examples.

There is still a lack of “challenging” verification examples, i.e. circuits which are either of
significant size or which reflect “real” commercial designs. As one of these circuits, we will
probably provide a large RISC-processor: the DLX of Patterson and Hennesy [HePa90].
15.7.96 9

5 Acknowledgments

We like to thank the following people, who have helped in creating this benchmark set and
documentation:

• Ralf Reetz for significant ideas and contributions like the parameter-
ized base module library,

• Hans-Peter Eich for implementing all circuits in a commercial design sys-
tem and for providing all the figures and timing diagrams,

• Claus-Jürgen Thomas for updating the circuits and making them synthesizable

• Klaus Schneider for pointing out interesting verification problems,

• Jørgen Staunstrup, for supporting this activity via IFIP and suggesting the
IFIP circuits and

• the Authors of TPTP for the excellent documentation of their theorem proving
benchmarks [SuSY93], which helped us in structuring
this document

6 Literature

[SuSY93] C. Suttner, G. Sutcliff, and T. Yemenis. The TPTP (Thousands of Problems for
Theorem Provers) Problem Library. TU Muenchen, Germany and James Cook
University, Australia, via anonymous ftp flop.informatik.tu-muenchen.de,
tptpv1.0.0 edition, 1993.

[BrBK89] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential
benchmark circuits. In International Symposium on Circuits and Systems, May
1989.

[BrPH85] F. Brglez, P. Pownall, and R. Hum. Accelerating ATPG and fault grading via
testability analysis. In International Symposium on Circuits and Systems, 1985.

[Fram92] CADENCE Design Framework II version 4.2a. Reference Manual, February
1992.

[Pail85] J.-L. Paillet. Un Modele de Fonctions Sequentielles pour la Verification
Formelle de Systemes Digitaux. Technical Report 546, IMAG-ARTEMIS,
Grenoble, June 1985.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples, No-
vember 1993.

[HePa90] J.L. Hennessy and D.A. Patterson. Computer Architecture: A quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Mateo, CA, USA, 1990.

[FMVD90] L. Claesen, editor. International Workshop on Applied Formal Methods for
VLSI Design, Leuven, Belgium, 1990.

[VRMK91] R. Vemuri, J. Roy, P. Mamtora, and N. Kumar. Benchmarks for high-level syn-
thesis. Technical Report ECE-DDE-91-11, Laboratory for Digital Design En-
vironments, ECE Dept., University of Cincinnati, Ohio, USA, November
1991.
15.7.96 10

7 Single Pulser

Despite its small size, this circuit has shown to be hard to specify in many formalisms like tem-
poral logics and is well-suited as an introductory example.

7.1 Introduction

A Single Pulser is a clocked-sequential device with a one-bit input, I, and a one-bit output O.
The purpose of the circuit is described as follows [WiPr80]:

We have a debounced push-button, on (true) in the down position, off (false) in the up posi-
tion. Devise a circuit to sense the depression the button and assert an output signal for one
clock pulse. The system should not allow additional assertions of the output until after the
operator has released the button.

A design specification of the Single Pulser can be found in the text book “The Art of Digital
Design” by D. Winkel and F. Prosser [WiPr80]. A detailed treatment of this example for com-
paring different specification formalisms can be found in [JoMC94].

7.2 Specification

Assuming that the input is synchronous and debounced, the specification may be stated as:

For each input pulse on I, the Single Pulser issues exactly one pulse of unit duration on O
regardless of the duration of I.

The specification may be also stated by the following three properties [JoMC94]:

1. Whenever there is a rising edge at I, O becomes true some time later.

2. Whenever O is true it becomes false in the next time instance and it remains false at least
until the next rising edge on I.

3. Whenever there is a rising edge, and assuming that the output pulse doesn’t happen immedi-
ately, there are no more rising edges until that pulse happens (There can’t be two rising
edges on I without a pulse on O between them).

In [JoMC94] the specification is given in different formalisms like PVS and CTL [ORSS94,
ClEm81].

7.3 Implementation

The implementation is taken from [WiPr80]. The incoming, not yet debounced asynchronous
signal Pulse_In is fed to a D flip_flop and thus becomes the synchronized signal
Pulse_sync, which is then delayed for one clock cycle by using another D flip-flop. Its out-
put is negated, and the AND-connection of the synchronous pulse with its own delay generates
the resulting, one clock-cycle lasting signal Pulse_Out (Fig. 7-1).

Figure 7-1: Single Pulser
17.5.96 11

In Fig. 7-2 waveforms are given to illustrate the behavior of the circuit.

7.4 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanks to C.-J. Thomas for creating the VHDL description.

7.5 Literature

[ClEm81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic. In D. Kozen, editor, Proceedings of
the Workshop on Logics of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71, Yorktown Heights, New York, May 1981. Springer-Ver-
lag.

[JoMC94] S.D. Johnson, P.S. Miner, and A. Camilleri. Studies of the single pulser in various
reasoning systems. In T. Kropf and R. Kumar, editors, Proc. 2nd International
Conference on Theorem Provers in Circuit Design (TPCD94), volume 901 of
Lecture Notes in Computer Science, pages 126–145, Bad Herrenalb, Germany,
September 1994. Springer-Verlag. published 1995.

[ORSS94] S. Owre, J.M. Rushby, N. Shankar, and M.K. Srivas. A tutorial on using PVS for
hardware verification. In T. Kropf and R. Kumar, editors, Proc. 2nd International
Conference on Theorem Provers in Circuit Design (TPCD94), volume 901 of
Lecture Notes in Computer Science, pages 258–279, Bad Herrenalb, Germany,
September 1994. Springer-Verlag. published 1995.

[Stau93] J. Staunstrup. IFIP WG 10.2 Collection of Circuit Verification Examples, Novem-
ber 1993.

[WiPr80] D. Winkel and F. Prosser. The Art of Digital Design. Prentice-Hall Inc., 1980.

Figure 7-2: Example waveform

/SINGLEPULSER_TESTBENCH/PULSE_IN

/SINGLEPULSER_TESTBENCH/CLK

/SINGLEPULSER_TESTBENCH/PULSE_OUT

0

0

400

400

800

800

'U'
17.5.96 12

2.4.96 13

8 Traffic Light Controller

The traffic light controller is one of the most famous benchmark circuits also in the area of cir-
cuit synthesis. It is a good example for a pure controller circuit for which e.g. safety properties
have to be verified.

8.1 Specification

Consider a circuit controlling a simple traffic light placed at the intersection of two roads called
NS (North South) and EW (East West). Sensors make it possible to detect whether cars are
waiting, and the light is supposed to change in the direction of waiting cars. The sensor detect-
ing waiting cars on NS is called CarOnNS and the sensor detecting waiting cars on EW is called
CarOnEW.

There are many ways to design such a traffic light controller; however, it is an indispensable
requirement that the light is safe, i.e., that it is always red in one of the two directions. So it
must be required that

(8-1)

This is a simplified version of the trafficlight discussed in several introductory textbooks on
VLSI design

8.2 Implementation

currently missing

8.3 Status and Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93].

8.4 Literature

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

NSLight red=() EWLight red=()∨

9 N-bit Adder

This example is “the” verification benchmark circuit. It is useful for demonstrating data
abstraction (natural numbers versus bit vectors) and for demonstrating the verification of
generic circuits, i.e. circuits with arbitrary bit width.

9.1 Introduction

The circuit computes the sum of two natural number, given as bit vectors of width . This is
probably the most frequently used example in the literature, however, there is a wide variety of
restrictions imposed, for example, limitations on . Is the verification done for arbitrary ? If
s is also -bit what happens at overflow? Furthermore, a variety of realizations are possible
ranging from a simple ripple-carry adder to advanced carry lookahead adders.

9.2 Specification

Verify that a realization of an N-bit adder computes the sum, s, of two -bit numbers a and b.
More formally, it is to be shown that

(9-1)

with (9-2)

9.3 Implementation

The N-bit adder was designed scalable with step width four. Its four bit components represent
carry lookahead structure as described in [Schm78] (Fig. 9-1). It consists of four one bit adders
with carry generate and propagate: G_Out = A_In AND B_In P_Out = A_In OR B_In S_Out =
C_In XOR (P_Out AND NOT G_Out).

Signals S_Out(i), P_Out(i), G_Out(i) and carry(0) are fed to the carry lookahead generator
(Fig. 9-2), which contains a combinational logic to generate B_Propagate, B_Generate, B-
Carry and CarryOut(i). The block carry propagate and generate signals may be used to build a
real carry lookahead adder with a cascade structure, which is not that easy to build generic.

By connecting the four bit adding units with ripple carry, we now get the complete adder
with its inputs DataIn_A, DataIn_B, sum output DataOut and CarryOut (Fig. 9-3). The figure
shows an example with 24 bit.

An example simulation is shown in Fig. 9-4.

9.4 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanks to C.-J. Thomas for generating the VHDL descriptions.

9.5 Literature

[Schm78] V. Schmidt. Digitalschaltungen mit Mikroprozessoren. B.G. Teubner Verlag,
Stuttgart, 1979. (in german).

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

n

n n
n

n

Φ an 1– … a0, ,[]() Φ bn 1– … b0, ,[]()+ Φ cout sn 1– … s0, ,[],()=

Φ xn 1– … x0, ,[]() 2i ai⋅
i 0=

n 1–

∑=
11.4.96 14

Figure 9-1: 4 bit Base Adder
11.4.96 15

Figure 9-2: Carry Generator
11.4.96 16

Figure 9-3: 24 Bit Adder

Figure 9-4: Example Simulation

0

0

0

2403137

642401

3045538

5417602

1014514

6432116

5158275

3736707

8894982

6117252

4

6117257

16777215

1

0

0

1

11.4.96 17

10 Min_Max Circuit

10.1 Introduction

This benchmark circuit has been proposed by Luc Claesen for [FMVD90]. It is the first non-
trivial example which has gained some popularity and reveals some problems, arising in the
area of digital signal processor verification.

10.2 Specification

The Min_Max unit has an input signal in which consists of a sequence of integers in the range
of -256 to +255. The Min_Max unit has three boolean control signals clear, reset, and enable.
The unit produces an output sequence out at the same rate as in in the following way:

• out is zero if clear is true, independent of the other control signals.

• if clear is false and enable is false then out equals the last value of in before enable
became false.

• if clear is false and enable is true and reset is true then out follows in.

• if reset becomes false, then out equals, on each time point t, the mean value of the maxi-
mum and minimum value of in until that time point. So

(10-1)

A number of properties of Min_Max have (deliberately) not been specified, e.g. the latency of
the system is unspecified. This example was used at the international workshop on “Applied
Formal Methods For Correct VLSI Design” and several solutions can be found in the proceed-
ings [FMVD90].

10.3 Implementation

Fig. 10-1 gives an overview of the implementation of the MinMax-Circuit. A storage element
Last (Fig. 10-2) may store a new value while Enable is true, otherwise the former value is
stored.

The heart of the circuit is the MeanValue device (Fig. 10-3). Here the incoming values are
compared with the stored minimum and maximum. The used comparator is a modified version
of the nCMPN from GateLib which is able to compare numbers in 2-complemented format. If
the new value is greater than the stored maximum or less than the stored minimum, its value is
stored in the corresponding branch of the circuit. Otherwise, its value is discarded. The stored
minimum and maximum now are added and the result is divided by two, i.e. one shift right.
MeanOut contains the mean value of the stored minimum and maximum at each time point,
regardless of any control signals. If reset becomes true, the stored maximum and minimum are
set to -256 and +255 as soon as Clk becomes true.

To generate the required output signals depending on the control signals, the unit
Three_to_four generates 4 condition signals out of the three incoming control signals (Fig. 10-
4):

• Condition_1 := Clear : DataOut = ‘0’

• Condition_2 := ~Clear & ~Enable : DataOut = last_out

• Condition_3 := Reset & (Enable & ~Clear) : DataOut = DataIn

out
max in() min in()+

2
---=
11.4.96 18

• Condition_4 := ~Reset & (Enable & ~Clear) : DataOut = mean_out
The condition signals are the and-connected with the corresponding signals to be or-ed for

output.
Fig. 10-5 shows different example simulation runs.

Figure 10-1: MinMax Structure

Figure 10-2: LastValue
11.4.96 19

10.4 Status and Acknowledgments

Thanks to L. Claesen and J. Staunstrup for providing this example. Thanks to G. Janssen for
pointing out the problems of the original specification.

10.4.1 Comments to the Specification of MIN_MAX

The specification given in section 10.2 is not as unambiguous as is seems at the first glace. To
point this out, some comments from G. Janssen from Eindhoven University are added below.

• If clear is false and enable is false then out equals the last value of in before ENABLE
became false.

1. Is this independent of RESET?

2. What if clear is false and enable is false from the start?

Solution:

1. Yes, we don’t care about reset.

Figure 10-3: MeanValue

Figure 10-4: 3to4 “glue logic”
11.4.96 20

2. Then out takes some value in the range -255 to 1 and keeps that value till some other control
combination takes over.

• If clear is false and enable is true and reset is true then out follows in.

Figure 10-5: Example waveforms

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

IN
(8

:0
)

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

O
U

T
(8

:0
)

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

IN
B

E
H

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

O
U

T
B

E
H

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/E
N

A
B

L
E

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/C
L

K

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/C
L

E
A

R

0 0

40
0

40
0

80
0

80
0

12
00

12
00

U
U

U

2

2

2

-2
14

74
83

64
8

10 10 10

10

15 12 15

12

50
9

-3

6 6

8

6

8

6

50
8

-4

2

5

2

5

20 8 20

8

12
0

58 12
0

58

38
3

-1
30

5 5

4

50
7

4

-5

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

IN
(8

:0
)

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/D
A

T
A

O
U

T
(8

:0
)

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/E
N

A
B

L
E

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/C
L

K

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/M
IN

M
A

X
T

E
S

T
B

E
N

C
H

/C
L

E
A

R

0 0

10
0

10
0

20
0

20
0

30
0

30
0

40
0

40
0

50
0

50
0

60
0

60
0

70
0

70
0

80
0

80
0

U
U

U

U
U

U

2

2

10
15

0
6

50
9

6

50
9

8

8

50
8

50
8

2 2

20 20
11.4.96 21

1. What does “follow” precisely mean?

Solution:

1. “follow” means equals.

• If reset becomes false, then out equals, on each time point t, the mean value of the maxi-
mum and minimum value of in until that time point.

1. What must be the values of clear and enable?

2. Does “until” include or exclude the current time point t?

3. What if reset is false from the start?

4. When are the minimum and maximum values (re)initialised and to what value? Where does
the averaging starts?

5. What if clear and enable change during reset is false?

Solution:

1. clear must be false and enable must be true.

2. “until” is interpreted to mean inclusive.

3. Then min and max are set to in.

4. Only when reset makes a transition from true to false are min and max reinitialised; At the
time reset is false, min and max are set to in; averaging starts then afresh.

10.5 Literature

[FMVD90] L. Claesen, editor. International Workshop on Applied Formal methods for
VLSI Design, Leuven, Belgium, 1990.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
11.4.96 22

11 Black-Jack Dealer

11.1 Specification

A Black-Jack dealer is a device which plays the dealer’s hand of a card game. Its inputs are go
(true/false) and card (Ace of Spades,...,2 of clubs). Its outputs are hitme, stand, and broke (all
truth-valued).

The go/hitme signals are used for a 4-cycle handshake with the operator. Cards are valued
from 2 to 10, and aces may be valued as either 1 or 11 by choice of the player. The Black-Jack
dealer is repeatedly presented with cards. It must assert stand when its accumulated score
reaches 16; and it must assert broke when its score exceeds 21. In either case the next card
starts a new game.

A design specification of the Black-Jack dealer can be found in the text book “The Art of
Digital Design” by D. Winkel and F. Prosser [WiPr80].

11.2 Implementation

The implementation of the black jack dealer has been taken from [WiPr80]. From the abstract
description of an FSM controlling the datapath, the following realization has been derived
(Fig. 11-1). The FSM has been realized by encoding the states with two flipflops A and B and
generating the next state by choosing the right signal with two 4:1 multiplexers (table 11-1).

The flipflop output signals are fed to a combinational logic to generate the controller output
signals as described in the equations from table 11-2 and table 11-3.:

State Next State B A Condition

0 Get Get 0 0 nGet_2

Add 0 1 Get_2

1 Add Use 1 0 Acecard & nAce11flag

Test 1 1 not(Acecard & nAce11flag)

2 Use Test 1 1 true

3 Test Get 0 0 nTest_3

Test 1 1 Test_3

Table 11-1: State transition table

Get_1 = S_Get & nCard_r_s

Get_2 = S_Get & Card_r_s & nCard_r_d

Get_3 = Get_2 & (Stand v Broke)

Test_1 = S_Test & ScoreGT16 & nScoreGT21

Test_2 = S_Test & ScoreGT16 & ScoreGT21 & nAce11flag = S_Test & ScoreGT21 & nAce11flag

Test_3 = S_Test & ScoreGT16 & ScoreGT21 & Ace11flag = S_Test & ScoreGT21 & Ace11flag

Table 11-2: Internal signals

Hit = Get_1

Set_Stand = Test_1

Clr_Stand = Get_2

Set_Broke = Test_2

Clr_Broke = Get_2

Table 11-3: Output signals
15.7.96 23

The second part of the dealer is BlackJack_DataPath (Fig. 11-2), including several flipflops to
hold the status information for the outside world, hit, stand, broke, to debounce the input signal
from a card ready button and to hold the ace11flag. The circuit uses the card_value input signal
to discriminate the value of an ace card from others, indicating this by setting the signal ace-
card = true. card_value is then expanded by one bit and fed to a 4:1 multiplexer, which has to
choose between D’+10’, D’-10’ and the actual card value according to table 11-4.

The multiplexer is followed by a 5-bit carry ripple adder, adding the actual score internal_score
and the output of the multiplexer. The sum internal_sum is then fed to a 5-bit register with load
and clear, which is controlled by the signals Ld_Score and Clr_Score, to produce the score.

Figure 11-1: Controller of the Black-Jack Dealer
Set_Ace11flag = S_Use

Clr_Ace11flag = Get_3 v Test_3

Ld_Score = S_Add v S_Use v Test_3

Clr_Score = Get_3

AdderS0 = S_Add

AdderS1 = Test_3

Mux input AdderS1 AdderS0 action

0 0 0 +10

1 0 1 -10

2 1 0 value

3 1 1 -

Table 11-4: Data path function

Table 11-3: Output signals
15.7.96 24

The score is then compared with D’16’ and D’21’ to generate the signals ScoreGT16 and
ScoreGT21. Both units exchange control signals as viewed in Fig. 11-3.

The waveform diagram in Fig. 11-4 shows the exchange of control signals between the
units. The signals test(0) to test(3) contain the state signals S_Get, S_Use, S_Add, S_Test. The
signal test_dp(4:0) contains the internal sum before it is taken over by the register.

The waveform diagram in Fig. 11-5 shows the behavior of the black jack dealer as a black
box. Moreover, the behavior of a algorithmical VHDL description has been added.

11.3 Status and Acknowledgments

Thanks for C.-J. Thomas for providing an implementation description.
The circuit has been originally proposed by J. Staunstrup. Most of the specification has been

directly quoted from [Stau93].

11.4 Literature

[WiPr80] D. Winkel and F. Prosser. The Art of Digital Design. Prentice-Hall Inc., 1980.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

Figure 11-2: Datapath
15.7.96 25

Figure 11-3: Control - data path communication
15.7.96 26

Figure 11-4: Waveform diagram of internal signals

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_R
E

A
D

Y

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_R
D

Y
_D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_R
D

Y
_S

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

K

/B
L

A
C

K
JA

C
K

_T
E

S
T

/R
E

S
E

T

/B
L

A
C

K
JA

C
K

_T
E

S
T

/A
D

D
E

R
_S

0

/B
L

A
C

K
JA

C
K

_T
E

S
T

/A
D

D
E

R
_S

1

/B
L

A
C

K
JA

C
K

_T
E

S
T

/A
C

E
C

A
R

D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/L
D

_S
C

O
R

E

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

R
_S

C
O

R
E

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
E

T
_A

C
E

F
L

A
G

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

R
_A

C
E

F
L

A
G

/B
L

A
C

K
JA

C
K

_T
E

S
T

/A
C

E
F

L
A

G

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
E

T
_B

R
O

K
E

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

R
_B

R
O

K
E

/B
L

A
C

K
JA

C
K

_T
E

S
T

/B
R

O
K

E

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
E

T
_S

T
A

N
D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

R
_S

T
A

N
D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
T

A
N

D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/H
IT

/B
L

A
C

K
JA

C
K

_T
E

S
T

/T
E

S
T

(3
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/T
E

S
T

(2
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/T
E

S
T

(1
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/T
E

S
T

(0
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

(3
:0

)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
C

O
R

E
G

T
16

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
C

O
R

E
G

T
21

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
C

O
R

E
(4

:0
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/T
E

S
T

_D
P

(4
:0

)0 0

10
0

10
0

20
0

20
0

30
0

30
0

’U
’

0A

00

5

05

0F

A

19

0F
10

1

1A

1A

10

4

14

1E
15.7.96 27

Figure 11-5: Blackbox simulation of the circuit

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_V
A

L
U

E
(3

:0
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_I
N

T

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
C

O
R

E
(4

:0
)

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
C

O
R

E
_D

E
C

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
A

R
D

_R
E

A
D

Y

/B
L

A
C

K
JA

C
K

_T
E

S
T

/C
L

K

/B
L

A
C

K
JA

C
K

_T
E

S
T

/R
E

S
E

T

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
T

A
N

D
_I

N
D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/S
T

A
N

D
_B

E
H

/B
L

A
C

K
JA

C
K

_T
E

S
T

/B
R

O
K

E
_I

N
D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/B
R

O
K

E
_B

E
H

/B
L

A
C

K
JA

C
K

_T
E

S
T

/H
IT

_I
N

D

/B
L

A
C

K
JA

C
K

_T
E

S
T

/H
IT

_B
E

H

0 0

10
0

10
0

20
0

20
0

30
0

30
0

40
0

40
0

50
0

50
0

60
0

60
0

0

00

5 5

5

05

A 10

15

0F
10

1 1

1A

16

10

4 4

14

20
0

00

A 10

10

0A

5 5

15

0F

A 10

19

25
15.7.96 28

12 Arbiter

This arbiter is a good example for a synchronous scalable state machine.

12.1 Introduction

The purpose of the bus arbiter is to grant access on each clock cycle to a single client among a
number of clients contending for the use of a bus (or another resource). The inputs to the cir-
cuit are a set of request signals and the outputs are a set of acknowledge sig-
nals (Fig. 12-1). Normally the arbiter asserts the acknowledge signal of the
requesting client with the lowest index. However, as requests become more frequent, the arbi-
ter is designed to fall back on a round robin scheme, so that every requester is eventually
acknowledged. This is done by circulating a token in a ring of arbiter cells, with one cell per
client. The token moves once every clock cycle. If a given client’s request persists for the time
it takes for the token to make a complete circuit, that client is granted immediate access to the
bus.

12.2 Specification

The desired properties to be verified are:

1. No two acknowledge outputs are asserted simultaneously.

2. Every persistent request is eventually acknowledged.

3. Acknowledge is not asserted without request.

By restricting N to be two (or some other small constant), the problem becomes simple yet
illustrative. Ultimately, it should be possible to verify a design where N is a parameter, i.e. do
the verification for an arbitrary N.

12.2.1 Formal specification example

Data path free control circuits may be described easily using propositional temporal logics like
CTL [ClEm81]. The above properties result in the following CTL expressions:

1.

2.

3.

12.3 Implementation

The basic cell of the arbiter is shown in Fig. 12-2. This cell is repeated times, as shown in
Fig. 12-3 for . Each cell has a request input and an acknowledge output. The grant of
cell is passed to cell , and indicates that no client of index less than or equal to are
requesting. Hence a cell may assert its acknowledge output if its grant input is asserted. Each
cell has a register T which stores a one when the token is present. The T registers form a circu-

Figure 12-1: Black box view of the arbiter

req0 … reqk 1–, ,
ack0 … ackk 1–, ,

reqk 1–

req1
req0

ackk 1–

ack1
ack0

Arbiter

AG acki ack j∧()¬
i j≠∧
AGAF reqi acki→()

i∧
AG acki reqi→()

i∧

k
k 4=

i i 1+ i
15.7.96 29

lar shift register which shifts up one place each clock cycle. Each cell also has a register W (for
“waiting”) which is set to one when the request input is asserted and the token is present. The
register remains set while the request persists, until the token returns. At this time, the cell’s
override and acknowledge outputs are asserted. The override signal propagates through the
cells below, negating the grant input of cell 0, and thus preventing any other cells from
acknowledging at the same time.

The circuit is initialized so that all of the W registers are reset and exactly one T register is
set. To achieve this one cell has a different implementation as shown in Fig. 12-4.

Fig. 12-5 and Fig. 12-6 show different simulation runs with and without request collisions.

Figure 12-2: Cell_2_plus

Figure 12-3: Arbiter with four inputs/outputs
15.7.96 30

12.4 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup [Stau93]. The implementation and
formal specification has been taken from [McMi93a, p. 40ff.]. Parts of the description are
directly quoted from there. Thanks to C.J. Thomas for providing the VHDL descriptions.

12.5 Literature

[ClEm81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic. In D. Kozen, editor, Proceedings of
the Workshop on Logics of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71, Yorktown Heights, New York, May 1981. Springer-Ver-
lag.

[McMi93a] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

[Stau93] J. Staunstrup. IFIP WG 10.2 Collection of Circuit Verification Examples, Novem-
ber 1993.

Figure 12-4: Cell_1
15.7.96 31

Figure 12-5: Example simulation with collision

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(3

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(2

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(1

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(0

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(3

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(2

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(1

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(0

)

/A
R

B
IT

E
R

T
E

S
T

/C
L

K

/A
R

B
IT

E
R

T
E

S
T

/R
E

S
E

T

0 0

40
0

40
0

80
0

80
0

15.7.96 32

Figure 12-6: Example simulation without collision

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(3

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(2

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(1

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(0

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(3

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(2

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(1

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(0

)

/A
R

B
IT

E
R

T
E

S
T

/C
L

K

/A
R

B
IT

E
R

T
E

S
T

/R
E

S
E

T

/A
R

B
IT

E
R

T
E

S
T

/C
H

E
C

K
(4

)

/A
R

B
IT

E
R

T
E

S
T

/C
H

E
C

K
(3

)

/A
R

B
IT

E
R

T
E

S
T

/C
H

E
C

K
(2

)

/A
R

B
IT

E
R

T
E

S
T

/C
H

E
C

K
(1

)

/A
R

B
IT

E
R

T
E

S
T

/C
H

E
C

K
(0

)0 0

40
0

40
0

80
0

80
0

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(3

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(2

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(1

)

/A
R

B
IT

E
R

T
E

S
T

/R
E

Q
U

E
S

T
(0

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(3

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(2

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(1

)

/A
R

B
IT

E
R

T
E

S
T

/A
C

K
N

O
W

L
E

D
G

E
(0

)

/A
R

B
IT

E
R

T
E

S
T

/C
L

K

/A
R

B
IT

E
R

T
E

S
T

/R
E

S
E

T

0 0

40
0

40
0

80
0

80
0

15.7.96 33

15.7.96 34

13 Rollback Chip

This circuit is a special processor of non-trivial size.

13.1 Specification

The Rollback chip is a co-processor for speeding up a distributed simulation, the functionality
is described in the paper [GoFu93]. This paper also presents several refinements and a formal
verification of these.

13.2 Implementation

currently missing

13.3 Status and Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93].

13.4 Literature

[GoFu93] G. Gopalakrishnan and R. Fujimoto. Design and verification of the rollback
chip using HOP: A case study of formal methods applied to hardware design.
ACM Transactions on Computer Systems, 11(2):109–145, May 1993.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

15.7.96 35

14 The TAMARACK Processor

This circuit has been one of the first microprocessors, which have been formally verified. It
may be used to demonstrate the problems, arising in the area of microprocessor verification.

14.1 Specification

Tamarack is a simplified microprocessor which has been specified and verified formally, this
example is described in [Joyc88].

14.2 Implementation

currently missing

14.3 Status and Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93].

14.4 Literature

[Joyc88] J.J. Joyce. Formal verification and implementation of a microprocessor. In G.
Birtwistle and P.A Subramanyam, editors, VLDI Specification and Synthesis,
pages 129–157. Kluwer Academic Publishers, 1988.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

15 Stop-Watch

It has been pointed out by Mike Fourman that this example illustrates the need for temporal
abstraction which might be treated differently than the data abstraction found in the arithmetic
examples like the N-bit adder (section 9) [Four90].

15.1 Specification

Consider designing a digital stopwatch with a three digit, seven-segment display (to read tens
of seconds, seconds and tenths of seconds), and two control buttons, “reset” and “start/stop”.
When the reset button is pressed the display is cleared. The start/stop button is used to start and
stop the clock. The design is driven by an 1MHz external clock signal. The stop watch is con-
structed as a synchronous design with one iteration in each clock cycle.

15.2 Implementation

The stopwatch basically consists of 3 synchronous, self starting counters (Fig. 15-1) which
generate output data tenths_out, seconds_out, tens_out. For counting the tens of seconds, o
modulo 6 counter is used, for counting seconds and tenths of seconds, modulo 10 counters are
required. (Fig. 15-2, Fig. 15-3).

Figure 15-1: StopWatchCount

Figure 15-2: Mod_6_Counter

Figure 15-3: Mod_10_Counter
15.7.96 36

Because of the 1 Mhz clock input, there must be a clock reducing device, build of modulo
10 counters, to generate an internal clock signal (Fig. 15-4).

In accordance to the specification, a combinational logic is provided to generate the output sig-
nals for a 7 segment display out of the data vectors (Fig. 15-5). The overall structure is shown
in Fig. 15-6. Fig. 15-7 shows the waveform of the counting device in comparison with a behav-
ioral description of the stopwatch.

15.3 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanks to C.-J. Thomas for generating the VHDL descriptions.

15.4 Literature

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.

[Four90] M. Fourman. Formal system design. In J. Staunstrup, editor, Formal Methods
for VLSI Design, pages 191–236. North-Holland/Elsevier, 1990.

Figure 15-4: StopWatchReduce
15.7.96 37

Figure 15-5: Unit for 7 Segment Display
15.7.96 38

Figure 15-6: Overall Structure of Stop Watch
15.7.96 39

Figure 15-7: Example Waveforms

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
T

A
R

T
S

T
O

P

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/C
L

K

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
T

H
S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
E

C
O

N
D

S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
S

_1
(2

:0
)

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
T

H
S

_1
(3

:0
)

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
E

C
O

N
D

S
_1

(3
:0

)0 0

64
00

0

64
00

0

12
80

00

12
80

00

U U U

0

00

0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9

0

0

9

0 0

1 1

2 2

1 1

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
T

A
R

T
S

T
O

P

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/C
L

K

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
T

H
S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
E

C
O

N
D

S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
S

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
S

_1
(2

:0
)

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/T
E

N
T

H
S

_1
(3

:0
)

/S
T

O
P

W
A

T
C

H
T

E
S

T
B

E
N

C
H

/S
E

C
O

N
D

S
_1

(3
:0

)0 0

64
00

0

64
00

0

12
80

00

12
80

00

U U U

0

00

0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9

0

0

9

0 0

1 1

2 2

1 1
15.7.96 40

16 GCD - Greatest Common Divisor

Although being a small and worn out example, this circuit reveals some interesting verification
problems: data dependent loops and data abstraction from bits and bit vectors to natural num-
bers. Moreover, if a more abstract specification is used (see Section 16.2.2 “High-Level Speci-
fication”) then even simple program verification tasks arise.

16.1 Introduction

The circuit simply computes the greatest common divider (GCD)of two natural numbers, given
as bit vectors of fixed bit width.

16.2 Specification

In the following, two different specifications are given. The first “low level” version only
requires an implementation verification, namely that the given algorithm to compute the GCD
is correctly implemented. The second specification is based on the mathematical definition of
the GCD and hence requires some sort of “program verification”, i.e. is has to be shown that
the implemented algorithm really computes the GCD.

The circuit is based on a simple handshake protocol: It starts running after the signal start
has been set to true, signalling that new input values are available at the inputs A and B. The lat-
ter carry binary encoded natural numbers. The stop signal indicates the termination of a com-
putation.

16.2.1 Low-Level Specification

Given two natural numbers A and B (of fixed bit width). Compute the natural number GCD
according to the algorithm of table 16-1.

16.2.2 High-Level Specification

Given two natural numbers A and B (of fixed bit width). Compute the natural number GCD
with the following property:

1 X1:= Max(A,B);

2 X2:= Min(A,B);

3 repeat

4 M:= X1 MOD X2;

5 if then

6 begin

7 X1:= X2;

8 X2:= M;

9 end

10 until (M=0)

11 GCD:= X2

Table 16-1: Computation of the GCD of two numbers A and B

M 0≠()

Max g g N∈()and g divides A without rest and G divides B without rest(){ }()
15.7.96 41

16.3 Implementation

The implementation follows the specified algorithm (table 16-1). It is divided into control and
data path. The data path computes (without controller interaction) the maximum of two n-bit
vectors, to be interpreted as unsigned integers. Afterwards, the iteration of the algorithm is per-
formed.

There are 4 signals between controller and data path. StoreComp activates the storage of
the minimum/maximum sorted values in the data path. The sorting is performed by a compara-
tor (Fig. 16-1).

SelectLoopInit determines, if there will be an additional loop computation or if new values
are used for the loop. StoreLoop activates a register assignment, if the computation has not
finished. The end of a computation is determined by eq0. All lines are active high.

16.3.1 Controller

The controller is specified by table 16-2. Start resets the controller, Stop signals the end of a
computation. The FSM uses 3 states: 00 is the starting state after Start = 1. In state 01 the val-
ues of X1 and X2 are stored. Dependent on eq0, the FSM remains in 01 or jumps to the final
state 10. States are stored in 2 D-flip-flops (q0, q1). State 11 is unreachable.

Using table 16-2, the transition functions of table 16-3 result.

a. “-” denotes don’t cares

Figure 16-1: Controller and data path

Start eq0
state

(q1q0)t
next state
(q1q0)t+1 StoreComp StoreLoop SelectLoopInit Stop

0 -a 00 01 0 1 0 0

0 0 01 01 - 1 0 0

0 1 01 10 - 0 0 1

0 - 10 10 - 0 0 1

1 - -- 00 1 1 1 0

0 - 11 10 - 0 0 1

Table 16-2: Controller transition table

(Start q1) (Start eq0)

(Start) (Start eq0)

StoreComp = Start

Table 16-3: FSM transition functions

q1
t 1+ d1

t= = ∨ q0

q0
t 1+ d0

t= = q1q0 ∨ q1
15.7.96 42

An implementation of the controller is given in Fig. 16-2.

16.3.2 Data Path

The realization of the data path need the following modules: 4 n-bit multiplexer, 4 n-bit regis-
ters, 1 n-bit comparator, 1 n-bit divider and 1 n-bit “zero”-tester. These are connected as shown
in (Fig. 16-1).

16.3.3 Simulations

In Fig. 16-3 two example computations are given. The GCD of 1510 (F16) and 2 (result 1) and
the GCD of 1410 (E16) and 1010 (A16) with result 2 are computed. Busses named GCD<3:0>
and Div<7:0> carry divisor and dividend. Loop iterations occur on value transitions on these
busses. The first computation needs 4 and the second computation needs 3 iterations.

StoreLoop = Start

SelectLoopInit = Start

Stop =

Figure 16-2: Controller realization

Table 16-3: FSM transition functions

d0
t∨

d1
t

15.7.96 43

To initialize the circuits, the Start and input signals have to be applied for a minimum dura-
tion of 2 clock cycles.

Figure 16-3: Waveforms for two GCD computations

/G
C

D
T

B
/R

E
S

E
T

_N

/G
C

D
T

B
/S

T
A

R
T

/G
C

D
T

B
/S

T
O

P
_B

E
H

/G
C

D
T

B
/S

T
O

P
_S

T
R

U
C

/G
C

D
T

B
/C

L
K

/G
C

D
T

B
/A

(3
:0

)

/G
C

D
T

B
/B

(3
:0

)

/G
C

D
T

B
/C

(3
:0

)

/G
C

D
T

B
/A

_I
N

T

/G
C

D
T

B
/B

_I
N

T

/G
C

D
T

B
/C

_I
N

T

0 0

40
0

40
0

80
0

80
0

0 0 0 0

15 2

0

0

13

F 2

11

2

9
7

5
3

1

0 0

0

0 0

1

/G
C

D
T

B
/R

E
S

E
T

_N

/G
C

D
T

B
/S

T
A

R
T

/G
C

D
T

B
/S

T
O

P
_B

E
H

/G
C

D
T

B
/S

T
O

P
_S

T
R

U
C

/G
C

D
T

B
/C

L
K

/G
C

D
T

B
/A

(3
:0

)

/G
C

D
T

B
/B

(3
:0

)

/G
C

D
T

B
/C

(3
:0

)

/G
C

D
T

B
/A

_I
N

T

/G
C

D
T

B
/B

_I
N

T

/G
C

D
T

B
/C

_I
N

T

12
00

12
00

16
00

16
00

0 0 0 0 1

E A 14 10 0

0

4

A
4

2

0 0

0

0 0

2

15.7.96 44

16.4 Status and Acknowledgments

The GCD circuit is a variant of a high-level synthesis benchmark example [VRMK91]. The
circuit presented here uses a ‘modulo” operation instead of repeated subtractions in order to
put more emphasis on arithmetic. However, for uniformity reasons in a future release the algo-
rithm may be adapted to the one used in [VRMK91].

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

16.5 Literature

[VRMK91] R. Vemuri, J. Roy, P. Mamtora, and N. Kumar. Benchmarks for high-level
synthesis. Technical Report ECE-DDE-91-11, Laboratory for Digital Design
Environments, ECE Dept., University of Cincinnati, Ohio, USA, November
1991.
15.7.96 45

17 Multiplier

Although multipliers are usually purely combinational circuits, they are known to represent a
class of hard to verify circuits. This is due to the high degree of dependability of the Boolean
variables from each other (i.e. implementations have a high degree of connectivity between the
gates). For this reason representations for Boolean functions like ROBDDs [Brya86] fail to
provide efficient representations for multipliers, leading to problems when verifying multipli-
ers of large bit width.

Moreover, the verification must perform a data abstraction, since the specification is given
in terms of natural numbers and the implementation is based on bit vectors.

17.1 Specification

Given two natural numbers A and B (of fixed bit width). Compute the natural number P with
the following property

(17-1)

17.2 Implementation

17.2.1 Algorithm

The multiplication of two unsigned integers, represented as bit vectors A = a020 + a121 +... +
an-12n-1 and B= b020+ b121+...+ bn-12n-1 may be described by equation 17-2 and equation 17-3
in case of n = 4.

(17-2)

 = (a0b0)+2(a1b0+a0b1)+4(a2b0+a1b1+a0b2)+8(a3b0+a2b1+a1b2+a0b3)
+16(a3b1+a2b2+a1b3)+32(a3b2+a2b3)+64(a3b3) (17-3)

17.2.2 Global Realization Architecture

Looking at equation 17-2, it is apparent, that the n2 product terms (16 in equation 17-3) are all
used only once. This leads to a hierarchical implementation, where first the product terms are
computed, which are then fed into n2 full adders. Finally, the resulting carry values are taken
care of by a serial addition (Fig. 17-1).

In Fig. 17-1, 16 (n2 with n = 4) multiplier base modules are used, which compute one product
term and then perform an addition with carry. The module is specified in table 17-1 and real-
ized as given in Fig. 17-1.

17.2.3 Detailed Description

In this section, the implementation is described at a more detailed level.

S =

COUT =

=

Table 17-1: Specification of the multiplier base module

P A B⋅=

P A B⋅ ai2
i
B

i 0=

n 1–

∑ 2
i

aib j2
j

j 0=

n 1–

∑
 
 
 

i 0=

n 1–

∑= = =

P A B⋅=

ab() c CIN⊕()⊕

abc abCIN cCIN∨ ∨

ab c∧() ab CIN∧() c CIN∧()∧ ∧()
15.7.96 46

Figure 17-1: 4 Bit Multiplier
15.7.96 47

First the product terms a0b0 to an-1b0 are computed, using the modules of figure Fig. 17-1.
The inputs c and CIN are set to 0. The result of multiplying the least significant bits a0b0 is
available at the global output of the circuit after computation.

In a second step, the product terms a0b1 to an-1b1 are computed. The input c of a base cell
which computes aib1 is set to aib0 (the result of the first computation).The
input c of the cell, which computes an-1b1 is set to 0. Input CIN of all modules is set to the carry
of the computation of ai-1b0. Now the computation of the second least significant bit of P is fin-
ished and the results, available at the outputs S, are needed to proceed further.

In the n-th step, the circuit computes the product terms a0bn-1 to an-1bn-1 using n multiplier
base modules. The input c of the module which gets the most significant bits for computation
(an-1 and bn-1) is set to 0 again. All other modules get the result of the previous step via c. Input
CIN of the cell computing aibn-1 gets the carry of the cell computing ai-1bn-2. The result of the
cell computing the least significant bit (a0bn-1) is available at the primary outputs of the whole
circuit. The outputs S of all other cells is connected to inputs b of a full adder. Hence n-l full
adders are needed. The second input a of each adder is connected to the carry out of the multi-
pliers base module one position left (with regard to the module providing the signal for the
adder input b). CIN of the rightmost adder is set to 0. All outputs COUT are connected to the
inputs CIN of those full adders computing the next higher significant bit of the product P. The
lowest row of the combinational circuit consists of a ripple-carry adder. The most significant
bit of P results Or-ing COUT of the rightmost full adder and COUT of the rightmost multiplier cell
placed above the adder.

Figure 17-2: Multiplier base module (MULTcell in Fig. 17-1)

0 i n 2–≤ ≤()
15.7.96 48

A simulation can be found in Fig. 17-3.

17.3 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

17.4 Literature

[Brya86] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

Figure 17-3: Simulation of the Multiplier

/M
U

L
T

T
B

/A

/M
U

L
T

T
B

/B

/M
U

L
T

T
B

/P

/M
U

L
T

T
B

/A
V

E
C

(3
:0

)

/M
U

L
T

T
B

/B
V

E
C

(3
:0

)

/M
U

L
T

T
B

/P
V

E
C

(7
:0

)0 0

40 40

80 80

12
0

12
0

16
0

16
0

U U U
U

15 15 22
5

F F E
1

10 12 12
0

A C 78

8 7 56 8 8 40
15.7.96 49

18 Divider

A divider is mainly introduced for having an additional purely combinational example besides
a multiplier and because it is used in other verification examples like the GCD.

Moreover, the verification must perform a data abstraction, since the specification is given
in terms of natural numbers and the implementation is based on bit vectors.

18.1 Specification

Given two natural numbers, the dividend and the divisor , calculate the quotient and
the rest such that is the largest natural number and is a number with such that

(18-1)

18.2 Implementation

18.2.1 Algorithm

The implementation closely follows the “restoring cellular array divider”, presented in
[Hwan79] (pp. 264ff., see also [Haye88]). As the multiplier, presented in section 17, it is based
on a regular, cell based design.

In contrast to other implementations, this design performs two operations at each computa-
tion cycle. The first subtracts the divisor for the dividend, staring with the most significant bit.
If the subtraction results in a negative difference, a bit 0 will be produced for the quotient. The
second operation is a restoring addition, if a negative difference occurred. The latter operation
produces parts of the rest R. Each computation cycle is finished by a left-shift. If a positive
result was achieved by the substraction, then a 1 bit is generated for the quotient and no addi-
tion is performed.

18.2.2 Global Realization Architecture

The circuit is built by a iterative cellular array as depicted in Fig. 18-1. Each cell DIVcell uses
a controlled subtraction with 4 inputs and outputs.

Figure 18-1: Divider

N D Q
R Q R R D<

N D Q⋅ R+=

DIVoutputq0

DIVcellDIVcellDIVcell

DIVcellDIVcellDIVcell

DIVcellDIVcellDIVcell

n4 n3 n2

n1

n0

0

0

0

d2 d1 d0

r2 r1 r0

DIVoutput

n5

q2

DIVoutputq1
15.7.96 50

The signals of one DIVcell module are given in Fig. 18-2 and are specified in table 18-1. The
signals DivOut and SubOut are omitted in the table, since they are identical to DivIn and
SubIn, respectively.

The signale of a DIVoutput cell are given in Fig. 18-3 and are specified in table 18-2.

The inputs Rem, DivIn and BorrowIn are used for rest, divisor and carry input. BorrowOut
denotes the carry output and SubIn is a control signal for all cells of the respective row. The
signal Dif for the computed rest output realizes a function as shown in table 18-1.

Figure 18-2: Signals of the divider base module DIVcell

BorrowOut = (Rem DivIn) (Rem BorrowIn) (DivIn BorrowIn)

Dif = (Rem SubIn) (Rem DivIn BorrowIn) (Rem DivIn BorrowIn)

(Rem DivIn BorrowIn SubIn) (Rem DivIn BorrowIn SubIn)

Table 18-1: Specification of the divider base module

Figure 18-3: Signals of the divider base module DIVcell

Y = A B

nY = Y

Table 18-2: Specification of the divider interface module DIVoutput

Dif = Rem DivIn BorrowIn, if SubIn = 0

Dif = Rem, if SubIn = 1

Table 18-3: Specification of the rest computation

DIVcell

DivOut

SubIn

BorrowOut

DivIn Rem

BorrowIn

SubOut

Dif

∨ ∨

∨ ∨
∨

∨

DIVoutput

A

nYY
B

¬∨

¬

⊕ ⊕
15.7.96 51

The realization of a cell DIVcell is given in Fig. 18-4.

18.3 Detailed Implementation Description

For building a divider with an -bit dividend and a -bit we need cells. The
 rows of the array are shifted one position right to each other and consist of cells

each. In Fig. 18-1 there are shown 4 unsigned bit vectors: the dividend , the
divisor , the quotient and the rest .

The input DivIn (divisor bit in) of the first row the appropriate bit of the divisor is applied,
where the leftmost cell gets the most significant bit. Input BorrowIn (borrow in) of the i-th cell
is connected to the output BorrowOut (borrow out) of the (i-1)-th cell . Input
BorrowIn of cell 0 is set to 0. Output BorrowOut of cell n-1 is connected to an inverter. The
inverted signal is “ORed” with most significant bit of the dividend. It is available as a global
output and defines the MSB of the quotient. This signal is also inverted again and fed to input
SubIn (subtract control in) of the (n-1)-th cell. Output SubOut (subtract control out) of the i-th
cell is connected to SubIn of the (i-1)-th cell. Output SubOut of the 0-th cell remains uncon-
nected. All outputs DivOut (divisor bit out) of the cells at a particular row are connected to the
inputs DivIn (divisor bit in) of the next lower row, according to their indices.

Output Dif (difference) of the (n-1)-th row is OR-connected with the inverted BorrowOut
output of the (n-1)-th cell of the next lower row. All outputs Dif of the cells n-2 to 0 are con-
nected to the inputs Rem (remainder bit) of the cells n-1 to 1of the next lower rows. The inputs
of Rem of row 0 get the dividend (MSB left side).

Figure 18-4: Divider base module

&

&

&

& & & & &
1

1

1

1

Rem

BorrowIn

BorrowOut

DivIn

Dif

SubIn

DivOut

SubOut

1≥

1≥

m n m n–()n
m n–() n

N n5 … n0, ,{ }=
D d2 … d0, ,{ }= Q q2 … q0, ,{ }= R r2 … r0, ,{ }=

0 i< n 1–≤()
15.7.96 52

Besides input DivIn and Rem, all rows are connected as described above for the first row.
The j-th row gets a signal via DivIn from output DivOut of the (j-1)-th row and via Rem a sig-
nal from the output Dif . Input Rem of the 0-th cell of row j gets the j+1-high-
est bit of the dividend. Via the outputs Dif of the lowest row the rest of the division is
available.

Moreover, every row provides a bit of the quotient, according to its row index j and together
with the OR-connected and inverted signal of BorrowOut of the (n-1)-th cell.

The implementation of a base module DIVcell, the DIVoutput cell and a design using a 6 bit
dividend and 3 bit divisor is shown in Fig. 18-5, Fig. 18-6 and Fig. 18-7, respectively.

Figure 18-5: Divider base module designed in SYNOPSYS

Figure 18-6: Output Cell DIV output

0 j m n–≤<()
15.7.96 53

Fig. 18-8 shows the simulation waveform..

Figure 18-7: Divider designed in SYNOPSYS
15.7.96 54

18.4 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

Thanks to G. Janssen from Eindhoven University for pointing out numerous flaws in the
first version of this example.

Figure 18-8: Simulation waveform

/D
IV

T
B

/N

/D
IV

T
B

/D

/D
IV

T
B

/Q

/D
IV

T
B

/R

/D
IV

T
B

/B
IN

_N
(5

:0
)

/D
IV

T
B

/B
IN

_D
(2

:0
)

/D
IV

T
B

/B
IN

_Q
(2

:0
)

/D
IV

T
B

/B
IN

_R
(2

:0
)0 0

40 40

80 80

12
0

12
0

16
0

16
0

0 0 7 0

00 0 7 0

15 7 1 0F 7 1

10 5 0 0A 5 0

5 2

2

05 2

2

1 3 0

1

01 3 0

1

15.7.96 55

18.5 Referencee

[Fram92] CADENCE Design Framework II version 4.2a. Reference Manual, February
1992.
15.7.96 56

19 FIFO

The FIFO storage element has been chosen, since its implementation is completely asynchro-
nous and does not contain any arithmetic or other computational elements. Thus it is well
suited to check verification approaches for their asynchronous capabilities. On the other hand,
the circuit is specified in a generic way: it may contain n storage elements.

19.1 Specification

The specification of the FIFO element is quite simple and follows the first-in-first-out defini-
tion.

Using the input signals given in Fig. 19-1, the following operations should be possible, where
“values” denote bit vectors of length m:

1. Input a value via DataIn, provided that MasterReset = 0 and InputReady = 1.

2. Output a value via DataOut, provided that MasterReset = 0 and OutputReady = 1.

3. Reset the FIFO element with MasterReset = 1.

Hence an overflow of the n-place Fifo queue is avoided, if no input is accepted if it is com-
pletely filled, i.e. InputReady = 0

19.2 Implementation

The implementation is taken from [Schm78]. It is organized using an asynchronous “bubble
through” mechanism: input data “fall” automatically to the next free position. It is realized
using an asynchronous shift register (Fig. 19-2). Every stage of the shift register consists of a
register, i.e. m D-flip-flops, responsible for storing the m bit vectors. They store data, if a rising
edge is applied to their clock signal. Below the shift register cells there is a RS-flip-flop, which
indicates, if the respective register contains data (Q =1) or is empty (Q = 0).

Fig. 19-3 and Fig. 19-4 show a realization of one stage and a 4 bit realization, respectively.
Fig. 19-5 shows the simulation of various input and output operations of the FIFO circuit.

19.3 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design system
[Fram92].

19.4 Literature

[Schm78] V. Schmidt. Digitalschaltungen mit Mikroprozessoren. B.G. Teubner Verlag,
Stuttgart, 1979. (in german).

Figure 19-1: Black box view of the FIFO element

m
DataIn

ShiftIn

ShiftOut

MasterReset

m
DataOut

InputReady

OutputReady

FIFO
15.7.96 57

Figure 19-2: Realization of a m bit FIFO element with n places

Figure 19-3: Design of one stage of the FIFO element

Figure 19-4: Design of a 4-bit FIFO element

D Q

nREG

D Q

nREG

D Q

nREG

S

R

Q

Q

RSFF
S

R

Q

Q

RSFF

S

R

Q

Q

RSFF
& & &

DataIn

ShiftIn

OutputReady

ShiftOut

MasterReset

InputReady

DataOut

•••

•••

•••

/ / /
m m m

• • •

••

•

position 0 position 1 position m-1

Clock Pulse

• •
15.7.96 58

Figure 19-5: Example simulation of the FIFO circuit

F
IF

O
T

E
S

T
B

E
N

C
H

S
h

e
e

t
1

 o
f

1

/F
IF

O
T

E
S

T
B

E
N

C
H

/D
A

T
A

IN
(3

:0
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/D
A

T
A

O
U

T
(3

:0
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/S
H

IF
T

IN

/F
IF

O
T

E
S

T
B

E
N

C
H

/S
H

IF
T

O
U

T

/F
IF

O
T

E
S

T
B

E
N

C
H

/M
A

S
T

E
R

R
E

S
E

T

/F
IF

O
T

E
S

T
B

E
N

C
H

/I
N

P
U

T
R

E
A

D
Y

(0
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/O
U

T
P

U
T

R
E

A
D

Y
(0

)

/F
IF

O
T

E
S

T
B

E
N

C
H

/I
N

P
U

T
R

E
A

D
Y

_
B

E
H

/F
IF

O
T

E
S

T
B

E
N

C
H

/O
U

T
P

U
T

R
E

A
D

Y
_
B

E
H

/F
IF

O
T

E
S

T
B

E
N

C
H

/D
A

T
A

IN
IN

T

/F
IF

O
T

E
S

T
B

E
N

C
H

/D
A

T
A

O
U

T
IN

T

/F
IF

O
T

E
S

T
B

E
N

C
H

/M
E

M
O

R
Y

F
L

A
G

(3
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/M
E

M
O

R
Y

F
L

A
G

(2
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/M
E

M
O

R
Y

F
L

A
G

(1
)

/F
IF

O
T

E
S

T
B

E
N

C
H

/M
E

M
O

R
Y

F
L

A
G

(0
)0 0

1
0

0

1
0

0

2
0

0

2
0

0

3
0

0

3
0

0

4
0

0

4
0

0

5
0

0

5
0

0

6
0

0

6
0

0

7
0

0

7
0

0

8
0

0

8
0

0

’U
’

’U
’

’U
’

’U
’U

-2
1

4
7

4
8

3
6

4
8 0

U

3 3

0 0

E 1
4

0 0

3 3

A 1
0

0 0

E 1
4

8 8

0 0

5 5

A 1
0

8

8

5

5

0

0

0

0

15.7.96 59

20.1.1 General Spec ficat on

In an associative memory (also called “content addressable memory”) each stored data word
can be retrieved by using characterizing parts of the data. E.g. having stored persons together
with their birth dates, when applying a date it is possible that more than one person is stored
with this date. All of them are “matched” and afterwards “selected”. This matching and selec
tion process is a key part of most associative memories. The data units to be stored are fixed
length words. The black box view of the memory is given in Fig. 20-1.

DataIn

Mask

DataOut

End1

m

m

m

AddressIn
n

Store

WriteEnable

i 0 n 1–,[]∈

instant t+1 (rising edge) the result is available at DataOut and the signal End is set. To start a
new request, the controller has to be reset with Reset = 1. Using an associative memory, the
comparison of data with other words can be performed in O(1).

20.2 Implementation

20.2.1 General architecture

The structure of a simple word-organized associative memory is shown in Fig. 20-2. Each sub-
part of such a word may be chosen as a key, i.e. as a search pattern. The bits relevant for a
search are marked in the mask register and are compared simultaneously with all stored words.
Every matching entry results in a match signal. The “select circuit” then chooses exactly one
matching word and produces a “select” signal to retrieve the word from the storage cell array
to be written into the output register. There are different strategies for choosing the word like
“first hit” etc.

The main module in Fig. 20-2 is the “storage cell array” AssocMemArray. Its black box view
is shown in Fig. 20-3 and allows the following operations:

1. Read in a data word, consisting of an input field of length m (read in at DataIn) and a key
field of length n (read in at Mask).

2. Search for data using a key fed in at Mask. Match indicates, if there have been found one or
more matching entries.

3. Read out a matching data word via DataOut, using a key at Mask and a selected row (using
Select).

Figure 20-2: Associative memory with fixed word-length

Figure 20-3: Black box view of AssocMemArray

n

input register

mask register

AssocMemArray

output register

Mask

select
circuit

match

select

DataIn

Mask

DataOut

Match

m

n

m

m
AssocMemArray

Select
n

15.7.96 61

20.2.2 Implementation of one cell of AssocMemArray

Since all words have to be compared with the key, each bit cell AssocMemCell of AssocMe-
mArray needs a compare circuit. The realization of one cell is shown in Fig. 20-4.

The basic storage element is a D flip-flop. An NXOR-gate performs the actual comparison
between the flip-flop content and the input data DataIn.The output of the NXOR is AND-con-
nected with the inverted signal Mask to form the match signal Match. Hence a match only takes
place, if the cell is not masked. To read out the flip-flop the select signal Sel is AND-connected
with its content to get the data output DataOut. To store data in the flip-flop, its clock input is
AND-connected with the select signal Sel, write-enable signal WriteEnable and the inverted
mask signal Mask.

20.2.3 Implementation of a Storage Cell Array (AssocMemArray)

Given a mask and an input word of length . For a memory, cells of type Assoc-
MemCell (Fig. 20-4) are necessary. Cell in the i-th row and j-th column is connected as
follows . Input WriteEnable is connected to a global WriteEn-
able. Data input DataIn is connected to the i-th least significant bit of the input word, mask
input Mask is connected to the i-th least significant bit of the mask word. Select input Sel is
connected to the j-th lowest significant bit of the select word. Data output DataOut and match
output Match are OR-connected with all respective outputs of the j-th row, -th column

20.2.4 Implementation of the whole Associative memory (AssocMemCirc)

The whole associative memory is shown in Fig. 20-5.

To perform read and write at definite time instances, three -bit register for data, mask and
result as well as a -bit register for the address are needed. Read of a data word (mask word)
is done via DataIn (MaskIn) with a storage signal Store = 1 and a rising edge of Clock. Anal-
ogously, an address word is read via AddressIn in the address register.

Data input and mask input are connected with the outputs of the data register and mask reg-
ister. The -bit “match” output of the associative memory is fed into a “select circuit”. The lat-
ter is being realized by a combinational circuit, which selects exactly one hit, if more than one
hit has been achieved. The -bit output is fed into the “1” input of a multiplexer. The multi-
plexer is selected via SelectAdrMat. The -bit output of the multiplexer is fed into the
address input of the associative memory. To be able to read out data at a definite time instant, a
control circuit is necessary. Here, SelectAdrMat is AND-connected with the inverted signals
Store, WriteEnable and Reset and fed into the set input of the RS-flip flop.

The Reset line is connected to the reset input. The state of the RS flip flop thus indicates,
whether data have to be stored in the output register (state = “1”). The flip flop state also pro-
vides the End signal. The result of the search process is available at DataOut.

A memory is given in Fig. 20-7.
As an example, the data as given in table 20-2 is written into the memory. Next, the word to

be fetched is written into the memory as 0001. The search mask is set to 1110, such that only

Figure 20-4: One cell of the associative memory (AssocMemCell)

m n×

m m n× m n⋅
i j,

0 i m 1–≤ ≤ 0 j n 1–≤ ≤,()

i

n
m

n

n
n

4 4×
15.7.96 62

the rightmost bit is used for the search. This leads to a search result 0011, which equals the
content of the 4th cell.

The simulation result of this examples is shown in Fig. 20-8 (the suffix “1” denotes signals
of the structural description, “2” denotes signals of the behavioral description).

20.3 Status and Acknowledgments

The presented associative memory element is currently used to get a larger hierarchical circuit,
which computes the maximum of all stored numbers. This use of the circuit will be added to
this description or will constitute a separate verification benchmark in the near future.

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

20.4 Literature

[Haye88] J.P.Hayes. Computer Architecture and Organization. McGraw-Hill, 2. edition,
1988.

[Koho77] T. Kohonen. Associative Memory. Communication and Cybernetics. Springer
Verlag, 1977.

Figure 20-5: Whole associative memory (AssocMemCirc)

Figure 20-6: AssocMemCntrl of Fig. 20-5
15.7.96 63

Figure 20-7: Realization of a memory (AssocMemArray of Fig. 20-5)4 4×
15.7.96 64

cell # data (binary)

1 0110

2 1000

3 left empty

4 0011

Table 20-2: Example Data written into the memory
15.7.96 65

Figure 20-8: Simulation waveform of the example

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/S

T
O

R
E

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/S

E
L

E
C

T
A

D
R

M
A

T

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/R

E
S

E
T

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/W

R
IT

E
E

N
A

B
L

E

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/C

L
O

C
K

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/E

N
D

1

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/E

N
D

2

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/D

A
T

A
IN

(3
:0

)

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/D

A
T

A
O

U
T

1(
3:

0)

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/D

A
T

A
O

U
T

2(
3:

0)

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/M

A
S

K
IN

(3
:0

)

/A
S

S
O

C
M

E
M

_T
E

S
T

B
E

N
C

H
/A

D
D

R
E

S
S

IN
(2

:0
)0 0

40
0

40
0

80
0

80
0

6 1

8 2

3 4

0

U

U

3

1

3

0

E

0

15.7.96 66

21 1Syst (Filter)

21.1 Introduction

The filter circuit of this section and the matrix multiplier of section 22 have been chosen as wit-
nesses of one-dimensional and two-dimensional systolic architectures. The notion of “systolic
arrays” has first been introduced by Kung and Leierson [KuLe78]. Basics on these specialized
regular architectures can be found in [Kung82]. The circuit to be presented here is a filter ele-
ment also taken from [Kung82].

Systolic arrays require additional efforts for specifying the intended behavior, since here
data have to be applied at different times in a special order to achieve a correct functioning of
the circuit. Moreover, more-dimensional systolic arrays are a good illustration of more-dimen-
sional generic circuits.

21.2 Specification

The circuit processes a stream of input values , , . These
input values have to be multiplied with a list of weights , , .
Each of the resulting output stream is computed as in equation 21-
1.

(21-1)

An example computation for and is given in equation 21-2.

(21-2)

In the implementation given below, first the weights are fed serially into the input
StreamIn. After weights have reached their respective position in the cells, they are stored
by setting StoreWeight to true. Afterwards the input values are fed serially into the StreamIn.
The values are computed and serially shifted out on output ResultOut.

This specification can be verified for concrete values of weights or as a generic circuit.

21.3 Implementation

21.3.1 General architecture

The implementation is realized using overlapping additions and multiplications. In the first
cycle the input value is multiplied with the weight stored in the respective stage. In the sec-
ond cycle this product is to be added to the now available intermediate result . In order to
achieve this, the input values must be separated by two clock ticks (Fig. 21-1).

During an initialization phase the weights are loaded into the stages by using the first
input values of the input stream as weights. In the following, inputs values are treated as n bit
integers and output values as m bit integers (Fig. 21-2).

Let a weight and an internal variable. If there is a rising edge at , then
and is computed. If there is a rising edge at , then is computed.

x1 x2 … xn, , ,{ } xi N∈ 1 i n≤ ≤
w1 w2 … wk, , ,{ } w j N∈ 1 j k≤ ≤

yi y1 y2 … yn 1 k–+, , ,{ }

yi w1xi w2xi 1+ … wkxi k 1–++ + +=

k 3= n 5=

y1 w1x1 w2x2 w3x3+ +=

y2 w1x2 w2x3 w3x4+ +=

y3 w1x3 w2x4 w3x5+ +=

wi
k k

yi
k

t1
t2 yi

xi

w j k

w z t1 xt 1+ x
t

=
z x

t
w⋅= t2 y

t 1+
z y

t
+=
15.7.96 67

21.3.2 Implementation of one stage

The stage has two global inputs StreamIn<n-1:0> and ResultIn<m-1:0>. Input
StreamIn<n-1:0> is fed via a 1:2 n bit demultiplexer into two n bit registers. Using the control
signal SelectWgtStr of the demultiplexer either the register for storing the weight
(SelectWgtStr = 0) or the register for the input value (SelectWgtStr = 1) is selected. Both
register store their respective inputs, if StoreWgt = 1 (StoreStr = 1) and there is a rising edge
at t1.

The content of the input register is available at the output EStreamOut<n-1:0> and the
input of an n bit multiplier. The multiplier also gets the weight.1 The 2n bit output of the multi-
plexer is stored in a register if StoreRes = 1 and there is a rising edge at clock t2 (Fig. 21-3).

Intermediate results, available at input ResultIn<m-1:0> are stored in a m bit register if
StoreRes = 1 and a rising edge at t2. The content of this register as well as the multiplication
results are added via an adder2 to get the result at ResultOut<x:1> with .

The general clocking scheme must be such that the rising edge of t1 occurs before the rising
edge of t2.

The realization of a stage in a commercial design system is given in Fig. 21-3 and Fig. 21-4.
Fig. 21-5 shows an example computation with , , and ,

, , and , respectively. The output of a behavioral VHDL
description (the “specification”) produces the output stream , the structural VHDL
description (the implementation) produces (hexadecimal).

21.4 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

21.5 Literature

[Kung82] H.T. Kung. Why systolic architectures. IEEE Computer, pages 37–46, January

1. The multiplier is not further specified here since its realization is arbitrary. Is is possible to use e.g. the multi-
plier of section 17.

2. For the adder the same holds as for the multiplier.

Figure 21-1: Basic array structure computing the first result

Figure 21-2: Black box view of one stage

stage stage stage

clock /
2

t1 t2

w3 w2 w1 y1
x1x2x3

stage

clock t1 t2

y
t

y
t 1+

x
t 1+

x
t

n n

mm
w z

x max n m,() 1+≥

w1 4= w2 2= w3 1= x1 9=
x2 8= x3 7= x4 6= x5 5=

59 52 45, ,
3B 34 2D, ,
15.7.96 68

1982.

[KuLe78] H.T. Kung and C.E. Leierson. Systolic arrays (for VLSI). In Sparse Matrics
Proceedings, pages 256–282. Society for Industrial and Applied Mathematics
1979, 1978.

Figure 21-3: SYNOPSIS realization of one stage

Figure 21-4: SYNOPSIS realization of a complete structure
15.7.96 69

Figure 21-5: Detailed timing diagram

/F
IL

T
E

R
T

B
/S

T
R

E
A

M

/F
IL

T
E

R
T

B
/R

E
S

U
L

T

/F
IL

T
E

R
T

B
/S

E
L

E
C

T
W

E
IG

H
T

S
T

R
E

A
M

/F
IL

T
E

R
T

B
/S

T
O

R
E

W
E

IG
H

T

/F
IL

T
E

R
T

B
/S

T
O

R
E

S
T

R
E

A
M

/F
IL

T
E

R
T

B
/S

T
O

R
E

R
E

S
U

L
T

/F
IL

T
E

R
T

B
/C

L
K

1

/F
IL

T
E

R
T

B
/C

L
K

2

/F
IL

T
E

R
T

B
/R

E
S

E
T

_N

/F
IL

T
E

R
T

B
/S

T
R

E
A

M
IN

(3
:0

)

/F
IL

T
E

R
T

B
/R

E
S

U
L

T
O

U
T

(1
1:

0)

0 0

40
0

40
0

80
0

80
0

12
00

12
00

40
95

4 4

2 2

1 1

0

9

29

8

9

34

7

59

6

8

00
0

52

5 00
8

45 7

01
7

34

03
B

20 6

03
4

0

0

5

02
D

15.7.96 70

22 2Syst (Matrix Multiplication1)

The filter circuit of this section and the filter of section 21 have been chosen as witnesses of
one-dimensional and two-dimensional systolic architectures. The notion of “systolic arrays”
has first been introduced by Kung and Leierson [KuLe78]. Basics on these specialized regular
architectures can be found in [Kung82].

Systolic arrays require additional efforts for specifying the indented behavior, since here
data have to be applied at different times in a special order to achieve a correct functioning of
the circuit. Moreover, more-dimensional systolic arrays are a good illustration of more-dimen-
sional generic circuits.

22.1 Specification

22.1.1 General Specification

The circuit to be presented here is a two-dimensional “hexagonal” systolic array. The circuit
has been taken from [MeCo80] and is intended to multiply two matrices.

The multiplication of two matrices and results in a matrix
, where the multiplication is defined by the recursive equation 22-1.

(22-1)

However, the matrix multiplier must only be able to multiply so-called “band” matrices. These
are special matrices where certain matrix positions must carry zeros. The multiplication of two

 and two matrices A and B, having width and are given in equation
22-2 and equation 22-3, respectively (note that A and B have the zeros at “mirrored” places).

(22-2)

(22-3)

1. The VDHL files often refer to this circuit as MATRIX.

n n× A aij()= B bij()=
C cij()=

cij
1()

0=

cij
k 1+()

cij
k()

aikbkj+=

cij cij
n 1+()

=

3 3× 4 4× w 3= w 4=

a11 a12 0

a21 a22 a23

0 a32 a33

b11 b12 0

b21 b22 b23

0 b22 b33

×

c11 c12 c13

c21 c22 c23

c31 c32 c33

=

a11 a12 0 0

a21 a22 a23 0

a31 a32 a33 a34

0 a42 a43 a44

b11 b12 b13 0

b21 b22 b23 b24

0 b32 b33 b34

0 0 b43 b44

×

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

=

15.7.96 71

22.1.2 Timing Requirements

The black box diagram of the circuit for a multiplication is shown in Fig. 22-1.

For performing a multiplication with a band width , the values and have
to be fed into the inputs a0 to b3 at the time instants as indicated in table 22-1.

Obviously one of the input matrices is fed column by comun, the other row by row into the cir-
cuit. The diagonal elements and are fed into the -th input (a1 and b1 in case of

, a2 and b2 in case of). The time distance btetween input columns and rows is
2. Output values are available after 2 time instances. The mapping of output matix values to
output signals ck ist given in Fig. 22-2. The distance between consecutive output values is 2.

Figure 22-1: Black bock view of 2Syst

a3 a2 a1 a0 b3 b2 b1 b0 c6 c5 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 0 - - - - - - -

1 0 0 0 0 0 0 - - - - - - -

2 0 0 0 0 0 0 - - - - - - -

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0

14 … … … … … … … … … … … … … … …

Table 22-1: Input/output timing scheme

4 4×
a0

a1

a2

a3

b0

b1

b2

b3

c5

c4

c3

c2

c1

c0

c6

2Syst

4 4× w 4= aij bij

t

a11 b11

a21 b12

a31 a12 b13 b21 c11

a22 b22 c21 c12

a32 b23 c31 c13

a42 a23 b24 b32 c41 c22 c14

a33 b33 c32 c23

a43 b34 c42 c24

a34 b43 c33

a44 b44 c43 c34

c44

a11 b11

aii b jj
w 1–

2

w 4= w 5=
cij
15.7.96 72

The total length of the output stream equals the length of the input stream, hence it is finished 2
time instances after the last input value has been applied.
The outputs c0 to c6 produce the result according to the scheme given in table 22-2.

22.2 Implementation

22.2.1 General architecture

The overall hexagonal architecture of the systolic array for an example is given in Fig.
22-3.

Figure 22-2: Output variable correspondence

Figure 22-3: Basic array structure

cij

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

c5 c4 c3

c2

c1

c0

c6

4 4×

a0

a1

a2

a3

b0

b1

b2
c6

c5

c4

c3

c2

c1

c0

0

0

0

0

0

0

0

b3
15.7.96 73

22.2.2 Implementation of one cell

Each cell of Fig. 22-3 has three inputs A_In<n-1:0>, B_In<n-1:0> and C_In<m-1:0> and
three outputs A_Out<n-1:0>, B_Out<n-1:0> and C_Out<m-1:0> (Fig. 22-4).

The inputs A_In<n-1:0> and B_In<n-1:0>are connected to a n bit register and the input of a
multiplier. The 2n bit multiplier output is connected to an adder. The second input of the adder
is fed by C_In<m-1:0>. The adder output is fed in a register. The register outputs provide the
cell outputs A_Out<n-1:0>, B_Out<n-1:0> and C_Out<m-1:0> (Fig. 22-5).

Figure 22-4: Black box view of one cell

Figure 22-5: Realization of one array cell

A_In<n-1:0> B_In<n-1:0>

C_In<m-1:0>

A_Out<n-1:0> B_Out<n-1:0>

C_Out<m-1:0>

ALU

Reg

S

A_In

B_In

C_In

A_Out

B_Out

C_Out

clock

multiplier
adder

m

m

n

m

R

Reg

S

m

R

Reg

S

m

R

1

1

1

Reset_N

ALU

n

15.7.96 74

22.2.3 Actual Realization and Example

A realization of the basic cell (Fig. 22-5) and the whole systolic array (Fig. 22-3) is
given in Fig. 22-6 and Fig. 22-7, respectively.

The following waveform (Fig. 22-8) shows the result of computing the multiplication given in
equation 22-4.

(22-4)

The busses StrA0In to StrA3In and StrB0In to StrB3In carry the coefficients of the
matrices A and B.

22.3 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

The documentation of 2Syst has been completely revised September 1995 due to valuable
comments from Scott Hazelhurst, University of Brithish Columbia, Canada.

22.4 Literature

[MeCo80] C. Mead and L. Conway. Introduction to VLSI Design. Addison-Wesley, 2.
edition, October 1980.

[Fram92] CADENCE Design Framework II version 4.2a. Reference Manual, February
1992.

[Kung82] H.T. Kung. Why systolic architectures. IEEE Computer, pages 37–46, January
1982.

Figure 22-6: SYNOPSYS realization of a basic cell

4 4×

3 2 0 0

5 1 3 0

7 4 2 5

0 2 1 8

4 2 1 0

5 3 1 2

0 6 2 7

0 0 4 5

⋅

22 12 5 4

25 31 12 23

48 38 35 47

10 12 36 51

=

15.7.96 75

[KuLe78] H.T. Kung and C.E. Leierson. Systolic arrays (for VLSI). In Sparse Matrics
Proceedings, pages 256–282. Society for Industrial and Applied Mathematics
1979, 1978.

Figure 22-7: Realization of a array4 4×
15.7.96 76

Figure 22-8: Waveform of computing equation 22-4

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
A

(1
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
B

(1
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
P

(5
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/C
L

K

0 0

10
0

10
0

20
0

20
0

30
0

30
0

'U
'

00
00

00
00

00
30

00
40

05
00

02
00

00
00

00
00

00
00

00

70
02

10
05

00
00

00
0C

00
00

00

00
10

00
30

00
00

14
0A

06
00

00

04
00

01
00

00
1C

00
00

00
03

00

20
03

20
06

00
00

00
0D

00
00

00

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
A

(1
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
B

(1
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/M
A

T
R

IX
P

(5
5:

0)

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/R
E

S
E

T

/M
A

T
R

IX
T

E
S

T
B

E
N

C
H

/C
L

K40
0

40
0

50
0

50
0

60
0

60
0

70
0

70
0

00
20

00
20

00
00

1A
12

06
00

00

01
00

07
00

00
06

00
00

00
02

00

00
05

00
04

00
00

00
0F

00
00

00

00
80

00
50

00
00

04
14

16
00

00
00

00
00

00
00

00
00

00
00

00
33

00
00

00

00
00

00
00

00
00

00
00

00
00

00
15.7.96 77

	Benchmark-Circuits for Hardware -Verification
	v1.2.1
	1 Introduction
	2 The Benchmark Circuits
	2.1 Releases
	2.2 Verification Problem Presentation
	2.2.1 VHDL
	2.2.2 Storage Elements and Multiplexers
	2.2.3 Base Module Library
	2.2.4 Graphical Notation

	2.3 Classification of the Verification tasks
	2.4 Circuit Classification

	3 How to get the benchmark circuits
	3.1 Physical Organization
	3.2 Using the benchmarks
	3.3 Please Contact us if …
	3.4 Email list

	4 Present and Future Activity
	5 Acknowledgments
	6 Literature
	7 Single Pulser
	7.1 Introduction
	7.2 Specification
	7.3 Implementation
	7.4 Status and Acknowledgments
	7.5 Literature

	8 Traffic Light Controller
	8.1 Specification
	8.2 Implementation
	8.3 Status and Acknowledgments
	8.4 Literature

	9 N-bit Adder
	9.1 Introduction
	9.2 Specification
	9.3 Implementation
	9.4 Status and Acknowledgments
	9.5 Literature

	10 Min_Max Circuit
	10.1 Introduction
	10.2 Specification
	10.3 Implementation
	10.4 Status and Acknowledgments
	10.4.1 Comments to the Specification of MIN_MAX

	10.5 Literature

	11 Black-Jack Dealer
	11.1 Specification
	11.2 Implementation
	11.3 Status and Acknowledgments
	11.4 Literature

	12 Arbiter
	12.1 Introduction
	12.2 Specification
	12.2.1 Formal specification example

	12.3 Implementation
	12.4 Status and Acknowledgments
	12.5 Literature

	13 Rollback Chip
	13.1 Specification
	13.2 Implementation
	13.3 Status and Acknowledgments
	13.4 Literature

	14 The TAMARACK Processor
	14.1 Specification
	14.2 Implementation
	14.3 Status and Acknowledgments
	14.4 Literature

	15 Stop-Watch
	15.1 Specification
	15.2 Implementation
	15.3 Status and Acknowledgments
	15.4 Literature

	16 GCD - Greatest Common Divisor
	16.1 Introduction
	16.2 Specification
	16.2.1 Low-Level Specification
	16.2.2 High-Level Specification

	16.3 Implementation
	16.3.1 Controller
	16.3.2 Data Path
	16.3.3 Simulations

	16.4 Status and Acknowledgments
	16.5 Literature

	17 Multiplier
	17.1 Specification
	17.2 Implementation
	17.2.1 Algorithm
	17.2.2 Global Realization Architecture
	17.2.3 Detailed Description

	17.3 Status and Acknowledgments
	17.4 Literature

	18 Divider
	18.1 Specification
	18.2 Implementation
	18.2.1 Algorithm
	18.2.2 Global Realization Architecture

	18.3 Detailed Implementation Description
	18.4 Status and Acknowledgments
	18.5 Referencee

	19 Fifo
	19.1 Specification
	19.2 Implementation
	19.3 Status and Acknowledgments
	19.4 Literature

	20 Assoc (Associative Memory)
	20.1 Specification
	20.1.1 General Specification

	20.2 Implementation
	20.2.1 General architecture
	20.2.2 Implementation of one cell of AssocMemArray...
	20.2.3 Implementation of a Storage Cell Array (Ass...
	20.2.4 Implementation of the whole Associative mem...

	20.3 Status and Acknowledgments
	20.4 Literature

	21 1Syst (Filter)
	21.1 Introduction
	21.2 Specification
	21.3 Implementation
	21.3.1 General architecture
	21.3.2 Implementation of one stage

	21.4 Status and Acknowledgments
	21.5 Literature

	22 2Syst (Matrix Multiplication)
	22.1 Specification
	22.1.1 General Specification
	22.1.2 Timing Requirements

	22.2 Implementation
	22.2.1 General architecture
	22.2.2 Implementation of one cell
	22.2.3 Actual Realization and Example

	22.3 Status and Acknowledgments
	22.4 Literature

