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This document describes the IFIP WG10.5 hardware-verification
benchmark circuits, intended for evaluating different approaches and
algorithms for hardware verification. The paper presents the rationale
behind the circuits, describes them briefly and indicates how to get
access to the verification benchmark set.

1 Introduction

Although having many drawbacks, benchmark circuits allow a more succinct and direct com-
parison of different approaches for solving a certain problem. This has lead to sets of widely
accepted circuits e.g. in the area of testing [BrPH85, BrBK89] or high-level synthesis
[VRMKO91].

In the area of hardware verification, this has lead e.g. to the suggestion of “interesting” cir-
cuits, like Paillet’s set of seven sequential circuits [Pail85]. One of the first efforts to provide
circuits for a broader community has been done by Luc Claesen for the 1990 International
Workshop on Applied Formal Methods for VLS| Design [FMVD90]. The most prominent cir-
cuit evolving from this effort was the “Min_Max-Circuit”.

The lack of additional, generally available verification benchmark circuits got aware in the
preparation of the 2nd International Conference on Theorem Provers in Circuit Design
(TPCD94). The motivation to provide additional benchmark circuits together with already
ongoing standardization efforts of IFIP, coordinated by Jargen Staunstrup [Stau93], has led to
an enhanced set of circuits. Thanks to J. Staunstrup, in the meantime these circuits have
become the official “IFIP WG10.2 Hardware Verification Benchmark Circuit Set”. It will be
maintained and enhanced on along term basis to promote a standardized benchmark set in the
hardware verification community.

For the circuits a complete and self-contained implementation is provided, done in a com-
mercia design system [Fram92] (leading e.g. to additional timing diagramsfor clarification) as
well as a clear specification using the standardized hardware description language VHDL (see
Section 2.2 “Verification Problem Presentation”). This puts a comparison of different verifica-
tion approaches on a sound basis, since - if the given implementations are used - identical cir-
cuits are verified instead of different designs implemented in a way especially suited for a
certain approach. Moreover, people are not forced to tediously design the circuits before they
can be verified - the latter being the main interest of people looking into these circuits. Natu-
raly, when dealing with formal synthesis, the implementations provided here are less interest-
ing and the specifications are the main thing to deal with.
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A set of verification benchmark circuits has to provide easily usable circuits to evaluate and to
compare different approaches to hardware verification. This comprises:

» availability viathe World Wide Web and anonymous ftp,

» ahigh degree of diversity with regard to the underlying verification task (see Section 2.3
“Classification of the Verification tasks”),

* circuit descriptions without ambiguity, which are succinct and self-contained and

* circuits which span awide range from introductory examplesto real verification chal-
lenges [ Stau93].

2 TheBenchmark Circuits

Currently, there is the set of benchmark circuits given in table 2-1. The main sources for these
circuits have been the previous IFIP benchmark set [Stau93] and various textbooks on circuit
design.

Circuit Name

Short Circuit Description

Single Pulser

cuts input pulsesto afixed length

Traffic Light Controller

simplified controller for atraffic light

N-bit Adder

sum of two bitvectors of length N

Min_Max

the mean value of incoming integers

Black-Jack Dealer

the dealer’s hand of a card game

Arbiter

access to shared resources for N clients

Rollback Chip coprocessor for distributed simulation
Tamarack Processor simplified microprocessor

Stop-Watch digital stopwatch with 3 digits and 2 buttons
GCD Greatest Common Divisor

Multiplier N-bit Multiplier

Divider N-bit Divider

FIFO asynchronous FIFO queue with N places

Assotiative Memory

simple assotiative N X M memory

1dim Systolic Array

onedimensional systolic filter array

2dim Systolic Array

two-dimensional systolic array for matrix multiplication

Table 2-1: Current Benchmark Circuits

2.1 Releases

Each release of the circuit is labeled with a version number, release number and patch level in
the form v<Version>.<Release>.<Patchl evel>.

A version number is provided to make the inclusion of new circuits more explicit. Unfortu-
nately we did not succeed in providing full implementation descriptions for all circuits in the
first release. As these are provided, the release number isincremented.

Although the circuits have been designed with much care, reality-driven pessimism sug-
gests that there will be the necessity for “ patches’ (i.e. bug fixes) at least in the first stage of the
release process.
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All changes are documented in a history file, patches are also explained in the documenta-
tion of the relevant circuits. You may want to be added to an emailing list dedicated to inform
people about the actual verification benchmark status (see Section 3.4 “Email list”).

2.2 Verification Problem Presentation

Unambiguously specifying circuitsin a general way without being forced to a certain descrip-
tion philosophy by the underlying notation is a challenge itself. The only way to circumvent a
fixed description formalism is to use only informal descriptions (natural language, drawings®,
timing diagrams, etc.). However, then the descriptions are often not as crisp and exact as it is
necessary especially for formal verification, where the information given here has to be trans-
lated into formal description languages like predicate |ogics, temporal logics, process algebras,
Z and so forth.

Besides all drawbacks, we decided to provide more (and more formal) information for each
circuit. This comprises for each circuit of:

» adescription of the specification and the implementation in plain English,
» schematic diagrams of the implementati on?,

» anetlist of the implementation based on structural VHDL and

» aspecification of the circuitin VHDL.

2.2.1 VHDL

The decision to use VDHL as a formalization means especialy for specifications is probably
the most disputable one for obvious reasons:. the lack of a clean VDHL semantics, the danger
of imposing a certain specification style, impossibility for expressing nondeterminism and so
forth. However, in our opinion the advantages of providing a standardized (and simulatable)
specification outweighs the disadvantages. Moreover, we tried to avoid ambiguousVDHL con-
structs and VHDL specifications may further encourage VHDL based verification (or at least
the discussion about the “right” specification language is stimulated).

We use a restricted set of VHDL which should be sufficiently simple so that no semantic
ambiguities occur.

2.2.2 Storage Elementsand Multiplexers

A register istreated as a base module (see Section 2.2.3 “Base Module Library”). It is used as
follows. The inputs S is connected to input lines named S or e(Nane) . A signal is stored, if
Sore(Nane) =1 and thereisa 0 — 1 transition at the clock input.

Lines named Sel ect XY are controlling a multiplexer or a demultiplexer: Sel ect XY = 0 con-
nects input 0 of a multiplexer to the output (output O of a demultiplexer) and Sel ect XY = 1
connects input 1 to the output (output 1 of a demultiplexer).

Busses are provided with their names and number of signal lines: Dat al n<31: 0> denotes a
32 bit bus for reading data.

1. For some circuits, original schematics of a realization in the semi-custom design system CADENCE have
been added. However, to fit these drawings on a single page they had to be shrunk in many cases so that |abels
etc. may not be well readable anymore. Nevertheless, the remaining circuit documentation without these fig-
uresis completely sufficient as an implementation description.

2. Schematics are based on an implementation of each circuit using a commercial semi-custom design system.
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2.2.3 BaseModuleLibrary

Most circuit implementations use a predefined base module library which contains parameter-
ized modules. Parameters are delay time and, for certain elements, the bitwidth. The library
contains mainly simple gates and storage elements, listed in table 2-2. The respective VHDL
descriptions can be found in thefile Gat eLi b. vhd.

Module Name Description Variable Bitwidth
INV inverter no
BUF buffer no
nBUF generic n bit buffer yes
NAND2 two input nand no
NAND3 three input nand no
AND2 two input and no
AND3 three input and no
AND4 four input and no
AND5 five input and no
NOR2 two input nor no
NOR3 three input nor no
OR 228 two input or no
OR3 three input or no
OR4 four input or no
OR5 fiveinput or no
NXOR2 two input equal no
XOR2 two input exor no
MUX two input, one output, one select multiplexer no
DMUX one input, two output, one select demultiplexer | no
DL D-latch no
DFF D-flipflop no
DFFs setable D-flipflop no
DFFsr setable and resetable D-flipflop no
RSFFR resetable RS-flipflop no
RSFF RSHlipflop no
nMUX generic n-bit 2:1 multiplexer yes
nDMUX generic n-bit 2:1 demultiplexer yes
NREG generic n-hit register with enable yes
NREGr generic n-bit register with enable and reset yes
HA half adder no
FA full adder no
nINC n-bit incremented yes
CRA n-bit carry ripple adder yes
AddSub n-bit carry ripple adder and subtractor yes
nSREG n-bit shift register yes
nCMPO n-bit equal zero test yes

Table 2-2: Elements of the Base Module Library
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Module Name Description Variable Bitwidth
cCMPN compare tow n-bit vectors yes
nLSH n-bit left shift yes
nRSH n-bit right shift yes
expand expand bit vector by adding zeros yes
priority lower bit has priority others are suppressed yes

Table 2-2: Elements of the Base Module Library

a. underscore necessary due to name conflictsin SYNOPSIS

2.2.4 Graphical Notation

The schematic diagrams consist of modules which are drawn according to the notation given in
table 2-3.

Moduletype Graphical Notation

Inverter .
EXOR gate :Ell—

NAND gates :E’w

NOR gates Z%

e
DMux |

Demultiplexer 1:2 | — 0

P
_ _|Reg |
Register S

Arithmetic Logic —ALU

Unit —
RSFF
RS-Flipflop —R Q-
-Is O
) ) nDFF
Register with n —D QL
Flipflops

Table 2-3: Schematic Drawing Symbols

15.7.96 5



2.3 Classification of the Verification tasks

There are mainly three verification tasks to be distinguished when talking about hardware veri-
fication:

1. verifying that a circuit specification is what it should be,
2. verifying that a given implementation behaves identically to a given specification and
3. verifying important (e.g. safety critical) properties of a given implementation.

According to [Stau93)], the first is called requirements capture, the second implementation ver-
ification and the third design verification.

The three tasks are often expressed in terms of a specification S and an implementation |,
where a complete verification denotes some form of equivalence between Sand | (S = I,
S=1, S= |) and a partial verification denotes some form of implication (I 00 S, |1 OS,
I |- S):

Thefirst task isapartia verification (with Sdescribing properties of the circuit specification
and | being the circuit specification), the second is a complete verification (with S being the
specification and | being the implementation) and the third isagain a partial verification (with S
describing the properties of the circuit implementation and | being the circuit implementation).

It isto be noted that if e.g. exact computation times are not stated in a specification then we
have to cope with a verification problem of the third kind, since in that case an equivalence
proof is not possible.

All three verification tasks are covered by the benchmark circuits.

2.4 Circuit Classification

Every classification scheme has its drawbacks, but we found the following circuit properties
especially useful for classification purposes.

A circuit may be classified in several dimensions as depicted in table 2-4. Most of the crite-
ria are self-explaining, besides complexity. In the area of testing usually the number of internal
linesisdirectly used as a complexity measure [BrPH85, BrBK89], motivated by the designated
application of the circuits: test pattern generation. Using a classical stuck-at fault model, the
set of faults to be treated equals the number of internal lines. Hence a circuit s713 denotes a
sequential circuit with 713 internal lines [BrBK89].

In the area of hardware verification a similar complexity measure is not as obvious (at |east
we did not found any meaningful). Hence we use the coarse measure, proposed by J. Staun-
strup: an exampleis either introductory, illustrative or areal challenge [Stau93].

Classification Criterion Value Set
system (9
algorithmic €]

Abstraction level register-transfer )]
gate (9
transistor ®
synchronous (9

Synchronicity of the implementation asynchronous €)
combinational ()

Hierarchy of the implementation zzrarchlcal g]))

Table 2-4: Possible Circuit Classifications
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Classification Criterion Value Set

- deterministic (d)

Determinism nondeterministic (n)

- generic (9)
Genericity concrete with (optional) bitwidth n (cn)

controller (©

Type data path (d)
mixed (both) (m)

introductory ()

Complexity standard illustrative (9

challenge (©

Table 2-4: Possible Circuit Classifications

The abbreviations given in table 2-4 may be used to characterize each circuit using the follow-
ing “signature”:
<Nane>: <Spec>- <| np>. <Sync>. <Hi er >. <Det >. <CGener >. <Type>. <Conpl >

A circuit GCD. a-r.s. h.d. g. mi denotes the Greatest Common Divisor circuit, which
has a specification on algorithmic level and an implementation on register-transfer level. It isa
synchronous, hierarchical and deterministic design with arbitrary bit width. Consisting of a
controller and a data path it isasmall, i.e. an introductory example.

Using this classification scheme, we can characterize al circuits as shown in table 2-5.

Circuit Name Classification
Single Pulser Pul ser.g-g.s/a.f.d.cl.c.i
Traffic Light Controller | TLC.r-g.s.f.d.cl.c.i
N-bit Adder Adder.a-g.c.h.d.g.d.i
Min_Max M n_Max.a-g.s.h.d.c8/g.d.s
Black-Jack Dealer Dealer.a-g.?.f.n.c.c.s
Arbiter Arbiter.r-g.s.f.n.g.c.s
Rollback Chip Rol | back. ?-?.?2. h.d.?.ms
Tamarack Processor Tamarack.a-g.s.h.d.?.ms
Stop-Watch Stopwatch.r-g.s.h.d.c.ms
GCD CGCD. a-g.s.h.d.g.mi
Multiplier Mult.a-g.c.h.d.g.d.s
Divider Div.a-g.c.h.d.g.d.s
FIFO FIFO a-g.a.h.d.g.ms
Assotiative Memory Assoc.r-g.s.h.d.g.d.s
1dim Systolic Array 1Syst.a-g.s.h.d.g.d.s
2dim Systolic Array 2Syst.a-g.s.h.d.g.d.s

Table 2-5: Classification of the Benchmark Circuits
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3 How to get the benchmark circuits

The most convenient way to a get access to the benchmark suite is via the World Wide Web.
Using a WWW browser like Mosaic you can get the latest informations using the URL
http://goethe.ira. uka. de/ benchmarks/ .

You can also directly use an anonymous FTP-server. All benchmark circuits as well as
PostScript versions of the documents (including this paper) have been made available there in
the directory pub/ benchmar ks. The FTP-server is reachable as goet he. i r a. uka. de
(current IP address: 129. 13. 18. 22). The server will always hold the newest benchmark
version (see Section 2.1 “Releases’).

Simple ASCII-filesend in . t xt , Postscript files aways end in . ps, . ps. Z or ps. gz.
The files with endings . gz (. Z) has been compressed using the UNIX gzi p (conpr ess)
command. They must be transferred using binary ftp mode and must be expanded using the
UNIX gunzi p (unconpr ess) command before they are readable or printable. Tar-Filesend
in.tar (compressed . tar.gz or.tar. Z) and contain a whole directory in one file. The
directory content may be rebuild by executing tar -xfv <nane>.tar after having
expanded the respectivefile.

3.1 Physical Organization
The main directory / pub/ benchmar ks contains.
 README how to use and retrieve the benchmarks

It _is version_x.y.z anempty dummy fileindicating the current version,
release and patchlevel

| nt roducti on. ps this document as a PostScript file

* Whol e_docunent at i on. psthisdocument plus all (currently available) circuit
descriptions as a single PostScript File

* History.txt the version history of the benchmarks

e Gatelib.vhd behavioral descriptions of al base modules (see Section
2.2.3"Base Module Library”)

* ELEMpack. vhd interface and componemt declaration of all base elements

e <cCircuit> adirectory for each benchmark circuit

* docunentation adirectory containing the whole documentation in its

original FrameMaker 4 format (for those who want to get
the document “sources’)

pendi ng adirectory containing circuits which will probably be
included in future releases of the benchmark circuits.t

Each circuit directory <ci r cui t > contains at least:
e <circuit>.ps a PostScript file describing the circuit

e <circuit>. vhd different VHDL files covering the implementation
(<ci rcui t>struc. vhd), abehavioral specification
(<ci rcui t >behave. vhd), atestbench for smula-

1. For these circuits the documentation may be incomplete, inconsistent or completely missing.
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tion (<ci rcui t>tb. vhd or<ci rcui t >t est -
bench. vhd) aswell as various other files and scripts
useful for simulation and synthesis.

3.2 Using the benchmarks

You can use the benchmark circuits in any way which suits your needs. Especially when speci-
fying the problems, you are in no way obliged to use VHDL. The VHDL specifications are
mainly provided to clarify the intended proof goals.

However, if for example, you use an implementation completely different from the ones
given here (e.g. asimplified version) you should state this clearly whenever you refer to the cir-
cuits provided here.

Some of the circuits have been designed hierarchically. If you are flattening the circuits in
order to verify them, you should state this also.

3.3 Please Contact usif ...
Please contact us if you have any problems, especially
* if you have questions of any kind concerning the benchmarks,
« if you have comments or proposals for changes, additions or even new circuits,
 if you can provide “better” implementations for the circuits,
* if you have problemsin printing the PostScript files,
* if you detect errors, inconsistencies or ambiguities, which should be fixed or
* if you have problemsin accessing the files.
The easiest way is to send a brief email to Thomas Kropf or to Jargen Staunstrup (Tho-
mas. Kropf @ nf ormati k. uni - karl sruhe. de, jst@d. dth. dk).
3.4 Email list

To inform people about the latest release and patches of the benchmark circuits, we do main-
tain an informal emailing list. If you want to be added (or deleted) from this list, send a short
noteto Thomas. Kr opf @ nf or mat i k. uni - kar| sruhe. de.

4 Present and FutureActivity

At the moment, we are busy simply with completing all proposed circuits and — probably —
by making the current set consi stent.

The current set of circuits falls short of asynchronous verification examples. Moreover proto-
col verification problems are not covered, which may also be viewed at as important sub-
aspects of circuit verification. To cover lower description levels, we aso would like to add
some switch-level or transistor level verification examples.

Thereis till alack of “challenging” verification examples, i.e. circuits which are either of
significant size or which reflect “real” commercial designs. As one of these circuits, we will
probably provide a large RISC-processor: the DLX of Patterson and Hennesy [HePa90].
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7 Single Pulser

Despiteits small size, thiscircuit has shown to be hard to specify in many formalismslike tem-
poral logics and is well-suited as an introductory example.

7.1 Introduction

A Single Pulser is a clocked-sequential device with a one-bit input, I, and a one-bit output O.
The purpose of the circuit is described as follows [WiPr80]:

We have a debounced push-button, on (true) in the down position, off (false) in the up posi-
tion. Devise acircuit to sense the depression the button and assert an output signal for one
clock pulse. The system should not allow additional assertions of the output until after the
operator has released the button.

A design specification of the Single Pulser can be found in the text book “The Art of Digital
Design” by D. Winkel and F. Prosser [WiPr80]. A detailed treatment of this example for com-
paring different specification formalisms can be found in [JoM C94].

7.2 Specification
Assuming that the input is synchronous and debounced, the specification may be stated as:

For each input pulse on |, the Single Pulser issues exactly one pulse of unit duration on O
regardless of the duration of I.

The specification may be also stated by the following three properties [ JoM C94]:
1. Whenever thereisarising edge at I, O becomes true some time later.

2. Whenever O istrueit becomesfalse in the next time instance and it remains false at |east
until the next rising edgeon 1.

3. Whenever thereisarising edge, and assuming that the output pulse doesn’t happen immedi-
ately, there are no more rising edges until that pulse happens (There can’t be two rising
edges on | without a pulse on O between them).

In [JoMC94] the specification is given in different formalisms like PVS and CTL [ORSS94,
CIEm81].

7.3 Implementation

The implementation is taken from [WiPr80]. The incoming, not yet debounced asynchronous
signal Pul se I n is fed to a D flip flop and thus becomes the synchronized signa
Pul se_sync, whichisthen delayed for one clock cycle by using another D flip-flop. Its out-
put is negated, and the AND-connection of the synchronous pulse with its own delay generates
the resulting, one clock-cycle lasting signal Pul se_Qut (Fig. 7-1).

LI DFF TN

CMDQ DFF u AND 2
—' >Pulse_Out
Pulse,ImE% ﬁ? m

Figure 7-1: Single Pulser
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In Fig. 7-2 waveforms are given to illustrate the behavior of the circuit.

ISINGLEPUYSER_TESTBENCH/PULSE_IN ‘ ‘ ‘ ‘

ISINGLEPULSER_TESTBENCH/CLK ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

ISINGLEPULSER_TESTBENCH/PULSE_OUT ‘U
0

Figure 7-2: Example waveform

7.4 Statusand Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanksto C.-J. Thomas for creating the VHDL description.
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8 Traffic Light Controller

The traffic light controller is one of the most famous benchmark circuits aso in the area of cir-
cuit synthesis. It isa good example for a pure controller circuit for which e.g. safety properties
have to be verified.

8.1 Specification

Consider acircuit controlling asimple traffic light placed at the intersection of two roads called
NS (North South) and EW (East West). Sensors make it possible to detect whether cars are
waiting, and the light is supposed to change in the direction of waiting cars. The sensor detect-
ing waiting carson NSis called Gar NS and the sensor detecting waiting carson EW is called
Gar OhEW

There are many waysto design such atraffic light controller; however, it is an indispensable
requirement that the light is safe, i.e., that it is always red in one of the two directions. So it
must be required that

(NSLight = red) O (EWLight = red) (8-1)
This is a simplified version of the trafficlight discussed in severa introductory textbooks on
VLSI design
8.2 Implementation

currently missing

8.3 Statusand Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93].

8.4 Literature

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
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9 N-bit Adder

This example is “the” verification benchmark circuit. It is useful for demonstrating data
abstraction (natural numbers versus bit vectors) and for demonstrating the verification of
generic circuits, i.e. circuits with arbitrary bit width.

9.1 Introduction

The circuit computes the sum of two natural number, given as bit vectors of width n. Thisis
probably the most frequently used examplein the literature, however, there isawide variety of
restrictions imposed, for example, limitations on n. Is the verification done for arbitrary n? If
sis aso n-bit what happens at overflow? Furthermore, a variety of realizations are possible
ranging from asimple ripple-carry adder to advanced carry lookahead adders.

9.2 Specification

Verify that arealization of an N-bit adder computes the sum, s, of two n-bit numbers a and b.
More formally, it isto be shown that

®(a,_q - ag]) + P([b, _q, ---, Bgl) = ®(cout, [s,,_4, .-, Sgl) (9-1)
n-1

with ©([x, _q, ... %gl) = Y 2 [n, (9-2)
i=0

9.3 Implementation

The N-bit adder was designed scalable with step width four. Its four bit components represent
carry lookahead structure as described in [Schm78] (Fig. 9-1). It consists of four one bit adders
with carry generate and propagate: G Out=A INAND B _InP Out=A InORB _InS Out =
C_In XOR (P_Out AND NOT G_Out).

Signals S Out(i), P_Out(i), G_Out(i) and carry(0) are fed to the carry lookahead generator
(Fig. 9-2), which contains a combinational logic to generate B_Propagate, B_Generate, B-
Carry and CarryOut(i). The block carry propagate and generate signals may be used to build a
real carry lookahead adder with a cascade structure, which is not that easy to build generic.

By connecting the four bit adding units with ripple carry, we now get the complete adder
with itsinputs Dataln_A, Dataln_B, sum output DataOut and CarryOut (Fig. 9-3). The figure
shows an example with 24 hit.

An example simulation is shown in Fig. 9-4.

9.4 Statusand Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanks to C.-J. Thomas for generating the VHDL descriptions.

9.5 Literature

[Schm78] V. Schmidt. Digitalschaltungen mit Mikroprozessoren. B.G. Teubner Verlag,
Stuttgart, 1979. (in german).
[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,

November 1993.
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0 2403137 5417602 5158275 6117252 16777215 0
0 642401 1014514 3736707 4 1 0
0 3045538 6432116 8894982 6117257 1

Figure 9-4: Example Simulation
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10 Min_Max Circuit

10.1 Introduction

This benchmark circuit has been proposed by Luc Claesen for [FMVD90]. It is the first non-
trivial example which has gained some popularity and reveals some problems, arising in the
area of digital signal processor verification.

10.2 Specification

The Min_Max unit has an input signal in which consists of a sequence of integers in the range
of -256 to +255. The Min_Max unit has three boolean control signals clear, reset, and enable.
The unit produces an output sequence out at the same rate asin in the following way:

» outiszeroif clear istrue, independent of the other control signals.

 if clear isfalse and enable is false then out equals the last value of in before enable
became false.

« if clear isfalse and enableistrue and reset is true then out follows in.

* if reset becomes false, then out equals, on each time point t, the mean value of the maxi-
mum and minimum value of in until that time point. So

max(in) + min(in)
2

A number of properties of Min_Max have (deliberately) not been specified, e.g. the latency of
the system is unspecified. This example was used at the international workshop on “Applied
Formal Methods For Correct VL SI Design” and several solutions can be found in the proceed-
ings [FMVD90].

out =

(10-1)

10.3 Implementation

Fig. 10-1 gives an overview of the implementation of the MinMax-Circuit. A storage element
Last (Fig. 10-2) may store a new value while Enable is true, otherwise the former value is
stored.

The heart of the circuit is the MeanValue device (Fig. 10-3). Here the incoming values are
compared with the stored minimum and maximum. The used comparator is a modified version
of the N"CMPN from GateLib which is able to compare numbers in 2-complemented format. If
the new value is greater than the stored maximum or less than the stored minimum, itsvalueis
stored in the corresponding branch of the circuit. Otherwise, its value is discarded. The stored
minimum and maximum now are added and the result is divided by two, i.e. one shift right.
MeanOut contains the mean value of the stored minimum and maximum at each time point,
regardless of any control signals. If reset becomes true, the stored maximum and minimum are
Set to -256 and +255 as soon as Clk becomes true.

To generate the required output signals depending on the control signals, the unit
Three_to_four generates 4 condition signals out of the three incoming control signals (Fig. 10-
4):

e Condition_1 := Clear : DataOut = ‘0’
e Condition_2 := ~Clear & ~Enable : DataOut = last_out
» Condition_3:= Reset & (Enable & ~Clear) : DataOut = Dataln
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Figure 10-1: MinMax Structure
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Enable

Figure 10-2: LastValue
e Condition_4 := ~Reset & (Enable & ~Clear) : DataOut = mean_out
The condition signals are the and-connected with the corresponding signals to be or-ed for
outpuit.
Fig. 10-5 shows different example simulation runs.
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Figure 10-4: 3to4 “gluelogic”

10.4 Statusand Acknowledgments

Thanks to L. Claesen and J. Staunstrup for providing this example. Thanks to G. Janssen for
pointing out the problems of the original specification.

10.4.1 Commentsto the Specification of MIN_MAX

The specification given in section 10.2 is not as unambiguous as is seems at the first glace. To
point this out, some comments from G. Janssen from Eindhoven University are added bel ow.

» If clear isfalse and enableis false then out equals the last value of in before ENABLE
became false.

1. Isthisindependent of RESET?

2. What if clear isfalse and enable is false from the start?
Solution:

1. Yes, wedon't care about reset.
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Figure 10-5: Example waveforms
2. Then out takes some value in the range -255 to 1 and keepsthat value till some other control

If clear isfalse and enableistrue and reset is true then out follows in.

combination takes over.




1. What does “follow” precisely mean?
Solution:
1. “follow” means equals.

» |f reset becomes false, then out equals, on each time point t, the mean value of the maxi-
mum and minimum value of in until that time point.

1. What must be the values of clear and enable?
2. Does“until” include or exclude the current time point t?
3. What if reset isfalse from the start?

4. When are the minimum and maximum values (re)initialised and to what value? Where does
the averaging starts?

5. What if clear and enable change during reset is false?

Solution:

1. clear must be false and enable must be true.

2. “until” isinterpreted to mean inclusive.

3. Thenminand max are set toin.

4. Only when reset makes a transition from true to false are min and max reinitialised; At the
time reset isfalse, min and max are set to in; averaging starts then afresh.

10.5 Literature

[FMVD9Q] L. Claesen, editor. International Workshop on Applied Formal methods for
VLS Design, Leuven, Belgium, 1990.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
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11 Black-Jack Dealer

11.1 Specification

A Black-Jack dedler is adevice which plays the dealer’s hand of a card game. Its inputs are go
(true/false) and card (Ace of Spades,...,2 of clubs). Its outputs are hitme, stand, and broke (all
truth-valued).

The go/hitme signals are used for a 4-cycle handshake with the operator. Cards are valued
from 2 to 10, and aces may be valued as either 1 or 11 by choice of the player. The Black-Jack
dealer is repeatedly presented with cards. It must assert stand when its accumulated score
reaches 16; and it must assert broke when its score exceeds 21. In either case the next card
starts a new game.

A design specification of the Black-Jack dealer can be found in the text book “The Art of
Digital Design” by D. Winkel and F. Prosser [WiPr80].

11.2 Implementation

The implementation of the black jack dealer has been taken from [WiPr80]. From the abstract
description of an FSM controlling the datapath, the following redlization has been derived
(Fig. 11-1). The FSM has been realized by encoding the states with two flipflops A and B and
generating the next state by choosing the right signal with two 4:1 multiplexers (table 11-1).

State Next State | B A | Condition
0 Get Get 0 0 | nGet_2
Add 0 1 | Get2
1Add Use 1 0 | Acecard & nAcellflag
Test 1 1 | not(Acecard & nAcellflag)
2Use Test 1 1 | true
3Test | Get 0 0 | nTest 3
Test 1 |1 | Test3

Table 11-1; State transition table

The flipflop output signals are fed to a combinational logic to generate the controller output
signals as described in the equations from table 11-2 and table 11-3.:

Get 1 = SGea&nCadr s

Get 2 = SGe&Cadrs&nCadrd

Get 3 = Get_2& (Stand v Broke)

Test 1 = S Test& ScoreGT16 & nScoreGT21

Test 2 = S Test& ScoreGT16 & ScoreGT21 & nAcellflag=S Test & ScoreGT21 & nAcellflag
Test 3 = S Test& ScoreGT16 & ScoreGT21 & Acellflag=S Test & ScoreGT21 & Acellflag

Table 11-2: Interna signals

Hit = Getl
Set_Stand = Test 1
Clr_Stand = Get 2
Set_Broke = Test 2
Clr_Broke = Get2

Table 11-3: Output signals
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Figure 11-1: Controller of the Black-Jack Dealer
Set Acellflag = S Use
Clr_Acellflag = Get 3vTest 3
Ld_Score = S AddvS UsevTest 3
Clr_Score = Get3
AdderSO = S Add
Addersl = Test 3

Table 11-3: Output signals

The second part of the dealer is BlackJack_DataPath (Fig. 11-2), including several flipflops to
hold the status information for the outside world, hit, stand, broke, to debounce the input signal
from a card ready button and to hold the acellflag. The circuit usesthe card valueinput signal
to discriminate the value of an ace card from others, indicating this by setting the signal ace-
card = true. card_value is then expanded by one bit and fed to a 4:1 multiplexer, which hasto
choose between D’ +10’, D’-10" and the actual card value according to table 11-4.

Mux input AdderS1 AddersS0 | action
0 0 0 +10
1 0 1 -10
2 1 0 vaue
3 1 1

Table 11-4: Data path function

The multiplexer isfollowed by a 5-bit carry ripple adder, adding the actual scoreinternal_score
and the output of the multiplexer. The sum internal_sum is then fed to a 5-bit register with load
and clear, which is controlled by the signals Ld _Score and Clr_Score, to produce the score.
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Figure 11-2: Datapath
The score is then compared with D’16" and D’21’ to generate the signals ScoreGT16 and
ScoreGT21. Both units exchange control signalsasviewed in Fig. 11-3.

The waveform diagram in Fig. 11-4 shows the exchange of control signals between the
units. The signals test(0) to test(3) contain the state signals S Get, S Use, S Add, S Test. The
signal test_dp(4:0) contains the internal sum before it istaken over by the register.

The waveform diagram in Fig. 11-5 shows the behavior of the black jack dealer as a black
box. Moreover, the behavior of aalgorithmical VHDL description has been added.

11.3 Statusand Acknowledgments

Thanksfor C.-J. Thomas for providing an implementation description.
The circuit has been originally proposed by J. Staunstrup. Most of the specification has been
directly quoted from [ Stau93].
114 Literature
[WiPr80] D. Winkel and F. Prosser. The Art of Digital Design. Prentice-Hall Inc., 1980.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
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12 Arbiter

This arbiter is a good example for a synchronous scal abl e state machine.

12.1 Introduction

The purpose of the bus arbiter is to grant access on each clock cycle to asingle client among a
number of clients contending for the use of a bus (or another resource). The inputs to the cir-
cuit are aset of request signals reqy, ..., req, _, and the outputs are a set of acknowledge sig-
nals acky, ..., ack, _; (Fig. 12-1). Normally the arbiter asserts the acknowledge signal of the
requesting client with the lowest index. However, as requests become more frequent, the arbi-
ter is designed to fall back on a round robin scheme, so that every requester is eventually
acknowledged. This is done by circulating atoken in aring of arbiter cells, with one cell per
client. The token moves once every clock cycle. If agiven client’s request persists for the time
it takes for the token to make a complete circuit, that client is granted immediate access to the
bus.

reqe-1—* — > ack, _,
req Arbiter

1—» > ack1
redp ——» > ack0

Figure 12-1: Black box view of the arbiter

12.2 Specification

The desired properties to be verified are:

1. No two acknowledge outputs are asserted simultaneously.
2. Every persistent request is eventually acknowledged.

3. Acknowledge is not asserted without request.

By restricting N to be two (or some other small constant), the problem becomes simple yet
illustrative. Ultimately, it should be possible to verify a design where N is a parameter, i.e. do
the verification for an arbitrary N.

12.2.1 Formal specification example

Data path free control circuits may be described easily using propositional temporal logics like
CTL [CIEm81]. The above properties result in the following CTL expressions:

1 Di¢jAG_'(aCki Dackj)
2. DiAGAF(reqi - ack;)
3. DiAG(acki - req;)

12.3 Implementation

The basic cell of the arbiter is shown in Fig. 12-2. This cell is repeated k times, as shown in
Fig. 12-3 for k = 4. Each cell has a request input and an acknowledge output. The grant of
cell i ispassed tocell i +1, and indicates that no client of index less than or equal to i are
requesting. Hence a cell may assert its acknowledge output if its grant input is asserted. Each
cell has aregister T which stores a one when the token is present. The T registers form acircu-
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lar shift register which shifts up one place each clock cycle. Each cell also has aregister W (for
“waiting”) which is set to one when the request input is asserted and the token is present. The
register remains set while the request persists, until the token returns. At this time, the cell’s
override and acknowledge outputs are asserted. The override signal propagates through the
cells below, negating the grant input of cell O, and thus preventing any other cells from
acknowledging at the same time.

‘tukem,imD DFFsr ﬁ#l & > token_out
> OR_2 |
reset Ny
] 7 | | | DFFsr —7 —
clk >——& . —
[ OR-2 —Dack,mut
EENI
[ 1 AND2Z
I_I rant_out
grant_in > L Dg
req_in > —
override_in[ > Doverride,uut

Figure 12-2: Cell_2 plus

clk[> 2 L

qr_Cell _g_plus

—
s}
|
|
I
o
-

rbitdr _Cell_p_plu

: > sck_outl(3:0]

chitdr Cell_pplu

Achfter_Celjl 1

Figure 12-3: Arbiter with four inputs/outputs

The circuit isinitialized so that al of the W registers are reset and exactly one T register is
set. To achieve this one cell has a different implementation as shown in Fig. 12-4.
Fig. 12-5 and Fig. 12-6 show different simulation runs with and without request collisions.
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reqoin[ > —
ov de_
de_in[ > >

Figure 12-4: Cell 1

12.4 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup [Stau93]. The implementation and
formal specification has been taken from [McMi93a, p. 40ff.]. Parts of the description are
directly quoted from there. Thanks to C.J. Thomas for providing the VHDL descriptions.

12.5 Literature

[CIEm81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic. In D. Kozen, editor, Proceedings of
the Workshop on Logics of Programs, volume 131 of Lecture Notesin Computer
Science, pages 52—71, Y orktown Heights, New York, May 1981. Springer-Ver-

lag.

[McMi93a] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-

well Massachusetts, 1993.

[Stau93] J. Staunstrup. IFIPWG 10.2 Collection of Circuit Verification Examples, Novem-

ber 1993.
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13 Rollback Chip

Thiscircuit isaspecia processor of non-trivial size.

13.1 Specification

The Rollback chip is a co-processor for speeding up a distributed simulation, the functionality
is described in the paper [GoFu93]. This paper also presents several refinements and a formal
verification of these.

13.2 Implementation

currently missing

13.3 Statusand Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
guoted from [ Stau93].

13.4 Literature

[GoFu93] G. Gopaakrishnan and R. Fujimoto. Design and verification of the rollback
chip using HOP: A case study of formal methods applied to hardware design.
ACM Transactions on Computer Systems, 11(2):109-145, May 1993.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
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14 The TAMARACK Processor

This circuit has been one of the first microprocessors, which have been formally verified. It
may be used to demonstrate the problems, arising in the area of microprocessor verification.
14.1 Specification

Tamarack is a simplified microprocessor which has been specified and verified formally, this
example is described in [Joyc88].

14.2 Implementation

currently missing

14.3 Status and Acknowledgments

An implementation will be provided after the actual benchmark description guidelines have
been revised (probably end of 1994).

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
guoted from [ Stau93].

14.4 Literature

[Joyc88] J.J. Joyce. Formal verification and implementation of a microprocessor. In G.
Birtwistle and P.A Subramanyam, editors, VLDI Specification and Synthesis,
pages 129-157. Kluwer Academic Publishers, 1988.

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
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15 Stop-Watch

It has been pointed out by Mike Fourman that this example illustrates the need for temporal
abstraction which might be treated differently than the data abstraction found in the arithmetic
examples like the N-bit adder (section 9) [Four9Q].

15.1 Specification

Consider designing a digital stopwatch with athree digit, seven-segment display (to read tens
of seconds, seconds and tenths of seconds), and two control buttons, “reset” and “start/stop”.
When the reset button is pressed the display is cleared. The start/stop button is used to start and
stop the clock. The design is driven by an 1IMHz external clock signal. The stop watch is con-
structed as a synchronous design with one iteration in each clock cycle.

15.2 Implementation

The stopwatch basically consists of 3 synchronous, self starting counters (Fig. 15-1) which
generate output data tenths out, seconds out, tens out. For counting the tens of seconds, o
modulo 6 counter is used, for counting seconds and tenths of seconds, modulo 10 counters are
required. (Fig. 15-2, Fig. 15-3).

Clk %
odp18 _Courfas [::>Temthg,out[3:@1

StartStop[_>—
Reset 8?,1@,[:0ur+cm : >Secomds,out[3:@J

J: SE’B’CDM Tens_ outl2:0)

Figure 15-1: StopWatchCount
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Figure 15-3: Mod_10 Counter
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Because of the 1 Mhz clock input, there must be a clock reducing device, build of modulo
10 counters, to generate an internal clock signal (Fig. 15-4).

Reget[:>

Cm,mD—L
logie-1
ﬁ; Modf 18_Cou

er
Enable > MDd,lB,CDulﬁEr‘

] Mod}l 1B _Counggter
| Gd,l@,CDult AND2
ﬂa 4‘[2>Clk,aut

=

r

Figure 15-4: StopWatchRedljce

In accordance to the specification, a combinational logic is provided to generate the output sig-
nals for a7 segment display out of the data vectors (Fig. 15-5). The overal structure is shown
in Fig. 15-6. Fig. 15-7 shows the waveform of the counting device in comparison with a behav-
ioral description of the stopwatch.

15.3 Status and Acknowledgments

The circuit has been originally proposed by J. Staunstrup. Most of the actual text is directly
quoted from [Stau93]. Thanks to C.-J. Thomas for generating the VHDL descriptions.

15.4 Literature

[Stau93] J. Staunstrup. IFIP WG 10.2 collection of circuit verification examples,
November 1993.
[Four90] M. Fourman. Formal system design. In J. Staunstrup, editor, Formal Methods

for VLS Design, pages 191-236. North-Holland/Elsevier, 1990.
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16 GCD - Greatest Common Divisor

Although being a small and worn out example, this circuit reveals some interesting verification
problems: data dependent |oops and data abstraction from bits and bit vectors to natural num-
bers. Moreover, if amore abstract specification is used (see Section 16.2.2 “High-Level Speci-
fication”) then even simple program verification tasks arise.

16.1 Introduction

The circuit simply computes the greatest common divider (GCD)of two natural numbers, given
as bit vectors of fixed bit width.

16.2 Specification

In the following, two different specifications are given. The first “low level” version only
requires an implementation verification, namely that the given algorithm to compute the GCD
is correctly implemented. The second specification is based on the mathematical definition of
the GCD and hence requires some sort of “program verification”, i.e. is has to be shown that
the implemented algorithm really computes the GCD.

The circuit is based on a ssimple handshake protocol: It starts running after the signal st art
has been set to true, signalling that new input values are available at the inputs Aand B. The lat-
ter carry binary encoded natural numbers. The st op signal indicates the termination of a com-
putation.

16.2.1 Low-Level Specification

Given two natural numbers A and B (of fixed bit width). Compute the natura number GCD
according to the algorithm of table 16-1.

X1:= Max(A,B);
X2:= Min(A,B);
repeat

M:= X1 MOD X2;
if (M#0) then
begin

X1:=X2;

X2:= M,

end

until (M=0)

11 GCD:=X2
Table 16-1: Computation of the GCD of two numbersA and B

© 00 N O O b~ WODN P

=
o

16.2.2 High-Level Specification

Given two natural numbers A and B (of fixed bit width). Compute the natural number GCD
with the following property:

Max({9|((g O N)and g divides A without rest and G divides B without rest)} )

15.7.96 41



16.3 Implementation

The implementation follows the specified algorithm (table 16-1). It is divided into control and
data path. The data path computes (without controller interaction) the maximum of two n-bit
vectors, to be interpreted as unsigned integers. Afterwards, the iteration of the algorithmis per-
formed.

There are 4 signals between controller and data path. S or eConp activates the storage of
the minimum/maximum sorted values in the data path. The sorting is performed by a compara-
tor (Fig. 16-1).

CLK[_>
Reset N>

Start[> L Jacoetr1 [>Stop

DILfray KB

REGr _N4ex Gl _rmm.m'_,i -

L_fREGr_N{ | "|MUX_N4

REGr _N;

H—{>ccors:el

REGr_Nq | |Mux_N4

nMUX_N4 L3

1

[ |rMux N4

Figure 16-1: Controller and data path

Sel ect Loopl ni t determines, if there will be an additional loop computation or if new values
are used for the loop. S or eLoop activates a register assignment, if the computation has not
finished. The end of a computation is determined by eqO. All lines are active high.

16.3.1 Controller

The controller is specified by table 16-2. S art resets the controller, & op signals the end of a
computation. The FSM uses 3 states: 00 isthe starting state after S art = 1. In state 01 the val-
ues of X1 and X2 are stored. Dependent on egO, the FSM remains in 01 or jumps to the final
state 10. States are stored in 2 D-flip-flops (qg, g;). State 11 is unreachable.

state next state
Start eq0 (qlqo)t (q 1q0)t+1 S or eConp Soreloop | SelectLooplnit | Stop
0 -a 00 01 0 1 0 0
0 01 01 1 0 0
0 1 01 10 0 0 1
0 10 10 0 0 1
1 00 1 1 1 0
0 11 10 - 0 0 1

Table 16-2: Controller transition table
a “-" denotesdon’t cares

Using table 16-2, the transition functions of table 16-3 result.

qi*l=d! = (Sartql) O (Start eq0qg)
qitl=dj = (Sart 9;0,) O (Sart eg0 q)
S oreConp = Sart

Table 16-3: FSM transition functions
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S orelLoop =
Sel ect Loopl nit =
Sop=

Sart

Sart

di

0

Table 16-3: FSM transition functions

An implementation of the controller isgivenin Fig. 16-2.
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riAAAAAﬂ
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T AND3
| —
DFFsr
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AND3 4(
OR_2
44£:>>SelectLDDpInit
Reset_N[__>

Figure 16-2: Controller realization

16.3.2 Data Path

The readlization of the data path need the following modules: 4 n-bit multiplexer, 4 n-bit regis-
ters, 1 n-bit comparator, 1 n-bit divider and 1 n-bit “ zero” -tester. These are connected as shown

in(Fig. 16-1).
16.3.3 Simulations

In Fig. 16-3 two example computations are given. The GCD of 15, (F1g) and 2 (result 1) and
the GCD of 1444 (E;6) and 104 (A1) With result 2 are computed. Busses named GCD<3:0>

and Div<7:0> carry divisor and dividend. Loop iterations occur on value transitions on these

busses. The first computation needs 4 and the second computation needs 3 iterations.
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To initialize the circuits, the Start and input signals have to be applied for aminimum dura-

tion of 2 clock cycles.
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Figure 16-3: Waveforms for two GCD computations
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16.4 Statusand Acknowledgments

The GCD circuit is a variant of a high-level synthesis benchmark example [VRMK91]. The
circuit presented here uses a ‘modulo” operation instead of repeated subtractions in order to
put more emphasis on arithmetic. However, for uniformity reasons in a future release the algo-
rithm may be adapted to the one used in [VRMK91].

Thanksto H.-P. Eich and C.-J. Thomas for designing the circuit in acommercial design sys-
tem.

16.5 Literature

[VRMK91] R. Vemuri, J. Roy, P. Mamtora, and N. Kumar. Benchmarks for high-level
synthesis. Technical Report ECE-DDE-91-11, Laboratory for Digital Design
Environments, ECE Dept., University of Cincinnati, Ohio, USA, November
1991.
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17 Multiplier

Although multipliers are usually purely combinational circuits, they are known to represent a
class of hard to verify circuits. This is due to the high degree of dependability of the Boolean
variables from each other (i.e. implementations have a high degree of connectivity between the
gates). For this reason representations for Boolean functions like ROBDDs [Brya86] fail to
provide efficient representations for multipliers, leading to problems when verifying multipli-
ersof large bit width.

Moreover, the verification must perform a data abstraction, since the specification is given
in terms of natural numbers and the implementation is based on bit vectors.

17.1 Specification

Given two natural numbers A and B (of fixed bit width). Compute the natural number P with
the following property

P=A[B (17-1)
17.2 Implementation

17.2.1 Algorithm

The multiplication of two unsigned integers, represented as bit vectors A = 3020 + a121 +.. +
a,.12" 1 and B= by2+ by 2+...+ by, ;2™ may be described by equation 17-2 and equation 17-3
incaseof n=4.

n-1 n-1 n-1 s

— — 'n — I J
P=A[B-= a2B = 20Y ab; 20 (17-2)

igo | igo Z0 o

P = A[B = (aghg)*+2(asbgt+aghy)+4(apbg+ay by +agh,) +8(aghg+ahy +ag by +aghs)
+16(aghy +aghy+ay bg)+32(aghy+aghs)+64(aghs) (17-3)

17.2.2 Global Realization Architecture

Looking at equation 17-2, it is apparent, that the n® product terms (16 in equation 17-3) are all
used only once. This leads to a hierarchical implementation, where first the product terms are
computed, which are then fed into n? full adders. Fi nally, the resulting carry values are taken
care of by aserial addition (Fig. 17-1).

In Fig. 17-1, 16 (n® with n = 4) multiplier base modules are used, which compute one product
term and then perform an addition with carry. The module is specified in table 17-1 and real-
ized asgivenin Fig. 17-1.

S= (ab) O (cO CIN)
COUT=  abcOabCINI cCIN

((abOc) O(abOCIN)O (c OCIN))
Table 17-1: Specification of the multiplier base module

17.2.3 Detailed Description
In this section, the implementation is described at a more detailed level.
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Figure 17-2: Multiplier base module (MULTcell in Fig. 17-1)

First the product terms ggbg to &1 are computed, using the modules of figure Fig. 17-1.
The inputs ¢ and A Nare set to 0. The result of multiplying the least significant bits agbg is
available at the global output of the circuit after computation.

In a second step, the product terms agb, to &,,.1b; are computed. The input ¢ of a base cell
which computes gb; (0<i<n-2) is set to gby (the result of the first computation).The
input ¢ of the cell, which computes a,.1b; isset to 0. Input A Nof all modulesis set to the carry
of the computation of g_;b,. Now the computation of the second least significant bit of P isfin-
ished and the results, available at the outputs S, are needed to proceed further.

In the n-th step, the circuit computes the product terms agby,.; to a,.1b,.1 using n multiplier
base modules. The input ¢ of the module which gets the most significant bits for computation
(8.1 @nd by,.1) isset to 0 again. All other modules get the result of the previous step viac. Input
A Nof the cell computing g;b,,.; gets the carry of the cell computing &_1b,,.,. The result of the
cell computing the least significant bit (agb,,.1) is available at the primary outputs of the whole
circuit. The outputs S of all other cellsis connected to inputs b of a full adder. Hence n-I full
adders are needed. The second input a of each adder is connected to the carry out of the multi-
pliers base module one position left (with regard to the module providing the signa for the
adder input b). A Nof the rightmost adder is set to 0. All outputs GOJT are connected to the
inputs A Nof those full adders computing the next higher significant bit of the product P. The
lowest row of the combinational circuit consists of a ripple-carry adder. The most significant
bit of P results Or-ing GAJT of the rightmost full adder and GAJT of the rightmost multiplier cell
placed above the adder.
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A simulation can be found in Fig. 17-3.
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Figure 17-3: Simulation of the Multiplier

17.3 Statusand Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

17.4 Literature

[Brya86] R. Bryant. Graph-based algorithms for boolean function manipulation. |EEE
Transactions on Computers, C-35(8):677—691, August 1986.
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18 Divider

A divider is mainly introduced for having an additional purely combinational example besides
amultiplier and because it is used in other verification examples like the GCD.

Moreover, the verification must perform a data abstraction, since the specification is given
in terms of natural numbers and the implementation is based on bit vectors.

18.1 Specification

Given two natural numbers, the dividend N and the divisor D, calculate the quotient Q and
therest R such that Q isthe largest natural number and R isanumber with R< D such that

N =DM+R (18-1)

18.2 Implementation

18.2.1 Algorithm

The implementation closely follows the “restoring cellular array divider”, presented in
[Hwan79] (pp. 264ff., see also [Haye88]). Asthe multiplier, presented in section 17, it is based
on aregular, cell based design.

In contrast to other implementations, this design performs two operations at each computa-
tion cycle. The first subtracts the divisor for the dividend, staring with the most significant bit.
If the subtraction results in a negative difference, abit O will be produced for the quotient. The
second operation is arestoring addition, if a negative difference occurred. The latter operation
produces parts of the rest R. Each computation cycle is finished by a left-shift. If a positive
result was achieved by the substraction, then a 1 bit is generated for the quotient and no addi-
tion is performed.

18.2.2 Global Realization Architecture

The circuit is built by aiterative cellular array as depicted in Fig. 18-1. Each cell DIV cell uses
a controlled subtraction with 4 inputs and outputs.

l 0
—>|DIVcell~<—DIVcell<—DIVcell<—
A2 —s{DIVoutput| o |~ * ce ce N
—> |
l | — 0
d1 —{DIVout ut—>DIVceII DIVcell[[*|DIVcell[<4—
PUl . ng
— - < <
Qo —» D|Voutput<_D|VCe|| DIVcell—|DiVeell
— .
Iz ry )

Figure 18-1: Divider
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The signals of one DIV cell module are given in Fig. 18-2 and are specified in table 18-1. The
signals O vQut and SubQut are omitted in the table, since they are identical to O vin and
Subl n, respectively.

Dvin Rem
Bor r onQut <+—D|vcelll*+— Borrow n
Subln —» —  SubQut

Df D vQut
Figure 18-2: Signals of the divider base module DIV cell

Borrowut = (RemDvin) O (RemBorrown) O (O vlnBorrow n)

Of = (RemQubln) O (RembOvin Borrown) O (RemD vl nBorrow n)
0
(RemO vinBorrown Subln)y O (RemD vinBorrow nSubl n)

Table 18-1: Specification of the divider base module

The signale of a DIVoutput cell are given in Fig. 18-3 and are specified in table 18-2.
A

Y

Y —» DIVoutput

- » B
< NY

Figure 18-3: Signals of the divider base module DIV cell

Y= A 0O- B
ny= - Y

Table 18-2: Specification of the divider interface module DIVoutput

The inputs Rem O vl n and Borrow n are used for rest, divisor and carry input. Bor r onQut
denotes the carry output and Subl n is a control signal for al cells of the respective row. The
signal O f for the computed rest output realizes a function as shown in table 18-1.

ODf= Rm 0O Dvino Borrown,ifSubln=0
Of = RemifSubln=1
Table 18-3: Specification of the rest computation
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Theredlization of acell DIVcell isgiven in Fig. 18-4.

Dvin R
m
Bor r owQut 1‘01 1
&
L
>1 &I. l Borrow n
[©)
&
¢+ .
Subl n I SubQut
.
y J
T
& & & | & |&
>1
D'f| D vQut

Figure 18-4: Divider base module

18.3 Detailed Implementation Description

For building a divider with an m-bit dividend and a n-bit we need (m—n)n cells. The
(m—n) rows of the array are shifted one position right to each other and consist of n cells
each. In Fig. 18-1 there are shown 4 unsigned bit vectors: thedividend N = {ng no} the
divisor D = {d,, ...,dy ,thequotient Q = {q,, ...,qy andtherest R = {r

Theinput D vl n (d|V|sor bit in) of the first row the appropriate bit of the d|V|sor is appl |ed
where the leftmost cell gets the most significant bit. Input Bor r ow n (borrow in) of thei-th cell
is connected to the output Bor r owQut (borrow out) of the (i-1)-th cell (O<i<n-1) . Input
Borrow n of cell 0is set to 0. Output BorrowQut of cell n-1 is connected to an inverter. The
inverted signal is “ORed” with most significant bit of the dividend. It is available as a global
output and defines the MSB of the quotient. This signal is also inverted again and fed to input
Subl n (subtract control in) of the (n-1)-th cell. Output SubQut (subtract control out) of thei-th
cell is connected to Subl n of the (i-1)-th cell. Output SubOut of the O-th cell remains uncon-
nected. All outputs O vQut (divisor bit out) of the cells at a particular row are connected to the
inputs Divin (divisor bit in) of the next lower row, according to their indices.

Output O f (difference) of the (n-1)-th row is OR-connected with the inverted Bor r onQut
output of the (n-1)-th cell of the next lower row. All outputs D f of the cells n-2 to 0 are con-
nected to the inputs Rem (remainder bit) of the cells n-1 to 1of the next lower rows. The inputs
of Remof row 0 get the dividend (M SB left side).
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Besides input D vl n and Rem all rows are connected as described above for the first row.
The j-th row getsasignal viaD vl n from output O vQut of the (j-1)-th row and viaRema sig-
nal fromtheoutput O f (0<j<m-n) . Input Remof the O-th cell of row j gets the j+1-high-
est bit of the dividend. Via the outputs D f of the lowest row the rest of the division is
available.

Moreover, every row provides a bit of the quotient, according to its row index j and together
with the OR-connected and inverted signal of Bor r owQut of the (n-1)-th cell.

The implementation of a base module DIV cell, the DIVoutput cell and adesign using a6 bit
dividend and 3 bit divisor is shown in Fig. 18-5, Fig. 18-6 and Fig. 18-7, respectively.
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Figure 18-5: Divider base module designed in SYNOPSY S
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Figure 18-6: Output Cell DIV output
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Fig. 18-8 shows the simulation waveform..
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18.4 Statusand Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

Thanks to G. Janssen from Eindhoven University for pointing out numerous flaws in the
first version of this example.
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18.5 Referencee

[Fram92] CADENCE Design Framework 1l version 4.2a. Reference Manual, February
1992.
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19 FiFo

The FIFO storage element has been chosen, since its implementation is completely asynchro-
nous and does not contain any arithmetic or other computational elements. Thus it is well
suited to check verification approaches for their asynchronous capabilities. On the other hand,
the circuit is specified in ageneric way: it may contain nstorage elements.

19.1 Specification

The specification of the FIFO element is quite smple and follows the first-in-first-out defini-
tion.

Dat al nL Dat aQut
Shiftin___p FIFo | nput Ready
ShiftQit____p Qut put Ready

Mast er Reset

Figure 19-1: Black box view of the FIFO element

Using the input signals given in Fig. 19-1, the following operations should be possible, where
“values’ denote bit vectors of length m:

1. Input avalue viaDat al n, provided that Mast er Reset = 0 and | nput Ready = 1.
2. Output avaue via Dat aQut , provided that Mast er Reset = 0 and Qut put Ready = 1.
3. Reset the FIFO element with Mast er Reset = 1.

Hence an overflow of the n-place Fifo queue is avoided, if no input is accepted if it is com-
pletely filled, i.e. | nput Ready = 0

19.2 Implementation

The implementation is taken from [Schm78]. It is organized using an asynchronous “bubble
through” mechanism: input data “fall” automatically to the next free position. It is realized
using an asynchronous shift register (Fig. 19-2). Every stage of the shift register consists of a
register, i.e. m D-flip-flops, responsible for storing the m bit vectors. They store data, if arising
edge is applied to their clock signal. Below the shift register cells thereis a RS-flip-flop, which
indicates, if the respective register contains data (Q =1) or isempty (Q = 0).

Fig. 19-3 and Fig. 19-4 show arealization of one stage and a 4 bit realization, respectively.

Fig. 19-5 shows the simulation of various input and output operations of the FIFO circuit.

19.3 Status and Acknowledgments

Thanksto H.-P. Eich and C.-J. Thomas for designing the circuit in acommercial design system
[Fram92].

19.4 Literature

[Schm78] V. Schmidt. Digitalschaltungen mit Mikroprozessoren. B.G. Teubner Verlag,
Stuttgart, 1979. (in german).
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Figure 19-2: Realization of am bit FIFO element with n places

MasterReset > RSEFR
ShiftOut >
ShiftIn[ > ANDZ

DataIm[Siﬁﬂ >
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nREG_N4

OutputReady

ClockPulse

Figure 19-3: Design of one stage of the FIFO element
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Figure 19-4: Design of a 4-bit FIFO element
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In an associative memory (also called “content addressable memory”) each stored data wort
can be retrieved by using characterizing parts of the data. E.g. having stored persons togethe
with their birth dates, when applying a date it is possible that more than one person is store
with this date. All of them are “matched” and afterwards “selected”. This matching and selec
tion process is a key part of most associative memories. The data units to be stored are fixed
length words. The black box view of the memory isgivenin Fig. 20-1.

m
Dat al n +>
m
n
Addressin —/ —pm m
> Dat aQut
Sore g -
P
WiteEnable

i0[0,n—1]



instant t+1 (rising edge) the result is available at Dat aQut and the signal End is set. To start a
new request, the controller has to be reset with Reset = 1. Using an associative memory, the
comparison of datawith n other words can be performed in O(1).

20.2 I mplementation

20.2.1 General architecture

The structure of a simple word-organized associative memory is shown in Fig. 20-2. Each sub-
part of such a word may be chosen as a key, i.e. as a search pattern. The bits relevant for a
search are marked in the mask register and are compared simultaneously with all stored words.
Every matching entry results in a match signal. The “select circuit” then chooses exactly one
matching word and produces a “ select” signal to retrieve the word from the storage cell array
to be written into the output register. There are different strategies for choosing the word like
“first hit” etc.

input register

Y
mask register

] Mask

match

»

»| AssocMemArray | B gﬁlceucii

<%

select

Y
output register

'

Figure 20-2: Associative memory with fixed word-length

The main module in Fig. 20-2 is the “storage cell array” AssocMemArray. Its black box view
is shown in Fig. 20-3 and allows the following operations:

1. Read in adataword, consisting of an input field of length m (read in at Dat al n) and a key
field of length n (read in at Mask).

2. Search for data using akey fed in at Mask. Mat ch indicates, if there have been found one or
more matching entries.

3. Read out a matching data word via Dat aQut , using a key at Mask and a selected row (using
Sl ect).

m
m
Dataln /g /g DataQut
m n
Mask /gl AssocMemArray |/ g Mitch
n
Select —/ po

Figure 20-3: Black box view of AssocMemATrray
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20.2.2 Implementation of one cell of AssocM emArray

Since al words have to be compared with the key, each bit cell AssocMemCell of AssocMe-
mATrray needs a compare circuit. The realization of one cell is shown in Fig. 20-4.

WriteEnable > L ANDZ

AND3 — NXOR 2
e I B S e
ij T ANDZ
Dataln >

Sel[ > )

Figure 20-4: One cell of the associative memory (AssocMemCell)

[ >Dsta0Out

The basic storage element is a D flip-flop. An NXOR-gate performs the actual comparison
between the flip-flop content and the input data Dat al n.The output of the NXOR isAND-con-
nected with the inverted signal Mask to form the match signal Mat ch. Hence a match only takes
place, if the cell is not masked. To read out the flip-flop the select signal Sel isAND-connected
with its content to get the data output Dat aQut . To store data in the flip-flop, its clock input is
AND-connected with the select signal Sel , write-enable signal Wi t eEnabl e and the inverted
mask signal Mask.

20.2.3 Implementation of a mx n Storage Cell Array (AssocM emArray)

Given amask and an input word of length m. For a m x n memory, m [Ch cells of type Assoc-
MemCell (Fig. 20-4) are necessary. Cell i, j in the i-th row and j-th column is connected as
follows (0<i<m-1,0<j<n-1).Input Wit eEnabl e is connected to a global Wi t eEn-
abl e. Data input Dat al n is connected to the i-th least significant bit of the input word, mask
input Mask is connected to the i-th least significant bit of the mask word. Select input Sel is
connected to the j-th lowest significant bit of the select word. Data output Dat aQut and match
output Mat ch are OR-connected with all respective outputs of the j-th row, i -th column

20.2.4 Implementation of the whole Associative memory (AssocM emCirc)
The whole associative memory is shown in Fig. 20-5.

To perform read and write at definite time instances, three n-bit register for data, mask and
result as well as a m-bit register for the address are needed. Read of a data word (mask word)
isdone via Dat al n (Maskl n) with astorage signal S or e = 1 and arising edge of A ock. Anal-
ogously, an address word is read via Addr essl n in the address register.

Data input and mask input are connected with the outputs of the data register and mask reg-
ister. The n-bit “match” output of the associative memory isfed into a“select circuit”. The lat-
ter is being realized by a combinational circuit, which selects exactly one hit, if more than one
hit has been achieved. The n-bit output is fed into the “1” input of a multiplexer. The multi-
plexer is selected via Sel ect Adr Mt . The n-bit output of the multiplexer is fed into the
address input of the associative memory. To be able to read out data at a definite time instant, a
control circuit is necessary. Here, Sel ect Adr Mat is AND-connected with the inverted signals
S ore, WiteEnabl e and Reset and fed into the set input of the RS-flip flop.

The Reset line is connected to the reset input. The state of the RS flip flop thus indicates,
whether data have to be stored in the output register (state = “1"). The flip flop state also pro-
vides the End signal. The result of the search processis available at Dat aQut .

A 4 x4 memory isgivenin Fig. 20-7.

As an example, the data as given in table 20-2 is written into the memory. Next, the word to
be fetched is written into the memory as 0001. The search mask is set to 1110, such that only
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Figure 20-5: Whole associative memory (AssocMemCirc)

Reset > |I h
— 1 RSFF StoreRes
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SelectAdrMat[> AND4 | [

NriteEmableD—ﬁJ

Figure 20-6: AssocMemCnitrl of Fig. 20-5

the rightmost bit is used for the search. This leads to a search result 0011, which equals the
content of the 4th cell.

The simulation result of this examplesis shown in Fig. 20-8 (the suffix “1” denotes signals
of the structural description, “2” denotes signals of the behavioral description).

20.3 Status and Acknowledgments

The presented associative memory element is currently used to get alarger hierarchical circuit,
which computes the maximum of all stored numbers. This use of the circuit will be added to
this description or will constitute a separate verification benchmark in the near future.

Thanksto H.-P. Eich and C.-J. Thomas for designing the circuit in acommercial design sys-
tem.

20.4 Literature

[Haye88] J.P.Hayes. Computer Architecture and Organization. McGraw-Hill, 2. edition,
1988.

[Koho77] T. Kohonen. Associative Memory. Communication and Cybernetics. Springer
Verlag, 1977.
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cell #

data (binary)

A W N P

0110
1000
left empty
0011

Table 20-2: Example Data written into the memory
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008

ooy

o

o~

008

ooy

o

(0:2)NISSIYAAVY/HONIFLSTL WIANDOSSY/
(0:E)NIMSVYIN/HONIELSIL WINDOSSV/
(0:€)2LNOVLVYA/HONIGLSIL WINDOSSV/
(0:€)TLNOVLVYA/HONIGLSIL WINDOSSV/
(0:€)NIVLYQ/HONIELSTL WINDOSSV/
ZAN3/HONIE1S3L WINDO0SSY/
TAN3/HONIELSIL WINDOSSYV/
MO0TO/HONIFLSIL WINDOSSY/
379VYNIILIYMWHONIELSIL WINDOSSY/
13S34/HON3ELSTL WINDOSSV/
1VYINYAVLO313S/HONIELSTL WINDOSSY/

JHYOLS/HONIELSIAL WINDOSSY/

eform of the example

1on wawv

Simulat

Figure 20-8
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21 1Sy (Filter)

21.1 Introduction

Thefilter circuit of this section and the matrix multiplier of section 22 have been chosen as wit-
nesses of one-dimensiona and two-dimensional systolic architectures. The notion of “systolic
arrays’ hasfirst been introduced by Kung and Leierson [KuL e78]. Basics on these specialized
regular architectures can be found in [Kung82]. The circuit to be presented here is afilter ele-
ment also taken from [Kung82].

Systolic arrays require additional efforts for specifying the intended behavior, since here
data have to be applied at different timesin a specia order to achieve a correct functioning of
the circuit. Moreover, more-dimensional systolic arrays are a good illustration of more-dimen-
sional generic circuits.

21.2 Specification

The circuit processes a stream of input values {Xq, X5, ..., X} , X ON, 1<i<n. These
input values have to be multiplied with alist of weights {wy, W,, ...,w} ,w; ON, 1<j<Kk.
Each y, of the resulting output stream {y,, Y5, ..., Y+ 1_d iScomputed asin equation 21-
1

Yi = WX FWoXi g ¥ AWK g (21-1)
An example computation for k = 3 and n = 5 isgiven in equation 21-2.
Y1 = WpXg+WoXy + WXy
Yo = WX+ WoXg+ WgXy (21-2)
Y3 = WqXg+WoX, + WaXg
In the implementation given below, first the weights w; are fed seriadly into the input
S ream n. After k weights have reached their respective position in the k cells, they are stored
by setting S or eVéi ght to true. Afterwards the input values are fed serially into the St r eani n.

Thevalues y, are computed and serially shifted out on output Resul t Qut .
This specification can be verified for concrete values of k weights or as a generic circuit.

21.3 Implementation

21.3.1 General architecture

The implementation is realized using overlapping additions and multiplications. In the first
cycle t; theinput value is multiplied with the weight stored in the respective stage. In the sec-
ond cycle t, thisproduct isto be added to the now available intermediate result y; . In order to
achieve this, the input values x; must be separated by two clock ticks (Fig. 21-1).

During an initialization phase the weights w. are loaded into the stages by using the first k
input values of the input stream as weights. In the following, inputs values are treated as n bit
integers and output values as m bit integers (Fig. 21-2).

Let w aweight and z an internal variable. If thereisarising tegqeat t1, then xt+1 = x
and z = x [ iscomputed. If thereisarising edge at t2, then y = z+Yy iscomputed.

t
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W3 W, W >
— Y > Y1
X3 stage | Xo| stage | X1 | stage
N\ N\ N\
clock t; t, ’2 4 4 4

Figure 21-1: Basic array structure computing the first result

t+1 m m t
stage

t t+1

X T’ T’ X
Tclock t1t2

Figure 21-2: Black box view of one stage
21.3.2 Implementation of one stage

The stage has two global inputs Sreamn<n-1:0> and Resultln<m1l: 0> Input
S ream n<n- 1: 0>isfed viaa 1:2 n bit demultiplexer into two n bit registers. Using the control
signal Sel ect Wit Sr of the demultiplexer either the register for storing the weight
(Sel ect Vgt S v = 0) or the register for the input value (Sel ect Wit S r = 1) is selected. Both
register store their respective inputs, if S oreVgt =1 (S oreSr = 1) and thereisarising edge
attl.

The content of the input register is available at the output ESt r ean@ut <n- 1: 0> and the
input of an n bit multiplier. The multiplier also gets the weight. The 2n bit output of the multi-
plexer is stored in aregister if S or eRes = 1 and thereis arising edge at clock t2 (Fig. 21-3).

Intermediate results, available at input Resul t | n<m 1. 0> are stored in a m bit register if
SoreRes =1 and arising edge at t2. The content of this register as well as the multiplication
results are added via an adder< to get the result at Resul t Qut <x: 1>with x> max(n, m) + 1.

The general clocking scheme must be such that the rising edge of t1 occurs before therising
edge of t2.

Therealization of astagein acommercia design system isgivenin Fig. 21-3 and Fig. 21-4.

Fig. 21-5 shows an example computation with wl = 4, w2 = 2, w3 = 1 and x1 = 9,
x2 =8, x3=7, x4 =6 and x5 = 5, respectively. The output of a behaviora VHDL
description (the “ specification”) produces the output stream 59, 52, 45, the structural VHDL
description (the implementation) produces 3B, 34, 2D (hexadecimal).

21.4 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

21.5 Literature
[Kung82] H.T. Kung. Why systolic architectures. IEEE Computer, pages 37-46, January

1. The multiplier is not further specified here since its realization is arbitrary. Isis possible to use e.g. the multi-
plier of section 17.

2. For the adder the same holds as for the multiplier.
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clkz2[>

Reset,/\llz JREGr _N1
ResultIm[lli@]I > = 'R N2 _MB
cra_ _
—l >ResultOutl11:8]

StoreRes| >

clle REGFNEJ_

REGr_N4
L Tstruc N4

Storelgt| >

SelectlgtStr[_>—] DMUX7N4J
Streanlnl3:01[>— -

REGr_N4

! StreamOut([3:0]
StoreStr > D

Figure 21-3: SYNOPSI S realization of one stage

B

el_2/Rlesu §tTnr11:81

,_
o
|
|
N

SelectlgtStr >
StoreRes[ > FILTEf=tage Nizlma
StoreStr >
Storelgt >

— FILTEfstage_ .”LIZ, 4

clkl > m
clk2 >

[ [LTEfstage N ResultOut[11:0]

Streamim[SiB]I >

Figure 21-4: SYNOPSI S realization of a complete structure

1982.

[KuLe78] H.T. Kung and C.E. Leierson. Systolic arrays (for VLSI). In Sparse Matrics
Proceedings, pages 256-282. Society for Industrial and Applied Mathematics
1979, 1978.
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22 2Syst (Matrix Multiplication?)

The filter circuit of this section and the filter of section 21 have been chosen as witnesses of
one-dimensional and two-dimensiona systolic architectures. The notion of “systolic arrays’
has first been introduced by Kung and Leierson [KuLe78]. Basics on these specialized regular
architectures can be found in [Kung82].

Systolic arrays require additional efforts for specifying the indented behavior, since here
data have to be applied at different times in a special order to achieve a correct functioning of
the circuit. Moreover, more-dimensional systolic arrays are a good illustration of more-dimen-
sional generic circuits.

22.1 Specification

22.1.1 General Specification

The circuit to be presented here is a two-dimensional “hexagonal” systolic array. The circuit
has been taken from [MeCo80] and is intended to multiply two matrices.

The multiplication of two nxn matrices A = (&;) and B = (b,;) resultsin a matrix
C = (¢ j) , Where the multiplication is defined by the recursive equation 22-1.

(1) _

(k+1) _ (k)

Cij = Gij * by (22-1)
c. = cn+D)

1] 1]
However, the matrix multiplier must only be able to multiply so-called “band” matrices. These
are special matrices where certain matrix positions must carry zeros. The multiplication of two
3 x 3 and two 4 x 4 matrices A and B, having width w = 3 and w = 4 are given in equation
22-2 and equation 22-3, respectively (note that A and B have the zeros at “mirrored” places).

ay a5, 0] |by; by, O C11 C12 C13
851 8y Ayz| X |byy Doy bogl = Cyy Coy Cpg (22-2)
0 ag, ag; 0 by, bgg C31 C32 C33

ajpa;, 0 0 by; by byg O C11 €12 C13 Cy4

a5, Ay, A 0 b,, by bos b Csq Coy Cos C

21 89 Ap3 o | P21 P22 P23 Dogl _ 1Co1 Cop Co3 Cog (22-3)

Agzq Agp Agz Agy 0 bg, bgs by C31 C3p C33 C3y

I 0 ay, a3 a44_ I 0O O b43 b44 _041 C4o Cy3 044_

1. TheVDHL filesoften refer to this circuit as MATRIX.
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22.1.2 Timing Requirements
The black box diagram of the circuit for a 4 x 4 multiplication is shown in Fig. 22-1.

a0 —

al — osyst [ ™ €0
2 —p — ¢l
a3 —p —» C2
b0 —pi —» C3
bl — L c4
b2 — —® c5
b3 —® C6

Figure 22-1: Black bock view of 2Syst

For performing a 4 x 4 multiplication with a band width w = 4, the values a; and bij have

to be fed into the inputs a0 to b3 at the time instants as indicated in table 22-1.

a3 | a2 | al | a0 | b3 | b2 | bl | bO ] c6 | c6 | c4 | c3 | c2 | cl1 | cO

0 0]o o lolololol ol - -1 _-1_-1_-1--]-
1 ol ol@al oo o |bPu| o - |- 1]-1]-1]-1]:21/-
2 o l@i| oloflo|Polo|of-1|-1|-1]-1:-1]:-/1]-

7 o | o |33 oo | o |bPx|o]o]|o|cy| o|cy|lol]o
8 | o |23 o oo |Pa|o|o]o|cy| oo o |cylo
o | oo o3| o| oo |Ps]o|o|o0]|cyg|lo]ol]o

10 | 0o o |34l oo | o |Pa|ofo|ofcg|o|cylolo

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 Cap| O 0 0

13 Lol o2 oflolo|Pulolo|o|lolo]o] o] o

14

Table 22-1: Input/output timing scheme
Obviously one of the input matricesis fed column by comun, the other row by row into the cir-
cuit. The diagonal elements a; and b;; arefed into the W—1 thinput (al and bl in case of
w = 4,a2and b2in caseof w = 5;. The time distande bfet input columns and rows is

2. Output values are available after 2 time instances. The mapping of output matix values ¢;; to
output signals ck ist given in Fig. 22-2. The distance between consecutive output valuesis 2.
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Thetotal length of the output stream equals the length of the input stream, henceit isfinished 2

time instances after the last input value has been applied.

The outputs cO to c6 produce the result C” according to the schene given in table 22-2

c6 c5 c4 c3
Figure 22-2: Output variable correspondence

22.2 Implementation

22.2.1 General architecture

The overall hexagonal architecture of the systolic array for an 4 x 4 example is given in Fig.
22-3.
c3

a3

X IAL LA,

Figure 22-3: Basic array structure
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22.2.2 Implementation of one cell
Each cell of Fig. 22-3 has three inputs A I n<n-1: 0>, B I n<n-1: 0> and C | n<m 1: 0> and
three outputs A Qut <n- 1: 0>, B_Qut <n- 1: 0>and C Qut <m 1: 0> (Fig. 22-4).

C Qut<m1: 0>

A ln<n-1: 0> B I n<n-1: 0>

B Qut<n-1: 0> A Qut <n-1: 0>

Cln<m1: 0>
Figure 22-4: Black box view of one cell

The inputs A | n<n- 1: 0> and B_I n<n- 1: O>are connected to a n bit register and the input of a
multiplier. The 2n bit multiplier output is connected to an adder. The second input of the adder
isfed by C I n<m 1: 0>. The adder output is fed in a register. The register outputs provide the
cell outputs A Qut <n- 1: 0>, B Qut <n- 1: 0>and C Qut <m 1: 0> (Fig. 22-5).

Reg
Aln m T Aot
/\ SR
| | L
1
Reg |
BlIn m B Qut
/\ SR
i
1
multiplier
adder
n
ALU N [Re9 |m
ALU C Qut
) I_J ASR
Cln i
1

Figure 22-5: Realization of one array cell
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22.2.3 Actual Realization and Example

A 4 x4 redlization of the basic cell (Fig. 22-5) and the whole systolic array (Fig. 22-3) is
givenin Fig. 22-6 and Fig. 22-7, respectively.

Reset N >> REGr_N4

—{ >/ 0ut(3:8)

logire-1
T REGr _N{
—{>B 0ut13:0]

clock >

: REGr _Nf
C_Int7: 01> L l L[> c outi7:a
AfIm[gzg]D_ﬂJ,Tstruc, 4 CRA_NSB

B_Inl3:01[>—

log'g_g—r

Figure 22-6: SYNOPSY Sreadlization of abasic cell

The following waveform (Fig. 22-8) shows the result of computing the multiplication given in
eguation 22-4.

3200 (4210 2212 5 4
513045312 _ (25311223
7425 10627 48 38 35 47
0218 (0045 10 12 36 51

The busses SrA0In to SrA3In and SrB0In to SrB3ln carry the coefficients of the
matrices A and B.

(22-4)

22.3 Status and Acknowledgments

Thanks to H.-P. Eich and C.-J. Thomas for designing the circuit in a commercial design sys-
tem.

The documentation of 2Syst has been completely revised September 1995 due to valuable
comments from Scott Hazelhurst, University of Brithish Columbia, Canada.

22.4 Literature

[MeCo80] C. Mead and L. Conway. Introduction to VLS Design. Addison-Wedley, 2.
edition, October 1980.

[Fram92] CADENCE Design Framework 1l version 4.2a. Reference Manual, February
1992.

[Kung82] H.T. Kung. Why systolic architectures. IEEE Computer, pages 37-46, January
1982.
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Figure 22-7: Realization of a 4 x 4 array

[KuLe78] H.T. Kung and C.E. Leierson. Systolic arrays (for VLSI). In Sparse Matrics
Proceedings, pages 256-282. Society for Industrial and Applied Mathematics
1979, 1978.
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