Autocoding in Lockheed Martin ATLeCamden
RASSP Hardware/Software Codesign

Christopher B. Robbins
Management Communications and Control, Inc.

Abstract - Autocoding provides the Lockheed
Martin Advanced Technology LaboratoriessCamden
(LM-ATLeCamden) RASSP hardware/software
codesign process the means to rapidly realize
implementations of the codesign software
architectures. Management Communications and
Control, Inc. (MCCI) autocoding tools automate
translation of software architecture specifications to
designs and their implementations for functional and
detailed hardware/software cosimulation, unit
testable modules, and complete application load
image specifications. The tools support an open
application programmer's interface to the codesign
process. Autocoding tools support the codesign
processes objective of providing a seamless
translation of applications from math tool level
functional algorithm specifications to target
architecture load images. Autocoding technology is
directed at reducing the labor content of software
design and coding, enabling rapid development of
the software elements of application specific signal
processing systems.

or Modeling
:fMixed Level Simiuation

SW VERIFICATION
Equivalent &Partition
Generation

4 RTLLogic Level Simulation
{ Detmilod Simulation

{ SW DEVELOPMENT
pH{ Partion A

Graph Autocod

Figure 1 - Lockheed Martin ATLeCamden
RASSP HW/SW Codesign Process

Role of Autocoding in RASSP
Hardware/Software Codesign Process - The
autocoding toolset provides automated assistance
for realizing top level software designs from
architecture specifications, and it fully automates
detailed software design and coding. Figure 1
illustrates the LM-ATLeCamden hardware/software
codesign process. The process provides for (1)
system processing and control functional definition;
(2) architecture definition, partitioning, and hardware

129

and software architecture verification; (3) hardware
and software detailed design; (4) hardware
manufacture and target architecture hardware; and
(5) software integration and test. These steps
include domain engineering activity where
processing function, control, and architecture
specifications are developed and architecture
implementation activity at verification, detailed
design, and manufacture or coding levels.
Autocoding tools are focused on the traditionally
labor intense software verification, software detailed,
and coding codesign implementation activities.
Soltware architecture specifications are automatically
translated into executable partition and equivalent
application specifications in response to the domain
engineer's partition and control parameter
specifications. Performance estimation feedback is
nearly instantaneous, supporting rapid iteration over
parameter ranges and partitioning decisions within
the architecture specification. Verified partition and
equivalent application specifications are then
automatically translated to source code for the
partition executables and data structures from which
the run-time system creates executable images of
the equivalent application specifications.

The autocode toolset provides the
implementing technology for the LM-ATL«Camden
RASSP open application programmer's interface
(API). Figure 2 illustrates the elements of this open
API. The algorithm functionality is captured in PGM
data flow graphs. PGM graphs exist in iconic and
notational form. PGM supports specification of full
system data flow and data flow control. Processing
functions are specified by graph nodes. Queues
specify data flow between processing nodes.
Formal queues and variables may be externally
controlled. A command message interface to the
graph provides the control interface. Functional
process control requirements of the system
definition are implemented as sequences of
command procedures directed by command
messages. Signal processing is specified by domain
primitives, target independent functional signal
processing primitive specifications. The autocoding
toolset implements domain primitives on each type
of computational element supported in the model
year architecture. Software architectures specified
using the open AP| may be ported among all model
year architectures without change to architecture
specification or external controls.

(Domain Primitive

(PGM Graphical Syntax

* Queues s ing to and data token flow
Modes, E:fnll'ayl agd ng'a(l’.gf!amilies

* Nodes specifying process/graph Interfaces
Ports, Valves, Node Execution Parameters, Families

—
ntro ce %GRAPH (INTERCEPT
Command Message Co | Interta Ot DFLOAT, D e cation
Create DETECT_THRESH : DFLOAT
Destr
A weura| PGM Graph Data Flow Speclfication ﬂ
Start Flush [1..8)l 11.00N ﬂ
Graph Stop Queues Link i
b Unlink ouTPUT, \\\
Resume Connect \
D nect [1..8)08AMP
agdnm % NODE (FFT
Initialize PRIMITIVE = D_FFT
VO Process . [1.8K0 PRI NS
Stop Create) 1_010RC RFI‘
Variables Destroy %VAR (DI g
read -
-~ wite J | %aiP(og X
1. 9)QAVE
.)
[1.8)QDIFF

¢ Primitives
Primitive Controls

* Subgraphs
+ Controls

Formal and Local, Families

L’ VO Procedures

Graph Instantiation Parameters, Varnables,

N

Figure 2 - Open Application Programmer's Interface

Correct by construction software
development disciplines are incorporated into the
codesign process. Applications are specified and
autocoded using elements of an extensively tested
domain primitive software library. They are
assembled into executable form using mature PGM
data flow rules. Validation and/or unit testing
activities are incorporated at each stage of codesign
to ensure compliance with functional and
performance requirements. The autocoding toolset
supports the RASSP program goal of uneventful
integration and testing.

The autocoding toolset automates system
realization of software architecture specifications. It
provides automation support to design realization of
the software architecture at architecture verification
and detailed design levels of the codesign process.
This enables rapid realization of software architecture
specifications as virtual prototypes, unit testable
application modules, and specifications for
compilable system load images on targets supported
by the model year architecture. Autocoding tools will
provide the application domain engineer with the
power to expand the number of
application/architecture specification variations that

130

can be evaluated to the point of acceptable
cost/performance risk confidence levels within real
project budgets. Superior systems and reduced
development and/or recurring costs must follow.

Autocode tools automate software design
realization in software architecture
verification - Equivalent and partition graph
generation tools automate generation of top level
software designs from hardware/software
architecture specifications. As illustrated in Figure 3,
hardware/software architectures are specified to
software verification as PGM application data flow
graphs with a candidate architecture file and
corresponding pattition lists. A top level software
design is generated from inputs and designer
inputs. The top level design consists of (1) an
equivalent application data flow graph which
specifies the executable image of the application,
and (2) a stand-alone partition graph for each
equivalent node specifying executable processing.
Both outputs may be used to verify requirements
capture and performance of the top level software
design. When accepted, these outputs may
become inputs to the detailed design level autocode

%GRAPH (INTERCEPT, 1
DETECT_THRESH waon |
INPUTQ = QINDMOD) e
[1.8]QIN : FLOAT |
- W
OUTPUTQ = QOUTFY |
QOET]
. |
{1.8JQ0UT : INT ¥ |
)
{1 BIQAVE
%VAR (DEMOD_NP : l
%GIP (DEMOD_N: IN FiR |
.%G| Candidate 1. BIQOIFF
. |
T
Firz) | ASIC
aai =
hocta B | W —.I
%GIF I L e 1 LaPertilon 8
— | osp DSP asic osp_| | .
cs cs _HTsw Parstion s
DSPC8-1
= PaovionT] Processor 01
L MAG
UER FIR_AVE
DIFF
FFT8

%GRAPH (INTERCEPT EQUIVALENT
VAR = DET_THRESH: DFLOAT,
DETECT_THRESH : DFLOAT

TQ= QINDMOD : CFLOAT,
[1.81QIN : FLOAT

%GRAPH (pariiton3

=NT1:INT,

NT2:INT,

A1 : DFLOAT ARRAY (NT1),
A2 : DFLOAT ARRAY (NT2)
INPUTQ = QSAMP : FLOAT
OUTPUTQ =QAFT: CFLOAT

FPUTQ =
V(2048), GIP
QDETOUT
QPSONUM
JOPSDINDX
[1.8.1.8]Q

)

%QUEUE (QRC : DFLOAT)
} %QUEUE (QAVE : FLOAT)

MOD_N: 1} S50EUE (GOIFF : FLOAT)
«NODE (MAG

PRIMITIVE = D_MAG

RAIM_IN =524,

QsAMP

THRESHOLD = 524
PRIM_OUT =QRC

PDE (AIR_AVE
PRIMITIVE = D_FIR1S
PRIM_IN =52,
UNUSED,
NT1,

1,
Al
QRC
THRESHOLD = 524
PRIM_OUT =QAVE

: FLOAT) I

[1IQAFT

Figure 3 - Equivalent and Partition Graph Generation from Architecture Specifications

tools that generate application and executable DSP
program detailed designs.

Using the equivalent graph generator tool,
the software designer generates equivalent and
partition graphs from the software architecture graph
and input software partitions. Partitions may be the
partition lists received from architecture selection or a
further subdivision of these lists. Performance
estimates are generated consisting of execution
time estimates for each partition and equivalent
graph execution time and data transfer
requirements. Architecture specifications that will
not translate to efficient run-time images may be
quickly rejected. Top level designs may be refined.
The software designer may iterate partition
subdivision and corresponding data flow control
parameterization to obtain software design within
architecture specifications best meeting
requirements for minimum resource utilization, load
balancing, and latency or memory constraints.

Functional and performance simulation of
the top level software design will be supported by
outputs of the software verification tools. Partition
timing estimates of each equivalent node will be
passed to a VHDL-based performance simulator for
low level hardware/software performance simulation.

131

Functional simulation of the software design will
validate requirements capture at the design level.
Graph Translation Tool (GrTT) is being developed
under a RASSP tech base contract. When accepted
by LM-ATLsCamden, GrTT will be used to generate
Ada behavior models for each partition; see Figure 4.
Behavior models may be used as the executable
primitives of the equivalent application graph when
that graph is executed on a functional simulator.
Processing results may be compared with the
executable requirements specification, validating the
top level software design's requirements capture.
Behavior models may be created for the hardware
partitions as well. These may be used to complete
the functional simulation of the entire application.
They also may be provided to the hardware design
verification process as the procedural part of
hardware partition VHDL behavior architectures.

At the completion of software verification,
top level specifications will exist from which
executable code targeted for the candidate
architecture may be automatically generated. The
software verification level autocoding tools automate
the generation of equivalent and partition graph
specifications. The error prone, laborious hand
coding of top level specifications will be eliminated.
Codesigns may be realized at the rate designers can

GIP =NTY:INT,
m:

OFLOAT ARRAY ONT1),
AZ OFLOAT ARRAY (NT2

RsaP

- PARTITION 3

- Auto Code Ganerator

— Version 0.1 12/5/54

procedure Partition_3 i

QeampQ :FLOAT, Typ._p-ekna FLOAT_Vector_Access_Type :=

FLOAT_Type_Pacimge FLOAT_Vector, Typo(1 524)

QreQ :DFLOAT. Typo_pochgo DFLOAT_Vector_Access
DFLOAT_Type_Package.DFLOA TVoaorTypon 524):

QaveQ :FLOAT. Typo_p.ehgc FLOAT_Vector_Access_Type:

QdiftQ : FLOAT_Type_package. FLOAT_Vector_Access_Type:

QaftQ : CFLOAT_Type_package.CFLOAT_Vector_Access_Type:

A1_Var : DFLOAT_Type_Package DFLOAT_ Vector_Access_Type:

A2_Var : DFLOAT_Type_Package. DFLOAT_Vector_Access_Type:

N2N_Addr : DINT_Type_Pacimge.DINT_Vector_Access_Type :=
DINT_Type_Package. DINT_Vector. Type (1.1}
N2MX_Addr : DINT, Type Package.DINT_Vactor_Access_Type :=
DINT_Type_Package.DINT_Vector_Type (1 .. 1)
N2NT_Addr : DINT_Type_Package.DINT_Vactor_Access. Typo =
DINT_Type_Package .DINT_Vector_Type (1. 1 %
N2D_Addr : DINT_Type_Package.DINT_Vector_Access_Type
DINT _Type_Paclkage.DINT_Vector. Typo(1 1)

)_FR

i 's

begin

A1_Var := new DFLOAT_Type_Package. DFLOAT_Vector_Type (1..NT1);
A2_Var := new DFLOAT_Type_Package DFLOAT _Vector_Type (1 .. NT2);

Figure 4 - Behavior Model

make design decisions and evaluate their
consequences.

Autocode tools to automate detailed
design and coding - Detailed design level
autocode tools include the Multi Processor Interface
Description (MPID) Generator and the Application
Generator. These tools generate compilable images
of partition and equivalent graph elements of the top
level design. The role these tools play in detailed
design is illustrated in Figures 5 and 6.

MPIDs are compilable programs that
implement the processing specified by partition
graphs. Both transient or start up and cyclic behavior
of the partition graphs is preserved in the translation
to compilable form as is the partition graph's
response to all enumerated values of controls. At its
ports, the execution behavior of the compiled MPID
will be identical to the functional behavior of its
partition graph specification. MPID generator will
generate 'C' source code implementing the
partition's processing specifications utilizing calls to
the target processor's math library. A memory map
converting all partition internal queues and variables
to static buffers is generated. MPID generator is
supported by a domain primitive database which
provides constraint, error condition, target specific
state machine behavior, and target performance data
for each domain primitive. MPID source code will be
made as efficient as possible by maximizing in-place
execution of target math library calls and minimizing
non-fibrary call code to that needed to interface to

132

MPID 'C'Source Code
1 PARTITIONS - Auto Code Generesr -
[version 0.1 - 071194 %/

Single Node Graph
Unit Test

oo b Bt E o0 Lo d

Figure 5§ - MPID Generator

the equivalent application graph and to respond to
external controls.

In addition to source code for the
executables, MPIDGen produces detailed
performance estimates and single node equivalent
graphs specifying the MPID as the primitive. The
detailed performance estimates are used to validate
software verification performance estimates. The
single node graph supports unit testing. Unit test
applications are generated using the single node
equivalent graph. Test vectors from behavior
models are processed to validate partition
translations. Because of PGM's determinism,
validation of each partition implies validation of the
full application.

The Application Generator translates the
equivalent application graph with its set of MPID
source files into run-time data structures that are
used by the run-time system to create an executable
image of the application as distributed tasks on the
target processors. The run-time data structures
incorporate the MPIDs as executable elements of
the tasks and provide other memory management
and execution control information needed to realize
a run-time image of the equivalent application graph.

Reusable run-time support is provided as
part of the application. Figure 7 illustrates the
organization of the run-time system into user-
supplied signal processing and BIT applications,
reusable application and load managers, and model
year operating system kemeis. Application data

EQUIVALENT

GRAPH Application

VAR DET_THRESH: DFLOAT,

DETECT A Equivalent
Graph
INFUTQ= QINDMOD : CRLOAT,

(180N : ROAT

OUTRUTQ= QOUTPSD : FLOAT V_ARRAY(2048),
QDETOUT :':.m'r V_ARRAY(2048),

GPSDINDX : INT V_ARRAY(2048),
11.8,1_80PEAK: NT

%G (DEMOD_N: INT NITIALIZE TO 713)

AGIP (PICK_N: INT INITWLIZE TO €4)

BIHl %G (PICK_M: INT NITWLIZE TO 63)
%GIP (FR1_NT: INT NITIALIZE TO 17)

(PARTITIONS - Auto Code Generstor -

Version 0.1 - 07/19/94 =/

main MPID

{ Executable

n *NT1; Source Files
n “NT2;
double *Al;
double A2,
float *QSAMPQOO4;
COMPLEX_FLOAT “"QAFTQO0S;

double dtA_N26]:

foat 1A_NZl6}:

int i_N2,j N2, k_N2, M_N2, L_N2:

double ofA_N38L
14 NARL

N8},

Application Load Image Specification

Application Data Structures
Runtime Support

| Kemel OS

\J| Primitives

BIT Applications

Figure 6 - Application Generator

structures provide the interface to the graph
manager. The graph manager also controls the
command message port. In response to command
messages, the graph manager instantiates
applications as tasks, connects them to data sources
and sinks, initiates their processing, and applies all
external controls to modify their processing. BIT
applications will be handled similarly. Interfaces to
the model year software are low level, simplifying the
port of the run-time support to new model year
computational elements.

A make file is generated that specifies the
load image to the RASSP Enterprise System at the
source and data structure level. This make file
specifies the application data structures, source files
for MPIDs, run-time suppont, and BIT applications.
Obiject files for kernel OS and target primitives are
also specified. The RASSP Enterprise System
generates a complete load image from this
specification.

Autocoding tools will contribute
significantly to achieving 4x cost reduction
goals - The MCCI autocoding tools will reduce labor
required to generate top level software designs from
architecture specifications and detailed designs
implementing them. Manual coding will be
eliminated altogether. Automated generation of

133

Applications Applicstions
. on|
Intestaces TR Applios _—
3 BT .
Graph Mansger Manager| BIT Interfac:
Seen] 20 —gmm—

Kernet OS Kernel OS

e e s e o o 0 o Kemel 0S8

Primitives Primitives Primitives

Figure 7 - RASSP Run-time Support

software designs from architecture specifications will
allow meaningful evaluation of many altemnate
designs at a fraction of the time currently required to
design signal processing systems. Automated
detailed design and code generation will provide
testable unit and system implementations of
software designs virtually instantly compared to hand
coding approaches. Systems representing a
thorough design space trade off of alternative
application specifications, hardware and software
architecture specifications, and lower level
pantitioning and parameter trades will be produced
rapidly. Reusable run-time support avoids an
expensive development effort. Reuse of the run-
time system provided as part of the reuse library and
model year architecture will eliminate the user's need
for expensive run-time scheduling and control
support development for their software designs.
The open architecture supports legacy code
capture, model year application porting, and
application reuse. As the RASSP Enterprise System
gains legacy, application reuse opportunity will
increase.

Demonstrations - Use of the autocode tools in
software verification and detailed design elements of
the hardware/software codesign process are
demonstrated. Development of an executable
design realization of the LM-ATLeCamden SAR
benchmark is demonstrated. The demonstration
includes a prototype MPID generator and run-time
support with hand simulations of equivalent graph
and application generation. Execution and control of
the running autocoded SAR application is being
demonstrated.

