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Abstract

A software design process for mapping real-time
applications onto massively parallel processors is
described. The design methodology incorporates a
software test bench used to evaluate the level of real-time
performance the processing nodes are capable of
delivering. The final integration step maintains the simple
test bench interfaces and reduces the complexity of
integrating the components to satisfy the timing
requirements of the overall application. The process is
applied to implement the RASSP SAR benchmark on an
Intel Paragon. The initial implementation uses 12 Paragon
GP nodes for a single polarization. Under OSF/1 this 12
node configuration satisfies all the real-time requirements.
Under SUNMOS, a streamlined high performance
operating system available on the Paragon, the throughput
improves significantly with sustained processor utilization
approaching 40%. A projected implementation of the
RASSP SAR benchmark on the Embedded Touchstone
suggests that all three polarizations can be processed
(including I/O) using 14 out of its 16 MP nodes.

1.0 Introduction

High performance computing can play a significant role in
the military’s evolving seamless design methodology to
rapidly produce systems with reduced life-cycle costs by
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providing homogeneous communication and scalable
computing frameworks. Two related programs underway
at ARPA are focusing on providing efficient and effective
computing solutions for the Department of Defense. The
Rapid Prototyping of Application Specific Signal
Processors (RASSP) program, sponsored by the Electronic
Systems Technology Office (ESTO), has a goal of
improving the process of specifying, designing,
manufacturing, and supporting complex digital signal
processors. On the other hand, the Computing Systems
Technology Office (CSTO) has initiated the Embedded
Computing program whose goal is to make available
commercial scalable high performance computing
technology to real-time embedded applications. For
example, the CSTO/Honeywell Embedded Touchstone
project is packaging the commercial Intel Paragon
massively parallel processor (MPP). The implementation
of the RASSP synthetic aperture radar (SAR) image
formation benchmark on the Intel Paragon explores the
boundary between these two ARPA programs.

After providing a brief introduction to the Intel Paragon
and Embedded Touchstone, this paper focuses on a
software design process for mapping real-time applications
onto MPPs. The process is applied to the RASSP SAR
benchmark to obtain an initial implementation that uses 12
Paragon GP nodes for a single polarization. A projected
implementation of the RASSP SAR benchmark on the
Embedded Touchstone suggests that all three polarizations
can be processed (including I/O) using 14 out of its 16 MP
nodes. Finally, real-time scalability for the SAR
application is discussed.
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2.0 Intel Paragon and the Embedded
Touchstone

The Intel Paragon is a multiple instruction multiple data
(MIMD) distributed memory MPP with nodes used for
either service, computing, or I/O. Service nodes primarily
compile, link and start jobs. Compute nodes are typically
not time-shared and are used exclusively to execute
application code. Nodes dedicated to I/O may have
interfaces to RAID, a parallel file system, Ethernet, or
HiPPI. The current generation GP node has 32 Megabytes
(MB) of DRAM and two 50 MHz i860XP
microprocessors. The next generation MP node has three
i860XPs and 64 MB of DRAM.

The Paragon is delivered with a commercial version of the
OSF/1 operating system. OSF/1 is a full featured micro-
kernel-based operating system that provides system
services such as virtual memory, threads and inter-process
communication, and networking support for ftp and NFS
[Zajcew, et al., 1993]. OSF/1 consumes up to 12 Mbytes of
memory including the micro-kernel, OSF/1 AD server and
system buffer space. Under OSF/1, one of the i860XPs at
each node is dedicated to message handling and is
unavailable to the application. An alternative operating
system called SUNMOS (approximately 250 kbytes) has
been developed by Sandia National Laboratory and the
University of New Mexico [Maccabe et al., 1993].
SUNMOS provides minimal services but delivers higher
performance (lower latency and higher throughput) and
provides the application programmer access to the second
i860XP at each node. Neither operating system has a
preemptible kernel, which is a requirement for a real-time
operating system, creating particular challenges in
applying the current Intel Paragon for embedded real-time
applications.

The nodes are interconnected in a two-dimensional mesh
topology with routers at each node employing dimension-
order wormhole routing. The nodes have a direct memory
access interface to the mesh through a single ported
network interface chip. The mesh has a theoretical capacity
of 200 MB/s with OSF/1 achieving a sustained
communication throughput of 80 MB/s and SUNMOS
sustaining 160 MB/s. Intel supports the NX application
programming interface (API) for message passing, and a
subset of the API is available under SUNMOS [McCurley,
1993]. Applications which adhere to the subset are source
compatible between OSF/1 and SUNMOS.

ARPA/CSTO has sponsored the Honeywell Embedded
Touchstone program [Blitzer, 1993] to develop an
embeddable version of the Intel Paragon containing MP-

nodes with three i860XPs per node. A requirement of this
packaging effort is that the Embedded Touchstone will
execute the exact same software as the corresponding
commercial system. Honeywell is developing a 16 node
prototype (4.8 Gflop/s) that will occupy .5 cu. ft. and
consume 560 watts of average prime power. Honeywell is
currently working in collaboration with the Open Software
Foundation-Research Institute (OSF-RI) on a real-time
operating system that will run on the Embedded
Touchstone. The physical parameters of the Embedded
Touchstone make it an attractive target architecture for the
RASSP benchmark. Assessing the limitation due to the
current non real-time operating system is one objective of
this work.

3.0 Real-Time Parallel Software Design
Methodology

All engineering design endeavors are facilitated by a clear
specification of the system requirements. Real-time
embedded systems are characterized by functional, timing
and physical requirements. Military systems have
additional requirements based on life-cycle costs which
encompass maintainability, reliability, supportability,
extensibility and scalability. This section describes a
software design approach that utilizes a test bench
implemented on the target architecture as a means of
assuring functional and timing correctness. The
methodology is described in more detail in [Brown, et al.,
1995].

The process starts with clear specifications of the
functional and timing requirements and a high-level model
of the target architecture. The specifications and model are
used to perform standard data and control flow analysis
that serves to identify the major computation and
communication kernels of the application. The functional
analysis includes memory requirements and operation
counts that combine with timing specifications to yield
operation throughput requirements. The throughput
requirements and a knowledge of the system’s capabilities
can be used to get a rough estimate of the number of
compute nodes that will be required for each task. A real-
time test bench consisting of a data source, the function
under test, and a data sink is implemented on the MPP to
establish the actual level of real-time performance the
system is capable of delivering on each of the identified
kernels. After functional correctness is established, perhaps
using specified ground truth data, the test bench facilitates
the process of tuning the kernel to meet the timing
requirements. This may be accomplished by including
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vendor supplied library functions or even customized
assembly language functions. If the timing requirements at
a node cannot be satisfied, then the algorithm partition
needs to be reevaluated.

After timing requirements at the node level have been
satisfied, the same test bench is used to exercise collections
of nodes as they are integrated, culminating with a
complete system test. Maintaining the test bench interfaces
in the final integration step usually guarantees timing
compliance when nodes are integrated. This requires the
use of dedicated processing resources to implement the
more complicated global communication requirements
found in applications. These additional nodes are primarily
dedicated to packing and unpacking the messages involved
in these global communication patterns, e.g., the
“distributed corner turn” in the current two-dimensional
processing example. This means that the nodes doing the
processing are relieved of this duty (these activities would
alternatively take place in the application code running on
the compute processor) and so can deliver more useful
work. This in turn reduces the number of compute nodes
required. The test bench also facilitates rapid node
reconfiguration to allow swift system integration and to
encourage experimental (perhaps ultimately adaptive)
approaches to algorithmic partitioning and mapping for
real-time embedded systems.

4.0 RASSP SAR Benchmark

The progress on the RASSP program is being evaluated
with a series of benchmark exercises. The initial exercise is
a synthetic aperture radar (SAR) image formation problem
that has moderate computational throughput and memory
requirements. The embedded requirements are consistent
with real-time processing on board an unmanned air
vehicle (UAV). The RASSP SAR benchmark is described
in [Zuerndorfer and Shaw, 1994].

The benchmark is a stripmap SAR where the maximum
pulse repetition frequency (PRF) of 556 Hz induces a
minimum pulse-to-pulse period of 1.8 ms. One foot (0.3
m) resolution is obtained in both range and crossrange with
a 375 m range swath nominally at a range of 7.26 km. The
radar parameters and imaging geometry result in a benign
SAR image formation process. Range migration less than
one resolution cell results in separable range and
crossrange processing.

The RASSP timing requirements derive from the 556 Hz
maximum PRF producing a 0.921 second/frame
specification. This results in a 1.1 Gflop/s requirement to

process all three polarizations. Latency is required to be
less than 3 seconds. There is also an accuracy requirement
that can be met with single precision floating point. The
embedded requirements include a 60 pound payload and
500 watts of average prime power. This implies a
2 Mflop/s/watt solution.

4.1 Real-Time Intel Paragon Implementation

This section describes the application of the parallel
software design process discussed in Section 3 to
implement the RASSP SAR benchmark on the Intel
Paragon. The functional and timing specifications are
clearly stated in [Zuerndorfer and Shaw, 1994]. An
executable specification in the form of sequential C code
running on a SPARC workstation was also provided, along
with ground-truth test data. Analysis of the SAR image
formation algorithm begins by establishing the
computational requirements of the three main
computational kernels (1) video to baseband conversion,
(2) range compression, and (3) azimuth compression.

Although radar pulses arrive in sequence, it is more
efficient to buffer the pulses and to process them in blocks.
The operations required for video to baseband conversion
increase linearly with the number of pulses processed in
each block, denoted by NP. The required operation rate of
36 Mflop/s (based on the maximum PRF requirement of
556 Hz.) is independent of NP since the time available also
scales linearly with number of pulses.

The operation rate for the range compression FFT
(assuming a complex pre-multiplier and a real post-
multiplier) is again invariant with block size NP, and for a
range FFT size of 2048, the required performance is
72 Mflop/s.

The overlap and save fast convolution implementation of
the azimuth compression results in transforms whose
length (1024) is twice the frame size (512). The resulting
241 Mflop/s throughput requirement is based on the
512 pulse frame period of 0.92 seconds. In order to make
the azimuth processing as efficient as possible, a corner
turn operation is required (to obtain contiguous samples in
memory for fast convolution processing).

Several alternative parallelization techniques exist (e.g.,
data parallel, pipelining, and round robin) and trade-offs
are often driven by throughput and latency requirements.
For instance, pipelining will improve throughput, but each
stage of the pipeline will add latency. Although the data
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parallel approach is a low latency solution, it necessitates
more complicated data flow.

The latency for the RASSP SAR benchmark is defined as
the time between the arrival of the last pulse used to form
the frame until the first corresponding image pixel is
output. Latency is minimized by a front-end (video to
baseband and range compression) solution that processes
blocks with a small number NP of pulses (fine grain), so
that when the last pulse of the frame arrives, most of the
other pulses for the frame have already been processed.
Granularity studies suggest lower bounds on NP motivated
by the desire to maintain adequate levels of processor
utilization [Brown, et al., 1995]. The non real-time
operating systems periodically preempt the application,
causing the sustained utilization of the processor to drop as
the block size is decreased. In the current implementation,
a blocksize (subframe) of NP = 64 pulses was chosen; it is
a factor of the frame size (512), and is well out onto the
flat part of the performance curve.

The front end was implemented with a linear pipeline: the
video to baseband and range compression functions each
comprised a separate pipeline stage. With some assembly
level optimization, the video to baseband conversion can
be accomplished (just barely) on a single node. The range
compression was further parallelized using a “data-parallel
pipelined” technique. Each range compression node passes
the entire subframe of data but operates on only a fraction
of it. This approach, although arguably less efficient, was
motivated by a desire to keep the front-end pipeline linear
thereby simplifying the corner turn operation. A three-
stage data parallel pipeline was required to meet the
specification of 72 Mflop/s. The azimuth compression
back end is necessarily a frame based (coarse grain)
process that is naturally implemented as a data-parallel
process partitioned over range subswaths. As expected, the
azimuth compression required six nodes (a single node
delivers approximately 45 Mflop/s.)

Two particular constraints drove the design of the corner
turn software: (1) OSF/1 consumes 12 of the available
32 MB of DRAM on each GP node requiring a two node
solution to support buffering (a single overlap extended
frame is 16 MB), and (2) the fine grain front end must be
transitioned into the coarse grain back end. Since the front
end is a simple linear pipeline (the benefit of the “data-
parallel pipeline”) the corner turn is not “distributed” (i.e.,
the two corner turn nodes do not have to exchange data).
Each corner turn node is responsible for half of the range
swath. The last range compression node sends its complete
output to both corner turn nodes which operate on the
appropriate data subset.

The single polarization solution using 12 GP nodes is
shown in Figure 4-1. This solution is mapped to the mesh
by a loader in a run-time library that is linked to the
application code. In the current implementation each node
receives the same program image and a switch statement in
the application code determines the function performed at
each node based on the logical node number. This switch
currently respects (left to right) the pipeline configuration
shown in Figure 4-1, and the resulting mapping does not
appear to have any communication contention problems. It
is also possible to load different programs on the
respective nodes, but this is usually avoided because of the
increased complexity of the software configuration and
maintenance.
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Figure 4-1. Single Polarization RASSP Benchmark
Solution (GP Nodes)

Under OSF/1 the 12 node single polarization
implementation achieves a worst-case throughput
performance of 0.85 second/frame and a 1.16 second
latency. Under SUNMOS the results improve to 0.71
second/frame throughput with a 1.02 second latency.
These results are based on 15 minute runs to account for
the non real-time behavior of the operating systems. The
SUNMOS results correspond to end-to-end processing
efficiencies approaching 40% of the theoretically available
Mflop/s.

The implementation team had complementary skills and
background. One staff member had a strong background in
signal processing and SAR, but little experience with
parallel machines. The other staff member had a strong
background in programming parallel machines but no
background in signal processing or SAR.

The overall effort took 9.5 staff months, although 4 staff
months were devoted to background, the development of
the test bench and other supporting infrastructure. The
implementation and design iteration of the application
code itself took 2.5 staff months, including .5 staff months
dedicated to developing optimized assembly-level code.
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Three staff months were spent testing and debugging.
Debugging was more difficult than normal due to
problems with system software on the Paragon and our use
of remote machines. A more specific breakdown of
activities is shown in Table 4-1.

Table 4.1. Software Development Level of Effort

Infrastructure: (4 staff-months)

Background (ADTS/Paragon): 0.75 SM
Test-bench coding: 1.50 SM
Generating results: 0.25 SM

Support/analysis tools: 1.50 SM

Application: (5.5 staff-months)

Preliminary design partitions: 0.5 SM
Initial functional coding: 0.5 SM

Design iteration: 1.5 SM
Testing and debugging: 3.0 SM

4.2 Embedded Touchstone Projection

The next generation (MP) nodes of the Paragon have three
i860XP microprocessors. If all three i860s are available to
the application programmer (supported under SUNMOS),
it is estimated that the RASSP SAR benchmark
requirement could be met with 4 MP nodes per
polarization, with 12 MP nodes for all three polarizations.
Input could be accommodated by interfacing the RASSP
fiber input source to a HiPPI I/O node. An additional I/O
node could be required for output. With this estimate, the
functional, physical, and timing requirements of the
RASSP SAR benchmark would be satisfied with the
Embedded Touchstone prototype using 14 out of its 16 MP
nodes.

4.3 Scalable Real-Time Processing

The issue of scalability for real-time parallel processing is
discussed in [Brown, et al., 1994]. A SAR problem scales
in two ways. The simplest way is to increase the range
swath with the same PRF. This does not effect the
resolution but simply increases the number of samples
within each pulse. A more aggressive scaling involves an
improvement in resolution (resolution is assumed to be
equal in range and azimuth) for a fixed range swath. In the
range dimension the number of samples per pulse increases
inversely proportional to the resolution reduction. In the
azimuth dimension the wider beamwidth required

increases both the azimuthal correlation template and the
PRF so that the crossrange computation rate also increases
inversely with resolution. With this second scaling,
computational requirements increase as the square of the
resolution reduction.

The present front end (video to baseband conversion and
range compression) limits the scalability of the current
implementation. The “data-parallel pipelined” range
compression quickly loses efficiency as the number of
stages increases. A scalable solution requires a data-
parallel front end combining both video to baseband
conversion and range compression functions on a single
node. With some further optimization we anticipate such a
data-parallel front end would eliminate two out of the four
GP nodes used in the current implementation. A data-
parallel front end will also necessitate a distributed corner
turn (i.e., the corner turn nodes have to gather data from
the front end, format messages, exchange data between
themselves, unpack messages, and then scatter data to the
back end).

A notional scalable SAR architecture is shown in
Figure 42. One feature of this architecture is that it
dedicates a separate stage to the distributed corner turn. In
this way its overhead and impact on real-time scalability
can be explicitly determined. Preliminary assessments of
the scalability of the data exchange phase of the corner
turn is given in [Brown, et al., 1994]. Scalable corner turn
solutions are required for both scalable signal processing
implementations and their synthesis with data flow shell
tools. This is the subject of future work.
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Figure 4-2. Scalable Real-Time SAR Processing

5.0 Conclusion

A parallel software design process for real-time embedded
applications was applied to map the RASSP SAR
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benchmark onto an Intel Paragon. A single polarization
solution was demonstrated with 12 (GP) nodes, and
projections to the Embedded Touchstone suggest that a
14 (MP) node system will support processing of all three
polarizations including I/O. These solutions use the current
non real-time OSF/1 operating system but still provide
worst-case timing guarantees that meet the RASSP real-
time constraints. Fully taking advantage of the higher
performance SUNMOS operating system would reduce
this node count, as would presumably a future real-time
version of OSF/1. Future work will focus on the area of
real-time scalability. A scalable corner turn
implementation is critical for truly scalable signal
processing and to facilitate application of software
synthesis tools.
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