

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 6 91
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Clause 6

Names

The rules applicable to the various forms of name are described in this section clause

1

.

6.1 Names

Names can denote declared entities, whether declared explicitly or implicitly. Names can also denote

— Objects denoted by access values,

— Methods (see 3.5.1) of protected types,

— Subelements of composite objects,

— Subelements of composite values,

— Slices of composite objects,

— Slices of composite values, and

— Attributes of any named entity.

name ::=
 simple_name
| operator_symbol
| selected_name
| indexed_name
| slice_name
| attribute_name

prefix ::=
 name
| function_call

Certain forms of names

2

 (indexed and selected names, slices slice names

3

, and attribute names) include a

prefix

that is a name or a function call. If the prefix of a name is a function call, then the name denotes an element, a
slice, or an attribute, either of the result of the function call, or (if the result is an access value) of the object des-
ignated by the result. Function calls are defined in 7.3.3.

If the type of a prefix is an access type, then the prefix must not be a name that denotes a formal parameter of mode

out

 or a subelement thereof.

1. To conform to IEEE rules.
2. Ernst Christen’s review of D1.
3. IR1000.2.5.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

92 Clause 6
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

A prefix is said to be

appropriate

 for a type in either of the following cases:

— The type of the prefix is the type considered.

— The type of the prefix is an access type whose designated type is the type considered.

The evaluation of a name determines the named entity denoted by the name. The evaluation of a name that has a
prefix includes the evaluation of the prefix, that is, of the corresponding name or function call. If the type of the
prefix is an access type, the evaluation of the prefix includes the determination of the object designated by the
corresponding access value. In such a case, it is an error if the value of the prefix is a null access value. It is an
error if, after all type analysis (including overload resolution) the name is ambiguous.

A name is said to be a

static

name

 if and only if one of the following conditions holds:

— The name is a simple name or selected name (including those that are expanded names) that does not
denote a function call, an object or value of an access type, or an object of a protected type and (in the
case of a selected name) whose prefix is a static name.

— The name is an indexed name whose prefix is a static name, and every expression that appears as part
of the name is a static expression.

— The name is a slice name whose prefix is a static name and whose discrete range is a static discrete
range.

— The name is an attribute name whose prefix is a static signal name and whose suffix is one of the pre-
defined attributes ’DELAYED, ’STABLE, ’QUIET, or ’TRANSACTION.

4

Furthermore, a name is said to be a

locally static name

 if and only if one of the following conditions hold:

— The name is a simple name or selected name (including those that are expanded names) that is not an
alias and that does not denote a function call, an object or value of an access type, or an object of a
protected type and (in the case of a selected name) whose prefix is a locally static name.

— The name is a simple name or selected name (including those that are expanded names) that is an alias,
and that the aliased name given in the corresponding alias declaration (see 4.3.3) is a locally static
name, and (in the case of a selected name) whose prefix is a locally static name.

— The name is an indexed name whose prefix is a locally static name, and every expression that appears
as part of the name is a locally static expression.

— The name is a slice name whose prefix is a locally static name and whose discrete range is a locally
static discrete range.

A

static signal name

 is a static name that denotes a signal. The

longest static prefix

 of a signal name is the name
itself, if the name is a static signal name; otherwise, it is the longest prefix of the name that is a static signal name.
Similarly, a

static variable name

 is a static name that denotes a variable, and the longest static prefix of a variable
name is the name itself, if the name is a static variable name; otherwise, it is the longest prefix of the name that is
a static variable name.

Examples:

S(C,2) -- A static name: C is a static constant.
R(J

to

 16) -- A nonstatic name: J is a signal.
-- R is the longest static prefix of R(J

to

 16).

4. LCS 20.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 6 93
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

T(n) -- A static name; n is a generic constant.
T(2) -- A locally static name.

6.2 Simple names

A simple name for a named entity is either the identifier associated with the entity by its declaration, or another
identifier associated with the entity by an alias declaration. In particular, the simple name for an entity interface
declaration

5

, a configuration, a package, a procedure, or a function is the identifier that appears in the correspond-
ing entity declaration, configuration declaration, package declaration, procedure declaration, or function declara-
tion, respectively. The simple name of an architecture is that defined by the identifier of the architecture body.

simple_name ::= identifier

The evaluation of a simple name has no other effect than to determine the named entity denoted by the name.

6.3 Selected names

A selected name is used to denote a named entity whose declaration appears either within the declaration of an-
other named entity or within a design library.

selected_name ::= prefix . suffix

suffix ::=
 simple_name
| character_literal
| operator_symbol
|

all

A selected name may be used to can

6

 denote an element of a record, an object designated by an access value, or
a named entity whose declaration is contained within another named entity, particularly within a library, a pack-
age, or a protected type. Furthermore, a selected name may be used to can

7

 denote all named entities whose dec-
larations are contained within a library or a package.

For a selected name that is used to denote a record element, the suffix must be a simple name denoting an element
of a record object or value. The prefix must be appropriate for the type of this object or value.

For a selected name that is used to denote the object designated by an access value, the suffix must be the reserved
word

all

. The prefix must belong to an access type.

The remaining forms of selected names are called

expanded names

. The prefix of an expanded name may must

8

not be a function call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes the library and the
suffix is the simple name of a primary unit whose declaration is contained in that library. An expanded name de-
notes all primary units contained in a library if the prefix denotes the library and the suffix is the reserved word

all

. An expanded name is not allowed for a secondary unit, particularly for an architecture body.

9

An expanded name denotes a named entity declared in a package if the prefix denotes the package and the suffix
is the simple name, character literal, or operator symbol of a named entity whose declaration occurs immediately
within that package. An expanded name denotes all named entities declared in a package if the prefix denotes the
package and the suffix is the reserved word

all

.

5. Terminological correction; IR1000.2.6.
6. IR1000.4.7.
7. IR1000.4.7.
8. IR1000.4.7.
9. LCS 3.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

94 Clause 6
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

An expanded name denotes a named entity declared immediately within a named construct if the prefix denotes a
construct that is an entity interface declaration

10

, an architecture body

11

, a subprogram declaration, a subprogram
body

12

, a block statement, a process statement, a generate statement, or a loop statement, and the suffix is the sim-
ple name, character literal, or operator symbol of a named entity whose declaration occurs immediately within that
construct. This form of expanded name is only allowed within the construct itself.

An expanded name denotes a named entity declared immediately within a protected type if the prefix denotes an
object of a protected type and the suffix is a simple name of a method whose declaration appears immediately
within the protected type declaration.

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a selected name as
the name of an enclosing entity interface declaration

13

, architecture, subprogram, block statement, process state-
ment, generate statement, or loop statement, or if there is at least one possible interpretation of the prefix of a se-
lected name as the name of an object of a protected type, then the only interpretations considered are those of the
immediately preceding two paragraphs. In this case, the selected name is always interpreted as an expanded name.
In particular, no interpretations of the prefix as a function call are considered.

Examples:

-- Given the following declarations:

type

 INSTR_TYPE

is
record

OPCODE:OPCODE_TYPE;

end

record

;

signal

 INSTRUCTION: INSTR_TYPE;

-- The name "INSTRUCTION.OPCODE" is the name of a record element.

-- Given the following declarations:

type

 INSTR_PTR

is

access

 INSTR_TYPE;

variable

 PTR: INSTR_PTR;

-- The name "PTR.

all

" is the name of the object designated by PTR.

-- Given the following library clause:

library

 TTL, CMOS;

-- The name "TTL.SN74LS221" is the name of a design unit contained in a library
-- and the name "CMOS.

all

" denotes all design units contained in a library.

-- Given the following declaration and use clause:

library

 MKS;

use

 MKS.MEASUREMENTS, STD.STANDARD;

-- The name "MEASUREMENTS.VOLTAGE" denotes a named entity declared in a
-- package and the name "STANDARD.

all

" denotes all named entities declared in a
-- package.

10. Terminological correction.
11. IR1000.2.6.
12. IR1000.2.6.
13. Terminological correction.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 6 95
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

-- Given the following process label and declarative part:

P:

process
variable

 DATA: INTEGER;

begin

-- Within process P, the name "P.DATA" denotes a named entity declared in process P.

end

process

;

counter.increment(5); -- See 4.3.1.3 for the definition of "counter"
counter.decrement(i);

if

 counter.value = 0

then

 …

end if

;

result.add(sv1, sv2); -- See 4.3.1.3 for the definition of "result"

bit_stack.add_bit(1, ’1’); -- See 4.3.1.3 for the definition of "bit_stack"
bit_stack.add_bit(2, ’1’);
bit_stack.add_bit(3, ’0’);

NOTES

1—The object denoted by an access value is accessed differently depending on whether the entire object or a subelement of
the object is desired. If the entire object is desired, a selected name whose prefix denotes the access value and whose suffix
is the reserved word

all

 is used. In this case, the access value is not automatically dereferenced, since it is necessary to
distinguish an access value from the object denoted by an access value.

If a subelement of the object is desired, a selected name whose prefix denotes the access value is again used; however, the
suffix in this case denotes the subelement. In this case, the access value is automatically dereferenced.

These two cases are shown in the following example:

type

 rec;

type

 recptr

is

access

 rec;

type

 rec

is
record

value: INTEGER;
\next\: recptr;

end

record

;

variable

 list1, list2: recptr;

variable

 recobj: rec;

list2 := list1; -- Access values are copied;
-- list1 and list2 now denote the same object.

list2 := list1.\next\; -- list2 denotes the same object as list1.\next\.
-- list1.\next\ is the same as list1.all.\next\.
-- An implicit dereference of the access value occurs before the
-- “\next\” field is selected.

recobj := list2.

all

; -- An explicit dereference is needed here.

2—Overload resolution may be is

14

 used to disambiguate selected names. See rules 1 and 3 of 10.5.

3—If, according to the rules of this clause and of 10.5, there is not exactly one interpretation of a selected name that satisfies
these rules, then the selected name is ambiguous.

14. IR1000.4.7.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

96 Clause 6
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6.4 Indexed names

An indexed name denotes an element of an array.

indexed_name ::= prefix (expression { , expression })

The prefix of an indexed name must be appropriate for an array type. The expressions specify the index values
for the element; there must be one such expression for each index position of the array, and each expression must
be of the type of the corresponding index. For the evaluation of an indexed name, the prefix and the expressions
are evaluated. It is an error if an index value does not belong to the range of the corresponding index range of the
array.

Examples:

REGISTER_ARRAY(5) -- An element of a one-dimensional array.
MEMORY_CELL(1024,7) -- An element of a two-dimensional array.

NOTE

—If a name (including one used as a prefix) has an interpretation both as an indexed name and as a function call, then the
innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly one interpre-
tation of the name, then the name is ambiguous. See 10.5.

6.5 Slice names

A slice name denotes a one-dimensional array composed of a sequence of consecutive elements of another one-
dimensional array. A slice of a signal is a signal; a slice of a variable is a variable; a slice of a constant is a con-
stant; a slice of a value is a value.

slice_name ::= prefix (discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array object. The base type of this array type is
the type of the slice.

The bounds of the discrete range define those of the slice and must be of the type of the index of the array. The
slice is a

null slice

 if the discrete range is a null range. It is an error if the direction of the discrete range is not the
same as that of the index range of the array denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It is an error if either
of the bounds of the discrete range does not belong to the index range of the prefixing array, unless the slice is a
null slice. (The bounds of a null slice need not belong to the subtype of the index.)

Examples:

signal

R15: BIT_VECTOR (0

to

 31) ;

constant

DATA: BIT_VECTOR (31

downto

 0) ;

R15(0

to

 7) -- A slice with an ascending range.
DATA(24

downto

 1) -- A slice with a descending range.
DATA(1

downto

 24) -- A null slice.
DATA(24

to

 25) -- An error.

NOTE

—If A is a one-dimensional array of objects, the name A(N

to

 N) or A(N

downto

 N) is a slice that contains one element; its
type is the base type of A. On the other hand, A(N) is an element of the array A and has the corresponding element type.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 6 97
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6.6 Attribute names

An attribute name denotes a value, function, type, range, signal, or constant associated with a named entity.

attribute_name ::=
prefix [signature] ' attribute_designator [(expression)]

attribute_designator ::=

attribute

_simple_name

The applicable attribute designators depend on the prefix plus the signature, if any. The meaning of the prefix of
an attribute must be determinable independently of the attribute designator and independently of the fact that it is
the prefix of an attribute.

A It is an error if a

15

 signature may follow follows

16

 the prefix if and only if and

17

 the prefix denotes does not
denote

18

 a subprogram or enumeration literal, or an alias thereof. In this case, the signature is required to match
(see 2.3.2) the parameter and result type profile of exactly one visible subprogram or enumeration literal, as is
appropriate to the prefix.

If the attribute designator denotes a predefined attribute, the expression either must or may appear, depending
upon the definition of that attribute (see Section Clause

19

 14); otherwise, it must not be present.

If the prefix of an attribute name denotes an alias, then the attribute name denotes an attribute of the aliased name
and not the alias itself, except when the attribute designator denotes any of the predefined attributes
'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME. If the prefix of an attribute name denotes an alias
and the attribute designator denotes any of the predefined attributes SIMPLE_NAME, 'PATH_NAME, or
'INSTANCE_NAME, then the attribute name denotes the attribute of the alias and not of the aliased name.

If the attribute designator denotes a user-defined attribute, the prefix cannot denote a subelement or a slice of an
object.

Examples:

REG'LEFT(1) -- The leftmost index bound of array REG.

INPUT_PIN'PATH_NAME -- The hierarchical path name of the port INPUT_PIN.

CLK'DELAYED(5 ns) -- The signal CLK delayed by 5 ns.

15. IR1000.4.7.
16. IR1000.4.7.
17. IR1000.4.7.
18. IR1000.4.7.
19. To conform to IEEE rules.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

98 Clause 6
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

