IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7

Expressions

The rules applicable to the different forms of expression, and to their evaluation, are given in this section ¢l ause’.

7.1 Expressions
An expression is aformulathat defines the computation of avalue.

expression ;=
relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation |
| relation [nor relation]
| relation { xnor relation }

relation ::=
shift_expression [relational_operator shift_expression |

shift_expression ::=
simple_expression [shift_operator simple_expression |

simple_expression ::=
[sign] term { adding_operator term }

term =
factor { multiplying_operator factor }

factor ::=
primary [** primary]
| abs primary
| not primary

primary ::=
name
| litera
| aggregate
| function_call
| qualified expression
| type_conversion
| allocator
| (expression)

1. Toconformto |EEE rules.

Clause 7 99

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

Each primary has a value and atype. The only names allowed as primaries are attributes that yield values and
names denoting objects or values. In the case of names denoting objects other than objects of file types or pro-

tected typesz, the value of the primary is the value of the abject._In the case of names denoting either file objects

or objects of protected types, the value of the primary is the entity denoted by the name.

The type of an expression depends only upon the types of its operands and on the operators applied; for an over-
loaded operand or operator, the determination of the operand type, or the identification of the overloaded operator,
depends on the context (see 10.5). For each predefined operator, the operand and result types are given in the
following clause.

NOTE

—The syntax for an expression involving logical operators allows a sequence of and, or, xor, or xnor operators (whether
predefined or user-defined), since the corresponding predefined operations are associative. For the operators nand and nor
(whether predefined or user-defined), however, such a sequence is not alowed, since the corresponding predefined opera-
tions are not associative.

7.2 Operators

The operators that may be used in expressions are defined below. Each operator belongs to a class of operators,
al of which have the same precedence level; the classes of operators are listed in order of increasing precedence.

logical_operator = and | or | nand | nor | xor | xnor
relational_operator n= = | /= | < | <= | > | >=
shift_operator n= S | sl | da | sa | rol | ror
adding_operator n= + | - | &

sign n= + | -

multiplying_operator = * | / | mod | rem
miscellaneous_operator n= * | abs | not

Operators of higher precedence are associated with their operands before operators of lower precedence. Where
the language allows a sequence of operators, operators with the same precedence level are associated with their
operands in textual order, from left to right. The precedence of an operator is fixed and may-het cannot* be
changed by the user, but parentheses can be used to control the association of operators and operands.

In general, operandsin an expression are evaluated before being associated with operators. For certain operations,
however, the right-hand operand is evaluated if and only if the left-hand operand has a certain value. These op-
erations are called short-circuit operations. Thelogical operations and, or, nand, and nor defined for operands
of types BIT and BOOLEAN are al short-circuit operations; furthermore, these are the only short-circuit opera-
tions.

Every predefined operator is a pure function (see 2.1). No predefined operators have named formal parameters;
therefore, named association (see 4.3.2.2) may-het cannot® be used when invoking a predefined operation.

Additional P1076a cleanup; noted by Peter Ashenden.
Additional P1076a cleanup; noted by Peter Ashenden.
IR1000.4.7.
IR1000.4.7.

g wnN

100 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

NOTES
1—The predefined operators for the standard types are declared in package STANDARD as shown in 14.2.

2—The operator not is classified as a miscellaneous operator for the purposes of defining precedence, but is otherwise classi-
fied asalogical operator.

7.2.1 Logical operators

The logical operators and, or, nand, nor, xor, xnor, and not are defined for predefined types BIT and BOOL-
EAN. They are also defined for any one-dimensional array type whose element typeis BIT or BOOLEAN. For
the binary operators and, or, nand, nor, xor, and xnor, the operands must be of the same base type. Moreover,
for the binary operators and, or, nand, nor, xor, and xnor defined on one-dimensional array types, the operands
must be arrays of the same length, the operation is performed on matching elements of the arrays, and the result
isan array with the same index range as the | eft operand. For the unary operator not defined on one-dimensional
array types, the operation is performed on each element of the operand, and the result is an array with the same
index range as the operand.

The effects of the logical operators are defined in the following tables. The symbol T represents TRUE for type
BOOLEAN, '1' for type BIT; the symbol F represents FALSE for type BOOLEAN, 'O’ for type BIT.

A B AandB A B AoB A B AxorB A not A
T T T T T T T T F T F
T F F T F T T F T F T
F T F F T T F T T

F F F F F F F F F

A BAnandB A B AnorB A B Axnor B

T T F T T F T T T

T F T T F F T F F

F T T F T F F T F

F F T F F T F F T

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right operand is eval-
uated only if the value of the |eft operand is not sufficient to determine the result of the operation. For operations
and and nand, the right operand is evaluated only if the value of the left operand is T; for operations or and nor,
the right operand is evaluated only if the value of the left operand isF.

NOTE

—AlI of the binary logical operators belong to the class of operators with the lowest precedence. The unary logical operator
not belongs to the class of operators with the highest precedence.

7.2.2 Relational operators
Relational operators include tests for equality, inequality, and ordering of operands. The operands of each rela-

tional operator must be of the sametype. Theresult type of each relational operator isthe predefined type BOOL -
EAN.

Operator | Operation Operand type Result type
= Equality Any type, other than afile | BOOLEAN
type or a protected type
/= Inequality Any type, other than afile | BOOLEAN
type or a protected type
Clause 7 101

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3 IEEE STANDARD VHDL
< Ordering Any scalar typeor discrete | BOOLEAN
<= array type
>
>=

The equality and inequality operators (= and /=) are defined for all types other than file types and protected types.
The equality operator returns the value TRUE if the two operands are equal and returns the value FAL SE other-
wise. Theinequality operator returnsthe value FAL SE if the two operands are equal and returnsthe value TRUE
otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two composite values of the
same type are equal if and only if for each element of the left operand there is a matching element of the right
operand and vice versa, and the values of matching elements are equal, as given by the predefined equality oper-
ator for the element type. In particular, two null arrays of the sametype are alwaysequal. Two values of an access
type are equa if and only if they both designate the same object or they both are equal to the null value for the
access type.

For two record values, matching elements are those that have the same element identifier. For two one-dimen-
sional array values, matching elementsare those (if any) whose index values match in the following sense: the | eft
bounds of the index ranges are defined to match; if two elements match, the elements immediately to their right
are aso defined to match. For two multi-dimensional array values, matching elements are those whose indices
match in successive positions.

The ordering operators are defined for any scalar type and for any discrete array type. A discrete array isaone-
dimensional array whose elements are of a discrete type. Each operator returns TRUE if the corresponding rela
tion is satisfied; otherwise, the operator returns FAL SE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the relation < (less
than) is defined such that the left operand is less than the right operand if and only if

— Theleft operand isanull array and the right operand is a nonnull array; otherwise,
— Both operands are nonnull arrays, and one of the following conditions is satisfied:
—Theleftmost element of the left operand isless than that of the right; or
—The leftmost element of the left operand is equal to that of the right, and the tail of the left operand
islessthan that of theright (thetail consists of the remaining e ementsto theright of the leftmost
element and can be null).
Therelation <= (lessthan or equal) for discrete array typesis defined to be the inclusive digunction of the results
of the < and = operators for the same two operands. The relations > (greater than) and >= (greater than or equal)
are defined to be the complements of the <= and < operators respectively for the same two operands.

7.2.3 Shift operators

The shift operators dll, srl, da, sra, rol, and ror are defined for any one-dimensional array type whose element
typeis either of the predefined types BIT or BOOLEAN.

Operator | Operation L eft operand type Right operand Result
type type
S Shift left Any one-dimensional INTEGER Same as
logical array type whose ele- left
ment typeisBIT or
BOOLEAN
102 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3
sl Shift right Any one-dimensional INTEGER Same as
logical array type whose ele- left
ment typeisBIT or
BOOLEAN
da Shift left Any one-dimensional INTEGER Same as
arithmetic array type whose ele- left
ment typeisBIT or
BOOLEAN
sra Shift right Any one-dimensional INTEGER Same as
arithmetic array type whose ele- left
ment typeisBIT or
BOOLEAN
rol Rotate | eft Any one-dimensional INTEGER Same as
logical array type whose ele- left
ment typeisBIT or
BOOLEAN
ror Rotate right Any one-dimensional INTEGER Same as
logical array type whose ele- left
ment typeisBIT or
BOOLEAN

Theindex subtypes of the return values of all shift operators are the same as the index subtypes of their left argu-

ments.

The valuesreturned by the shift operators are defined asfollows. 1n the remainder of this section cl ause®, theval-
uesof their leftmost arguments arereferred to as L and the values of their rightmost argumentsarereferred to asR.

The dll operator returns avalue that is L logically shifted left by R index positions. That is, if Ris0
orif L isanull array, thereturn valueis L. Otherwise, abasic shift operation replaces L with avalue
that is the result of a concatenation whose left argument is the rightmost (L'Length — 1) elements of L
and whose right argument is T'Left, where T is the element type of L. If R is positive, this basic shift
operation isrepeated R times to form the result. If R is negative, then the return value is the value of
the expression L srl —R.

The srl operator returns avalue that is L logically shifted right by R index positions. That is, if Ris0
orif L isanull array, thereturn valueis L. Otherwise, abasic shift operation replaces L with avalue
that is the result of a concatenation whose right argument is the leftmost (L'Length — 1) elements of L
and whose left argument is T'Left, where T isthe element type of L. If R is positive, this basic shift
operation isrepeated R times to form the result. If R is negative, then the return value is the value of
the expression L sl —R.

The da operator returns avauethat is L arithmetically shifted left by R index positions. That is, if R
isOorif L isanull array, the return valueis L. Otherwise, a basic shift operation replaces L with a
value that isthe result of a concatenation whose left argument istherightmost (L'Length — 1) elements
of L and whose right argument is L(L'Right). If R is positive, this basic shift operation is repeated R
timesto form the result. If R isnegative, then the return valueis the value of the expression L sra—R.

The sra operator returns avalue that is L arithmetically shifted right by R index positions. That is, if
RisOorif L isanull array, thereturn valueisL. Otherwise, abasic shift operation replaces L with a
value that isthe result of a concatenation whose right argument isthe leftmost (L'Length — 1) elements
of L and whoseleft argument isL(L'Left). If Rispositive, thisbasic shift operationisrepeated R times
to form the result. If R isnegative, then the return value is the value of the expression L sla—R.

6.

Clause 7

To conform to |EEE rules.

103

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3

IEEE STANDARD VHDL

Therol operator returns avaue that isL rotated left by R index positions. That is, if RisOQorif L is
anull array, the return valueis L. Otherwise, a basic rotate operation replaces L with avalue that is
the result of a concatenation whose |eft argument is the rightmost (L'Length — 1) elements of L and
whose right argument is L(L'Left). If R is positive, this basic rotate operation is repeated R times to
form theresult. If R is negative, then the return value is the value of the expression L ror —R.

Theror operator returns avalue that is L rotated right by R index positions. That is, if RisOor if L
isanull array, thereturn valueis L. Otherwise, abasic rotate operation replaces L with avaluethat is
the result of a concatenation whose right argument is the leftmost (L'Length — 1) elements of L and

whose left argument is L(L'Right).

If Ris positive, this basic rotate operation is repeated R times to

form theresult. If R is negative, then the return value is the value of the expression

L rol -R.

NOTES

1—Thelogical operators may be overloaded, for example, to disallow negative integers as the second argument.

2—The subtype of the result of a shift operator is the same as that of the left operand.

7.2.4 Adding operators

The adding operators + and — are predefined for any numeric type and have their conventional mathematical

meaning. The concatenation operator & is predefined for any one-dimensional array type.

Operator | Operation L eft operand type Right operand type Result type

+ Addition Any numeric type Sametype Sametype

- Subtraction Any numeric type Same type Same type

& Concatenation | Anyone-dimensional® | Same array type Same array type
array type
Any one-dimensional b | The element type Same array type
array type
The element type Anyone-dimensional® | Same array type

array type
The element type The element type Any one-dimensional d
array type

a Clarification
b. Clarification
c. Clarification
d. Clarification

For concatenation, there are three mutually exclusive cases:

a)

If both operands are one-dimensional arrays of the same type, the result of the concatenation is a one-
dimensional array of this same type whose length is the sum of the lengths of its operands, and whose
elements consist of the elements of the left operand (in left-to-right order) followed by the elements of

the rlght operand (| n Ieft to-nght order) Jhmeengwnhmmm@mmtt—epqandr

104

7.

Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

If both operands are null arrays, then the result of the concatenation is the right operand. Otherwise,
the direction and bounds of the result are determined asfollows: Let S bethe index subtype of the base
type of the result. The direction of the result of the concatenation is the direction of S, and the left
bound of the result is S LEFT.

b) If oneof the operandsis aone-dimensional array and the type of the other operand isthe element type
of this aforementioned one-dimensional array, the result of the concatenation is given by the rulesin
case a, using in place of the other operand an implicit array having this operand as its only element.

Both the left and right bounds of the index subtype of thisimplicit array is S LEFT, and the direction

of theindex subtyge of thisimplicit array isthe direction of S, where Sistheindex subtype of the base
type of the result.
c) If both operands are of the same type and it is the element type of some one-dimensional array type,

the type of the result must be known from the context and is this one-dimensional array type. In this
case, each operand istreated as the one element of an implicit array, and the result of the concatenation

is determined as in case a_The bounds and direction of the index subtypes of the implicit arrays are
determined as in the case of the implicit array in case b).
Inall cases, it isan error if either bound of the index subtype of the result does not belong to the index subtype of
thetype of theresult, unlesstheresultisanull array. Itisalso an error if any element of the result does not belong
to the element subtype of the type of the result.
Examples:

subtype BYTE isBIT_VECTOR (7 downto 0);
type MEMORY isarray (Natural range <>) of BYTE;

-- The following concatenation acceptstwo BIT VECTORs and returnsaBIT_VECTOR
-- (case a):

constant ZERO: BYTE :="0000" & "0000";

-- The next two examples show that the same expression can represent either case a or
-- case ¢, depending on the context of the expression.

-- The following concatenation acceptstwo BIT_VECTORS and returnsaBIT_VECTOR
-- (case a):

constant C1: BIT_VECTOR := ZERO & ZERO;

-- Thefollowing concatenation acceptstwo BIT_VECTORs and returnsa MEMORY
-- (casec):

constant C2: MEMORY :=ZERO & ZERO;

-- The following concatenation accepts aBIT_VECTOR and aMEMORY, returning a
-- MEMORY (case b):

constant C3: MEMORY :=ZERO & C2;

-- Thefollowing concatenation acceptsa MEMORY and aBIT_VECTOR, returning a
-- MEMORY (case b):

constant C4: MEMORY := C2 & ZERO,;

8. LCS4
9. LCSs4
Clause 7 105

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

-- The following concatenation accepts two MEMORY s and returns a MEMORY (case a):

constant C5: MEMORY :=C2 & C3;

typeR1isrange!®0to 7;
type R2 isrange'* 7 downto O;

typeTlisarray (R1range <>) of Bit;
type T2isarray (R2 range <>) of Bit;

subtype S1is T1(R1);
subtype S2 is T2(R2);

constant K1: S1 := (others=>"'0");

constant K2: T1:= K1(1to 3) & K1(3to 4); -- K2Left=0and K2Right =4
constant K3: T1:=K1(5t0 7) & K1(1to 2); -- K3'Left=0and K3'Right =4
constant K4: T1:=K1(2to 1) & K1(1to 2); -- K4'Left =0and K4'Right =1
constant K5: S2 := (others=>"'0");

constant K6: T2 := K5(3 downto 1) & K5(4 downto 3); -- K6'Left =7 and K6'Right = 3
constant K7: T2 := K5(7 downto 5) & K5(2 downto 1); -- K7'Left=7and K7'Right = 3
constant K8: T2 := K5(1 downto 2) & K5(2 downto 1); -- K8Left =7 and K8'Right = 6

NOTES

1—For a given concatenation whose operands are of the same type, there may be visible more than one array type that could
be the result type according to therules of casec. The concatenation is ambiguous and therefore an error if, using the over-
load resolution rules of 2.3 and 10.5, the type of the result is not uniquely determined.

2—Additionally, for a given concatenation, there may be visible array types that allow both case a and case ¢ to apply. The
concatenation is again ambiguous and therefore an error if the overload resol ution rules cannot be used to determine aresult
type uniquely.

7.2.5 Sign operators
Signs + and — are predefined for any numeric type and have their conventional mathematical meaning: they re-

spectively represent the identity and negation functions. For each of these unary operators, the operand and the
result have the same type.

Operator | Operation | Operand type Result type

+ | dentity Any numerictype | Sametype

- Negation Any numerictype | Sametype

NOTE

—Because of the relative precedence of signs + and — in the grammar for expressions, a signed operand must not follow a
multiplying operator, the exponentiating operator **, or the operatorsabsand not. For example, the syntax does not allow the
following expressions:

A+B -- Anillegal expression
A**-B -- Anillegal expression

However, these expressions may be rewritten legally as follows:

10. IR1000.1.7.
11. IR1000.1.7.

106 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

LANGUAGE REFERENCE MANUAL

AJ(+B)
A**(-B)

-- A legal expression
-- A lega expression

7.2.6 Multiplying operators

IEEE

Std P1076a-1999 2000/D3

The operators* and / are predefined for any integer and any floating point type and have their conventional math-
ematical meaning; the operators mod and rem are predefined for any integer type. For each of these operators,
the operands and the result are of the same type.

Operator | Operation L eft operand type | Right operand type | Result type
* Multiplica- Any integer type Same type Same type
tion

Any floating-point | Sametype Same type

type
/ Division Any integer type Same type Sametype
Any floating-point | Sametype Sametype

type
mod Modulus Any integer type Same type Same type
rem Remainder Any integer type Same type Same type

Integer division and remainder are defined by the following relation:

A = (A/B)*B + (A rem B)

where (A rem B) hasthe sign of A and an absolute value less than the absolute value of B. Integer division sat-
isfies the following identity:

(-A)/B = —(A/B) = A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less than the
absolute value of B; in addition, for some integer value N, this result must satisfy the relation:

A =B*N + (A mod B)

In addition to the above table, the operators * and / are predefined for any physical type.

Operator | Operation L eft operand type | Right operand type | Result type
* Multiplication | Any physical type | INTEGER Same as | eft
Any physical type | REAL Same as | eft
INTEGER Any physical type Same asright
REAL Any physical type Same asright
/ Division Any physical type | INTEGER Same as | eft
Any physical type | REAL Same as | eft
Any physical type | The sametype Universal integer
Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

107

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

Multiplication of avalue P of a physical type Tp by avaue | of type INTEGER is equivaent to the following
computation:

T,Val(T,Pos(P) * 1)

Multiplication of avalue P of a physical type Ty by avalue F of type REAL is equivalent to the following com-
putation:

T,Val(INTEGER(REAL(T,Pos(P)) * F))

Division of avalue P of aphysical type T, by avalue |l of type INTEGER is equivalent to the following compu-
tation:

T,Va(T,Pos(P) /1)
Division of avalue P of aphysical type Ty by avalue F of type REAL isequivalent to the following computation:
T, VA(INTEGER(REAL(T Pos(P))/ F))

Division of avalue P of aphysical type Ty by avalue P2 of the same physical typeis equivalent to the following
computation:

T, Pos(P) / T,/Pos(P2)
Examples:
5rem 3 = 2
5 mod 3 = 2
(-5 rem 3 =2
(-5 mod 3 =1
(-5 rem(-3) = -2
(5 mod(-3) = -2
5 rem(-3) = 2
5 mod(-3) = -1
NOTE

—Because of the precedence rules (see 7.2), the expression “—5 rem 2" isinterpreted as“—5 rem 2)” and not as
“(-B)rem 2.

7.2.7 Miscellaneous operators

The unary operator abs is predefined for any numeric type.

Operator Operation Operand type Result type

abs Absolute value Any numerictype | Samenumerictype

108 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

The exponentiating operator ** is predefined for each integer type and for each floating point type. In either case
the right operand, called the exponent, is of the predefined type INTEGER.

Operator Operation L eft operand type Right operand type | Result type
*x Exponentiation | Any integer type INTEGER Same as | eft
Any floating-point type | INTEGER Same as | eft

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand by itself for a
number of timesindicated by the absol ute value of the exponent and from left to right; if the exponent is negative,
then the result is the reciprocal of that obtained with the absolute value of the exponent. Exponentiation with a
negative exponent is only allowed for aleft operand of afloating point type. Exponentiation by a zero exponent
resultsin the value one. Exponentiation of avalue of afloating point type is approximate.

7.3 Operands

The operands in an expression include names (that denote objects, values, or attributes that result in avalue), lit-
erals, aggregates, function calls, qualified expressions, type conversions, and allocators. In addition, an expres-
sion enclosed in parentheses may be an operand in an expression. Names are defined in 6.1; the other kinds of
operands are defined in the following subclauses.

7.3.1 Literals
A literal iseither anumeric literal, an enumeration literal, astring literal, a bit string literal, or the literal null.

literal ::=
numeric_literal
| enumeration _literal
| string_literal
| bit_string_literal
[null

numeric_literal ::=
abstract_literal
| physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real, as well as literals of
physical types. Abstract literals are defined in 13.4; physical literals are defined in 3.1.3.

Enumeration literals are literals of enumeration types. They include both identifiers and character literals. Enu-
meration literals are defined in 3.1.1.

String and bit string literals are representations of one-dimensional arrays of characters. The type of a string or
bit string literal must be determinable solely from the context in which the literal appears, excluding the literal
itself but using the fact that the type of the literal must be aone-dimensional array of acharacter type. Thelexical
structure of string and bit string literals is defined in Section Clause®® 13.

For anonnull array value represented by either a string or bit-string literal, the direction and bounds of the array
value are determined according to the rules for positional array aggregates, where the number of elementsin the
aggregate is equal to the length (see 13.6 and 13.7) of the string or bit string literal. For anull array value repre-
sented by either astring or bit-string literal, the direction and leftmost bound of the array value are determined as
in the non-null case. If the direction is ascending, then the rightmost bound is the predecessor (as given by the
'PRED attribute) of the leftmost bound; otherwise the rightmost bound is the successor (as given by the 'SUCC
attribute) of the leftmost bound.

12. Toconform to |EEE rules.

Clause 7 109

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

The character literals corresponding to the graphic characters contained within astring literal or abit string literal
must be visible at the place of the string literal.

The literal null represents the null access value for any accesstype.
Evaluation of aliteral yields the corresponding value.
Examples:

3.14159 26536

A literal of type universal_real.

5280 -- A literal of type universal_integer.
10.7 ns -- A literal of aphysical type.
o"4777" -- A bit-string literal.

"B41 S281" -- A string literal.

A string literal representing anull array.
7.3.2 Aggregates

An aggregate is a basic operation (see the introduction to Section Cl ause!s 3) that combines one or more values |
into a composite value of arecord or array type.

aggregate ::=
(element_association { , element_association })

element_association ::=
[choices =>] expression

choices::= choice{ | choice}

choice ::=
simple_expression
| discrete _range
| element_simple_name
| others

Each element association associates an expression with elements (possibly none). An element associationis said
to be named if the elements are specified explicitly by choices; otherwise, it is said to be positional. For a posi-
tional association, each element isimplicitly specified by position in the textual order of the elementsin the cor-
responding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional associations appear-
ing first (in textual order) and all named associations appearing next (in any order, except that re it is an error if
@14 associations mayl follow an other s association). Aggregates containing a single element association must
always be specified using named association in order to distinguish them from parenthesized expressions.

An element association with a choice that is an element ssmple nameis only alowed in arecord aggregate. An
element association with a choicethat isasimple expression or adiscrete rangeisonly allowed in an array aggre-
gate: asimple expression specifies the element at the corresponding index value, whereas a discrete range speci-
fies the elements at each of the index values in the range. The discrete range has no significance other than to
define the set of choicesimplied by the discrete range. In particular, the direction specified or implied by the dis-
crete range has no significance. An element association with the choice othersis alowed in either an array ag-
gregate or arecord aggregate if the association appears last and has this single choice; it specifies all remaining
elements, if any.

13. To conform to |EEE rules.
14. IR1000.4.7.
15. IR1000.4.7.

110 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Each element of the value defined by an aggregate must be represented once and only once in the aggregate.

Thetype of an aggregate must be determinable solely from the context in which the aggregate appears, excluding
the aggregate itself but using the fact that the type of the aggregate must be a composite type. Thetype of an ag-
gregate in turn determines the required type for each of its elements.

7.3.2.1 Record aggregates

If thetype of an aggregate isarecord type, the element names given as choices must denote el ements of that record
type. If the choice othersis given as a choice of a record aggregate, it must represent at least one element. An
element associ ation with more than one choice, or with the choice other s, isonly allowed if the elements specified
are dl of the same type. The expression of an element association must have the type of the associated record
elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are evaluated in an
order (or lack thereof) not defined by the language. The expression of a named association is evaluated once for
each associated element. A check is made that the value of each element of the aggregate belongs to the subtype
of thiselement. Itisan error if this check fails.

7.3.2.2 Array aggregates

For an aggregate of aone-dimensional array type, each choice must specify values of the index type, and the ex-
pression of each element association must be of the element type. An aggregate of an n-dimensional array type,
where n is greater than 1, is written as a one-dimensional aggregate in which the index subtype of the aggregate
is given by the first index position of the array type, and the expression specified for each element association is
an (n-1)-dimensional array or array aggregate, which is called a subaggregate. A string or bit string literal isal-
lowed as a subaggregate in the place of any aggregate of a one-dimensiona array of a character type.

Apart from afinal element association with the single choice others, the rest (if any) of the element associations
of an array aggregate must be either all positiona or all named. A named association of an array aggregate is
allowed to have a choice that is not locally static, or likewise a choice that is a null range, only if the aggregate
includes asingle element association and this element association hasasingle choice. Anotherschoiceislocaly
static if the applicable index constraint is locally static.

The subtype of an array aggregate that has an others choice must be determinable from the context. That is, an
array aggregate with an other s choi ce may-onby-appear must appear only in one of the following contexts: 16

a) Asanactua associated with aformal parameter or formal generic declared to be of a constrained array
subtype (or subelement thereof)

b) Asthedefault expression defining the default initial value of aport declared to be of a constrained ar-
ray subtype

¢) Astheresult expression of afunction, where the corresponding function result type is a constrained
array subtype

d) Asavaueexpressioninan assignment statement, wherethetarget isadeclared object, and the subtype
of the target is a constrained array subtype (or subelement of such a declared object)

€) Asthe expression defining the initial value of a constant or variable object, where that object is de-
clared to be of a constrained array subtype

f) Astheexpression defining the default values of signalsin asignal declaration, where the correspond-
ing subtype is a constrained array subtype

16. IR1000.4.7.

Clause 7 111

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

g) Astheexpression defining the value of an attribute in an attribute specification, where that attribute is
declared to be of a constrained array subtype

h) Asthe operand of a qualified expression whose type mark denotes a constrained array subtype

i) Asasubaggregate nested within an aggregate, where that aggregate itself appearsin one of these con-
texts

The bounds of an array that does not have an others choice are determined as follows. If the aggregate appears
in one of the contexts in the preceding list, then the direction of the index subtype of the aggregate is that of the
corresponding constrained array subtype; otherwise, the direction of the index subtype of the aggregate is that of
the index subtype of the base type of the aggregate. For an aggregate that has named associations, the leftmost
and rightmost bounds are determined by the direction of the index subtype of the aggregate and the smallest and
largest choices given. For a positional aggregate, the leftmost bound is determined by the applicable index con-
straint if the aggregate appears in one of the contexts in the preceding list; otherwise, the leftmost bound is given
by SLEFT where Sisthe index subtype of the base type of the array. In either case, the rightmost bound is deter-
mined by the direction of the index subtype and the number of elements.

The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the choices of this
aggregate and of its subaggregates, if any, are evaluated in some order (or lack thereof) that is not defined by the
language. Second, the expressions of the element associations of the array aggregate are evaluated in some order
that is not defined by the language; the expression of a named association is evaluated once for each associated
element. The evaluation of a subaggregate consists of this second step (the first step is omitted since the choices
have aready been evaluated).

For the evaluation of an aggregate that is not anull array, acheck is made that the index values defined by choices
belong to the corresponding index subtypes, and also that the value of each element of the aggregate belongs to
the subtype of this element. For a multidimensiona aggregate of dimension n, a check is made that all (n-1)-di-
mensional subaggregates have the same bounds. It isan error if any one of these checks fails.

7.3.3 Function calls

A function call invokesthe execution of afunction body. The call specifiesthe name of the function to beinvoked
and specifiesthe actual parameters, if any, to be associated with the formal parameters of the function. Execution
of the function body results in avalue of the type declared to be the result type in the declaration of the invoked
function.

function_call ::=
function_name|[(actual_parameter_part)]

actual_parameter_part ::= parameter_association list

For each formal parameter of afunction, afunction call must specify exactly one corresponding actual parameter.
This actual parameter is specified either explicitly, by an association el ement (other than the actual part open) in
the association list, or in the absence of such an association element, by a default expression (see 4.3.2).

Evaluation of afunction call includes evaluation of the actual parameter expressions specified in the call and eval-
uation of the default expressions associated with formal parameters of the function that do not have actual param-
eters associated with them. In both cases, the resulting value must belong to the subtype of the associated formal
parameter. (If theformal parameter isof an unconstrained array type, then the formal parameter takes on the sub-
type of the actual parameter.) The function body is executed using the actual parameter values and default ex-
pression values as the values of the corresponding formal parameters.

NOTE

—If aname (including one used as a prefix) has an interpretation both as afunction call and an indexed name, then the inner-
most complete context is used to disambiguate the name. If, after applying thisrule, there is not exactly one interpretation
of the name, then the name is ambiguous. See 10.5.

112 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

7.3.4 Qualified expressions

A qualified expression is a basic operation (see the introduction to Section Clause!’ 3) that is used to explicitly
state the type, and possibly the subtype, of an operand that is an expression or an aggregate.

qualified_expression ::=
type _mark ' (expression)
| type_mark ' aggregate

The operand must have the same type as the base type of the type mark. The value of aqualified expressionisthe
value of the operand. The evaluation of a qualified expression evaluates the operand and checks that its value
belongs to the subtype denoted by the type mark.

NOTE

—Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified expression can be used
to state the type explicitly.

7.3.5 Type conversions
A type conversion provides for explicit conversion between closely related types.
type_conversion ::= type _mark (expression)

Thetarget type of atype conversionisthe basetype of thetype mark. Thetype of the operand of atype conversion
must be determinable independent of the context (in particular, independent of the target type). Furthermore, the
operand of atype conversion isnot allowed to be the literal null, an alocator, an aggregate, or astring literal. An
expression enclosed by parenthesesis allowed as the operand of atype conversion only if the expression aloneis
alowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by a check that
the result of the conversion belongs to the subtype.

Explicit type conversions are allowed between closely related types. In particular, atypeisclosely related toitself.
Other types are closely related only under the following conditions:

a) Abstract Numeric Types—Any abstract numeric typeis closely related to any other abstract numeric
type. Inan explicit type conversion where the type mark denotes an abstract numeric type, the operand
can be of any integer or floating point type. The value of the operand is converted to the target type,
which must also be an integer or floating point type. The conversion of a floating point value to an
integer type rounds to the nearest integer; if the value is halfway between two integers, rounding may
be up or down.

b) Array Types—Two array types are closely related if and only if
—The types have the same dimensionality;
—TFor each index position, the index types are either the same or are closely related; and
—The element types are the same.
In an explicit type conversion where the type mark denotes an array type, the following rules apply: if
the type mark denotes an unconstrained array type and if the operand is not anull array, then, for each

index position, the bounds of the result are obtained by converting the bounds of the operand to the
corresponding index type of thetarget type. If thetype mark denotes a constrained array subtype, then

17. Toconform to |EEE rules.

Clause 7 113

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

the bounds of the result are those imposed by the type mark. In either case, the value of each element
of the result is that of the matching element of the operand (see 7.2.2).

No other types are closely related.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to satisfy a
constraint imposed by the type mark.

In the case of conversions between array types, a check is made that any constraint on the element subtypeisthe
same for the operand array type asfor thetarget array type. If the type mark denotes an unconstrained array type,
then, for each index position, acheck is made that the bounds of the result bel ong to the corresponding index sub-
type of thetarget type. If thetype mark denotesaconstrained array subtype, acheck is made that for each element
of the operand thereisamatching element of the target subtype, and viceversa. Itisan error if any of these checks
fail.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand of type
universal_integer to another integer type, or of an operand of type universal_real to another floating point type,
can only be applied if the operand is either anumeric literal or an attribute, or if the operand is an expression con-
sisting of the division of a value of a physical type by avalue of the same type; such an operand is called a con-
vertible universal operand. Animplicit conversion of a convertible universal operand is applied if and only if the
innermost complete context determines a unique (numeric) target type for the implicit conversion, and thereis no
legal interpretation of this context without this conversion.

NOTE

—Two array types may be closely related even if corresponding index positions have different directions.
7.3.6 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

alocator ::=
new subtype indication
| new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the subtype indica-
tion or the qualified expression. For an allocator with a subtype indication, the initial value of the created object
is the same as the default initial value for an explicitly declared variable of the designated subtype. For an allo-
cator with aqualified expression, this expression defines the initial value of the created object.

The type of the access value returned by an allocator must be determinable solely from the context, but using the
fact that the value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator isan index constraint. If an allocator
includes asubtype indication and if the type of the object created isan array type, then the subtypeindication must
either denote a constrained subtype or include an explicit index constraint. A subtype indication that is part of an
alocator must not include a resolution function.

If the type of the created object is an array type, then the created object is always constrained. If the allocator
includes asubtype indication, the created object is constrained by the subtype. If theallocator includesaqualified
expression, the created object is constrained by the bounds of the initial value defined by that expression. For
other types, the subtype of the created object is the subtype defined by the subtype of the access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qualified ex-
pressionisfirst performed. The new object isthen created, and the object isthen assigned itsinitial value. Finally,
an access value that designates the created object is returned.

114 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

In the absence of explicit deallocation, an implementation must guarantee that any object created by the evaluation
of an alocator remains allocated for as long as this object or one of its subelements is accessible directly or indi-
rectly; that is, aslong asit can be denoted by some name.

NOTES

1—Procedure Dedllocate isimplicitly declared for each accesstype. This procedure provides amechanism for explicitly deal-
locating the storage occupied by an object created by an allocator.

2—Animplementation may (but need not) deall ocate the storage occupied by an object created by an allocator, once this object
has become inaccessible.

Examples:

new NODE

new NODE'(15 ns, null)

new NODE'(Delay => 5 ns, \Next\ => Stack)
new BIT_VECTOR'("00110110")

new STRING (1to 10)

new STRING

Takes on default initial value.
Initial valueis specified.

Initial valueis specified.
Constrained by initial value.
Constrained by index constraint.
Illegal: must be constrained.

7.4 Static expressions

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the type marks
of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during the analysis of
the design unit in which they appear; such an expression is said to be locally static. Certain forms of expression
can be evaluated as soon as the design hierarchy in which they appear is elaborated; such an expressionissaid to
be globally static.

7.4.1 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an implicitly de-
fined operator whose operands and result are scalar and if every primary in the expression is alocally static pri-
mary, where alocally static primary is defined to be one of the following:

a) A literal of any type other than type TIME

b) A constant (other than a deferred constant) explicitly declared by a constant declaration and initialized
with alocally static expression

¢) Andiaswhose aiased name (given in the corresponding alias declaration) is alocally static primary

d) A function call whose function name denotes an implicitly defined operator, and whose actual param-
eters are each locally static expressions

e) A predefined attribute that is a value, other than the predefined attributes’ INSTANCE_NAME and'®
'PATH_NAME, and whose prefix is either alocally static subtype or is an object name that is of alo-
cally static subtype

f) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE,
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix iseither alocally static subtype or isan object that isof alocally static subtype, and whose actual
parameter (if any) isalocally static expression

18. LCS6.

Clause 7 115

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

g) A user-defined attribute whose value is defined by alocally static expression

h) A quaified expression whose operand is alocally static expression

i) A typeconversion whose expression isalocally static expression

j) Alocaly static expression enclosed in parentheses
A locally static range is either a range of the second form (see 3.1) whose bounds are locally static expressions,
or arange of thefirst form whose prefix denotes either alocally static subtype or an object that isof alocally static
subtype. A locally static range constraint is arange constraint whose rangeislocally static. A locally static scalar
subtype is either a scalar base type or a scalar subtype formed by imposing on alocally static subtype alocally
static range constraint. A locally static discrete rangeis either alocally static subtype or alocally static range.
A locally static index constraint is an index constraint for which each index subtype of the corresponding array
type is locally static and in which each discrete range is locally static. A locally static array subtype is a con-
strained array subtype formed by imposing on an unconstrained array type alocally static index constraint. A lo-
cally static record subtype is arecord type whose fields are all of locally static subtypes. A localy static access
subtype is a subtype denoting an accesstype. A locally static file subtype is a subtype denoting afile type.

A locally static subtypeiseither alocally static scalar subtype, alocally static array subtype, alocally static record
subtype, alocally static access subtype, or alocally static file subtype.

7.4.2 Globally static primaries
An expression is said to be globally static if and only if every operator in the expression denotes a pure function
and every primary in the expression isaglobally static primary, where aglobally static primary isaprimary that,
if it denotes an object or afunction, does not denote a dynamically elaborated named entity (see 12.5) and is one
of the following:

a) Alitera of type TIME

b) A localy static primary

c) A generic constant

d) A generate parameter

€) A constant (including a deferred constant)

f) Anadiaswhose aliased name (given in the corresponding alias declaration) isaglobally static primary

0) Anarray aggregate, if and only if

1) All expressionsin its element associations are globally static expressions, and

2) All rangesin its element associations are globally static ranges

h) A record aggregate, if and only if all expressionsin its element associations are globally static expres-
sions

i) A function call whose function name denotes a pure function and whose actual parameters are each
globally static expressions

i) A predefined attribute that is a value and whose prefix is either aglobally static subtype or is an object
or function call that is of aglobally static subtype

116 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

k) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE,
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix is either aglobally static subtype or is an object or function call that is of a globally static sub-
type, and whose actual parameter (if any) isaglobally static expression

I) A user-defined attribute whose value is defined by a globally static expression

m) A qualified expression whose operand is a globally static expression

n) A type conversion whose expression is aglobally static expression

0) Anadllocator of thefirst form (see 7.3.6) whose subtype indication denotes a globally static subtype
p) Anallocator of the second form whose qualified expression isaglobally static expression

q) A globaly static expression enclosed in parentheses

r) A subelement or adlice of aglobally static primary, provided that any index expressions are globally
static expressions and any discrete ranges used in slice names are globally static discrete ranges

A globally static rangeis either arange of the second form (see 3.1) whose bounds are globally static expressions,
or arange of the first form whose prefix denotes either a globally static subtype or an object that is of a globally
static subtype. A globally static range constraint is arange constraint whose range is globally static. A globally
static scalar subtypeiseither ascalar basetype or ascalar subtype formed by imposing on aglobally static subtype
aglobally static range constraint. A globally static discrete range is either a globally static subtype or a globally
static range.

A globally static index constraint is an index constraint for which each index subtype of the corresponding array
typeisglobally static and in which each discrete range is globally static. A globally static array subtypeisacon-
strained array subtype formed by imposing on an unconstrained array type a globally static index constraint. A
globally static record subtype is a record type whose fields are al of globally static subtypes. A globally static
access subtypeisasubtype denoting an accesstype. A globaly static file subtypeisasubtype denoting afiletype.

A globally static subtypeis either aglobally static scalar subtype, aglobally static array subtype, a globally static
record subtype, aglobally static access subtype, or aglobally static file subtype.

NOTES

1—An expression that is required to be a static expression may must!® either be alocally static expression or aglobally static
expression. Similarly, arange, arange constraint, ascalar subtype, adiscreterange, anindex constraint, or an array subtype
that isrequired to be staticmayLLJStZO either be locally static or globally static.2—The rulesfor locally and globally static
expressions imply that a declared constant or a generic may be initialized with an expression that is neither globally nor
locally static; for example, with acall to animpurefunction. The resulting constant value may be globally or locally static,
even though its subtype or itsinitial value expression is neither. Only interface constant, variable, and signal declarations
reguire that their initial value expressions be static expressions.

7.5 Universal expressions

A universal_expressionis either an expression that delivers aresult of type universal_integer or one that delivers
aresult of type universal_real.

19. 1R1000.4.7.
20. IR1000.4.7.
Clause 7 117

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

The same operations are predefined for the type universal_integer as for any integer type. The same operations
are predefined for the type universal_real asfor any floating-point type. In addition, these operationsinclude the
following multiplication and division operators:

Operator | Operation L eft operand type | Right operand type | Result type
* Multiplication | Universal real Universal integer Universal real
Universal integer Universal real Universal real
/ Division Universal real Universal integer Universal real

The accuracy of the evaluation of auniversal expression of type universal_real isat least as good as the accuracy
of evaluation of expressions of the most precise predefined floating-point type supported by the implementation,
apart from universal_real itself.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is of type
universal_integer, then the values of the operands and the result must lie within the range of the integer type with
the widest range provided by the implementation, excluding type universal_integer itself. If theresult is of type
universal_real, then the values of the operands and the result must lie within the range of the floating-point type
with the widest range provided by the implementation, excluding type universal_real itself.

NOTE

—The predefined operators for the universal types are declared in package STANDARD as shown in 14.2.

118 Clause 7

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

