

IEEE

LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 135
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section Clause

1

 9

Concurrent statements

The various forms of concurrent statements are described in this section clause

2

. Concurrent statements are used
to define interconnected blocks and processes that jointly describe the overall behavior or structure of a design.
Concurrent statements execute asynchronously with respect to each other.

concurrent_statement ::=
 block_statement
| process_statement
| concurrent_procedure_call_statement
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

The primary concurrent statements are the block statement, which groups together other concurrent statements,
and the process statement, which represents a single independent sequential process. Additional concurrent state-
ments provide convenient syntax for representing simple, commonly occurring forms of processes, as well as for
representing structural decomposition and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in parallel or in some or-
der. The language does not define the order, if any, in which such statements will be executed. A description that
depends upon a particular order of execution of concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the beginning of the declarative
part of the innermost enclosing entity declaration, architecture body, block statement, or generate statement.

9.1 Block statement

A block statement defines an internal block representing a portion of a design. Blocks may be hierarchically nest-
ed to support design decomposition.

block_statement ::=

block

_label :

block

 [(

guard

_expression)] [

is

]
block_header
block_declarative_part

begin

block_statement_part

end block

 [

block

_label] ;

1. To conform to IEEE rules.
2. To conform to IEEE rules.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

136 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

block_header ::=
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect ;]]

block_declarative_part ::=
{ block_declarative_item }

block_statement_part ::=
{ concurrent_statement }

If a guard expression appears after the reserved word

block

, then a signal with the simple name GUARD of pre-
defined type BOOLEAN is implicitly declared at the beginning of the declarative part of the block, and the guard
expression defines the value of that signal at any given time (see 12.6.4). The type of the guard expression must
be type BOOLEAN. Signal GUARD may be used to control the operation of certain statements within the block
(see 9.5).

The implicit signal GUARD must not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals that are to be im-
ported from the enclosing environment into the block and associated with formal generics or ports. The generic
and port

clauses define the formal generics and formal ports of the block (see 1.1.1.1 and 1.1.1.2); the generic map
and port map aspects define the association of actuals with those formals (see 5.2.1.2). Such actuals are evaluated
in the context of the enclosing declarative region.

If a label appears at the end of a block statement, it must repeat the block label.

NOTES

1—The value of signal GUARD is always defined within the scope of a given block, and it does not implicitly extend to design
entities bound to components instantiated within the given block. However, the signal GUARD may be explicitly passed
as an actual signal in a component instantiation in order to extend its value to lower-level components.

2—An actual appearing in a port association list of a given block can never denote a formal port of the same block.

9.2 Process statement

A process statement defines an independent sequential process representing the behavior of some portion of the
design.

process_statement ::=
[

process

_label :]
[

postponed

]

process

 [(sensitivity_list)] [

is

]
process_declarative_part

begin

process_statement_part

end

 [

postponed

]

 process

 [

process

_label] ;

process_declarative_part ::=
{ process_declarative_item }

IEEE

LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 137
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

process_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_type_declaration group_template_declaration

3

| group_declaration

process_statement_part ::=
{ sequential_statement }

If the reserved word

postponed

 precedes the initial reserved word

process

, the process statement defines a

post-
poned process

; otherwise, the process statement defines a

nonpostponed process

.

If a sensitivity list appears following the reserved word

process

, then the process statement is assumed to contain
an implicit wait statement as the last statement of the process statement part; this implicit wait statement is of the
form

wait

on

 sensitivity_list ;

where the sensitivity list of the wait statement is that following the reserved word

process

. Such a process state-
ment must not contain an explicit wait statement. Similarly, if such a process statement is a parent of a procedure,
then it is an error if

4

 that procedure may not contain contains

5

 a wait statement.

Only static signal names (see 6.1) for which reading is permitted may appear It is an error if any name that does
not denote a static signal name (see 6.1) for which reading is permitted appears

6

 in the sensitivity list of a process
statement.

If the reserved word

postponed

 appears at the end of a process statement, the process must be a postponed process.
If a label appears at the end of a process statement, the label must repeat the process label.

It is an error if a variable declaration in a process declarative part declares a shared variable.

The execution of a process statement consists of the repetitive execution of its sequence of statements. After the
last statement in the sequence of statements of a process statement is executed, execution will immediately con-
tinue with the first statement in the sequence of statements.

A process statement is said to be a

passive

process

 if neither the process itself, nor any procedure of which the
process is a parent, contains a signal assignment statement. Such a process, or any concurrent statement equiva-
lent to such a process, may appear It is an error if a process or a concurrent statement, other than a passive process
or a concurrent statement equivalent to such a process, appears

7

 in the entity statement part of an entity declara-
tion.

3. IR1000.2.11.
4. IR1000.4.7.
5. IR1000.4.7.
6. IR1000.4.7.
7. IR1000.4.7.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

138 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

NOTES

1—The above rules imply that a process that has an explicit sensitivity list always has exactly one (implicit) wait statement in
it, and that wait statement appears at the end of the sequence of statements in the process statement part. Thus, a process
with a sensitivity list always waits at the end of its statement part; any event on a signal named in the sensitivity list will
cause such a process to execute from the beginning of its statement part down to the end, where it will wait again. Such a
process executes once through at the beginning of simulation, suspending for the first time when it executes the implicit
wait statement.

2—The time at which a process executes after being resumed by a wait statement (see 8.1) differs depending on whether the
process is postponed or nonpostponed. When a nonpostponed process is resumed, it executes in the current simulation
cycle (see 2.6.4). When a postponed process is resumed, it does not execute until a simulation cycle occurs in which the
next simulation cycle is not a delta cycle. In this way, a postponed process accesses the values of signals that are the “final”
values at the current simulated time.

3—The conditions that cause a process to resume execution may no longer hold at the time the process resumes execution if
the process is a postponed process.

9.3 Concurrent procedure call statements

A concurrent procedure call statement represents a process containing the corresponding sequential procedure call
statement.

concurrent_procedure_call_statement ::=
[label :] [

postponed

] procedure_call ;

For any concurrent procedure call statement, there is an equivalent process statement. The equivalent process
statement is a postponed process if and only if the concurrent procedure call statement includes the reserved word

postponed

. The equivalent process statement has a label if and only if the concurrent procedure call statement
has a label; if the equivalent process statement has a label, it is the same as that of the concurrent procedure call
statement. The equivalent process statement also has no sensitivity list, an empty declarative part, and a statement
part that consists of a procedure call statement followed by a wait statement.

The procedure call statement consists of the same procedure name and actual parameter part that appear in the
concurrent procedure call statement.

If there exists a name that denotes a signal in the actual part of any association element in the concurrent procedure
call statement, and that actual is associated with a formal parameter of mode

in

 or

inout

, then the equivalent pro-
cess statement includes a final wait statement with a sensitivity clause that is constructed by taking the union of
the sets constructed by applying the rule of 8.1 to each actual part associated with a formal parameter.

Execution of a concurrent procedure call statement is equivalent to execution of the equivalent process statement.

Example:

CheckTiming (tPLH, tPHL, Clk, D, Q); -- A concurrent procedure call statement.

process

-- The equivalent process.

begin

CheckTiming (tPLH, tPHL, Clk, D, Q);

wait on

Clk, D, Q;

end process

;

NOTES

1—Concurrent procedure call statements make it possible to declare procedures representing commonly used processes and
to create such processes easily by merely calling the procedure as a concurrent statement. The wait statement at the end of
the statement part of the equivalent process statement allows a procedure to be called without having it loop interminably,
even if the procedure is not necessarily intended for use as a process (i.e., it contains no wait statement). Such a procedure

IEEE

LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 139
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

may persist over time (and thus the values of its variables may

8

 retain state over time) if its outermost statement is a loop
statement and the loop contains a wait statement. Similarly, such a procedure may be guaranteed to execute only once, at
the beginning of simulation, if its last statement is a wait statement that has no sensitivity clause, condition clause, or tim-
eout clause.

2—The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent procedure call unless it is
explicitly referenced in one of the actual parts of the actual parameter part of the concurrent procedure call statement.

9.4 Concurrent assertion statements

A concurrent assertion statement represents a passive process statement containing the specified assertion state-
ment.

concurrent_assertion_statement ::=
[label :] [

postponed

] assertion ;

For any concurrent assertion statement, there is an equivalent process statement. The equivalent process statement
is a postponed process if and only if the concurrent assertion statement includes the reserved word

postponed

.
The equivalent process statement has a label if and only if the concurrent assertion statement has a label; if the
equivalent process statement has a label, it is the same as that of the concurrent assertion statement. The equiva-
lent process statement also has no sensitivity list, an empty declarative part, and a statement part that consists of
an assertion statement followed by a wait statement.

The assertion statement consists of the same condition,

report

 clause, and

severity

 clause that appear in the con-
current assertion statement.

If there exists a name that denotes a signal in the Boolean expression that defines the condition of the assertion,
then the equivalent process statement includes a final wait statement with a sensitivity clause that is constructed
by applying the rule of 8.1 to that expression; otherwise, the equivalent process statement contains a final wait
statement that has no explicit sensitivity clause, condition clause, or timeout clause.

Execution of a concurrent assertion statement is equivalent to execution of the equivalent process statement.

NOTES

1—Since a concurrent assertion statement represents a passive process statement, such a process has no outputs. Therefore,
the execution of a concurrent assertion statement will never cause an event to occur. However, if the assertion is false, then
the specified error message will be sent to the simulation report.

2—The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion unless it is explicitly refer-
enced in one of the expressions of that assertion.

3—A concurrent assertion statement whose condition is defined by a static expression is equivalent to a process statement that
ends in a wait statement that has no sensitivity clause; such a process will execute once through at the beginning of simu-
lation and then wait indefinitely.

9.5 Concurrent signal assignment statements

A concurrent signal assignment statement represents an equivalent process statement that assigns values to sig-
nals.

concurrent_signal_assignment_statement ::=
 [label :] [

postponed

] conditional_signal_assignment
| [label :] [

postponed

] selected_signal_assignment

options ::= [

guarded

] [delay_mechanism]

8. IR1000.4.7.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

140 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

There are two forms of the concurrent signal assignment statement. For each form, the characteristics that distin-
guish it are discussed in the following paragraphs.

Each form may include one or both of the two options

guarded

and a delay mechanism (see 8.4 for the delay
mechanism, 9.5.1 for the conditional signal assignment statement, and 9.5.2 for the selected signal assignment
statement). The option

guarded

specifies that the signal assignment statement is executed when a signal GUARD
changes from FALSE to TRUE, or when that signal has been TRUE and an event occurs on one of the signal as-
signment statement’s inputs. (The signal GUARD may be must be either

9

 one of the implicitly declared GUARD
signals associated with block statements that have guard expressions, or it may must

10

 be an explicitly declared
signal of type Boolean that is visible at the point of the concurrent signal assignment statement.) The delay mech-
anism option specifies the pulse rejection characteristics of the signal assignment statement.

If the target of a concurrent signal assignment is a name that denotes a guarded signal (see 4.3.1.2), or if it is in
the form of an aggregate and the expression in each element association of the aggregate is a static signal name
denoting a guarded signal, then the target is said to be a

guarded target

. If the target of a concurrent signal as-
signment is a name that denotes a signal that is not a guarded signal, or if it is in the form of an aggregate and the
expression in each element association of the aggregate is a static signal name denoting a signal that is not a guard-
ed signal, then the target is said to be an

unguarded target

. It is an error if the target of a concurrent signal assign-
ment is neither a guarded target nor an unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement with the same meaning.
The process statement equivalent to a concurrent signal assignment statement whose target is a signal name is con-
structed as follows:

a) If a label appears on the concurrent signal assignment statement, then the same label appears on the
process statement.

b) The equivalent process statement is a postponed process if and only if the concurrent signal assignment
statement includes the reserved word

postponed

.

c) If the delay mechanism option appears in the concurrent signal assignment, then the same delay mech-
anism appears in every signal assignment statement in the process statement; otherwise, it appears in
no signal assignment statement in the process statement.

d) The statement part of the equivalent process statement consists of a statement transform (described be-
low).

If the option

guarded

 appears in the concurrent signal assignment statement, then the concurrent sig-
nal assignment is called a

guarded

assignment

. If the concurrent signal assignment statement is a
guarded assignment, and if the target of the concurrent signal assignment is a guarded target, then the
statement transform is as follows:

if

 GUARD

then

signal_transform

else

disconnection_statements

end if

 ;

Otherwise, if the concurrent signal assignment statement is a guarded assignment, but if the target of
the concurrent signal assignment is

not

 a guarded target, then the statement transform is as follows:

if

 GUARD

then

signal_transform

end if

 ;

9. IR1000.4.7.
10. IR1000.4.7.

IEEE

LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 141
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Finally, if the concurrent signal assignment statement is

not

 a guarded assignment, and if the target of
the concurrent signal assignment is

not

 a guarded target, then the statement transform is as follows:

signal_transform

It is an error if a concurrent signal assignment is not a guarded assignment and the target of the con-
current signal assignment is a guarded target.

A

signal transform

 is either a sequential signal assignment statement, an if statement, a case statement,
or a null statement.If the signal transform is an if statement or a case statement, then it contains either
sequential signal assignment statements or null statements, one for each of the alternative waveforms.
The signal transform determines which of the alternative waveforms is to be assigned to the output sig-
nals.

e) If the concurrent signal assignment statement is a guarded assignment, or if any expression (other than
a time expression) within the concurrent signal assignment statement references a signal, then the pro-
cess statement contains a final wait statement with an explicit sensitivity clause. The sensitivity clause
is constructed by taking the union of the sets constructed by applying the rule of 8.1 to each of the
aforementioned expressions. Furthermore, if the concurrent signal assignment statement is a guarded
assignment, then the sensitivity clause also contains the simple name GUARD. (The signals identified
by these names are called the

inputs

 of the signal assignment statement.) Otherwise, the process state-
ment contains a final wait statement that has no explicit sensitivity clause, condition clause, or timeout
clause.

Under certain conditions (see above) the equivalent process statement may contain a sequence of disconnection
statements. A

disconnection statement

 is a sequential signal assignment statement that assigns a null transaction
to its target. If a sequence of disconnection statements is present in the equivalent process statement, the sequence
consists of one sequential signal assignment for each scalar subelement of the target of the concurrent signal as-
signment statement. For each such sequential signal assignment, the target of the assignment is the corresponding
scalar subelement of the target of the concurrent signal assignment, and the waveform of the assignment is a null
waveform element whose time expression is given by the applicable disconnection specification (see 5.3).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then the same transforma-
tion applies. Such a target may only contain must contain only

11

 locally static signal names, and a signal may not
be ; moreover, it is an error if any signal is

12

 identified by more than one signal name.

It is an error if a null waveform element appears in a waveform of a concurrent signal assignment statement.

Execution of a concurrent signal assignment statement is equivalent to execution of the equivalent process state-
ment.

NOTES

1—A concurrent signal assignment statement whose waveforms and target contain only static expressions is equivalent to a
process statement whose final wait statement has no explicit sensitivity clause, so it will execute once through at the be-
ginning of simulation and then suspend permanently.

2—A concurrent signal assignment statement whose waveforms are all the reserved word

unaffected

 has no drivers for the
target, since every waveform in the concurrent signal assignment statement is transformed to the statement

null

;

in the equivalent process statement. See 9.5.1.

11. IR1000.4.7.
12. IR1000.4.7.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

142 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

9.5.1 Conditional signal assignments

The conditional signal assignment represents a process statement in which the signal transform is an if statement.

conditional_signal_assignment ::=
target

 <= options conditional_waveforms ;

conditional_waveforms ::=
{ waveform

when

 condition

else

 }
 waveform [

when

 condition]

The options for a conditional signal assignment statement are discussed in 9.5.

For a given conditional signal assignment, there is an equivalent process statement corresponding to it as defined
for any concurrent signal assignment statement. If the conditional signal assignment is of the form

target <= options
waveform1

when

 condition1

else

waveform2

when

 condition2

else

• • •
waveformN–1

when

 conditionN–1

else

waveformN

when conditionN;

then the signal transform in the corresponding process statement is of the form

if condition1 then
wave_transform1

elsif condition2 then
wave_transform2

• • •
elsif conditionN–1 then

wave_transformN–1
elsif conditionN then

wave_transformN
end if ;

If the conditional waveform is only a single waveform, the signal transform in the corresponding process state-
ment is of the form

wave_transform

For any waveform, there is a corresponding wave transform. If the waveform is of the form

waveform_element1, waveform_element2, …, waveform_elementN

then the wave transform in the corresponding process statement is of the form

target <= [delay_mechanism] waveform_element1, waveform_element2, …,
waveform_elementN;

If the waveform is of the form

unaffected

then the wave transform in the corresponding process statement is of the form

null;

IEEE
LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 143
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

In this example, the final null causes the driver to be unchanged, rather than disconnected. (This is the null state-
ment—not a null waveform element).

The characteristics of the waveforms and conditions in the conditional assignment statement must be such that the
if statement in the equivalent process statement is a legal statement.

Example:

S <= unaffected when Input_pin = S'DrivingValue else
Input_pin after Buffer_Delay;

NOTE

—The wave transform of a waveform of the form unaffected is the null statement, not the null transaction.

9.5.2 Selected signal assignments

The selected signal assignment represents a process statement in which the signal transform is a case statement.

selected_signal_assignment ::=
with expression select

target <= options selected_waveforms ;

selected_waveforms ::=
{ waveform when choices , }
 waveform when choices

The options for a selected signal assignment statement are discussed in 9.5.

For a given selected signal assignment, there is an equivalent process statement corresponding to it as defined for
any concurrent signal assignment statement. If the selected signal assignment is of the form

with expression select
target <= options waveform1 when choice_list1 ,

waveform2 when choice_list2 ,
• • •
waveformN–1 when choice_listN–1,
waveformN when choice_listN ;

then the signal transform in the corresponding process statement is of the form

case expression is
when choice_list1 =>

wave_transform1
when choice_list2 =>

wave_transform2
• • •
when choice_listN–1 =>

wave_transformN–1
when choice_listN =>

wave_transformN
end case ;

Wave transforms are defined in 9.5.1.

The characteristics of the select expression, the waveforms, and the choices in the selected assignment statement
must be such that the case statement in the equivalent process statement is a legal statement.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

144 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

9.6 Component instantiation statements

A component instantiation statement defines a subcomponent of the design entity in which it appears, associates
signals or values with the ports of that subcomponent, and associates values with generics of that subcomponent.
This subcomponent is one instance of a class of components defined by a corresponding component declaration,
design entity, or configuration declaration.

component_instantiation_statement ::=
instantiation_label :

instantiated_unit
[generic_map_aspect]
[port_map_aspect] ;

instantiated_unit ::=
 [component] component_name
| entity entity_name [(architecture_identifier)]
| configuration configuration_name

The component name, if present, must be the name of a component declared in a component declaration. The
entity name, if present, must be the name of a previously analyzed entity interface declaration13; if an architecture
identifier appears in the instantiated unit, then that identifier must be the same as the simple name of an architec-
ture body associated with the entity declaration denoted by the corresponding entity name. The architecture iden-
tifier defines a simple name that is used during the elaboration of a design hierarchy to select the appropriate
architecture body. The configuration name, if present, must be the name of a previously analyzed configuration
declaration. The generic map aspect, if present, optionally associates a single actual with each local generic (or
member thereof) in the corresponding component declaration or entity interface declaration14. Each local generic
(or member thereof) must be associated at most once. Similarly, the port map aspect, if present, optionally asso-
ciates a single actual with each local port (or member thereof) in the corresponding component declaration or en-
tity interface declaration15. Each local port (or member thereof) must be associated at most once. The generic
map and port map aspects are described in 5.2.1.2.

If an instantiated unit containing the reserved word entity does not contain an explicitly specified architecture
identifier, then the architecture identifier is implicitly specified according to the rules given in 5.2.2. The archi-
tecture identifier defines a simple name that is used during the elaboration of a design hierarchy to select the ap-
propriate architecture body.

A component instantiation statement and a corresponding configuration specification, if any, taken together, im-
ply that the block hierarchy within the design entity containing the component instantiation is to be extended with
a unique copy of the block defined by another design entity. The generic map and port map aspects in the com-
ponent instantiation statement and in the binding indication of the configuration specification identify the connec-
tions that are to be made in order to accomplish the extension.

NOTES

1—A configuration specification can be used to bind a particular instance of a component to a design entity and to associate
the local generics and local ports of the component with the formal generics and formal ports of that design entity. A con-
figuration specification may can16 apply to a component instantiation statement only if the name in the instantiated unit of
the component instantiation statement denotes a component declaration. (See 5.2.)

2—The component instantiation statement may be used to imply a structural organization for a hardware design. By using
component declarations, signals, and component instantiation statements, a given (internal or external) block may be de-
scribed in terms of subcomponents that are interconnected by signals.

13. Terminological correction.
14. Terminological correction.
15. Terminological correction.
16. IR1000.4.7.

IEEE
LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 145
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

3—Component instantiation provides a way of structuring the logical decomposition of a design. The precise structural or
behavioral characteristics of a given subcomponent may be described later, provided that the instantiated unit is a compo-
nent declaration. Component instantiation also provides a mechanism for reusing existing designs in a design library. A
configuration specification can bind a given component instance to an existing design entity, even if the generics and ports
of the entity declaration do not precisely match those of the component (provided that the instantiated unit is a component
declaration); if the generics or ports of the entity declaration do not match those of the component, the configuration spec-
ification must contain a generic map or port map, as appropriate, to map the generics and ports of the entity declaration to
those of the component.

9.6.1 Instantiation of a component

A component instantiation statement whose instantiated unit contains a name denoting a component is equivalent
to a pair triple17 of nested block statements that couple the block hierarchy in the containing design unit to a unique
copy of the block hierarchy contained in another design unit (i.e., the subcomponent). The outer block represents
the component declaration; the inner intermediate18 block represents the design entity declaration19 to which the
component is bound; and the inner block represents the corresponding architecure body20. Each is defined by a
block statement.

The header of the block statement corresponding to the component declaration consists of the generic and port
clauses (if present) that appear in the component declaration, followed by the generic map and port map aspects
(if present) that appear in the corresponding component instantiation statement. The meaning of any identifier
appearing in the header of this block statement is associated with the corresponding occurrence of the identifier
in the generic clause, port clause, generic map aspect, or port map aspect, respectively. The statement part of the
block statement corresponding to the component declaration consists of a nested block statement corresponding
to the design21 entity declaration22.

The header of the block statement corresponding to the design23 entity declaration24 consists of the generic and
port clauses (if present) that appear in the entity declaration that defines the interface to the design entity25, fol-
lowed by the generic map and port map aspects (if present) that appear in the binding indication that binds the
component instance to that design26 entity declaration27. The declarative part of the block statement correspond-
ing to the design28 entity declaration29 consists of the declarative items from the entity declarative part, followed
by the declarative items from the declarative part of the corresponding architecture body30. The statement part of
the block statement corresponding to the design31 entity declaration32 consists of the concurrent statements from
the entity statement part, followed by the concurrent statements from the statement part of a nested block state-
ment corresponding to33 the corresponding architecture body. The meaning of any identifier appearing anywhere
in this intermediate34 block statement is that associated with the corresponding occurrence of the identifier in the
entity declaration or architecture body, respectively35.

17. LCS 3.
18. LCS 3.
19. LCS 3.
20. LCS 3.
21. LCS 3.
22. LCS 3.
23. LCS 3.
24. LCS 3.
25. LCS 3.
26. LCS 3.
27. LCS 3.
28. LCS 3.
29. LCS 3.
30. LCS 3.
31. LCS 3.
32. LCS 3.
33. LCS 3.
34. LCS 3.
35. LCS 3.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

146 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The header of the block statement corresponding to the architecture body is empty. The declarative part of the
block statement corresponding to the architecture body consists of the declarative items from the declarative part
of the corresponding architecture body. The statement part of the block statement corresponding to the architec-
ture body consists of the concurrent statements from the statement part of the corresponding architecture body.
The meaning of any identifier appearing anywhere in this block statement is that associated with the correspond-
ing occurrence of the identifier in the architecture body.36

For example, consider the following component declaration, instantiation, and corresponding configuration spec-
ification:

component
COMP port (A,B : inout BIT);

end component;

for C: COMP use
entity X(Y)
port map (P1 => A, P2 => B) ;

• • •
C: COMP port map (A => S1, B => S2);

Given the following entity declaration and architecture declaration:

entity X is
port (P1, P2 : inout BIT);
constant Delay: Time := 1 ms;

begin
CheckTiming (P1, P2, 2*Delay);

end X ;

architecture Y of X is
signal P3: Bit;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

• • •
begin

• • •
end block;

end Y;

then the following block statements implement the coupling between the block hierarchy in which component in-
stantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Component block.
port (A,B : inout BIT); -- Local ports.
port map (A => S1, B => S2); -- Actual/local binding.

begin
X: block -- Design entity block.

port (P1, P2 : inout BIT); -- Formal ports.
port map (P1 => A, P2 => B); -- Local/formal binding.
constant Delay: Time := 1 ms; -- Entity declarative item.
signal P3: Bit; -- Architecture declarative item.37

begin

36. LCS 3.
37. LCS 3.

IEEE
LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 147
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

CheckTiming (P1, P2, 2*Delay); -- Entity statement.
Y: block

signal P3: Bit; -- Architecture declarative item
begin38

P3 <= P1 after Delay; -- Architecture statements.
P2 <= P3 after Delay;
B: block -- Internal block hierarchy.

 • • •
begin
 • • •
end block;

end block Y;39

end block X ;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design entities
are accomplished during the elaboration of a design hierarchy (see Section Clause40 12).

9.6.2 Instantiation of a design entity

A component instantiation statement whose instantiated unit denotes either a design entity or a configuration dec-
laration is equivalent to a pair triple41 of nested block statements that couple the block hierarchy in the containing
design unit to a unique copy of the block hierarchy contained in another design unit (i.e., the subcomponent). The
outer block represents the component instantiation statement; the inner intermediate42 block represents the de-
sign43 entity declaration44 to which the instance is bound; and the inner block represents the corresponding archi-
tecture body45. Each is defined by a block statement.

The header of the block statement corresponding to the component instantiation statement is empty, as is the de-
clarative part of this block statement. The statement part of the block statement corresponding to the component
declaration consists of a nested block statement corresponding to the design46 entity declaration47.

The header of the block statement corresponding to the design48 entity declaration49 consists of the generic and
port clauses (if present) that appear in the entity declaration that defines the interface to the design entity, followed
by the generic map and port map aspects (if present) that appear in the component instantiation statement that
binds the component instance to a copy of that design entity. The declarative part of the block statement corre-
sponding to the design50 entity declaration51 consists of the declarative items from the entity declarative part, fol-
lowed by the declarative items from the declarative part of the corresponding architecture body52. The statement
part of the block statement corresponding to the design53 entity declaration54 consists of the concurrent statements
from the entity statement part, followed by the concurrent statements from the statement part of a nested block
statement corresponding to55 the corresponding architecture body. The meaning of any identifier appearing any-

38. LCS 3.
39. LCS 3.
40. To conform to IEEE rules.
41. LCS 3.
42. LCS 3.
43. LCS 3.
44. LCS 3.
45. LCS 3.
46. LCS 3.
47. LCS 3.
48. LCS 3.
49. LCS 3.
50. LCS 3.
51. LCS 3.
52. LCS 3.
53. LCS 3.
54. LCS 3.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

148 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

where in this block statement is that associated with the corresponding occurrence of the identifier in the entity
declaration or architecture body, respectively56.

The header of the block statement corresponding to the architecture body is empty. The declarative part of the
block statement corresponding to the architecture body consists of the declarative items from the declarative part
of the corresponding architecture body. The statement part of the block statement corresponding to the architec-
ture body consists of the concurrent statements from the statement part of the corresponding architecture body.
The meaning of any identifier appearing anywhere in this block statement is that associated with the correspond-
ing occurrence of the identifier in the architecture body.57

For example, consider the following design entity:

entity X is
port (P1, P2: inout BIT);
constant Delay: DELAY_LENGTH := 1 ms;
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay);

end entity X;

architecture Y of X is
signal P3: BIT;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

• • •
begin

• • •
end block B;

end architecture Y;

This design entity is instantiated by the following component instantiation statement:

C: entity Work.X (Y) port map (P1 => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which component instan-
tiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Instance block.
begin

X: block -- Design entity block.
port (P1, P2: inout BIT); -- Entity interface declaration58 ports.
port map (P1 => S1, P2 => S2); -- Instantiation statement port map.
constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative items.
use WORK.TimingChecks.all;
signal P3: BIT; -- Architecture declarative item.59

begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
Y: block

signal P3: BIT; -- Architecture declarative item.

55. LCS 3.
56. LCS 3.
57. LCS 3.
58. Terminological correction.
59. LCS 3.

IEEE
LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 149
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

begin60

P3 <= P1 after Delay; -- Architecture statements.
P2 <= P3 after Delay;
B: block

• • •
begin

• • •
end block B;

end block Y;61

end block X;
end block C;

Moreover, consider the following design entity, which is followed by an associated configuration declaration and
component instantiation:

entity X is
port (P1, P2: inout BIT);
constant Delay: DELAY_LENGTH := 1 ms;
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay);

end entity X;

architecture Y of X is
signal P3: BIT;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

• • •
begin

• • •
end block B;

end architecture Y;

The configuration declaration is

configuration Alpha of X is
for Y

• • •
end for;

end configuration Alpha;

The component instantiation is

C: configuration Work.Alpha port map (P1 => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which component instan-
tiation statement C appears and the block hierarchy contained in design entity X(Y):

60. LCS 3.
61. LCS 3.

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

150 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

C: block -- Instance block.
begin

X: block -- Design entity block.
port (P1, P2: inout BIT); -- Entity interface declaration62 ports.
port map (P1 => S1, P2 => S2); -- Instantiation statement port map.
constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative items.
use WORK.TimingChecks.all;
signal P3: BIT; -- Architecture declarative item.63

begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
Y: begin

signal P3: BIT: -- Architecture declarative item.
begin64

P3 <= P1 after Delay; -- Architecture statements.
P2 <= P3 after Delay;
B: block

• • •
begin

• • •
end block B;

end block Y;65

end block X;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design entities
occur during the elaboration of a design hierarchy (see Section Clause66 12).

9.7 Generate statements

A generate statement provides a mechanism for iterative or conditional elaboration of a portion of a description.

generate_statement ::=
generate_label :

generation_scheme generate
[{ block_declarative_item }

begin]
{ concurrent_statement }

end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
| if condition

label ::= identifier

If a label appears at the end of a generate statement, it must repeat the generate label.

For a generate statement with a for generation scheme, the generate parameter specification is the declaration of
the generate parameter with the given identifier. The generate parameter is a constant object whose type is the
base type of the discrete range of the generate parameter specification.

62. Terminological correction.
63. LCS 3.
64. LCS 3.
65. LCS 3.
66. To conform to IEEE rules.

IEEE
LANGUAGE REFERENCE MANUAL Std P 1076a-1999 2000/D3

Section Clause 9 151
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The discrete range in a generation scheme of the first form must be a static discrete range; similarly, the condition
in a generation scheme of the second form must be a static expression.

The elaboration of a generate statement is described in 12.4.2.

Example:

Gen: block
begin

L1: CELL port map (Top, Bottom, A(0), B(0)) ;

L2: for I in 1 to 3 generate
L3: for J in 1 to 3 generate

L4: if I+J>4 generate
L5: CELL port map (A(I–1),B(J–1),A(I),B(J)) ;

end generate ;
end generate ;

end generate ;

L6: for I in 1 to 3 generate
L7: for J in 1 to 3 generate

L8: if I+J<4 generate
L9: CELL port map (A(I+1),B(J+1),A(I),B(J)) ;

end generate ;
end generate ;

end generate ;
end block Gen;

IEEE
Std P 1076a-1999 2000/D3 IEEE STANDARD VHDL

152 Section Clause 9
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

