Programmable Logic

- So far, have only talked about PALs (see 22V10 figure next page).
- What is the next step in the evolution of PLDs?
 - More gates!

4/18/00

• How do we get more gates? We could put several PALs on one chip and put an interconnection matrix between them!!

BR Fall 99

– This is called a Complex PLD (CPLD).

22V10 PLD

Field Programmable Gate Arrays

The FPGA approach to arrange primitive logic elements (logic cells) arrange in rows/columns with programmable routing between them.

What constitutes a primitive logic element? Lots of different choices can be made! Primitive element must be classified as a "complete logic family".

- A primitive gate like a NAND gate
- A 2/1 mux (this happens to be a complete logic family)
- A Lookup table (I.e, 16x1 lookup table can implement any 4 input logic function).

5

Often combine one of the above with a DFF to form the primitive logic element. 4/18/00 BR Fall 99

Other FPGA features

- Besides primitive logic elements and programmable routing, some FPGA families add other features
- · Embedded memory
 - Many hardware applications need memory for data storage. Many FPGAs include blocks of RAM for this purpose
- Dedicated logic for carry generation, or other arithmetic functions
- Phase locked loops for clock synchronization, division, multiplication.

Table 1. FLEX 10K Device Features							
Feature	EPF10K10 EPF10K10A	EPF10K20	EPF10K30 EPF10K30A	EPF10K40	EPF10K50 EPF10K50V		
Typical gates (logic and RAM), Note (1)	10,000	20,000	30,000	40,000	50,000		
Usable gates	7,000 to 31,000	15,000 to 63,000	22,000 to 69,000	29,000 to 93,000	36,000 to 116,000		
Logic elements (LEs)	576	1,152	1,728	2,304	2,880		
Logic array blocks (LABs)	72	144	216	288	360		
Embedded array blocks (EABs)	3	6	6	8	10		
Total RAM bits	6,144	12,288	12,288	16,384	20,480		
Maximum user I/O pins	134	189	246	189	310		

Table 2. FLEX 10K Device Features							
Feature	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A			
Typical gates (logic and RAM), Note (1)	70,000	100,000	130,000	250,000			
Usable gates	46,000 to 118,000	62,000 to 158,000	82,000 to 211,000	149,000 to 310,000			
LEs	3,744	4,992	6,656	12,160			
LABs	468	624	832	1,520			
EABs	9	12	16	20			
Total RAM bits	18,432	24,576	32,768	40,960			
Maximum user I/O pins	358	406	470	470			

Issues in FPGA Technologies

- · Complexity of Logic Element
 - How many inputs/outputs for the logic element?
 - Does the basic logic element contain a FF? What type?
- Interconnect
 - How fast is it? Does it offer 'high speed' paths that cross the chip? How many of these?
 - Can I have on-chip tri-state busses?
 - How routable is the design? If 95% of the logic elements are used, can I route the design?
 - More routing means more routability, but less room for logic elements

BR Fall 99

13

4/18/00

Xilinx FPGA Family Summaries

- Virtex Family
 - SRAM Based
 - Largest device has 1M gates
 - Configurable Logic Blocks (CLBs) have two 4-input LUTS, 2 DFFs
 - Four onboard Delay Locked Loops (DLLs) for clock synchronization
 - Dedicated RAM blocks (LUTs can also function as RAM).
 - Fast Carry Logic
- XC4000 Family
 - Previous version of Virtex
 - No DLLs, No dedicated RAM blocks
 - 4/18/00
- BR Fall 99

- MXDS Family
 - Fine grain Logic Elements that contain Mux logic + DFF
 - Embedded Dual Port SRAM
 - One Time Programmable (OTP) means that no
 - configuration loading on powerup, no external serial ROM – AntiFuse technology for programming (AntiFuse means
 - that you program the fuse to make the connection). - Fast (Tpd = 7.5 ns)
 - Fast (1pd = /.5 ns)
 - Low density compared to Altera, Xilinx maximum number of gates is 36,000

BR Fall 99

18

17

Cypress CPLDs

- Ultra37000 Family
 - 32 to 512 Macrocells
 - Fast (Tpd 5 to 10ns depending on number of macrocells)

BR Fall 99

- Very good routing resources for a CPLD

4/18/00

19