
1

BR 8/99 1

General Sequential Design

So far we have, we have looked at basic latches, FFs and
common sequential building blocks.

All of these can be represented by a general block diagram:

Combinational
Logic
Circuit

Memory Element

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

Inputs Outputs

BR 8/99 2

D
Q

C

 DFF

R

0

1
Y EN

DIN

CLK

N

N

EN

DIN
Y

Incrementer

N

S
LD

N

Combinational Logic

Memory

Next State
Present State

Counter drawn
as general
sequential
system.

BR 8/99 3

Describing Sequential Systems

• So far we have used Truth Tables to describe
sequential systems

• Can also use Bubble Diagrams and Algorithmic
State Machine Charts (ASM) to describe a
sequential system.

• Another name for a sequential system is a Finite
State Machine (FSM).

• A sequential system with N flip-Flop has 2N

possible states, so the number of possible states is
FINITE.

2

BR 8/99 4

DFF as a Finite State Machine
A DFF is a finite state machine with two possible states.
Lets call these states S0 and S1. (state enumeration).

Furthermore, lets say when the Q output = ‘0’ , then we are
in State S0, and that when Q output = ‘1’ , we are in State
S1. This is called the State Encoding.

S0
q=0

0

S1
q=1

1

1

0

Bubble Diagram: States represented by bubbles. State
transitions represented by arrows. Labeling on arrows
represent input values (in this case, the D-input!).
Labeling inside bubbles represent output values.

BR 8/99 5

Algorithmic State Machine Chart for DFF

S0 Q = 0

D

Q = 1

D

0

1

1

S1

A Finite State Machine
(FSM) can be described
via either a Bubble
diagram or an ASM
chart.

ASM charts are better
for complex FSMs. We
will use ASM charts in
this class.

State S0 is usually the
asynchronous Reset
state.

0

BR 8/99 6

Algorithmic State Chart (ASM)
• An ASM chart can be used to describe FSM

behavior

Only three action signals can appear within an ASM chart:
State box. Each box represents a state.
Outputs within a state box is an
UNCONDITIONAL output (always asserted
in this state).

Decision box. A condition in this box
will decide next state condition.

Conditional output box. If present, will
always follow a decision box; output
within it is conditional.

3

BR 8/99 7

Algorithmic State Machine Chart for JKFF

S0 Q = 0

JK?

Q = 1

JK?

00 or 01

S1
10 or 11

00 or 10

01 or 11

BR 8/99 8

Finite State Machine Implementation

Given an Algorithmic State Machine chart that describes a Finite
State Machine, how do we implement it?????

Step #1: Decide on the State Encoding (how many Flip Flips
do I use and how what should the FF outputs be for EACH
state). The problem definition may decide the state encoding
for you.

Step #2: Decide what kind of FFs to use! (We will always
use DFFs in this class, but you could use JKFFs or TFFs if
you wanted to).

Step #3: Write the State Transition Table.

Step #4: Write the FF input equations, and general output
equations from the state transistion table.

BR 8/99 9

Problem Definition
Design a Modulo three counter. The count sequence is:

 “ 00” → “ 01” → “ 10” → “ 00” → “ 01” → “ 10” , etc.

There is an “en” input that should control counting (count
when en=1, hold value when en=0). Assume ACLR line
used to reset counter to “ 00” .

How many states do we need? Well, we have three unique
output values, so lets go with three states.

EN
CLK Y[1:0]

ACLR

4

BR 8/99 10

ASM Chart for Modulo Three Counter

S0 Y = 00

EN? 0

Y = 01

EN? 0

1

1

Y = 10

EN? 0

1

S1

S2

BR 8/99 11

State Transition Table

Inputs(EN) Present State Next State Y
 0 S0 S0 00
 0 S1 S1 01
 0 S2 S2 10
 1 S0 S1 00
 1 S1 S2 01
 1 S2 S0 10

State transition table shows next state, output values for
present state, input values.

BR 8/99 12

Decisions
• State encoding - will be based on number of FFs

we use.
– Three states means the minimum number of FFs we

can use two FFs (log2(3) = 2).

• I f we use two FFs, then could pick a state
encodings like:
– S0: 00, S1: 01, S2: 10 (binary counting order)
– S0: 01, S1:01, S2: 11 (gray code - may result in less

combinational logic)

• Could also use 1 FF per state (3 FFs) and use one
hot encoding
– S0:001, S1: 010, S2: 100 (may result in less

combinational logic)

5

BR 8/99 13

Decisions (cont.)

• What type of FF to use?
• DFF - most common type, always available in

programmable logic
• JKFF - sometimes available, will usually result in

less combinational logic (more complex FF means
less combinational logic external to FF)

Lets use two FFs with state encoding S0=00, S1=01,
S2=10.

Lets use DFFs.

BR 8/99 14

New State Transition Table

Inputs(EN) Present Next D1D0 Y
 State State
 (Q1Q0) (Q1Q)*
 0 00 00 00 00
 0 01 01 01 01
 0 10 10 10 10
 1 00 01 01 00
 1 01 10 10 01
 1 10 00 00 10

Modify State Transition table to show what FF inputs
need to be in order to get to that state. Also, use actual
state encodings

For DFFs, D inputs are simply equal to next state!!!!

BR 8/99 15

D-input Equations, Y equations

D0 = EN’ Q1’Q0 + EN Q1’Q0’

D1 = EN’ Q1 Q0’ + EN Q1’ Q0

Y0 = Q0

Y1 = Q1

The output Y is simply the DFF outputs! Here is one case
where state encoding is affected by problem definition
(does not make much sense to use a different state
encoding, even though we could do it).

Unoptimized equations:

6

BR 8/99 16

DFF Implementation

D
Q

C
R

D
Q

C
R ACLRCLK

D0 = EN’ Q1’Q0 + EN Q1’Q0’

D1 = EN’ Q1 Q0’ + EN Q1’ Q0

EN

Y0

Y1

Q0

Q1

D0

D1

BR 8/99 17

What if we used JKFFs?
Need to change State Transistion table to reflect JK input values.

Inputs Present Next J1 K1 J0 K0 Y
 EN State State
 (Q1Q0) (Q1Q0)*
 0 00 00 0 X 0 X 00
 0 01 01 0 X X 0 01
 0 10 10 X 0 0 X 10
 1 00 01 0 X 1 X 00
 1 01 10 1 X X 1 01
 1 10 00 X 1 0 X 10

JK FF Q transitions: 0→0 (J=0, K=X); 0→1 (J=1, K=X);
 1→1 (J=X, K=0); 1→0 (J=X, K=1);

BR 8/99 18

JK Input Equations, Output Equations

Unoptimized equations

J0 = EN Q1’ Q0’ K0 = EN Q1’ Q0

J1 = EN Q1’ Q0 K1 = EN Q1 Q0’

Y0 = Q0

Y1 = Q1

Using JK FFs will mean simpler external optimized
combinational logic because FFs are more complex
(provide more functionality).

7

BR 8/99 19

JK FF Implementation

JQ
C
K

JQ
C
K

CLK

J0 = EN Q1’ Q0’ K0 = EN Q1’ Q0

J1 = EN Q1’ Q0 K1 = EN Q1 Q0’

EN

Y0

Y1

ACLR input to
JKFFs not shown.

Q0

Q1

J0

K0

J1

K1

BR 8/99 20

3 DFFs and One Hot Encoding
State encoding: S0 = 001, S1 = 010, S2 = 100

Inputs Present Next D2D1D0 Y
 EN State State
 (Q2Q1Q0) (Q2Q1Q0)*
 0 001 001 001 00
 0 010 010 010 01
 0 100 100 100 10
 1 001 010 010 00
 1 010 100 100 01
 1 100 001 001 10

BR 8/99 21

DFF input equations, Output Equations
D0 = EN’Q0 + ENQ2
D1 = EN’Q1 + ENQ0
D2 = EN’Q2 + ENQ1

Y0 = EN’Q1 + EN Q1 = Q1
Y1 = EN’Q2 + EN Q2 = Q2

In equations, because a FF Q will only be ‘1’ in a single state,
do not have to include all FFs to define state!!
(Q2’Q1’Q0 = Q0!!, Q2’Q1Q0’ = Q1!, Q2Q1’Q0’ = Q2!!)
This is one of the advantages of one-hot encoding!

8

BR 8/99 22

Generic Next State Equations
Generic next state equations can be written directly from the ASM
chart as an alternative to the Transition table

S* = (conditions to remain in this state) + (conditions to enter state)

From ASM chart of modulo three counter:
S0* = EN’ S0 + EN S2
S1* = EN’ S1 + EN S0
S2* = EN’S2 + EN S1

If One hot encoding and DFFs are used, then Generic Next
State equations ARE the specific next State Equations!!

D0 = EN’Q0 + EN Q2
D1 = EN’Q1 + EN Q0
D2 = EN’ Q2 + EN Q1

