# 3 Binary Adder

In this experiment, the student will become familiar with the operation of a 4-bit binary adder, and will also learn how to cascade two 4-bit binary adders to form an 8-bit binary adder.

## I. 4-Bit Binary adder

The TA will program one of your 22V10 Programmable logic devices so that it implements a 4-bit binary adder function. The pinout for this device is:

- Pin 12 GND, Pin 24 Vcc.
- Four bit A input: A(3): pin2, A(2): pin3, A(1): pin4, A(0): pin5
- Four bit B input B(3): pin6, B(2): pin7, B(1): pin8, B(0): pin9
- Carry-In : pin 10
- Four Bit Sum output: Sum(3): pin22, Sum(2): pin21, Sum(1): pin20, Sum(0): pin19
- Carry Out: pin 18

Unused inputs can be left unconnected.

The logic symbol for a 4 bit binary adder is shown below. A(0) is the LSB (least significant bit) of A, A(3) is the MSB (Most Significant Bit) of A.



- A. Connect the 4 bit Sum output of the adder to LEDs. Connect COUT output to an LED. Connect the two 4 bit inputs A[3:0], B[3:0] to switch inputs. Use a wire connection to either GND or VCC for the CIN input as appropriate for testing.
- B. Fill in Table #1 in the lab data sheet for your circuit.

#### II. 8 Bit Binary adder

A. Connect two of the 4-bit binary adder chips to form an 8-bit adder. Use the diagram below to guide you (the carry out of the first 4-bit adder becomes the carry-in of the 2<sup>nd</sup> four-bit adder).

8 Bit Adder from two 4-bit Adders



Tie Cin to GND. Tie 8 switch inputs to the A input (bits 7 down to 0). Use connections to +5 v/ GND for the B inputs.

B. Verify the operation of the 8 bit adder by applying the test inputs below (values are in DECIMAL). Fill in Table #2 of the lab data sheet.

| a) 56<br>+ 23<br>b) 7<br>+ (-2 | 5   () -55 | d) -65<br>+ (-80) |
|--------------------------------|------------|-------------------|
|--------------------------------|------------|-------------------|

Two's complement overflow could be a problem for some of the above additions. Which ones overflow the 8-bit range for two's complement?

### PRELAB Data page

TA Checkoff\_

1. Fill in the following table (Table #1) for the operation of the 4-bit adder.

| Cin | A3 | A2 | A1 | A0 | B3 | B2 | B1 | B0 | S3 | S2 | <b>S</b> 1 | S0 | Со |
|-----|----|----|----|----|----|----|----|----|----|----|------------|----|----|
| 0   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |    |    |            |    |    |
| 0   | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  |    |    |            |    |    |
| 0   | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |    |    |            |    |    |
| 0   | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 1  |    |    |            |    |    |
| 1   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |    |    |            |    |    |
| 1   | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  |    |    |            |    |    |
| 1   | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |    |    |            |    |    |
| 1   | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 1  |    |    |            |    |    |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |    |    |            |    |    |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |            |    |    |

2. Perform the binary addition operations in section III – 8 bit additions

| Examp | les:    |          |        |            |
|-------|---------|----------|--------|------------|
|       | Decimal | Binary   | Decim  | al Binary  |
|       | 36      | 00100100 | 53     | 00110101   |
|       | (+) 15  | 00001111 | (-) 19 | ) 11101101 |
|       | 51      | 00110011 | 34     | 00100010   |

Fill in the following values:

| Decimal | Binary | Decimal | Binary |
|---------|--------|---------|--------|
| 56      |        | 75      |        |
| (+) 23  |        | +(-22)  |        |

| Decimal   | Binary | Decimal | Binary |
|-----------|--------|---------|--------|
| -53       |        | -65     |        |
| (+) (-42) |        | +(-80)  |        |

#### Lab Data Sheet

TA CHECKOFF\_\_\_\_\_

4-Bit Binary Adder (Table 1)

| Cin | A3 | A2 | A1 | A0 | B3 | B2 | B1 | B0 | S3 | S2 | <b>S</b> 1 | <b>S</b> 0 | Со |
|-----|----|----|----|----|----|----|----|----|----|----|------------|------------|----|
| 0   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |    |    |            |            |    |
| 0   | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  |    |    |            |            |    |
| 0   | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |    |    |            |            |    |
| 0   | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 1  |    |    |            |            |    |
| 1   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |    |    |            |            |    |
| 1   | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  |    |    |            |            |    |
| 1   | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |    |    |            |            |    |
| 1   | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 1  |    |    |            |            |    |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |    |    |            |            |    |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |            |            |    |

8-Bit Adder (Table 2):

|         | Binary |       |   |   |   |   |   |   |       |  |
|---------|--------|-------|---|---|---|---|---|---|-------|--|
| Decimal | СО     | MSB 7 | 6 | 5 | 4 | 3 | 2 | 1 | LSB 0 |  |
| 56      | Х      |       |   |   |   |   |   |   |       |  |
| 23      | Х      |       |   |   |   |   |   |   |       |  |
|         |        |       |   |   |   |   |   |   |       |  |
| 75      | Х      |       |   |   |   |   |   |   |       |  |
| -22     | Х      |       |   |   |   |   |   |   |       |  |
|         |        |       |   |   |   |   |   |   |       |  |
| -53     | Х      |       |   |   |   |   |   |   |       |  |
| -42     | Х      |       |   |   |   |   |   |   |       |  |
|         |        |       |   |   |   |   |   |   |       |  |
| -65     | Х      |       |   |   |   |   |   |   |       |  |
| -80     | Х      |       |   |   |   |   |   |   |       |  |
|         |        |       |   |   |   |   |   |   |       |  |