
1

BR 1/99 1

Programmable Logic

• There has to be a better way to implement a logic
function than to hook together discrete 74XX
packages or create a custom Integrated Circuit.

• Memory - can use semiconductor memory to
implement logic equations

• Programmable Logic - can use integrated circuits
known as “Programmable Logic Devices” to
implement logic.

BR 1/99 2

Memory

Typically think of a memory device as used for storing data.

A Memory chip is characterized by how many locations it
contains and how many bits per location it can hold.

Memories are classified as K x N devices, K is the # of
locations, N is the number bits per location (16 x 2 would be
16 locations, each storing 2 bits).

To access a LOCATION within a memory device, a group
of inputs known as the ADDRESS BUS is used. The
number of address lines needed is log2(K) (I.e., for 16
locations would need 4 address lines).

The data at a location is placed on some outputs known as
the DATAOUT bus.

BR 1/99 3

Memory Examples

A
d
d
r

d
o
u
t

32 x 8
32 x 8 memory (32 locations, 8
bits per location).

Needs 5 address lines, 8 data
lines5 8

A
d
d
r

d
o
u
t

64 x 2
64 x 2 memory (64 locations, 2
bits per location).

Needs 6 address lines, 2 data
lines6 2

A[4:0]

A[5:0]

Q[7:0]

Q[1:0]

2

BR 1/99 4

LookUp Table (LUT)
Loc A B C D F(A,B,C,D)
 0 0 0 0 0 0
 1 0 0 0 1 0
 2 0 0 1 0 1
 3 0 0 1 1 1
 4 0 1 0 0 0
 5 0 1 0 1 0
 6 0 1 1 0 1
 7 0 1 1 1 0
 8 1 0 0 0 0
 9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1

A
B
C
D

A memory device can be
thought of as a LookUp Table
(LUT), where each location
contains 1 or more bits.

A3
A2
A1
A0

Q

16 x 1 Memory

BR 1/99 5

Using Memory to implement a Boolean Function
Need to use one address line for each boolean variable.

3 variables use 3 address lines, need 8 locations in memory.
4 variables use 4 address lines, need 16 locations in memory
 5 variables use 5 address lines, need 32 locations in memory…
etc.

For N variables, need 2N locations in memory.

For each FUNCTION to be implemented, need a bit at each
location.

K x 1 Memory can implement 1 boolean function of log2(K)
variables (16 x 1 memory can implement F(A,B,C,D).
K x 2 Memory can implement 2 boolean functions of the same
log2(K) variables (32 x 2 memory can implement F(A,B,C,D,E)
and G(A,B,C,D,E). Etc..

BR 1/99 6

Implement 2 functions of 3 variables
F (A,B,C) = A xor B xor C G = AB + AC + BC

A B C F G
 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

Recall that Exclusive OR (xor) is
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Y = A⊕B
 = A xor B

A0

A1

A2

8 x 2 Memory

A

B
C QO G

LookUp Table (LUT)

Q1 F

A[2:0] is 3 bit address
bus, D[1:0] is 2 bit
output bus.
Location 0 has “00” ,
Location 1 has “10” ,
Location 2 has “10” ,
etc….

3

BR 1/99 7

Memory can be INEFFICIENT

What if I wanted to implement:
 F(A,B,C, D) and G (W,X,Y, Z)

These are two INDEPENDENT functions - they use
DIFFERENT inputs!

Note that the variables are different. I could use two different
memory devices (need 32 locations total between the two
devices):

A
B
C
D

A3
A2
A1
A1

Q

16 x 1 Memory

W
X
Y
Z

A3
A2
A1
A1

Q

16 x 1 Memory

F G

BR 1/99 8

Memory can be INEFFICIENT (cont).

What if I wanted to use only a single memory device???

A
B
C
D

A7
A6
A5
A4

Q1

Q0

256 x 2 Memory

W
X
Y
Z

A3
A2
A1
A0

F

G

Most of the locations are
wasted because I have to
repeat the G function for
every F input.

Went from 32 locations to
256 locations!!!

BR 1/99 9

Another Inefficiency

Implement:

 F(A,B,C,D,E,F,G,H) = ABCD + EFGH

Looks like a simple equation, would only
take two 4 input NANDs, one two input
NAND (NAND-NAND form).

Yet takes a 256 x 1 memory device
because of the number of input
variables!!!

A
B
C
D

A7
A6
A5
A4 Q

256 x 1 Memory

E
F
G
H

A3
A2
A1
A0

F

4

BR 1/99 10

Memory Summary

• To implement N functions of the same K variables,
need a memory with 2K locations and N bits per
location (use one address line for each variable, use
data out line for each function).

• Memory is not efficient at implementing wide
functions (functions with lots of input variables) or
multiple functions with different inputs.

BR 1/99 11

Programmable Logic Devices (PLDs)

• PLDs were invented to address the inefficiencies of
implementing logic using memories.

• PLDs can implement wide functions efficiently
(functions with many input variables).

• PLDs can implement multiple functions of different
variables efficiently.

• The logic in PLDs is programmable -- it can be
defined by the user and programmed on the desktop
– Most PLDs can be erased and reprogrammed many

times.

BR 1/99 12

PLD types

• There are MANY different types of PLDs.

• Densities ranges from from 10’s of gates to 100’s
of thousands of gates.

• We will look at a type called PALs (Programmable
Array Logic).

• The Digital System class (EE 4743) uses a
programmable logic type called a Field
Programmable Gate Array (FPGA).

5

BR 1/99 13

PALs (Programmable Array Logic)
• An early type of programmable logic - still in

common use today.

• Logic is represented in SOP form (Sum of
Products)

• The number of PRODUCTs in an SOP form will be
limited to a fixed number (usually 4-10 Product
terms).

• The number of VARIABLEs in each product term
limited by number of input pins on PLD (usually a
LOT, minimum of 10 inputs

• The number of independent functions limited by
number of OUTPUT pins.

BR 1/99 14A Sample PAL

A

B

C

D

E

F

G

H

I

J

K

P

Q

R

BR 1/99 15

Comments on Sample PAL

• 11 inputs, 3 outputs
– Can implement three functions - functions can share

inputs or not share inputs

• Each output implements a SOP equation with Four
product terms.
– Each product term can include complemented or

uncomplemented form of an input.

6

BR 1/99 16

D J

P

Understanding the Diagram

Vertical Lines indicate a product term. Horizontal lines provide
True and Complemented forms of external inputs.

Even though a product term looks like it has only one input, it
actually has 2 * N inputs, where N is the number of external
inputs.

BR 1/99 17

Product Term

This looks like an AND gate with one input. Is actually:

B B’A A’ C C’ D D’ I I’ J J’ E E’ F F’ K K’GG’H H’

B
B’
A
A’
C
C’

H’
H

Only drawn with a single line to save space.

BR 1/99 18

D J

P

Fuse Points

A cross over of a Vertical input l ine and a horizontal product
term line is a FUSE LOCATION. When the PAL is in its
blank or erased state, all FUSES are connected. This means
that each product term implements the equation:

 (A A’ B B’ C C’……. KK’) will be ‘0’ ! This means that
the output will be high!

7

BR 1/99 19

D J

P

Programming

To program, will want to BLOW most of the fuses (break the
vertical/horizontal crossover connection). To indicate a logic
function, will use a ‘ X ‘ over a fuse that I want to KEEP
INTACT.

Will mark Intact fuse
location.

When a fuse is blown, that product term input acts as a ‘1’ so
that the input no longer effects the product term.

BR 1/99 20

D J

P

P’ = D + J’

When implementing an equation, sometimes will not want to
use all available product terms. If ALL fuses along product
term are left intact, then product term value will be ‘0’ and
will not affect equation. Mark unused PT’s by placing an X
over them -- all fuses in that PT row are assumed intact.

Note that P’ must be implemented!

BR 1/99 21

Example Product Term AC’H’

The connections will be:

B B’A A’ C C’ D D’ I I’ J J’ E E’ F F’ K K’GG’H H’

1
1
A
1
1
C’

H’
1

Fuse blown

Fuse blown

Fuse intact
Fuse blown

Fuse blown
Fuse intact

Fuse blown

Fuse intact

Actually, fuses are not ‘ blown’ in eraseable PLDs - the connection is broken in a non-destructive
way for eraseable PLDs.

8

BR 1/99 22

Another Example

A

B

C

D

G

H

I

J

P

P’ = A’BGH’ + CD’ + HIJ + BG’H

BR 1/99 23

An Optimization Question

P’ = A’B’C’D’ + A’BC’D’ + A’B’CD’

P’ = A’C’D’ + A’B’D’ (minimized form)

The following two equations are the same:

Does it make a difference which form we implement in the
previous PLD?

 NO!!!!!!!!!!

Each SOP equation in the PLD has four Product terms allocated.
An unused PT cannot be used elsewhere - so makes no
difference in terms of the amount of resources used in the PLD!!!

BR 1/99 24

Optimization is Dependent upon
Implementation Technology!!!

How we minimize Boolean equations is affected by the
IMPLEMENTATION TECHNOLOGY!!!!

When wiring up individual 74xx packages, want as few as
gates as possible, and as few connections as possible.

For PALs, want get the SOP equation into the number of
allowed Products terms - getting fewer than this will not help
us unless it can eliminate an input variable.

For other PLD technologies, saving product terms may
definitely help. It all DEPENDS on the ARCHITECTURE of
the programmable logic device!!!!

9

BR 1/99 25Part of a 22V10 PLD

BR 1/99 26

Comments on 22V10 PLD

• The 22V10 PLD is a example of a more complex
PAL. We will use this device in Lab.

• The ‘macrocell’ has a memory device called a Flip-
Flop inside of it - we will discuss this later in the
course.
– In our initial use of the 22V10 PLD, the macrocell will

just pass the OR gate output unchanged to the output pin.

• The output of the Macrocell is passed back into the
array as an input - this way complex functions be
created by ‘ chaining’ functions together.

BR 1/99 27

Other PLD types

• Other types of programmable logic have much
different internal structures from PALs.

• You must understand the internal structure of
whatever PLD you are using so that you can
understand the LIMITATIONS and
ADVANTAGES of the particular PLD that you are
using.
– These advantages/limitations can affect how you

implement a particular logic function

10

BR 1/99 28

What do you need to know?

• How to implement boolean equations in memory
devices.

• Structure of PAL programmable logic

• How show the implementation of a boolean
equation on a PAL architecture diagram

• Optimization goals for boolean equations targeted
at a PAL architecture

