
1

BR 2/1/99 1

Problem Definition
Build a Finite State Machine(FSM) based upon your Student
ID number (SID).

FSM will have one external input called ODD.

If ODD is true, then the FSM will reset to display the
LEFTMOST odd digit in your SID, and then the output will
sequence over the odd digits in your SSN, skipping over the
even digits.

If ODD is false, then the FSM will reset to display the
LEFTMOST even digit in your SID, and then the output will
sequence over the even digits in your SSN, skipping over the
odd digits.

BR 2/1/99 2

Example Output Sequences
For SID = 458 70 2198
if ODD is true:

5 → 7 → 1 → 9 , repeat (5 → 7 → 1 → 9 → 5 → 7 → 1 → 9 etc)
if ODD is false:

4 → 8 → 0 → 2 → 8, repeat (4 → 8 → 0 → 2 → 8 → 4 → 8 → 0
→ 2 → 8 etc)

For SID = 688 99 1234
if ODD is true:

9 → 9 → 1 , repeat (9 → 9 → 1 → 9 → 9 → 1 etc)
if ODD is false:

6 → 8 → 8→ 2 → 4, repeat (6 → 8 → 8→ 2 → 4 → 6 → 8 →
8→ 2 → 4 etc)

BR 2/1/99 3

ASM Chart
For ODD = 1

Dout = 5

Dout = 7

Dout = 1

Dout = 9

For ODD = 0

Dout = 4

Dout = 8

Dout = 0

Dout = 2

Dout = 8

We can combine these states and use ODD as a
conditional input.

S0

S1

S2

S3

S4

S0

S1

S2

S3

2

BR 2/1/99 4

New ASM
Chart

odd?0 1

Dout = 4 Dout = 5

odd?0 1

Dout = 8 Dout = 7

odd?0 1

Dout = 0 Dout = 1

To S3 (next page)

S0

S1

S2

BR 2/1/99 5

New ASM
Chart (cont).

odd?0 1

Dout = 2 Dout = 9

From S2 (prev page)

S3

S4
Dout = 8

To S0 (prev page)

BR 2/1/99 6

State Table
Inputs Present State Next State Outputs

Odd Dout

0 S0 S1 4
0 S1 S2 8
0 S2 S3 0
0 S3 S4 2
0 S4 S0 8
1 S0 S1 5
1 S1 S2 7
1 S2 S3 1
1 S3 S0 9
1 S4 S0 8 (S4 only

for even)

3

BR 2/1/99 7

State Encodings

• Have 5 states, need at least three Flip Flops
• Binary Counting order: S0= 000, S1=001, S2=010,

S3=011, S4 = 100
• Grey Code: S0=000, S1=001, S2=011, S3=010,

S4 = 110
– Grey Encoding oftens uses less logic than binary

counting order

• One Hot Encoding (one FF per state):
S0 = 00001, S1 = 00010, S2 = 00100, S3=01000,

S4 = 1000

BR 2/1/99 8

What type of FFs to use?

• D-FFs are most common in Programmable logic
– If a PLD has a FF, it will at least be able to do the DFF

function

• We will use DFFs for this example
• The NextState inputs are simply the D inputs of the

FFs

BR 2/1/99 9

State Table (Grey encoding for states)
Inputs Present State Next State Outputs

Odd Q2Q1Q0 D2D1D0 Dout

0 000 001 0100
0 001 011 1000
0 011 010 0000
0 010 110 0010
0 110 000 1000
1 000 001 0101
1 001 011 0111
1 011 010 0001
1 010 000 1001
1 110 000 1000

4

BR 2/1/99 10

Unoptimized Next State equations

D2 = ODD’ Q2’ Q1 Q0’

D1 = ODD’ Q2’ Q1’ Q0 + ODD’ Q2’ Q1 Q0
+ ODD’ Q2’ Q1 Q0’ + ODD Q2’ Q1’ Q0
+ ODD Q2’ Q1 Q0

D0 = ODD’ Q2’ Q1’ Q0’ + ODD’ Q2’ Q1’ Q0
+ ODD Q2’ Q1’ Q0’ + ODD Q2’ Q1’ Q0

BR 2/1/99 11

Unoptimized Output Equations
DOUT(3) = ODD’ Q2’ Q1’ Q0 + Q2 Q1 Q0’ (state S4)

+ ODD Q2’ Q1 Q0’

DOUT(2) = ODD’ Q2’ Q1’ Q0’ + ODD Q2’ Q1’ Q0’
+ ODD Q2’ Q1’ Q0

DOUT(1) = ODD’ Q2’ Q1 Q0’ + ODD Q2’ Q1’ Q0

DOUT(0) = ODD Q2’ Q1’ Q0’ + ODD Q2’ Q1’ Q0
+ ODD Q2’ Q1 Q0 + ODD Q2’ Q1 Q0’

For DOUT(3) a simple optimization was done -- if in State S4,
DOUT(3) = 1, regardless of ODD input.

BR 2/1/99 12

State Table (arranged in binary order)
Inputs Present State Next State Outputs
Odd Q2Q1Q0 D2D1D0 Dout

0 000 001 0100
0 001 011 1000
0 010 110 0010
0 011 010 0000
0 100 xxx xxxx
0 101 xxx xxxx
0 110 000 1000
0 111 xxx xxxx
1 000 001 0101
1 001 011 0111
1 010 000 1001
1 011 010 0001
1 100 xxx xxxx
1 101 xxx xxxx
1 110 000 1000
1 111 xxx xxxx

Illegal
states in
Red

5

BR 2/1/99 13

Example Optimization

Optimize D1Odd,Q2
01

0 x
1 x

00
Q1,Q0 00

1 x
1 0

01
11

10

x 0
x 1
x 1
x 0

11 10
D1 = Q2’Q0 + Odd’Q2’Q1

Odd,Q2
01

0 x
0 x

00
Q1,Q0 00

0 x
0 0

01
11

10

x 1
x 1
x 1
x 1

11 10 Optimize Dout(0)

Dout(0) = Odd

BR 2/1/99 14

Try One Hot Encoding
S0 = 00001, S1 = 00010, S2 = 00100, S3=01000, S4 = 10000

Each FF represents a state. Each next state equation can be written
as :

Dn = (how do I get to this state?) + (how do I stay in this state?)

In this FSM, never stay in one state more than clock, so only need to
know how to get to that state. By Inspection:

D0 = Q4 + Q3Odd
D1 = Q0
D2 = Q1
D3 = Q2
D4 = Q3 Odd’

BR 2/1/99 15

State Table
Inputs Present State Next State Outputs

Odd Dout

0 S0 S1 4 (0100)
0 S1 S2 8 (1000)
0 S2 S3 0 (0000)
0 S3 S4 2 (0010)
0 S4 S0 8 (1000)
1 S0 S1 5 (0101)
1 S1 S2 7 (0111)
1 S2 S3 1 (0001)
1 S3 S0 9 (1001)
1 S4 S0 8 (1000)

6

BR 2/1/99 16

Output Equations (one hot encoding)
DOUT(3) = ODD’ Q1 + Q4 + ODD Q3

DOUT(2) = ODD’ Q0 + ODD Q0 + ODD Q1

DOUT(1) = ODD’ Q3 + ODD Q1

DOUT(0) = ODD S0 + ODD S1 + ODD S2 + ODD S4

Obviously, Dout(0) = Odd

BR 2/1/99 17

Alternate ASM Chart

odd?0 1

Dout = 4 Dout = 5

S0

Dout = 8

Dout = 0

Dout = 2

Dout = 8

Dout = 7

Dout = 1

Dout = 9

S1

S2

S3

S4

S5

S6

S7

Odd only effects sequence in State S0 (Reset state)

BR 2/1/99 18

Alternate ASM Chart

The previous ASM chart will take more states
• The 22V10 PLD has only 10 outputs; each output

has a DFF. Four outputs are used to output SID
value; this leaves only 6 FFs that can be used for
state encoding!

• This means that one-hot encoding would not be an
option for this implementation

7

BR 2/1/99 19

odd?

0 1

Dout = 4 Dout = 5

Dout = 8

Dout = 0

Dout = 2

Dout = 8

Dout = 7 S1S4

S5

S6

S7

odd?

odd?

odd?

1

1

1

odd?
Dout = 1

Dout = 9

S2

S3
odd?

0

0

Another Version

BR 2/1/99 20

Which Version to use?

• The previous ASM chart checked the odd input and
restarted the sequence if a different sequence was
chosen

• All of these ASM charts are an interpretation of an
English problem statement
– English is imprecise
– ASM charts are a precise definition of behavior

• You can use any of the three ASM chart
interpretations you wish (the first is the easiest, the
last two will take more states).

BR 2/1/99 21

VHDL Simulation, JEDEC File

We will use the same approach as with the SSN Decoder lab
for VHDL simulation, JEDEC File production.

See the link titled “SSN Finite State Machine Lab: Form for
VHDL Compilation/Simulation, Jedec file production” on

http://www.ece.msstate.edu/~reese/EE3714 under the “Other
Links” heading.

This link has two sample VHDL solutions.

One solution uses 3 DFFs (the Grey code solution) and one
uses 5 DFFs (the onehot encoding solution) . Both solutions
are for the SID: 458 70 2198

8

BR 2/1/99 22

DFFs in VHDL
A portion of the Grey code solution defines DFFs in VHDL:

-- State Flip Flops
stateff: process (clk,reset)
begin
if (reset = '1') then
q <= "000"; -- students, change this your initial state

elsif (clk'event and clk='1') then
q <= d;

end if;
end process stateff;

The ‘q’ signal is the output of the DFFs, the ‘d’ is
the input of the DFF. The “q”, “d” are internal
signals declared just above this.

BR 2/1/99 23

DFFs in VHDL (cont)
-- State Flip Flops

stateff: process (clk,reset)
begin
if (reset = '1') then
q <= "000";

elsif (clk'event and clk='1') then
q <= d;

end if;
end process stateff;

Initial state when reset=‘1’

DFF changes state (q = d)
on rising clock edge.

“q”, “d” are internal signals. Declaration is after “architecture”:
architecture a of ssnseq is

signal q,d: std_logic_vector(2 downto 0);

The “2 downto 0” declares a bus that is 3 bits wide.

BR 2/1/99 24

One Hot solution
The one hot solution needed 5 flip-flops, see what changed:

architecture a of ssnseq is
signal q,d: std_logic_vector(4 downto 0);

q,d 5 bits wide

stateff: process (clk,reset)
begin
if (reset = '1') then
q <= "00001";

elsif (clk'event and clk='1') then
q <= d;

end if;
end process stateff;

Note that one-hot
solution requires initial
state of “00001”.

9

BR 2/1/99 25

Next State, Output Equations in VHDL
The onehot solution next state, output equations in VHDL are:

d(0) <= (q(4)) or (q(3) and odd);
d(1) <= q(0);

d(2) <= q(1);
d(3) <= q(2);
d(4) <= q(3) and (not odd);

dout(0) <= odd;
dout(1) <= ((not odd) and q(3)) or (odd and q(1));

dout(2) <= ((not odd) and q(0)) or (odd and q(0)) or
(odd and q(1));

dout(3) <= ((not odd) and q(1)) or ((not odd) and q(4)) or
(odd and q(3));

BR 2/1/99 26

Input/Output
The input/output for both solutions are the same:

entity ssnseq is
port (clk,reset: in std_logic;

odd: in std_logic;
qstate : out std_logic_vector(5 downto 0);
dout: out std_logic_vector(3 downto 0)

);

The “qstate” is the internal “q” signals that represents the
state of your FSM. You can’t debug a FSM without
knowing the state. Assignments of “q” to “qstate” is in the
code. I provided 6 bits for “qstate” because the maximum
number of DFFs you can use is 6. DON’T CHANGE
QSTATE to a fewer number of bits! Just assign unused bits
to “0”s.

BR 2/1/99 27

Simulation Results
Each line of the simulation results represents a clock cycle.

Reset = 1, Odd = 0, qstate = 000001, dout= 0100
Reset = 1, Odd = 0, qstate = 000001, dout= 0100
Reset = 0, Odd = 0, qstate = 000010, dout= 1000
Reset = 0, Odd = 0, qstate = 000100, dout= 0000
Reset = 0, Odd = 0, qstate = 001000, dout= 0010
Reset = 0, Odd = 0, qstate = 010000, dout= 1000
Reset = 0, Odd = 0, qstate = 000001, dout= 0100
Reset = 0, Odd = 0, qstate = 000010, dout= 1000
Reset = 0, Odd = 0, qstate = 000100, dout= 0000
Reset = 0, Odd = 0, qstate = 001000, dout= 0010
Reset = 0, Odd = 0, qstate = 010000, dout= 1000
Reset = 0, Odd = 0, qstate = 000001, dout= 0100
Reset = 0, Odd = 0, qstate = 000010, dout= 1000
Reset = 1, Odd = 1, qstate = 000001, dout= 0101

Partial results for one-
hot implementation.
Note that for Odd=0,
sequence is
4,8,0,2,8,4,8,etc…

The “qstate” is the
current state of the finite
state machine.

10

BR 2/1/99 28

Summary of Lab Requirements
• This is a ONE week lab.
• For prelab, you must design the ASM chart, logic equations

and simulate in Altera Maxplus.
– The FSM will be implemented in a single 22V10 PLD. Follow the

instructions in these notes for creating a VHDL file and producing a
JEDEC file needed for PLD programming.

– Your equations DO NOT HAVE TO BE MINIMAL.
– There is no particular State encoding required.

• When you walk into lab, you must have a printout of the
correct VHDL simulation returned from the WWW
interface.
– If your simulation is incorrect, then the TA will not program you

PLD.
– Do the PLD implementation demonstrate the working design to the

TA.

