EE 3714 Test #3 - Fall 1999 - Reese

SSN: _____ (no names please)

Work all problems.

1. (5 pts) Identify the following device. What values do the inputs have to be for the outputs to have the following values Y0=0, Y1=0, Y2=1, Y3=0.

2. (8 pts)Assume that the initial state device shown below is a '0'. Draw a timing diagram that will cause the state of the device to be changed to '1'.

3. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

4. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

5. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

6. For a flip-flop of your choosing (D, J-K, T), draw a timing diagram and illustrate setup and hold time constraints.

7. (5 pts) What is the clock period of a 50 Mhz clock (1 Mhz = 10^6)

- 8. (5 pts) What is the value of \$A3 shifted to the right by one position with the serial input bit = '1'?
- 9. (5 pts) How is an asynchronous input different from a synchronous input?
- 10. Draw the schematic for a 1-bit register. The inputs are CLK, D,LD. The output is Q. The LD input ais high true.

11. Draw the diagram of a rising edge trigerred D-FF using D Latches.

12. (10 pts) Draw a schematic for a 3- bit counter that has a parallel load. Use a three bit incrementer combinational logic block as one of your building blocks (the incrementer has a 3-bit input A[2..0], a one bit input EN, a three bit output Y[2..0]. When EN=1, then Y= A+1; when EN=0, then Y=A). The inputs to the counter is CLK, DIN[2..0], LD, EN. The output is DOUT[2..0]. The LD, EN inputs are high true. (You do not have to show the internals of the incrementer block).

13. (10 pts) Draw the schematic of a 4-1 mux using Tri-state buffers. You can use an decoder block in your design, and you do not have to show the internal details of the decoder.