Serial Communication

¢ Serial communication is as widely (or even more widely
used) than parallel communication
— Especially true if communication occurs over long wires
* Many new high speed serial communication standards
have been developed
— USB, IEEE Firewire, HyperTransport, etc.
« This lab will introduce you to some basic serial
communication concepts, namely bit-stuffing and NRZI

encoding
— These techniques are used in the USB (Universal Serial Bus)
interface.
3/31/2002 BR 1

@ 1Y e Y0 Ve OO0 YOO VYO
NRZ —> paa e LJ

NRZI — mn waw

Figgure 7-11. NIZI Dats Encoding

Non-return to zero (NRZ) -
normal data transitions.

NRZ Inverted (NRZI, not a
good description, is not
inverse of NRZ). A
transition for every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

Figure T-12, Flaw Disgrams for NRZI

3/31/2002 BR 2

Bit Stuffing — a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Data Encoding Sequence:
Raw Data I LI 1
- Syne Pattern — Packel Data -
Stutfed Bt
Bit Stutfed Data [2] 1
[Syne Pattern Lo Pachet Data -
|. Six Ones - .|
NRZI e | L LT 1 1 I
Encoded Data - Sync Pattern — Packet Data -

Figure 7-13. Bit Stuffing

Bit stuffing done automatically by sending logic. Sync pattern
starts data transmission and is seven ‘0’s followed by a “1°.
3/31/2002 BR 3

You must design these two blocks

NRZ NRZI
NRZ bitstuffed bitstuffed
serial Bit Stuff serial serial
stream (insert a ‘0’ stream stream
after every 6 NRZI
. consecutive Encoding
(sim) ‘1’s) (sout_nrz) (sout_nrzi)
NRZ NRZ
serial bitstuffed
stream Bit DeStuff serial
(remove a ‘0’ stream NRZI
_ after every 6
consecutli’\}:e ﬂ_
I's) Bytes send LSB first!!!
3/31/2002 BR 4

The Task

« Design a block that performs bitstuffing of a ‘0’ after every six
consecutive ‘1’s from an NRZ serial stream and does NRZI
encoding of the output

« Inputs

— reset — synchronous reset, high true
— clk— clock signal

— serclk — clock signal for serial stream (clk divided by 4, one pulse for
every four clks)

— sin - NRZ serial input stream

— start — will be high for one clock cycle indicating start of valid data on
serial NRZ stream. Serial bit is valid every time ‘serclk’ = ‘1"

* Outputs

— Sout_nrzi -- bit stuffed stream, NRZI encoding

— Sout_nrz — bit stuffed stream, NRZ encoding (use this for debugging)

— Bit_insert — assert high whenever a ‘0’ bit is inserted (use this for
debugging).

3/31/2002 BR 5

Testbench

You are provided with a testbench called thusbser

clk Ser clock | sclk bit_insert
gen — usbser —
1k
(an empty sout_nrz
__reset schematic, do ’
start your work sout nrzi
sin here) -
— s

Dout[7..0] DES

(de-serializer,

De-serialized byte output provided by me)

3/31/2002 BR 6

thusbser_gold.scf

» thusbser gold.scf'is the golden waveform

» Provides all input signals (start, reset, clk and most
importantly, the serial input stream sin)

* The DES block is provided de-serializes the sout_nrzi
stream into bytes

— This byte stream shown as dout/7..0] on the golden waveform

It might help to look at the structure of the DES block
before attempting your design, it might give you some
ideas.

3/31/2002 BR 7

Part 2: Read 32 Bytes from Ram and send over serial

interface
usbserp2.gdf (part 2)
addr . .
sin nrz sout_nrzi
5 = usbser
32- Shift
byte | 8 |p (part 1)
J cg
Din RAM
8 x
x i
FSM \
Bytes send LSB first!!!
3/31/2002 BR 8

usbserp2.gdf Interface

+ Exactly the same as used for bifilt interface
* Inputs
— Clk, reset — clock and asynchronous reset
— we, addr[4..0], din[7..0] — write enable, address, data for RAM
— start — when start asserted, read 32 bytes from RAM from send
over serial interface (usbser done in part 1)
* Outputs
— busy — asserted when sending reading ram and sending serial data
— sout_nrzi — serial output (bit stuffed, NRZI) from usbser block

3/31/2002 BR 9

ushserp2.gdf datapath, FSM

« RAM, counter for address lines, shift register already in

usbserp2.gdf schematic
— Clock generator for serclk included also

« May have to add other datapath elements as well (perhaps
a 3 bit counter for determining when 8 bits are shifted out),
maybe other components as well

* Have to add a FSM that will control reading of RAM and
shift register

— Will also have to monitor bit_insert output from wusbser block — if
inserting a bit into the serial data stream will have to halt shift
operation

3/31/2002 BR 10

Part #2 Testbench (tbusbserp2.gdf)

* thusbserp2.gdf connects the usbserp2 block to the
deserializer block

+ The output of the deserializer block will match the values
read from RAM if the everything is working ok.

* Golden waveform is thusbserp2 gold.scf

3/31/2002 BR 11

Due Dates

* One week for each part 1 and part 2.

+ Each part is about the same difficulty

» Each part is worth 100 points.

* No extra credit for this lab.

* Only functional requirements, no clock frequency

requirements.

» Can use any mixture of VHDL + schematic capture for the
design.

3/31/2002 BR 12

DESerializer Operation

Understanding the DESerializer operation may help with

implementation of the serializer.

mmmm)> NRZI (remove a ‘0’
NRZI Decode | \rz after every 6

bitstuffed bitstuffed

serial serial

Bit DeStuff

consecutive
‘1’s)

NRZ
serial

stream stream stream
Dout[7..0] ;
Shift
Register
3/31/2002 BR B3

NRZI Decode

sin_nrzi DL

en

3/31/2002

If last bit = this bit, then
output a ‘1 else 0.

equal

D Q
LD

sin_nrz
D Q
en

LD
newbit
D Q

newbit is
asserted
when
sin_nrz has
valid data.

S0 is reset state. Sin_nrzi = 0 is start
of transmission (idle state is ‘1°, a ‘0’
bit is always transmitted first).

en is asserted every four clocks
(know that serial clock is % of clock

frequency).

BR

14

pause

3/31/2002 { > BR

Bit De-stuffing

pause asserted when six ‘1’
bits detected. The pause signal
used to halt shift register so
that the ‘0’ bit which was
stuffed is not shifted into
register.

