
1

3/31/2002 BR 1

Serial Communication

• Serial communication is as widely (or even more widely
used) than parallel communication
– Especially true if communication occurs over long wires

• Many new high speed serial communication standards
have been developed
– USB, IEEE Firewire, HyperTransport, etc.

• This lab will introduce you to some basic serial
communication concepts, namely bit-stuffing and NRZI
encoding
– These techniques are used in the USB (Universal Serial Bus)

interface.

3/31/2002 BR 2

NRZ
NRZI

Non-return to zero (NRZ) -
normal data transitions.

NRZ Inverted (NRZI, not a
good description, is not
inverse of NRZ). A
transition for every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

3/31/2002 BR 3

Bit Stuffing – a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Bit stuffing done automatically by sending logic. Sync pattern
starts data transmission and is seven ‘0’s followed by a ‘1’.

3/31/2002 BR 4

Bit Stuff
(insert a ‘0’
after every 6
consecutive
‘1’s)

NRZ
serial
stream

NRZI
Encoding

NRZI
Decode

NRZ
bitstuffed
serial
stream

NRZI
bitstuffed
serial
stream

NRZ
bitstuffed
serial
stream

Bit DeStuff
(remove a ‘0’
after every 6
consecutive
‘1’s)

NRZ
serial
stream

You must design these two blocks

(sin) (sout_nrz) (sout_nrzi)

Bytes send LSB first!!!

3/31/2002 BR 5

The Task
• Design a block that performs bitstuffing of a ‘0’ after every six

consecutive ‘1’s from an NRZ serial stream and does NRZI
encoding of the output

• Inputs
– reset – synchronous reset, high true
– clk – clock signal
– serclk – clock signal for serial stream (clk divided by 4, one pulse for

every four clks)
– sin - NRZ serial input stream
– start – will be high for one clock cycle indicating start of valid data on

serial NRZ stream. Serial bit is valid every time ‘serclk’ = ‘1’.
• Outputs

– Sout_nrzi -- bit stuffed stream, NRZI encoding
– Sout_nrz – bit stuffed stream, NRZ encoding (use this for debugging)
– Bit_insert – assert high whenever a ‘0’ bit is inserted (use this for

debugging).

3/31/2002 BR 6

Testbench

You are provided with a testbench called tbusbser

usbser

(an empty
schematic, do
your work
here)

clk Ser clock
gen

sclk

clk
reset
start
sin

bit_insert

sout_nrz

sout_nrzi

DES

(de-serializer,
provided by me)

Dout[7..0]

De-serialized byte output

2

3/31/2002 BR 7

tbusbser_gold.scf

• tbusbser_gold.scf is the golden waveform
• Provides all input signals (start, reset, clk and most

importantly, the serial input stream sin)
• The DES block is provided de-serializes the sout_nrzi

stream into bytes
– This byte stream shown as dout[7..0] on the golden waveform

• It might help to look at the structure of the DES block
before attempting your design, it might give you some
ideas.

3/31/2002 BR 8

Part 2: Read 32 Bytes from Ram and send over serial
interface

usbser

(part 1)
Shift
Reg

sin_nrz
32-
byte
RAM

8

FSM

sout_nrzi

Din

addr

8

5

usbserp2.gdf (part 2)

Bytes send LSB first!!!

3/31/2002 BR 9

usbserp2.gdf Interface

• Exactly the same as used for bifilt interface
• Inputs

– Clk, reset – clock and asynchronous reset
– we, addr[4..0], din[7..0] – write enable, address, data for RAM
– start – when start asserted, read 32 bytes from RAM from send

over serial interface (usbser done in part 1)

• Outputs
– busy – asserted when sending reading ram and sending serial data
– sout_nrzi – serial output (bit stuffed, NRZI) from usbser block

3/31/2002 BR 10

usbserp2.gdf datapath, FSM

• RAM, counter for address lines, shift register already in
usbserp2.gdf schematic
– Clock generator for serclk included also

• May have to add other datapath elements as well (perhaps
a 3 bit counter for determining when 8 bits are shifted out),
maybe other components as well

• Have to add a FSM that will control reading of RAM and
shift register
– Will also have to monitor bit_insert output from usbser block – if

inserting a bit into the serial data stream will have to halt shift
operation

3/31/2002 BR 11

Part #2 Testbench (tbusbserp2.gdf)

• tbusbserp2.gdf connects the usbserp2 block to the
deserializer block

• The output of the deserializer block will match the values
read from RAM if the everything is working ok.

• Golden waveform is tbusbserp2_gold.scf

3/31/2002 BR 12

Due Dates

• One week for each part 1 and part 2.
• Each part is about the same difficulty
• Each part is worth 100 points.
• No extra credit for this lab.
• Only functional requirements, no clock frequency

requirements.
• Can use any mixture of VHDL + schematic capture for the

design.

3

3/31/2002 BR 13

DESerializer Operation
Understanding the DESerializer operation may help with
implementation of the serializer.

NRZI
Decode NRZ

bitstuffed
serial
stream

Bit DeStuff
(remove a ‘0’
after every 6
consecutive
‘1’s) NRZ

serial
stream

NRZI
bitstuffed
serial
stream

Shift
Register

Dout[7..0]

3/31/2002 BR 14

NRZI Decode

D Q
LD

sin_nrzi sin_nrz

en

equal
D Q
LD

en

sin_nrzi

en

S0

S1

S2

S3

S4

D Q
newbit

S0 is reset state. Sin_nrzi = 0 is start
of transmission (idle state is ‘1’, a ‘0’
bit is always transmitted first).

en is asserted every four clocks
(know that serial clock is ¼ of clock
frequency).

newbit is
asserted
when
sin_nrz has
valid data.

If last bit = this bit, then
output a ‘1’ else ‘0’.

3/31/2002 BR 15

Bit De-stuffing
S0

1

S1

newbit

sin

0

1 0

1

newbit

sin

0

1 0

1

newbit

sin

0

1 0

S2

pause

newbit 0

S6

pause asserted when six ‘1’
bits detected. The pause signal
used to halt shift register so
that the ‘0’ bit which was
stuffed is not shifted into
register.

