

- Most FPGA and CPLD vendors provide a *timing model* in their data sheets that allow estimation of path delays.
- Some example path delays that are of interest:
  Minimum Pin to Pin delay
  - (through input pin, through one combinational logic element, through one output pin.)
  - Minimum Register to Register Delay
    - .From clock input pin, through global net . through Clock to Q delay through DFF of a logic element, through one combinational logic element to setup time on DFF input).

BR 1/99

# FPGA Timing Models (cont)

- These timing models allow estimations of maximum attainable performance
- Some vendors use their timing models as selling points
  - Simpler is better easier to estimate timing from a simple model than a complex one.
  - Routing delays will always complicate the timing model
- After a design is mapped to an FPGA or CPLD, always must use a static timing analysis program to compute the timing performance.

BR 1/99

2







| Pin to Pin                                         | delay Example                          |  |
|----------------------------------------------------|----------------------------------------|--|
| Input pad through combination                      | onal element through output pad        |  |
| From timing model:                                 |                                        |  |
| $T_{INYL} + T_{IRD1} + T_{PD} + T_{RD}$            | 1 + T <sub>DLH</sub>                   |  |
| 1.16ns + 2.24 ns + 1.55ns +                        | - 0.8 ns + 2.7 ns                      |  |
| Pin to Pin = $8.45$ ns                             |                                        |  |
| T <sub>INYL</sub> Input pad to Y low               |                                        |  |
| T <sub>IRD1</sub> Input Fanout 1 routing<br>delay) | g delay (higher the fanout, longer the |  |
| T <sub>PD</sub> Logic module prop de               | lay                                    |  |
| T <sub>RD1</sub> Output Fanout 1 routin            | 8                                      |  |
| T <sub>DLH</sub> Data to Pad high dela             | y<br>BR 1/99 6                         |  |
|                                                    | DK 1/77 0                              |  |

## Environment affects Timing

Actel uses derating factors for timing values. A derating factor is a multiplication factor applied to the timing value.

### 42MX Temperature and Voltage Derating Factors (Normalized to $T_J = 5V, 25$ °C)

| 42MX | -55  | -40  | 0    | 25   | 70   | 85   | 125  |
|------|------|------|------|------|------|------|------|
| 4.50 | 0.93 | 0.95 | 1.05 | 1.09 | 1.25 | 1.29 | 1.41 |
| 4.75 | 0.88 | 0.90 | 1.00 | 1.03 | 1.10 | 1.22 | 1.34 |
| 5.00 | 0.85 | 0.87 | 0.96 | 1.00 | 1.15 | 1.18 | 1.29 |
| 5.25 | 0.84 | 0.86 | 0.95 | 0.97 | 1.12 | 1.14 | 1.28 |
| 5.50 | 0.83 | 0.85 | 0.94 | 0.96 | 1.10 | 1.13 | 1.26 |

Notice that fastest timing (smallest derating factor) is for high Voltage, low temperature. The slowest timing (largest derating factor) is for low voltage, high temperature.

7

Four corners: (low temp, low vdd), (high temp, low vdd), (low temp, high vdd), (high temp, high vdd).

#### Processing Variations can also affect Timing

Timing can vary from one batch of wafers to another due to process variations. There are also *four corners* for processing variations: (fast-p, fast-n), (slow-n, fast-n), (fast-p, slow-n), (slow-p, slow-n). 'fast-p', 'slow-p' refer to fast pmos transistors, slow pmos transistors. 'fast-n', 'slow-n' refer to fast nmos transistors, slow nmos transistors, respectively.

Data sheets use timing variations due to processing to determine the speed grades; Voltage/Temperature derating factors are then applied to individual speed grade timings.

Actel specifies a 0.45 derating factor for best case processing. This would be important if you were trying to compute the minimum delay.

BR 1/99

8

#### Speed Grades

- Important to realize that speed grades are determined via the timing variations due to processing
  - There are no functional differences between speed grades.
  - A functional difference would require a different part number.
- Vendors will charge premium prices for the best speed grade parts

BR 1/99