Programmable System-on-a-Chip (PSoC)

- CPU core + programmable logic
- PSoCs becoming more important because NRE (nonrecoverable engineering) costs keep rising as we go deeper into sub-micron and nanometer technologies
 - NRE cost is the cost of the first chip
 - A mask set is used to pattern layers/materials (metal, polysilicon, diffusion, etc) on wafer
 - Masks are becoming increasingly expensive
 - The higher the NRE, the more chips you have to sell to recover costs
- A programmable chip can be used in more applications, so more potential customers!!!

BR 1/99

Protocol	Channels (Lanes)	I/O Baud Rate (Gb/s)	Reference Clock Rate (MHz)
		1.06	53
Fibre Channel	1	2.12	106
		3.1875(1)	159.375
Gigabit Ethernet	1	1.25	62.5
10Gbit Ethernet	4	3.125	156.25
Infiniband	1, 4, 12	2.5	125
Aurora	1, 2, 3, 4,	0.840 - 3.125	42.00 - 156.25
Custom Protocol	1, 2, 3, 4,	up to 3.125	up to 156.25

Coding for Serial Data Transmission

- · Want to distinguish start/end of packets
- Want a certain number of signal transitions per unit time (transition density) so that receiver clock can remain synchronized to bit stream
- Want to be able to detect transmission errors.

8B/10B Coding

- 8B/10B coding means that 10 bits are used to encode 256 (8-bit) data characters.
 - 10 bits give 1024 combinations, why the extra bits?
- Data sent in packets that is formatted as header (start of packet), packet data, end of packet
 - Need special control characters (K-characters) that will be used for start/end of packet designation, sync character, other control
 - Extra bits used to encode K-characters (12 in 8B/10B code)
 - Data is called D-characters
 - A subset (called commas) of the K-characters has bit encoding which is guaranteed to NEVER appear in the serialized stream of D-characters.

BR 1/99

6

BR 1/99

8B/10B Coding (cont)

- Code is run length limited (RLL) guarantees no more than five consecutive '1's or five consecutive '0's
 - Guaranteed transition density (transitions per unit time).
 - Allows receiver clock PLL to remain synchronized to input data stream
- *Disparity* difference in number of received '1's and '0's in a serial stream over some length.
 - +1 disparity (one more '1' than '0')
 - -1 disparity (one more '0' than '1')
- Code is *DC-balanced* if equal numbers of '1's and '0's is sent.

BR 1/99

7

Disparity/DC-balance, and LVDS

- If a code has low disparity (low difference in number of '0's, '1's sent) then charge does not get chance to build up.
- For a given period of time, if equal numbers of '1's, '0's is sent, this is 0 disparity. This transmission is said to be 'DC-balanced'.
- Each 10-bit symbols in the 8B/10B code either has a disparity of 0, +2 (six ones, four zeros), or -2 (four ones, six zeros)
- *Running Disparity* is the disparity for a given sequence of symbols, e.g. a packet
- Disparity for a in a 10G ethernet packet is guaranteed to be either +1 or -1.

Note large common-mode range.

BR 1/99

11

Eye Diagram An EYE diagram used to measure quality of transmission channel. Generate pusedo-random data over channel, feed received data into vertical channel of scope Feed data rate (received generated clock) into horizontal sweep. An 'open' eye corresponds to minimal distortion. A closed eye shows signal *jitter*. *Jitter* is short term variations of a signal from its ideal position in time. Jitter caused by intersymbol interence, power supply noise, transmission channel loss. etc.

BR 1/99

12

Virtext-II FPGA Resources

- 18x18 2's-complement multiplier
- 18Kb Dual Port SRAM blocks that can configured as shown below

16K x 1 bit	2K x 9 bits
8K x 2 bits	1K x 18 bits
4K x 4 bits	512 x 36 bits

BR 1/99

20

CPU				
• 8-bit CPU, close to a 6502 core (same core used in the Apple II and original Nintendo)				
8-bit Accumulator (A), 8-bit Index Register (X), 16-bit Program counter, 8-bit flag register, 8-bit stack pointer register				
 6502 also had another index register (Y) that is missing in this c Two register banks of 256 locations each 	ore.			
 Used for RAM, also for control registers of onboard peripherals Non-pipelined core, all operations take at least 5 clocks, 				
most 6 or 7 clocks, some take up to 13 clocks				
BR 1/99	24			

Programmable System-on-a-Chip

- The Xilinx-II Pro and Cypress PSOC are two examples are programmable system-on-a-chip
- Processor core + programmable Logic is a powerful combination.
- Xilinx device intended for high-end, highperformance applications
- Cypress device for low-end, low-cost.

BR 1/99

25