EE 4743 Test #2  Solutions  Fall 1999 – Reese

1. (30 pts) An ASM Chart for a  Dice Game Finite state machine is given in Figure 1. The Entity decleration for this is given below:

entity control is

  port (  clk,reset:  in std_logic;


  d7, d11, d2312:  in std_logic;


   ra, rb, eq:     in std_logic;


   sp, roll:   out std_logic;


   win, lose : out std_logic

);

architecture a of control is

  -- FFs for Finite State Machine

  signal q, d : std_logic_vector(5 downto 0);

  constant S0: std_logic_vector(5 downto 0) := "000001";

  constant S1: std_logic_vector(5 downto 0) := "000010";

  constant S2: std_logic_vector(5 downto 0) := "000100";

  constant S3: std_logic_vector(5 downto 0) := "001000";

  constant S4: std_logic_vector(5 downto 0) := "010000";

  constant S5: std_logic_vector(5 downto 0) := "100000";

begin

-- State Flip Flops

  stateff: process (clk,reset)

   begin

   if (reset = '1') then  q   <= S0;

   elsif (clk'event and clk='1') then q <= d;  nd if;

  end process stateff;

  -- q is present state, d is next state.

  clogic: process (q, ra, rb, d7 , d11 , d2312 )

  begin

    -- defaults

    win <= '0'; lose <= '0';sp <= '0';  roll <= '0';

    d <= q;  -- default is to stay in same state.

    case q is  

      when S0 => if (rb = '1') then  d <= S1; end if;

      when S1 => if (ra = '1') then

                             if (d7  = '1' or d11  = '1') then d <= S3;

                             elsif (d2312  = '1') then d <= S2;

                             else 

                              sp <= '1'; d <= S4;

                            end if;

                          else

                           roll <= '1';

                          end if;

      when S2 =>  lose <= '1';

      when S3 =>  win <= '1';

      when S4 =>  if (rb = '1') then d <= S5; end if;

      when S5 =>  if (ra = '1') then

                               if (eq = '1') then d <= S3;

                               elsif (d7  = '1') then d <= S2; 

                               else   d <= S4;   end if;

                           else

                              roll <= '1';

                           end if;

      when others  =>  d <= S0;

   end case;    

  end process clogic;                       

end a;

2. (20 pts) Figure #2 shows an input bus going to a register with a FSM controlling the load line to the register. The timing diagram below shows activity on the input bus and the "Start" line.

a.   For the ASM chart in Figure 2a, what value does the register have when I exit State S2?  $21


b.   For the ASM chart in Figure 2b, what value does the register have when I exit State S2? $80


c.   For the ASM chart in Figure 2c, what value does the register have when I exit State S2?  $85


d.   For the ASM chart in Figure 2d, what value does the register have when I exit State S2?  $85


(10 pts) What is the difference between an asynchronous RAM and a synchronous RAM?  Be specific.
A synchronous RAM uses DFFs on inputs (control and data) and outputs (output data).  This means that inputs are only sampled on active clock edges, and output changes occur on clock edges.  An asychronous RAM has level sensitive inputs.      Obviously, a synchronous RAM will have a clock input.

(5 pts) We have discussed that it is dangerous to control an asynchronous control line like ACLR on a counter via a Finite State machine because of glitches.  How do I guarantee that a FSM output is glitch free?    Put  flipflop on the control output (like a DFF).


3. (10 pts)  Write a VHDL code segment that implements a falling edge trigerred T Flip-Flop (TFF).  A TFF  has one input called T - the state toggles on the active clock edge if  T = '1'.     Assume a high true asynchronous reset that resets the TFF to '0'.

                   Process (clk, reset)

                   Begin

                          If (reset = ‘1’) then  q <= ‘0’;

                           Else if (clk’event and clk=’0’) then

                                If (T = ‘1’) then

                                   Q < =  not (q);

                                End if;

                         End if;

                    End process;

4. (25 pts) A common operation in computer graphics is textel averaging.   The equation for textel averaging is:

           a * b *T00    +  (1-a) * b * T01  +  a * (1 - b) * T10   +   (1-a) * (1-b) * T11 


Another  way to write this is:
        b * ( a * T00    +  (1-a) * T01  )   +  (1-b) *  ( a *  T10   +   (1-a) * T11 )


Figure 3 shows the flowgraph for this equation.


 The cofficients T00, T01, T10, T11 are preloaded and are available. The a, b values are input via two input busses (and A-bus and a B-bus).    The computations  "1-a", "1-b"  are just one's complement operations since 0.8 fixed point convention is used; so these computations do not cost any clock cycles (1-a, 1-b available immediately when a, b are loaded).

a. Give the minimum latency for this flowgraph in clock cycles.   5 clocks

b. Assume I want to perform this operation with a latency=initiation rate = 6 clks.    What is the lower bounds for the number of adders, multipliers needed?    Mults =  6/6 =  1;  adders = ceil(3/6) = 1

c.  Fill out the scheduling table below for latency=initiation rate = 6 clks.  I have shown space for 4 multipliers, 2 adders.  ONLY USE WHAT YOU NEED.    You will penalized if you use more multipliers/adders than what is required.  Use the NODE name (N1, N2, etc) shown on the flowgraph.


Mult A
Mult B
Mult C
Mult D
Add A
Add B
Bus A
Bus B

Clk 1






N1
N2

Clk 2
N3
N4







Clk 3
N5
N6


N7




Clk 4
N9



N8




Clk 5
N10








Clk 6




N11




