
1

BR 6/01 1

Event Driven Simulation
• A VHDL Simulator is an event-driven simulator
• Events occur on signals
• An event is a change in signal value at a particular

time.
• The time queue is an ordered list of signal

assignments for all signals in the simulator
• Signal assignments are ordered in ascending order

(increasing time) on the time queue
• If a signal assignment causes a change in signal

value, this is an event
– Executing an event triggers a process which may

generate more signal assignments to be placed on the
time queue.

BR 6/01 2

Simulation Loop
Get next signal assignment from time queue

Make assignment
and determine if an event occurs

Time queue: A<= ‘1’ at 2 ns, B <= ‘0’ at 4 ns, C <= ‘1’ at 10 ns
Actually represented by ordered pairs (value, time) on time queue

A: (‘1’, 2 ns), B: (‘0’, 4 ns), C: (‘1’, 10 ns)

Execute processes triggered by this event

BR 6/01 3

Review: Concurrent vs. Sequential statements
• Recall the VHDL statements are divided into two

classes ‘concurrent’ statements and ‘sequential’
statements.

• Examples of concurrent statements:

y <= A when (S = ‘1’) else B;

s <= A after 10 ns;

Concurrent statements execute whenever events on signals used
by the concurrent statements trigger them.

BR 6/01 4

Processes

• A ‘process’ is a concurrent statement. Sequential
statements can only be used within a process.
• Statements are executed ‘sequentially’ within a

process until the process is suspended either via a
‘wait’ statement or until there are no more
statements to be executed.

• An example of a sequential statement in a process is:
if (clk’event and clk = ‘1’) then

y <= A when (S = ‘1’) else B;

end if;

BR 6/01 5

Process Triggering
A process can be triggered by resumption after a wait statement
or by an event on a signal in its sensitivity list:

process (a, b, s)
begin

…..
end process;

Sensitivity list for process –
process executed when an event
occurs on any signal in this list

process
begin

…..
Wait for 10 ns;
…..
Wait;

end process;

Process with no sensitivity list
will always be triggered initially
at time 0.

Suspend for 10 ns

Suspend forever

BR 6/01 6

Some Rules for Processes
If a process has a sensitivity list, then it cannot contain a ‘wait’
statement.

A process with a sensitivity list is always triggered at time 0
because all signals always have an initial event placed on them at
time 0.

A process without a sensitivity list is always triggered at time 0
initially.

If a process without a sensitivity list ‘falls out the bottom’ then it
immediately loops back to the top until it hits a wait statement.

2

BR 6/01 7

An Infinite Loop

process
begin

A <= ‘1’;

end process;

This process generates an infinite loop
because it will ‘fall out the bottom’,
loop back, and never encounter a wait
statement.

You will get a compiler warning about
this – if you execute it, the modelsim
simulator may hang.

BR 6/01 8

A Common Problem
A common problem is to not include a needed signal on a
sensitivity list:

process (A, S)
begin

if (S = ‘1’) then
Y <= A;

else Y <= B;

end process;

This is implementing a 2/1 mux. Signal ‘B’ has been left off
the sensitivity list by mistake – if ‘S=0’ and a change occurs on
‘B’, this change will not be propagated to the Y output! This
can be hard to debug – be careful with sensitivity lists!

BR 6/01 9

Delta Time

A <= transport ‘1’ after 10 ns;

will add the assignment A: (‘1’, NOW + 10 ns) where
NOW is the current simulation time.

What about :

A <= transport ‘1’;

will add the assignment A: (‘1’, NOW + 1 delta) . A delta is
an infinitesimal interval used by the simulator to maintain
assignment ordering for assignments that take place at the
same simulation time.

Signal Assignments are used to place ordered pairs on time queue

BR 6/01 10

Two-Dimensional Time

1 ∆

2 ∆

3 ∆

*
*

*

*

*
*

*
*

*

*

*
0 ns 10 ns

B

20 ns 40 ns

C

D

E

F

From “ VHDL Techniques, Experiments, and Caveats”, Joe Pick

Maximum number of delta units within one time unit is simulator
dependent (for Modelsim, is configurable in modelsim.ini via
‘Iterationlimit’ parameter – default is 5000).

BR 6/01 11

A Delta-Time Infinite Loop
The following process will cause the modelsim simulator to
exceed its delta time iteration limit

signal a : std_logic := ‘0’;

process (a)
begin

a <= not (a);
end process;

Signal ‘A’ changes value for each signal assignment. This causes
the process to be triggered again. Time advances by 1 delta each
time the process is triggered and the simulator will halt after the
iteration limit is reached.

BR 6/01 12

Signal Assignment Rules

A signal assignment within a process will add an ordered pair to
the time queue. There may already be assignments to this signal
on the time queue.

1. If the new assignment time is AFTER the other assignment
times, then the new assignment pair is added to the end of the list.

2. Any ordered pairs for this signal on the assignment list that
have times LATER than the new assignment are removed from
the time queue.

A signal assignment pair can only be executed by the simulator
after the process suspends.

3

BR 6/01 13

Example 1

signal ta, tb, tc, td, te: std_logic := '0';
begin
pa:process
begin
-- schedule of 'ta' assignment is put immediately
-- on timequeue. Because 'Z' assignment happens in TIME after
-- '1' assignment, then both assignments are valid.

ta <= transport '1' after 3 ns;
ta <= transport 'Z' after 4 ns;
wait;

end process pa;

BR 6/01 14

Example 2
pb:process

begin
-- Because '1' assignment happens in TIME before
-- 'Z' assignment, then 'Z' assignment is cancelled.

tb <= transport 'Z' after 4 ns;
tb <= transport '1' after 3 ns;
wait;

end process pb;

BR 6/01 15

Example 3

pc:process
begin

-- Because 'Z' assignment happens in TIME after
-- '1' assignment, then both assignments are valid.

tc <= transport '1' after 3 ns, 'Z' after 4 ns;
wait;

end process pc;

Note that multiple assignments can be made with one assignment
statement. The assignments must be in increasing time.

BR 6/01 16

Example 4
pd:process

variable i: integer := 0;
begin
-- result of assignments is same as in process 'a'
if (i = 0) then

-- first assignment
td <= transport '1' after 3 ns;
i := i + 1;

else
td <= transport 'Z' after 4 ns;
wait;

end if;
end process pd;

BR 6/01 17

Example 5
pe:process

variable i: integer := 0;
begin
-- result of assignments is same as in process 'b'
if (i = 0) then

-- first assignment
te <= transport 'Z' after 4 ns;
i := i + 1;

else
te <= transport '1' after 3 ns;
wait;

end if;
end process pe;

BR 6/01 18

Variables versus Signals
• Examples 4 & 5 used a local variable (will discuss global

variables later).
– Can only be declared within processes
– Are not visible outside of a process
– Variables retain their values between process executions
– Variable assignment takes place immediately
– Variable assignment uses “ := “ operator

• What about signals?
– Signals must be declared outside of processes
– Signals are visible to all processes and are used to carry

information between processes
– Signals have a waveform history and also retain their values

between process invocations
– Signal assingment within a process only places that assignment on

the time queue – it cannot be acted on until the process suspends
– Signals use the “ <= “ operator

4

BR 6/01 19

Two processes…..

signal a,b,d: integer:= 0;

one:process (a)
begin
a <= 1;
if (a = 1) then b <= 1; end if;
a <= 0;

end process one;

two:process (a)
variable c : integer := 0;
begin
c := 1;
if (c = 1) then d <= 1; end if;
end process two;

This assignment does not
happen because the
‘a<=1’ assignment does
not take place unless
process is suspended! The
later assignment of ‘a<=0’
replaces that value on the
queue.

This assignment
occurs because the
variable assignment
c:=1 occurs
immediately.

BR 6/01 20

VHDL Delay Models

The assignment statement:

A <= transport ‘1’ after 10 ns;

uses the transport delay model. This delay model will always
place this assignment on the time queue.

The assignment

A <= ‘1’ after 10 ns;

uses the default delay model which is called the inertial delay
model. This delay model will reject any signal changes that
occur within 10 ns of each other.

BR 6/01 21

Inertial versus Transport Delay

dest_1 <= source after 10 ns; -- inertial delay model
dest_2 <= transport source after 10 ns; -- transport delay

source

dest_2

dest_1

15
ns

25
ns

30
ns

40
ns

43
ns

44
ns

53
ns

53
ns BR 6/01 22

A Problem with Inertial Delay
Inertial delay is intended to model physical device that have inertia
and reject spikes. Unfortunately, the model assumes that the
propagation delay and inertia delay are the same.

Inertial model can be used
to reject glitch, but it also
defines prop delay.
Output has prop delay of
4 ns, rejects glitches < 4
ns.

y <= A after 4 ns;

y <= transport A after 4 ns;

Output delayed from input
by 4 ns. No glitch
rejection.

BR 6/01 23

Wanted: Spike rejection time ≠ Prop delay.

Y = reject 2 ns inertial A after 4 ns;

2 ns pulse rejected

3 ns pulse pulse passed with delay of 4 ns

‘reject’ statement added in VHDL ’93 standard.

YA

A Y

BR 6/01 24

Pre-defined Signal Attributes
There are many pre-defined attributes for signals. Some examples
are:

A’event returns a boolean that is true if an event occurred on
signal A during the current simulation cycle.

A’last_event returns a time value that is the amount of absolute
time that has elapsed since A had an event. Warning: it is NOT
the time of the last event, but rather the amount of time that has
passed since the last event.

A’last_active returns the amount of absolute times that has
elapsed since A last had a transaction. A transaction is any update
to a signal (an update may or may not cause an event).

5

BR 6/01 25

Signal Attributes that return Signals

Some signal attributes actually return new signals.

A’delayed (T) returns a signal as the same type as A but
delayed by T. If T is not specified, then T = 1 delay time unit.

A’stable(T) returns a boolean signal that is true if A has not
had an event for the length of time T.

A’quiet(T) returns a boolean signal that is true if A has not had
a transaction for the length of time T.

A’transaction returns a BIT signal that toggles for each
transaction on A.

BR 6/01 26

Detecting Edges

if (A’event and A = ‘1’) then
-- rising edge

‘1’

???

if (A’event and A = ‘0’) then
--- falling edge

‘0’

???

BR 6/01 27

Measuring Pulse Width

process (A)
variable pw :time;
begin|
if (A = ‘0’) then

pw := A’last_event;

...........

A

Returns 0!!!!

‘last_event returns
elapsed time from
last event. The last
event triggered this
process!!!

BR 6/01 28

Measuring Pulse Width (cont)
A

Returns pulse width.
‘delayed returns A
delayed by 1 delta.

‘last_event returns
elapsed time between now
and last event.

process (A)
variable pw :time;
begin|
if (A = ‘0’) then

pw := A’delayed’last_event;

...........

A’delayed

1 ∆

now
A’delayed’last_event

BR 6/01 29

Measuring Setup Time
Tsu

Clk

D violation

Does D change before the setup time?

if (clk’event and clk = ‘1’) then

if (D’last_event < Tsu) then
----- setup time violation

