
1

1/27/2003 BR 1

Modeling Example: A PAL

• Goal is to model a standard PAL
– Both functionality and timing

• Will look at PAL16l8 model, but approach is valid for any
standard PAL

• Functionality is defined via a JEDEC file
• Timing is defined via datasheets
• This model was written by Vince Sanders, MSU.

1/27/2003 BR 2

PAL 16L8

10 input only

1 output only

6 input/outputs

1/27/2003 BR 3A Sample PAL

A
B
C
D

E

F

G
H
I
J

K

P

Q

R

1/27/2003 BR 4

Comments on Sample PAL

• 11 inputs, 3 outputs
– Can implement three functions - functions can share inputs or not

share inputs

• Each output implements a SOP equation with Four
product terms.
– Each product term can include complemented or uncomplemented

form of an input.

1/27/2003 BR 5

D J

P

Understanding the Diagram

Vertical Lines indicate a product term. Horizontal lines provide
True and Complemented forms of external inputs.

Even though a product term looks like it has only one input, it
actually has 2 * N inputs, where N is the number of external
inputs.

1/27/2003 BR 6

Product Term

This looks like an AND gate with one input. Is actually:

B B’A A’ C C’ D D’I I’ J J’ E E’ F F’ K K’GG’H H’

B
B’
A
A’
C
C’

H’
H

Only drawn with a single line to save space.

2

1/27/2003 BR 7

D J

P

Fuse Points

A cross over of a Vertical input line and a horizontal product
term line is a FUSE LOCATION. When the PAL is in its
blank or erased state, all FUSES are connected. This means
that each product term implements the equation:

(A A’ B B’ C C’……. KK’) will be ‘0’! This means that
the output will be high!

1/27/2003 BR 8

D J

P

Programming

To program, will want to BLOW most of the fuses (break the
vertical/horizontal crossover connection). To indicate a logic
function, will use a ‘ X ‘ over a fuse that I want to KEEP
INTACT.

Will mark Intact fuse
location.

When a fuse is blown, that product term input acts as a ‘1’ so
that the input no longer effects the product term.

1/27/2003 BR 9

D J

P

P’ = D + J’

When implementing an equation, sometimes will not want to
use all available product terms. If ALL fuses along product
term are left intact, then product term value will be ‘0’ and
will not affect equation. Mark unused PT’s by placing an X
over them -- all fuses in that PT row are assumed intact.

Note that P’ must be implemented!
1/27/2003 BR 10

Example Product Term AC’H’

The connections will be:

B B’A A’ C C’ D D’I I’ J J’ E E’ F F’ K K’GG’H H’

1
1

A
1
1
C’

H’
1

Fuse blown

Fuse blown

Fuse intact
Fuse blown

Fuse blown
Fuse intact

Fuse blown

Fuse intact

Actually, fuses are not ‘blown’ in eraseable PLDs - the connection is broken in a non-destructive
way for eraseable PLDs.

1/27/2003 BR 11

Another Example

A
B
C
D

G
H
I
J

P

P’ = A’BGH’ + CD’ + HIJ + BG’H

1/27/2003 BR 12

JEDEC Files

• Model must read a JEDEC file that defines the
programming

• Each fuse location is identified by a NUMBER

Fuse 0 Fuse 24

Just need to know if the fuse is intact or not. All fuses are
intact in unprogrammed state.

3

1/27/2003 BR 13

Sample Portion of a JEDEC File
L00440
11
11110111111111111111111111111111111011101110
11111011111111111111111111111111111011101101
11111111111111111111011111111111111111011110
11111111111111111111101111111111111111011101
11111111111111111111111111111111110111011111
00
00
00
00
00
* Node y_3[22] => OE : 1 ,LOGIC : 10 *
L00924
11
11111111101111111111111111111111111011101101
11111111011111111111111111111111111011101110

Fuse Number

‘1’ fuse blown
‘0’ fuse intact

Comment line

1/27/2003 BR 14

JEDEC File Header, End of File
C22V10*
QP24* Number of Pins*
QF5828* Number of Fuses*
F0* Note: Default fuse setting 0*
G0* Note: Security bit Unprogrammed*
NOTE DEVICE C22V10*
NOTE PINS a_3:2 a_2:3 a_1:4 a_0:5 b_3:6 b_2:7 b_1:8 b_0:9 s_0:13 s_1:14 *
NOTE PINS s_2:15 y_0:19 y_1:20 y_2:21 y_3:22 *
NOTE PINS *
NOTE NODES *
L00000
00

........

C79CF* Note: Fuse Checksum*
5FE9

default Fuse state

Checksum at end
of file

of fuses

1/27/2003 BR 15

JEDEC File Reader
• utilities directory has a JEDEC file reader package

(jedec_reader)
– Independent of PAL type being modeled

• Approach is to read the JEDEC file and return a bit_vector
of fuse values
– ‘0’ means connected (fuse intact), ‘1’ is disconnected (fuse blown)

• Handles the following record types
– ‘L’ – fuse list
– ‘Q’ – number of total fuses in device – needed to allocate fuse

array
– ‘F’ – default fuse state, used to fill fuse array with default state
– ‘C’ – checksum record, reads this but does nothing with it.

• Other records ignored

1/27/2003 BR 16

Modeling a Programmable Part: Approaches

• Approach #1: have internal data structure that represents
the entire programmable substrate
– Read programming bits from external data file and “program” data

structure to have needed routing and logic functionality
– Model simply exercises programmable substrate with the presence

of programming data
– Perhaps most accurate simulation since it is closest to the hardware
– execution time, memory requirements may be steep

• Approach #2: have an external model ‘generator’ (i.e. a
Perl script) that reads the programming bits and generates
only the functionality needed
– Memory, execution time resources will be proportional to the

percentage of the programmable device actually used

1/27/2003 BR 17

Modeling Functionality

• JEDEC reader returns a bit vector whose size is equal to
the number of fuse locations

• This model uses the GENERATE statement in VHDL to
create a model whose memory and runtime complexity is
proportional to the number of fuses that are programmed
– Model will take less memory space and run faster if less of the

device is actually programmed

• GENERATE statement allows processes/signals to be
generated at model elaboration time
– somewhat similar to a macro capability in other languages

1/27/2003 BR 18

Compilation/Elaboration/Execution

• Compilation converts VHDL text to simulator dependent
object code

• Elaboration is what happens when the model is loaded into
memory
– Initial processes/signal structures are created in memory

• GENERATE statements can be used to create signals and
processes based upon parameters during elaboration.
– This is a very powerful language feature.

• Execution happens after elaboration, and is the simulation
loop of scheduling events and executing processes.

4

1/27/2003 BR 19

Product Term Modeling Approach
B B’A A’ C C’ D D’I I’ J J’ E E’ F F’ K K’GG’H H’

Use a resolved data type for product term (column signals
are simply multiple drivers on the product term)

CONSTANT FuseMap : Bit_Vector := ReadJedec(JedecFileName);
CONSTANT rows : Natural := 64;
CONSTANT columns : Natural := 32;
CONSTANT outputs : Natural := 8;

SUBTYPE ResolvedAndSL IS Resolve_AND Std_Logic;
TYPE ResolvedAndSLV IS ARRAY (Natural RANGE <>) OF ResolvedAndSL;

SIGNAL AndTermsResolved : ResolvedAndSLV(0 TO rows - 1) := (OTHERS => '1'); --And Terms Resolved
SIGNAL AndTerms : Std_Logic_Vector(0 TO rows - 1); --And Terms
SIGNAL ci : Std_Logic_Vector(0 TO columns - 1); --Column Inputs
SIGNAL OrTerms : Std_Logic_Vector(0 TO outputs - 1); --Or Terms
SIGNAL fb : Std_Logic_Vector(1 TO 6); --fb(1 TO 6) <==> io(7 DOWNTO 2)

pal16L8 dependent

Model is for pal16L8 – fuse locations, # inputs, etc are all
dependent on this PAL type.

Read fuse map

1/27/2003 BR 20

Reading the JEDEC File

• Fuse Map read at ELABORATION time
– I.e., elaboration time is when processes/signals that represent the

VHDL model are created in-memory

• This is needed because VHDL GENERATE statements
that are used to dynamically create signals/processes use
information from the fuse map.
– CANNOT read the fuse map at simulation time because this means

the simulator has started and all processes/signals have already
been created.

• Reading a file at elaboration time is difficult to debug
because debugger is only available after elaboration time.

1/27/2003 BR 21

Resolution Function for Product Term Types
--
--Resolve_AND (Internal)
--

FUNCTION Resolve_AND (v : Std_Logic_Vector) RETURN Std_Logic IS
VARIABLE result : Std_Logic := '1';

BEGIN
FOR ii IN v'RANGE LOOP
result := result AND v(ii);
EXIT WHEN result = '0';

END LOOP;
RETURN result;

END Resolve_AND;

--

SUBTYPE ResolvedAndSL IS Resolve_AND Std_Logic;
TYPE ResolvedAndSLV IS ARRAY (Natural RANGE <>) OF ResolvedAndSL;

SIGNAL AndTermsResolved : ResolvedAndSLV(0 TO rows - 1) := (OTHERS => '1'); --And Terms
Resolved

Note early exit when
function is zero.

Note that this is a subtype of Std_logic,
which is itself a resolved type!!!!!

1/27/2003 BR 22

Connecting Inputs to Column Signals
ColumnConnect_i1to8Gen: --i(1 TO 8)

FOR ii IN 1 TO 8 GENERATE
ci((ii-1)*4) <= TRANSPORT To_UX01(i(ii)) AFTER WD_i(ii);
ci((ii-1)*4 + 1) <= TRANSPORT NOT(i(ii)) AFTER WD_i(ii);

END GENERATE ColumnConnect_i1to8Gen;

• Input signals are array i(1 to 8)
• column signals are ci(0 to num_columns –1)
• Each input connected to a pair of column signals (2nd

connection is a complemented version of the input
• wd_i are wire delay generics that are defined on the entity
• The GENERATE statement causes these signal assignments

to be expanded at elaboration time

inverter

1/27/2003 BR 23

Product Term Connections
ColumnConnect_i1to8Gen: --i(1 TO 8)
--
--And Plane
--

AndPlaneGen:
FOR row IN AndTermsResolved'RANGE GENERATE

RowAllConnectedGen:
IF (RowAllConnected(row)) GENERATE

AndTermsResolved(row) <= '0';
END GENERATE RowAllConnectedGen;
RowNotAllConnectedGen:
IF (NOT RowAllConnected(row)) GENERATE

ColumnGen:
FOR col IN ci'RANGE GENERATE

ConnectGen:
IF (FuseMap(row * ci'LENGTH + col) = connected) GENERATE

AndTermsResolved(row) <= ci(col);
END GENERATE ConnectGen;

END GENERATE ColumnGen;
END GENERATE RowNotAllConnectedGen;

END GENERATE AndPlaneGen;

Reduces # of signal
assignments, improves
performance

Only generated if fuse
map location = ‘0’!!

1/27/2003 BR 24

RowAllConnected Function

Recall that if all column inputs are connected to a product term,
then product term output is ‘0’. Can reduce model complexity
(memory and execution time) if detect this case.

--RowAllConnected (Internal)
--

FUNCTION RowAllConnected (row : Natural) RETURN Boolean IS
BEGIN

RETURN NOT To_Boolean(Reduce_OR(
FuseMap(row*columns TO (row+1)*columns - 1)));

END RowAllConnected;
--

Reduce_OR function defined in VHDL for bit_vectors –
returns a ‘1’ if any bit in bit vector is a ‘1’, else returns
‘0’.

5

1/27/2003 BR 25

Model Complexity

• Model complexity is proportional to memory required and
execution time

• The number of signals, signal assignments, and processes
in a model impacts complexity
– More signals and signal assignments means more events means

more execution effort required
– More signals means more memory needed to track waveform

history

• Use of GENERATE statements only creates the required
signal assignments for the product terms based upon the
fuse map contents

1/27/2003 BR 26

OR Terms

--Now AndTerms gets resolved signal
AndTerms <= Std_Logic_Vector(AndTermsResolved);

--
--
--Or Plane
--

OrPlaneGen:
FOR ii IN OrTerms'RANGE GENERATE

OrTerms(ii) <= Reduce_OR(AndTerms((ii*8 + 1) TO (ii*8 + 7)));
END GENERATE OrPlaneGen;

std_logic_vector
ResolvedAndSLV type

Can do ‘type cast’
without explicit
conversion function
because
ResolvedAndSL is
subtype of Std_logic.

Reduce_OR function defined for
std_logic_vector in 1164 standard.

1/27/2003 BR 27

TriStates_1to6Gen:
FOR ii IN 1 TO 6 GENERATE
PROCESS (OrTerms(ii), AndTerms(ii*8))
ALIAS i : Std_Logic IS OrTerms(ii);
ALIAS oe : Std_Logic IS AndTerms(ii*8);
ALIAS o : Std_Logic IS io(8-ii);
ALIAS LD_o : Time IS LD_io(8-ii);

BEGIN
CASE oe IS
WHEN '0' => --TriStated Output

IF (oe'EVENT) THEN
o <= TRANSPORT 'X' AFTER 0 NS,

'Z' AFTER (t.ter + LD_o);
END IF;

WHEN '1' => --Output Enabled (NOTE INVERTED)
IF (oe'EVENT) THEN
o <= TRANSPORT 'X' AFTER 0 NS,

NOT i AFTER (t.tea + LD_o);
ELSE
IF ((t.tpd + LD_o) < (t.tea + LD_o - oe'LAST_EVENT)) THEN
o <= TRANSPORT NOT i AFTER (t.tea + LD_o - oe'LAST_EVENT);

ELSE
o <= TRANSPORT NOT i AFTER (t.tpd + LD_o);

END IF;
END IF;

WHEN OTHERS => o <= TRANSPORT oe AFTER tpdX;
END CASE;

END PROCESS;
END GENERATE TriStates_1to6Gen;

Tri-State Buffers

GENERATE statements
can be used for processes

ALIAS statements used to
improve readability

