
1

1/18/2002 BR 1

CPU1CPU0

bbusy# bbusy#

pullup ‘H’

breq# bgrant#

addr
addr_strobe#

addr
addr_strobe#

pullup ‘H’

breq# bgrant#

Arbiter

Shared Bus Simulation

1/18/2002 BR 2

Solving Bus Contention between Multiple Devices

• Central Arbitration - arbiter decides which device gets the
bus via Bus Request/Bus Grant pairs

• Single Bus Master – one device (the Root) initiates and
controls all transfers (used by USB, IEEE Firewire)

• Time Division Multiplexing (TDM) – give each device a
scheduled time period in which to access the bus

• Carrier Sense Multiple Access (CSMA)
– Used by single-cable Ethernet
– Each device listens to what it sends - if data is corrupted, then this

means that a collision occurred (multiple devices tried to send)
– On collision, wait a random amount of time (‘backoff time’), then

try again. On successive collisions, keep increasing the range of
backoff time.

1/18/2002 BR 3

CLK

Transaction (Figure 11-18)

address
strobe#

address0
address

1 2 3 4 5 6

breq0#

breq1#

bgnt0#

bgnt1#

bbusy

Protocol from Hypersparc CPU shared bus
1/18/2002 BR 4

Comments on Figure 11-18

• Note that all assertions occur after rising edge of clock
• Dotted lines means that there is no active drive on line –

may be pulled HIGH or may be at high impedance state
• Transaction shows a single request for bus

– CPU0 makes request in clk 1
– Arbiter grants request in clk 2
– CPU0 grabs bus in clk 3

1/18/2002 BR 5

CLK

Transaction (Figure 11-19)

address
strobe#

address0
address

1 2 3 4 5 6

breq0#

breq1#

bgnt0#

bgnt1#

bbusy

Protocol from Hypersparc CPU shared bus

address1

cpu0 cpu1

1/18/2002 BR 6

Comments on Figure 11-19
• Activity shows a bus handoff from CPU0 to CPU1

– In clk1, arbiter has already granted bus to CPU0 and CPU0 grabs bus
by asserting the bbusy line

– In clk1, CPU1 also requests the bus
– In clk2, Arbiter negates bus grant to CPU0, and asserts bus grant to

CPU1
– CPU1 has been granted the bus, but must wait until bus is free by

monitoring the bbusy line. When bbusy goes high, then bus is free.
– CPU0 releases bus in clock 3
– CPU1 grabs bus in clock 4 by asserting bbusy
– CPU1 releases bus in clock 6 by releasing bbusy

• This is called an overlapped bus grant because arbiter granted
bus to CPU1 while CPU0 still had the bus
– minimizes handoff time between CPU0 and CPU1, only one clock

cycle wasted (clock 3)

2

1/18/2002 BR 7

CLK

Transaction (Figure 11-20) part 1

address
strobe#

address0
address

1 2 3 4 5 6

breq0#

breq1#

bgnt0#

bgnt1#

bbusy

Protocol from Hypersparc CPU shared bus

address1

cpu0 cpu1

1/18/2002 BR 8

Comments on Figure 11-20 (part 1)

• This is similar to Figure 11-19 except that CPU0 makes a
request for an additional transaction
– In clk2, the arbiter grants the bus to CPU1 and negates the bus

grant to CPU0
– CPU0 makes an additional request for the bus by asserting bus

grant in Clk 3. Note that CPU0 can do this even while it is busy
with the first transaction!!! (bbusy is asserted by CPU0!!). CPU0 is
essentially asking for the bus ahead of time

– CPU1 grabs the bus on clk5
– The arbiter grants the bus to CPU0 in clk5 and negates the grant to

CPU1

1/18/2002 BR 9

CLK

Transaction (Figure 11-20) part 2

address
strobe#

address1
address

6 7 8 9 10 11

breq0#

breq1#

bgnt0#

bgnt1#

bbusy

Protocol from Hypersparc CPU shared bus

address0

cpu1 cpu0

1/18/2002 BR 10

Comments on Figure 11-20 (part 2)

• This continues the transactions started in part 1
– CPU1 releases the bus in Clk 8
– CPU0 was granted the bus back in Clk 6 and has to wait until

CPU1 releases the bus.
– CPU0 grabs the bus in Clk9 and releases the bus in Clk 11

1/18/2002 BR 11

Simulation Goals

• Want a VHDL simulation that can be used to test this protocol
• You will be provided with a working Arbiter model
• You will need to write a CPU model that can be used to ‘test’

the arbiter model
• The CPU will read a data file that will control its behavior

– By changing the CPU data file, we can test different situations

• You will be provided with a test bench that instantiates two
CPUs and the arbiter
– Configurations will be used to test different situations
– See the sim2 assignment page for a definition of the file format for the

CPU data file.

1/18/2002 BR 12

CPU Data File Format

• Data file controls number of requests and duration of each
request

• First line: it contains a single integer that determines the clock
cycle for the FIRST request
– ‘–1’ means make NO requests, subsequent lines should be ignored

• Subsequent lines contain 3 integers
– The 1st integer is how many clock cycles to assert bbusy

after the bus request has been granted
– The 2nd integer is the number of clock cycles from the

assertion of bbusy to the next request. A ‘-1’ means make
no further requests.

– The 3rd integer is the address to place on the address bus
during the request.

3

1/18/2002 BR 13

Test Cases

• Configurations used to specify data files that test the
previous three waveforms plus two additional test cases
– cfg_tb_f11_20.vhd specifies that cpu#0 in the testbench use data

file cpu0_f11-20.dat, and cpu#1 use data file cpu1_f11-20.dat
– All data files are already provided for you

• I have included data files/configurations for two other test
cases labeled as Figure 11-21 and Figure 11-22 in the
simulation WWW page.

• Figure 11-21 has CPU #0 make a series of requests while
CPU#1 does nothing.

• Figure 11-22 has both CPU #0 and CPU#1 make a series
of requests.

1/18/2002 BR 14

cpu0_f11-20.dat data file contents (lines shown skewed)

1
3 2 111

2 1 111

2 –1 111

Assert
request
clk #1

Once granted, hold bbusy low 3 clocks

2 clks between assertion of
bbusy and assertion of next
request

Address to place on
bus once granted

1/18/2002 BR 15

Modeling Approach

• You will need to use a FSM to model your CPU
– Because all signals change after the rising clock edge and take at least one

clock cycle to change, you can use either a two process model (Mealy) or
a one process model (Moore)

– Have your state registers be rising edge triggered

• You will need some initialization code that opens the file and
reads the first line. One way is shown below:

myprocess (siga, sigb, whateversig)
variable init: boolean;
begin

if (init = FALSE) then
-- do onetime code here...
init = TRUE;

end if;
-- rest of code for process
....

end myprocess;

1/18/2002 BR 16

What States do you need?
• There are multiple correct solutions. Think about sequences that your

CPU might have to do
– Assert Breq, wait for bus grant, wait for bus busy to be negated, assert

bus busy for #clks that defines the transaction, Negate bus busy when
finished

• Use a defined type for your state definitions to make debugging easier.
• Figure 11-18 is the easiest, Fig 11-22 is the hardest.
• Some things to be aware of:

– Will need to assert Breq in some situations while you are asserting bbusy
(Figure 11-20)

– After a bus grant, the bus may be free or it may not be free – must monitor
the bbusy line

– You will need counters to keep track of things like how long (in clock
cycles) that you have asserted bbusy, when do you need to make the next
bus request, etc.

– The same CPU model is used for both CPU#0 and CPU#1 !!!

1/18/2002 BR 17

Other Hints
• Be careful about the use of variables in your processes
• May want to use signals to implement counter values

– easier to control when they are updated
– Can display them as waveforms for debugging purposes

• You do not have to duplicate the delays that are shown in the reference
timing diagrams

– I only care about what clock cycle the signal is asserted/negated in, not
when in the clock cycle it is asserted/negated.

• The addr, bbusy, addr_strobe ports all have multiple drivers on them!
Must drive with ‘Z’ if not actively driving the line.

• The ‘active’ output should be driven to ‘0’ while a CPU is still active.
It should be driven to ‘Z’ after the CPU has finished processing all
entries in the data file.

– This is used by the ‘stim’ entity to control generation of clock pulses.

1/18/2002 BR 18

Integer to std_logic_vector

• The address bus value in the CPU data files is an integer –
need to convert this to a std_logic_vector

addr <= transport
To_Std_Logic_vector (integer_val, length) after delay;

to_std_logic_vector converts integer_val to a std_logic_vector of
length bits.

Contained in the std_logic_1164_utils package in utilities library.

Library utilities;
use utilities.standard_utils.all;
use utilities.std_logic_1164_utils.all;

Use both
packages.

