
1

6/5/01 BR 1

Multi-Valued Logic

• VHDL allows users to extend the language by defining
their own data types

• Early on, users recognized that the BIT data type was
insufficient for digital simulation
– BIT can only have values of ‘1’ or ‘0’
– Digital systems require other conditions such as ‘Z’ (tri-state), ‘X’

(unknown), weak/strong drivers, etc.
• Companies began writing VHDL models that used

proprietary data types that added support for these logic
values
– Each company defined their own data types
– Models were not interoperable because they used these custom

data types

6/5/01 BR 2

IEEE Standard Multivalue Logic System (1164)

• An IEEE standards body created the std_logic_1164
standard to support multivalued logic in VHDL

• A std_logic data type has the following values:
– ‘U’ uninitialized (leftmost literal, default initial value)
– ‘X’ forcing unknown
– ‘0’ forcing 0
– ‘1’ forcing 1
– ‘Z’ high impedance
– ‘W’ weak unknown
– ‘L’ weak 0 (pulldown)
– ‘H’ weak 1 (pullup)
– ‘-’ don’t care (used for synthesis only)

6/5/01 BR 3

Resolved Data Types
• std_logic is known as a resolved data type in VHDL
• A resolved data type allows more than one driver for a

signal
• Necessary for modeling things like tri-state drivers,

pullup/pulldown networks.

A

B

Y

2

6/5/01 BR 4

The Resolution Function

• The resolution function determines the final value of a
signal in the case of multiple drivers

• The diagram below is a graphical representation of the
resolution function for std_logic .

U

X

1 0
W

H L

Z

Increasing strength

‘Z’ is weakest, ‘U’ is strongest.

6/5/01 BR 5

Unresolved Types
Cannot have multiple drivers for types that do not have a
resolution function. A BIT type is an unresolved type.
signal ta,tb : bit;

begin

ta <= transport '1' after 2 ns; -- 'ta' only has one driver
tb <= transport '1' after 3 ns; -- 'tb' has multiple drivers

p1:process
begin
tb <= transport '0' after 5 ns;
wait;

end process p1;

-- The following compilation error is generated
--###### exam2/driverbad.vhd(27): tb <= transport
--ERROR: exam2/driverbad.vhd(27): Nonresolved signal tb
line 24).

--###### exam2/driverbad.vhd(32): end;
--ERROR: exam2/driverbad.vhd(32): VHDL Compiler exiting
end;

6/5/01 BR 6

Driver Resolution: Example #1
signal tb : std_logic;

begin

-- 'tb' has multiple drivers

tb <= transport '1' after 3 ns; -- DRV0

p1:process
begin
tb <= transport ‘L' after 5 ns; -- DRV1
wait;

end process p1;

tb <= transport ‘X’ after 10 ns; -- DRV 2
end;

What does the waveform of signal tb look like?

3

6/5/01 BR 7

Driver Resolution: Example #1

drv0 U

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1

drv1 U
L

drv2
XU

tb
XU

6/5/01 BR 8

Driver Resolution: Example #2
signal tc : std_logic := ‘Z’;

begin

-- 'tc' has multiple drivers

tc <= transport '1' after 3 ns; -- DRV0

p1:process
begin
tc <= transport ‘L' after 5 ns; -- DRV1
wait;

end process p1;

tc <= transport ‘X’ after 10 ns; -- DRV 2
end;

What does the waveform of signal tc look like?

Only difference from
previous example is tc
has an initial value of ‘Z’

6/5/01 BR 9

Driver Resolution: Example #2

drv0 Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1

drv1 Z
L

drv2
XZ

tc
XZ

1

4

6/5/01 BR 10

Driver Resolution: Example #3
signal td : std_logic := ‘Z’;

begin

-- emulate a pullup resistor using ‘H’ drive

td <= ‘H’; -- DRV0
-- DRV1
td <= transport ‘0' after 2 ns, ‘Z’ after 4 ns;
-- DRV2
td <= transport ‘0' after 5 ns, ‘Z’ after 7 ns;
-- DRV3
td <= transport ‘0' after 6 ns, ‘Z’ after 10 ns;

end;

What does the waveform of signal td look like?

6/5/01 BR 11

Driver Resolution: Example #3

drv0 H

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

drv1 Z
0

drv3
ZZ

td H

Z

drv2 Z
0

Z

0

0 H
0

H

6/5/01 BR 12

Details on 1164
• Look at the std_logic_1164.vhd file attached to the class

WWW page
• std_ulogic is the base type defined in the 1164 standard

– This is an unresolved type
– signals of type std_ulogic cannot have multiple drivers

• std_logic is the resolved subtype of std_ulogic
– a resolved type is always a subtype of another unresolved type

type std_ulogic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’,
‘W’,’L’, ‘H’, ‘-’);

subtype std_logic is resolved std_ulogic;

5

6/5/01 BR 13

std_logic vs std_ulogic

• std_logic is subtype of std_ulogic
• Subtypes can be used in place of the type from which it

was derived, without needing an explicit conversion
function

• std_ulogic signals can be assigned to std_logic signals, and
vice versa

• std_ulogic_vector and std_logic_vector are the array types
for std_ulogic and std_logic respectively
– std_logic_vector is not a subtype of std_logic_ulogic and a type

conversion function is needed for assignments between signals of
these types

6/5/01 BR 14

std_logic vs std_ulogic (cont.)

• You should use std_ulogic and std_ulogic_vector for
signals that only require one driver
– accidental connections between signals that should only have one

driver can be detected by the compiler

6/5/01 BR 15

1164 Resolution Table

TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic;

CONSTANT resolution_table : stdlogic_table := (
-- ---
-- | U X 0 1 Z W L H - | |
-- ---

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |
('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |
('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |
('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |
('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |
('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |
('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |
);

The resolution function uses the lookup table to resolve types.

6

6/5/01 BR 16

1164 Resolution Function
FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic IS
VARIABLE result : std_ulogic := 'Z'; -- weakest state default
BEGIN

-- the test for a single driver is essential otherwise the
-- loop would return 'X' for a single driver of '-' and that
-- would conflict with the value of a single driver unresolved
-- signal.

IF (s'LENGTH = 1) THEN RETURN s(s'LOW);
ELSE

FOR i IN s'RANGE LOOP
result := resolution_table(result, s(i));

END LOOP;
END IF;

RETURN result;
END resolved;

‘S’ is a list of all driver values for the signal to be resolved.

6/5/01 BR 17

What Else is in IEEE 1164?

• Boolean functions (AND, OR, etc)
• Subtypes with restricted members (X01, X01Z, UX01,

UX01Z)
– conversion functions to/from vector types to these types
– useful in models where you do not want to deal with the full range

of types

• Conversion functions to/from BIT, BIT_VECTOR to
std_ulogic, std_ulogic_vector

• Misc functions
– rising_edge, falling_edge, is_X

