Experiences with System Level Design for Consumer ICs

J. van Meerbergen, A. Timmer, J. Leijten, F. Harmsze, M. Strik
Philips Research Labs Eindhoven

meerberg@natlab.research.philips.com

Abstract

The continuing trend towards higher integration den-
sities of ICs makes systems-on-a-chip possible. For
well defined application domains ”silicon platforms”
must be defined which combine efficient implementa-
tions with programmability. Platforms are heteroge-
neous reconfigurable multiprocessor architectures sup-
porting a variety of communication and computation
models. As a consequence designers are facing a large
architecture space with new possibilities for new archi-
tectures. To exploit these opportunities a better un-
derstanding of system level architectures is necessary.
A first step in this direction is to learn from design
exercises. Eventually this may lead towards a system
level design method. !

1 Introduction

In a .18 micron process {available in 1999) a complete
32 bit microprocessor can be integrated on 1 mm?. A
1Mbit DRAM has the same size. For logic circuits a
density of 6M transistors per mm? is possible. Ac-
cording to the SIA roadmap the decrease of feature
sizes will continue for more than 10 years to come.
At the other hand recent consumer oriented applica-
tions easily absorb an exponential increase in process-
ing power. Multimedia applications consist of basic
functions such as audio, video and graphics which are
combined in a flexible way. Different types of wired
and wireless interfaces have to be included. Several
real-time signals must be processed in parallel.

The designer has to bridge the gap between the ap-
plications and the technology. Large systems which

1Copyright 1998 IEEE. Published in the Proceedings of
IWV’98, April 1998 Orlando, Florida. Personal use of this ma-
terial is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

0-8186-8448-8/98 $10.00 © 1998 IEEE

17

before were implemented on a number of boards must
now be integrated on a single chip. At first this might
seem a nightmare to the designer, who is not only
confronted with technical problems (such as deep sub
micron effects influencing performance, timing and
power issues), but also with problems such as time
to market. At the other hand the design space be-
comes very large and it is also a challenge to make the
right choices and to come up with a real system level
design method.

Such a method does not exist today. A first step is
based on a true understanding of system level prob-
lems. System level design is different from other de-
sign problems such as simulation, place and route and
synthesis for which generic CAD solutions are stud-
ied based on well defined mathematical models. The
problem is that system level architecting is less defined
and more fuzzy. The goal of this paper is to learn from
a real design experiment.

The paper is organised as follows. In section
2 trends in architectures are analysed taking pro-
grammable general purpose architectures as a starting
point. It will be shown that this leads to some prob-
lems. To solve them we need to take the application as
a starting point to derive a system level architecture.
This will be illustrated with an example in section
3. The example is a multiwindow TV. The problem
in discussing examples is that other applications can
be totally different. Therefore in section 4 we discuss
what can be learned from this experiment and what
can be applied to other application domains as well.
Finally conclusions are formulated.

2 Trends in architectures

Future systems on silicon will have large design and
development cost. Design for integrity and robustness
takes a significant effort because of deep submicron ef-
fects such as parasitic coupling between components.
Noise effects will become relatively more important
if the supply voltage drops. For all these reasons it

is expected that future systems will make use of well
characterised cores with a large part of the applica-
tion mapped onto embedded software. Future systems
will be software dominated and therefore the software
point of view seems to be a good starting point.

Trends in software centric general purpose CPU ar-
chitectures are characterised by a search for higher
levels of instruction level parallelism. First super-
pipelined architectures were introduced, followed by
superscalar architectures. The latest trend is towards
VLIW architectures where each PU gets an instruc-
tion every clockcycle. The ultimate would be the ultra
high performance processor. The SIA roadmap pre-
dicts that on chip local clock speeds can be obtained
of 1.5 GHz in 2001 up to 10 GHz in 2012.

Although very attractive at first sight, there are
also some problems. First of all there is the problem
of power dissipation. It is known that programmable
architectures can dissipate 2 orders of magnitude more
power than architectures which are optimized for
power dissipation (see for example [7]). Next these
types of load-store architectures usually have a mem-
ory bandwidth problem. Finally, from a performance
point of view there is the exponential increase in pro-
cessing power as requested by new applications while
the performance offered by general purpose processors
exploiting instruction level parallelism is saturating.
This is illustrated in [8].

So there is a need for incorporating domain spe-
cific solutions in the overall architecture. Many sys-
tems need an external memory. For consumer ap-
plications there often exist the constraint of one ex-
ternal SDRAM. This leads to possible solutions as
shown in Figure 1. This architecture exploits task

Figure 1: A single bus architecture template with an
embedded CPU core and coprocessors each implement-
ing possibly different functions dependent on the appli-
cation.

level parallelism as opposed to instruction level par-
allelism. It is built around a single bus connected to

18

an external SDRAM memory. A central host CPU
processor is connected to the busses via instruction
and data caches. Furthermore there are a number
of so called coprocessors which operate concurrently
with the CPU. Each coprocessor is a domain spe-
cific processor optimised for a particular (set of) func-
tions. Therefore the architecture can be classified as
heterogeneous. Coprocessors can have different levels
of granularity which typically reflect the granularity
which is present in the application. Coprocessors can
have different levels of programmability ranging from
programmable embedded DSP cores at one end of the
spectrum up to fully hardwired accelerator units at the
other end of the spectrum. An important advantage is
that reuse is possible of well characterised embedded
cores which are present in a library and which are also
well supported from a software point of view. Copro-
cessors can have different implementation styles. For
example, the concept allows to use embedded FPGA
techniques. While programmable processors are in-
teresting in case arithmetic has to be performed on
wide wordlengths (e.g. 32 bits wide) FPGA is inter-
esting for smaller wordlengths. A typical example is a
Galois field operation (Figure 2). In software 10 dif-
ferent (32 bit wide) operations are needed. An FPGA
implementation only needs 3 exor gates.

templ = input << 1
if bit(input,7) == 1
then temp?2 := 29
else temp2 =0
out =templ EXOR temp2

in[0] in[1] in[2] in[3] in[4] in[5] in[6]

AL

in[7]

out[0] out[1] out[2] out[3] out[4] owt[5] out[6] out[7}
Figure 2: 8 bit wide Galois field operation using 3 exor

gates.

Despite the advantages of this approach there still
is a basic limitation if we look at the communication
mechanism which is based on a central bus running a
standard protocol. The basic idea is that coprocessors
communicate with each other via external SDRAM

under control of the CPU. In the SDRAM buffers are
allocated under control of the CPU. The CPU is in-
formed when data is available and the real-time kernel
(RTK) activates the coprocessors. The central bus in-
troduces a serious bandwidth limitation. Although in-
ternally the bus can be made wider (there is a trend to-
wards 64 and even 128 bit wide internal busses) there
is a limitation in the number of pins. Furthermore
communication between coprocessors, which in prin-
ciple is internal communication, is implemented via
SDRAM. This has a drastic impact on bandwidth and
on power dissipation.

Therefore a new approach is needed. What is
needed is a true system level architecting approach
taking -the application domain as a starting point.
Characteristic for a system is that it is composed of
a complex set of dissimilar elements that forms an or-
ganic whole. The whole is greater in some sense than
the sum of the parts. The system has properties that
go beyond those of the parts ([6]). The key issue in sys-
tem level design is in the communication between the
subsystems. Therefore we need a much wider variety
of communication mechanisms than the one proposed
in the previous architecture.

3 Multiwindow TV

3.1 Requirements analysis

A multiwindow TV application is chosen as a driver to
explore system level architecting. Figure 3 shows the
different I/O channels. At the input side there are

Video_1(YUV)
Video_2(YUV) |
txt/graphics
telecom
PCMCIA

output screen

Figure 3: Interfaces of a multiwindow TV application.

2 video YUYV signals, a graphics input and a telecom
interface. An important characteristic is that the 2
video sources are not synchronized. The graphics cur-
rently is a 2D character based input to support tele-
text but in the future 3D pixel based graphics must
also be supported. Extra inputs include a telecom
port and a PCMCIA interface. This makes it possible
to have access to internet services. At the output we
have a 100 Hz display device.

19

Tasks can have different characteristics. Typical
examples of event driven tasks are set control, the
modem function, user interaction etc... Event driven
tasks require a relatively low processing power and
memory bandwidth. Hard real-time tasks have dead-
lines that must be met under all circumstances, for
example video processing. Soft real-time tasks have
deadlines that can be missed without compromising
the integrity of the system ([1]). Examples are gen-
eration of graphics, scaling and format conversion of
text/graphics etc... real-time tasks are often speci-
fied in a task graph. Figure 4 shows a typical exam-
ple. There are two video streams, a main stream and

Figure 4: An example of a task graph showing a ba-
sic application mode with two video streams and a
text/graphics stream.

a secondary stream which is shown as a smaller PIP
picture on the display (picture in picture). After noise
reduction (NR) zooming and scaling of the images is
done using horizontal and vertical sample rate convert-
ers (HSRC and VSRC). After merging the two video
streams a computation intensive 100 Hz up-conversion
is performed, followed by peaking (sharpness and color
improvement) and matrix conversion. On top of that
there is a third teletext/graphics window which has
soft real-time constraints.

An important remark is that figure 4 is only one
example of a task graph. In total there are many such
graphs and new ones are still under definition. The
true specification is an API at the platform layer list-
ing the basic functions that must be supported. These
functions are represented in the task graph as nodes.
The order in which these functions appear can be dif-
ferent in the different flow graphs. The architecture

must support "plug and play” with those functions.
This way a well defined form of flexibility is specified.
A second important remark is related to quality trade-
off. In case only one video stream is processed there
is a need to switch to the highest quality. In case two
or more streams have to be processed it is acceptable
that the quality of each individual stream is lower.
The total estimated processing performance is
about tens of Gops and the total bandwidth between
functions is tens of Gb/s which is an order of magni-
tude more than the architecture in figure 1 can han-
dle. Therefore we have to keep most of the traffic
between functions on chip. But this is not always
possible. Synchronization between video streams re-
quires buffering as large as several video fields and
must therefore be performed via background memory.
So the mixing functions are implemented as shown in
figure 5. The connections to the external memory

Figure 5: Mizing and synchronization of images is
done via SDRAM memory.

are modeled as extra inputs and outputs to the flow
graphs. In other words the flow graphs are cut at the
place of the mixing functions. Therefore the appli-
cation can be represented as a set of decoupled sub-
graphs as shown in figure 6. The subgraphs process
different streams which are not synchronized. Since
the same function can occur in different subgraphs,
resource sharing across subgraphs is needed. This re-
quires a solution which provides some run-time flexi-
bility.

output
or
SDRAM

Figure 6: The application can be represented as a set
of decoupled subgraphs.

3.2 Architecture template

The tasks can be divided into two categories with a
periodic and random nature respectively. Most signal
processing tasks are periodic. This is obvious for the

20

hard real-time tasks. For periodic tasks we have to
design for throughput, for random tasks we want to
concentrate on the latency. Since these requirements
are different the system has been split in three subsys-
tems with the arbiter and the external SDRAM as the
third subsystem. This is shown in Figure 7. Soft real-
time task can be modeled as periodic or as random
tasks dependent on the circumstances.

subsystem 2

Figure 7: Target architecture with 3 subsystems. The
template allows any number of ADSPs and coproces-
sors, each evecuting different functions dependent on
the application.

Since it was clear from the beginning that the band-
width to the SDRAM is a critical resource special at-
tention was paid to the interface. To maximize the
effective bandwidth a basic access action takes 1 bus
time slot which corresponds to 16 clockcycles (burst
of 8 and 2 banks) and fetches 512 bits. The interface
runs at a local clock of 96 MHz. Appropriate arbitra-
tion mechanisms can be found in the literature ([3]).
The time axis is divided in bus service cycles. Each
bus service cycle consists of N (e.g. 64) bus time slots.
A number of these times slots (Q=<N) are reserved
for periodic streams. As long as sufficient time slots
are available priority is given to random requests. In
[3] it has been shown that this algorithm minimizes
the latency for random requests while guaranteeing
the throughput for periodic requests. The number Q
can be changed dependent on the application.

Next, the other subsystems will be discussed in more
detail (Figure 7). The random tasks are mapped on
subsystem 2 which is a classical architecture with an
embedded CPU similar to Figure 1. The periodic
tasks are mapped on subsystem 1. The basic peri-
odic functions are implemented in Application Do-
main Specific Processors (ADSPs) which are commu-
nicating with each other via a reconfigurable network.
Typical examples of ADSPs. include HSRC, VSRC,
100Hz conversion, peaking etc... ‘ADSPs can span a

wide range of programmability from hardwired dedi-
cated functions, over weakly programmable processors
up to programmable ones, including embedded FP-
GAs (=programmability in hardware). The last cat-
egory is especially interesting in case we want to add
functions after the design is finished. ADSP are sim-
ilar to so called satellite processors in [7]. In contrast
to coprocessors ADSPs operate autonomously.

The underlying communication model is dynamic
dataflow. Processors are isolated from the communi-
cation network via buffers. Processors are active when
data is available and are blocked when inputbuffers are
empty or outputbuffers are full. This way the data
processing is separated from the communication.

The communication makes use of labeled data pack-
ets. The role of the reconfigurable network is to en-
sure the correct transmission of data packets from the
producing to the consuming processors. The network
is a TST network (time-space-time network, [9]) con-
trolled by the task graph which is loaded in the con-
troller. The controller can guarantee communication
bandwidth between inputs and outputs of the net-
work. More details can be found in [5].

Another important component is the datapump. It
takes care of buffering and communication between
the stream based subsystem and the SDRAM. It also
takes care of the arbitration between periodic requests.
Therefore it plays the role of a data cache for the sub-
system. Memory inputs and outputs (see figure 6) are
mapped onto this component.

4 Discussion

Since different applications can have different charac-
teristics there will exist many different system level ar-
chitectures. This leads to the question of what can be
learned from actual design exercises that is applicable
to other application domains as well. This generali-
sation phase is an important step towards a system
level design method ([2]). In this discussion we also
take into account the experiences with the design of
a low cost MPEG2 encoder for consumer applications
([4]. Two aspects are discussed in this section. First
the resulting architecture template is discussed, fol-
lowed by a discussion of the process of how we came
to this architecture.

4.1 Architecture template

Although the content of the ADSPs and the coproces-
sors is application dependent, some characteristics of
the template are more generally applicable.

21

First the resulting architecture template is hetero-
geneous from different points of view. The ADSPs
and coprocessors are implementing different functions
at different levels of granularity. They span a wide
range of programmability from hardwired solutions at
one end of the spectrum, over weakly programmable
cores to fully programmable DSP or CPU embedded
cores. By making the right trade-off for each applica-
tion domain solutions can be obtained which combine
flexibility with efficiency from area or power dissipa-
tion point of view. Finally the resulting architecture
template is also heterogeneous because it combines dif-
ferent communication principles.

Secondly the template does not impose any restric-
tions on the implementation style and is open for
reuse. For example, embedded FPGAs are an inter-
esting option. ADSPs can be designed using synthesis
tools such as for example PHIDEO. Buffers can easily
be designed as an interface between the strict peri-
odicity as required by PHIDEO [10] and the dynamic
stream model of the template. The only extension is
that it must be possible to hold the processor to im-
plement the data driven concept. The same holds for
importing existing blocks from other designs.

4.2 Process of architecting

In the process of architecting a number of heuristics
were applied which are generally applicable. In system
level design it is important to identify bottlenecks as
soon as possible. In this example the bottleneck is
the throughput for internal communication between
ADSP processors as well as for external communica-
tion between ADSPs and the SDRAM. This has lead
to a hierarchical approach to the memory architecture.
At the top level we have the SDRAM, at the subsys-
tem level we have the datapump and at the level of the
ADSP processors we use local Fifo buffers. The same
hierarchy is reflected in the arbitration scheme. At
the top level we arbitrate between periodic and ran-
dom request coming from different subsystems. The
datapump arbitrates between periodic request and at
the level of the ADSP processors we arbitrate between
the different tasks belonging to different subgraphs.

This hierarchical approach has lead to the definition
of subsystems with well defined interfaces. The com-
plexity often comes from the interfaces, more in partic-
ular from timing aspects related to interfaces. There-
fore these aspects should not come as an afterthought
but should be taken into account from the beginning.
In the example above the throughput was guaranteed
by the architecture. Simulations were used to verify,
for example, the latency not the throughput.

The architecture also has an important impact on
the mapping. For example in the stream oriented sub-
system the major tasks are a time assignment for the
TST network and the checking of constraints with re-
spect to the throughput. In the context of the archi-
tecture these two tasks are well defined and can be
solved easily.

An important remark is related to programmability.
In the example we first tried to understand what kind
of programmability was really needed. This was made
part of the specification which is a list of functions at
the platform APT layer. This form of specification is
dynamic, i.e. it is changing during the design. The
final specification is often the result of an interactive
process with the customer. Future design methods
have to take late spec changes into account.

5 Conclusions

The definition of a system level architecture is im-
portant for a number of reasons. First of all, it is
needed in order to manage system level complexity.
Special attention must be paid to interfaces, more in
particular to timing aspects of interfaces. Second it
is needed for scalable solutions. In many cases a de-
sign is part of a whole family of designs which are
planned on a roadmap. Furthermore a good architec-
ture makes-transfer easier and documentation better
readable. Finally exercises in architecting help to un-~
derstand what the real problems are and are therefore
a first step towards the development of a system level
design method.

Acknowledgement
The authors want to thank Medea for sponsoring this
work in project AT-403 (SMT).

References

[1] A. Burns, ”Scheduling hard real-time systems: a
review”, Software Engineering Journal, pp. 116-
128, May 1991.

[2] H. De Man, ”Education for the deep submicron
age: Business as usual 7”7, Proceedings of the 34th
Design Automation Conference, 1997.

[3] Hosseini-Khayat and A. Bovopoulos, A simple
and efficient bus management scheme that sup-
ports continuous streams”, ACM Transactions on
Computer Systems, 13, no. 2, pp. 122-140, 1995.

[4] R.P. Kleihorst, A. van der Werf, W.H.A. Bruls,
W.F.J. Verhaegh and E. Waterlander, "MPEG2

22

Video Encoding in Consumer Electronics”, Jour-
nal of VLSI Signal Processing, 17, pp:. 241-253,
1997.

J. Leijten, J. van Meerbergen, A. Timmer, J. Jess,

"Stream communication between real-time tasks

in a high-performance multiprocessor”, Proceed-

ings DATE Conference, 1998.

E. Rechtin, ”Systems Architecting: Creating and

building complex systems”, Prentice Hall, 1991,

ISBN 0-13-880345-5. pp. 68-72, Edinburgh, March

1990.

J. Rabaey, A. Abnous, Y. Ichikawa, K. Seno, M.

Wan, ”Heterogeneous Reconfigurable Systems” | in

Signal Processing Systems, pp. 24-34, 1997.

[8] H. Sasaki, "Multimedia complex on a chip”, Pro-
ceedings ISSCC, pp. 16-17, 1996.

[9] M. Schwartz, ” Telecommunication networks: Pro-
tocols, Modeling and Analysis”, Addison-Wesley,
Reading.

[10] W. Verhaegh, P. Lippens, E. Aarts, J. van Meer-
bergen, ”Multidimensional Periodic Scheduling: A
Solution Approach”, Proceedings of the European
Design and Test Conference, pp. 468-474, 1997.

[7]

