
Hands-on Computer Architecture –
Teaching Processor and Integrated Systems Design with FPGAs

Jan Gray
Gray Research LLC, P.O. Box 6156, Bellevue, WA, 98008

jsgray@acm.org
Abstract – Field programmable gate arrays are an ideal
substrate for computer architecture project courses. FPGA-
based processor development offers some learning opportunities
that pure simulation approaches cannot rival. This paper first
introduces the XSOC Project, a free kit that includes the xr16
RISC CPU core, system-on-a-chip infrastructure, peripheral
cores, C compiler, and simulator. Such kits have numerous
applications in a first architecture course. It then suggests that
FPGA-based processors can also be applied to the study of
advanced architecture topics including memory systems,
multithreading, LIWs, chip multiprocessors, and architectural
support for programming languages and networking.

I. Introduction
FPGAs are ideal for teaching hands-on digital design
and computer design. It is now possible to achieve an
affordable FPGA-based computer design kit that is
simple enough to be understood end-to-end, and rich
enough to demonstrate whole computer systems.

This paper presents one such kit and then examines how
FPGA processors and systems could be applied in
teaching undergraduate computer architecture. The
paper concludes with speculation on how FPGA CPUs
might also be applied in graduate level advanced
architecture studies and research.

II. The XSOC Project
To promote do-it-yourself processor development, the
author posted numerous Usenet postings [1] and a web
site [2] on FPGA processor design, but surprisingly few
FPGA-based CPUs emerged over the years [3]. Perhaps
there were too many barriers to success – lack of
published reference designs, expensive FPGA tools, and
lack of compiler support. To help remove these barriers,
the author prepared how-to articles [4] and the XSOC
Project Kit [5], to provide a concrete end-to-end
example of a practical FPGA-based processor SoC.

The goals of this kit are to promote processor and
integrated systems design in FPGAs; to show that
FPGA-based SoCs can be cost-effective alternatives to
ASICs; to help establish a community of designers and
a library of reusable cores; and especially, to make it
practical for students and hobbyists to design and build
their own custom processors and systems.

The kit depends upon the recent emergence of low-cost
FPGA development tools. XSOC uses Xilinx Student
Edition 1.5 (XSE), approximately $100, which includes
the Xilinx Foundation Express tools, including
schematic capture, HDL synthesis, simulator, and
FPGA place-and-route development tools. XSE also
includes a textbook [6] that gently introduces digital
design concepts through FPGA lab exercises,
culminating in the design of simple 4- and 8-bit
processors. The exercises can be performed on the
XESS XS40 prototyping board, which includes an
XC4005XL or XC4010XL FPGA, a 100 MHz
programmable oscillator, 32-128 KB of RAM, 8031
MCU, parallel port, VGA port, keyboard/mouse port, as
well as full documentation, tools to download FPGA
designs and memory images to the board, and a thriving
support mailing list.

Building on this foundation, the XSOC Kit includes
design files (both schematics and synthesizable Verilog)
of the XSOC system-on-a-chip, the xr16 pipelined
RISC processor core, on-chip bus and off-chip memory
controller, and peripherals cores including on-chip
RAM, parallel port, and a bilevel VGA controller. It
also includes a port of the lcc retargetable C compiler,
an assembler and instruction set simulator, and
documentation and specifications. Full sources are
included, and XSOC may be used without charge for
non-commercial educational and research purposes.

Most soft CPU cores are synthesized implementations
of legacy instruction sets that fill large, expensive
FPGAs, and have slow cycle times. In contrast, the xr16
processor demonstrates that a simple, thrifty CPU
design can achieve a cost-effective integrated computer
system in a tiny FPGA.

The XSOC system-on-a-chip (excluding RAM/ROM)
fits in a 392 logic cell XC4005XL; the processor itself
is about 270 logic cells. (A logic cell is an FPGA unit of
area that includes one 4-input lookup table (LUT) and
one D flip-flop.) Put another way, the entire xr16 core
occupies less than ½ of 1% of the area of the largest
Xilinx Virtex-E device (XCV3200E, 73,008 logic
cells). It has a cycle time of approximately 30 ns in

Xilinx SpartanXL devices, which should approach 10
ns in newer Xilinx Virtex FPGA devices.

III. xr16 Processor
The goal of the xr16 processor design was to
demonstrate a full-featured pipelined RISC processor
that runs integer C code and fits in an XC4005XL. Area
and performance were important, but so were simplicity
and ease-of-understanding.

The xr16 processor is a classic RISC processor, with a
16-bit instruction word, sixteen 16-bit registers, byte
and word load/store, and add with carry support to form
long integers from register pairs. A stretch version,
xr32, with 32-bit registers, is forthcoming.

A. Instruction set design

The xr16 instruction set was designed as follows. First
the lcc retargetable C compiler was ported to a
“generic” 16-bit RISC. Then a handful of sample C
programs were compiled and histograms of instruction
frequencies were studied. Next it was determined which
instructions could be synthesized from others. Finally, a
strategy for encoding word-wide immediate constants
was selected. The result:
• only add, sub, addi are 3-operand;
• r0 always reads as 0;
• 4-bit immediate fields; for 16-bit constants, a prefix
imm establishes the most-significant 12-bits of the
immediate operand of the instruction that follows;

• interlocked compare and conditional branch sequence
instead of architected condition codes;

• jal (jump-and-link) jumps to an effective address,
saving the return address in a register;

• call func compactly encodes jal r15,func;
• perform mul, div, and variable-bit shifts in software.

The xr16 processor has six instruction formats and 43
instructions; xr32 adds 2 additional instructions
(load/store longword).

Format 15 12 11 8 7 4 3 0

rrr op rd ra rb
rri op rd ra imm
rr op rd fn rb
ri op rd fn imm
i12 op imm12
br op cond disp8

Table 1: XR Instruction Formats

Hex Fmt Assembler Semantics
0dab rrr add rd,ra,rb rd = ra + rb;
1dab rrr sub rd,ra,rb rd = ra – rb;
2dai rri addi rd,ra,imm rd = ra + imm;
3d*b rr {and or xor andn adc sbc} rd,rb

rd = rd op rb;
4d*i ri {andi ori xori andni adci sbci

slli slxi srai srli srxi} rd,imm
rd = rd op imm;

5dai rri lw rd,imm(ra) rd = *(ushort*)(ra+imm);
6dai rri lb rd,imm(ra) rd = *(byte*)(ra+imm);
7xxx − reserved
8dai rri sw rd,imm(ra) *(ushort*)(ra+imm) = rd;
9dai rri sb rd,imm(ra) *(byte*)(ra+imm) = rd;
Adai rri jal rd,imm(ra) rd = pc, pc = ra + imm;
B*dd br {br brn beq bne bc bnc bv bnv

blt bge ble bgt bltu bgeu bleu
bgtu} label

if (cond) pc += 2*disp8;
Ciii i12 call func r15 = pc, pc = imm12<<4;
Diii i12 imm imm12 imm'next15:4 = imm12;
Edai rri ll rd,imm(ra) rd = *(ulong*)(ra+imm);
Fdai rri sl rd,imm(ra) *(ulong*)(ra+imm) = rd;
Exxx
Fxxx

− reserved (xr16)

Table 2: XR Instruction Set

Some instructions are synthesized from others.

Assembly Maps to
nop and r0,r0
mov rd,ra add rd,ra,r0
cmp ra,rb sub r0,ra,rb
subi rd,ra,imm addi rd,ra,-imm
cmpi ra,imm addi r0,ra,-imm
com rd xori rd,-1
lea rd,imm(ra) addi rd,ra,imm
lbs rd,imm(ra)
(load-byte,
sign-extending)

lb rd,imm(ra)
xori rd,0x80
subi rd,0x80

j addr jal r0,addr
ret jal r0,0(r15)

Table 3: Synthesized Instructions
To keep things simple, there are no branch delay slots.
The architecture also reflects a streamlined
implementation. One shared memory port means
load/store instructions take two cycles. To save an adder
and a mux, jumps and taken branches take three cycles.
And to save another mux, result forwarding is
performed on only the first register operand. (The
assembler handles other cases.)

B. Implementation

The FPGA. XSOC/xr16 is implemented in a Xilinx
XC4005XL-PC84C-3. This device has a 14×14 array of
configurable logic blocks (CLBs) and 61 I/O blocks
(IOBs) in a sea of programmable interconnect.

Every CLB has two 4-input lookup tables (LUTs) and
two flip-flops. Each LUT can implement any logic
function of 4 inputs, or a 16×1-bit synchronous static
RAM, or ROM. Each CLB also has “carry logic” to
help build fast, compact ripple-carry adders.

Each IOB offers input and output buffers and flip-flops.
The output buffer can be 3-stated for bidirectional I/O.

The programmable interconnect routes CLB/IOB output
signals to other CLB/IOB inputs. It also provides wide-
fanout low-skew clock lines, and horizontal long lines
which can be driven by 3-state buffers at each CLB.

The XC4000XL is ideal for implementing processors.
Just 8 CLBs can build a single-port 16×16-bit register
file (using LUTs as SRAM), a 16-bit adder/ subtractor
(using carry logic), or logic unit. Since each LUT has a
flip-flop, the device is register rich, enabling a
pipelined implementation style; and as each flip-flop
has a dedicated clock enable input, it is easy to stall the
pipeline. Long lines and 3-state drivers form efficient
word-wide result multiplexers and on-chip buses.

Pipeline design. The xr16 has a 3-stage pipeline:
• IF: instruction fetch
• DC: decode and operand fetch
• EX: execute and write-back results

Each pipeline stage incurs an instruction fetch memory
access, an optional load/store access, and optional DMA
accesses. Each memory access can take one or more
memory cycles – if the memory RDY signal is not
asserted, the pipeline does not advance.

For pipeline data hazards, the xr16 includes a result
forwarding mux on the A operand only.

Conditional branches and jumps take place during the
EX pipeline stage; the IF and DC stage instructions in
progress are annulled.

Control unit design. The control unit inputs are the next
instruction INSN15:0 and RDY signals from memory and
the Z,N,CO,V outputs from the datapath. The control
unit outputs include the next memory access control
signals and the datapath control signals.

As instructions flow through the instruction register
(IR) pipeline, they are decoded. In the DC stage, and the
control unit drives the register file and operand
selection control signals.

If the DC stage instruction is a conditional branch, the
EX stage instruction must be an add/sub, and its
condition code outputs are evaluated against the branch
condition. If the branch is taken, the branch
displacement is added to PC in the EX stage. On jumps
and taken branches the control unit FSM annuls the two
instructions in the branch shadow.

In the EX stage, the control unit drives ALU, result
mux, and address/PC unit control outputs.

On interrupts, the control unit replaces the fetched
instruction with jal r14,10(r0), which calls the
interrupt handler. Interrupt return is jal r0,0(r14).

Datapath design. The datapath executes instructions at
up to 1 IPC. It consists of a register file, operand
selection multiplexers, ALU, result multiplexer, and an
address/PC unit.

The 2R-1W register file is implemented as two copies
of a 1R-1W file, each a 16x16 SRAM (16 LUTs). The
two register operands are read in the first half of each
cycle, and the EX stage result is written back into both
copies in the second half. The A operand is either the
register file port A output, or the forwarded result value,
selected by a multiplexer. The B operand is either the
register file port B output or a sign-/zero-extended
immediate value formed from the IR’s imm and/or
imm12 fields. The A and B operand muxes and registers
are each a column of 16 LUTs and flip-flops.

The ALU consists of a 16-bit adder/subtractor (20
LUTs) and a 16-bit logic unit (16 LUTs). The shifter
requires no logic, it merely skews the A operand
register left or right by one bit.

The result multiplexer selects an EX stage result value
from the adder, logic unit, “shifters”, return address, or
a word or zero-extended byte load result. It implements
a 7-input 16-bit-wide mux using long lines and 3-state
buffers, conserving precious logic.

The address/PC unit adds either +2 or the branch
displacement to PC (8+16 LUTs). The next address is
either the next PC or the effective address computed in
the ALU, as selected by ADDRMUX (16 LUTs).

The processor also acts as the DMA engine. Instead of a
simple register, PC is a 16x16 register file, with PC0

storing the program counter,
and PC15..1 storing DMA
address counters.

Figure 1 is the XSOC system
and xr16 processor top-level
schematic, with processor P,
memory and on-chip bus
controller MEMCTRL, on-
chip bus and peripherals
PARIN, PAROUT, IRAM,
and the VGA controller.

The on-chip data bus uses an
abstract peripheral control
bus to provide glue-logic-free
interfacing to peripheral cores.
This abstraction also makes it
possible to evolve the on-chip
bus protocol without
impacting existing systems
and peripheral cores.

The processor schematic (not
shown) simply interconnects
an instance of the control unit
(Figure 2) and the datapath
(Figure 3).

The design is synchronous
and it is safe to stop the clock.
During system bring up, the
XS40 prototype board was
attached to a PC parallel port
and the clock was driven at 1
Hz using a shell script.

To minimize area and cycle
time, the datapath is hand-
floorplanned using RLOC
attributes (Figure 4). Datapath
CLBs are white, other placed
CLBs are light gray. A few
critical paths are manually
technology mapped using
FMAPs. The design is placed
and routed with timing
constraints to further optimize
critical paths.

Figure 5 shows the XSOC
FPGA in the context of the
XS40 board. The 8031 is not
used and is held in reset.

AR
EG

S,
 A

R
EG

, S
LB

U
F

BR
EG

S,
 B

R
EG

, S
R

BU
F

FW
D

, A
, U

D
LD

BU
F,

 Z
H

BU
F

IM
M

ED
, B

, L
D

BU
F,

 U
D

BU
F

LO
G

IC
, D

O
U

T,
 L

O
G

IC
BU

F

AD
D

SU
B,

 S
U

M
BU

F

PC
D

IS
P,

 Z

AD
D

R
M

U
X

PC
IN

C
R

PC
, R

ET
, R

ET
BU

F

PM
U

X,
 P

PI
XE

LS
, L

XD
, U

XD

IR
AM

R
N

A

R
N

B

CPU CTRL, SYSCTRL, MISC

Figure 4: XSOC/xr16 Floorplan

470
1K
470
1K
470
1K

R

G

B

VGA PORT

/HSYNC
/VSYNC

XC4005XL FPGA

XA[14:1]
XA_0

XD[7:0]
RAMNCE
RAMNOE
RAMNWE

RESET8031

R1
R0
G1
G0
B1
B0

NHSYNC
NVSYNC

CLK

PAR_D[5:0]

PAR_S[6:3]

32 KB SRAM

A[14:1]
A0
D[7:0]
/CS
/OE
/WE

D[5:0]

S[6:3]

PARALLEL
PORT

12 MHz
OSC.

Figure 5: XSOC In Situ

Figure 6 shows the VGA display while running a demo.

Figure 6: XSOC Graphics Demo Display

The 576x455 bilevel bitmapped VGA controller
displays all 32 KB of RAM. The top lines of the screen
are the demo program binary, followed by the display
font tables. Below that are some two dozen lines of text

output, and some XOR line graphics. And below that
lies the stack.

It’s fun to watch all of memory at 60 Hz. One can
observe the top of the call stack moving up and down,
the stack variables changing, and counters counting, and
one is left with a visceral impression of the speed of the
machine and where its program spends its time.

C. Development tools

The XSOC Project Kit includes source code (or
references to same) and Win32 binaries for lcc-xr16, a
port of the lcc retargetable C compiler [7] for xr16, and
xr16, the xr16 assembler and instruction set simulator.

The first port of lcc to target xr16’s 16-bit int and
pointer model, initially based upon the MIPS machine
description, took the author (a compiler developer) only
one day. Further modifications to also target the 32-bit
xr32 processor required just a few hours to revise the
approximately 200 lines of xr32 specific instruction
templates. These pleasing results are a testament to lcc’s
retargetability, and reflect that the XR processors were
designed as targets of this compiler.

The xr16 assembler/instruction set simulator is also
straightforward. The assembler, about 1300 lines of
code, can be run for the side-effect of emitting a listing
file and image file, or to initialize memory for the
instruction set simulator. The latter is a simple switch-
based interpreter, some 400 lines of code, which runs a
perfectly adequate 3,000,000 instructions per second on
a 266 MHz PC.

As mentioned, the kit includes full design sources in
both schematics and Verilog source. The latter are
compact enough to run the entire system test bench
using the free (1,000 line limit) Veriwell Verilog
simulator. It is quite instructive to compare and contrast
the instruction set simulator output to the Verilog
simulator output, the latter highlighting pipeline stalls,
annulled instructions, and so forth.

IV. Teaching Applications of FPGA CPUs
XSOC serves as a proof by example that an entire
system-on-a-chip (sans RAM) can be built in an modest
FPGA, using inexpensive tools. This section explores
the teaching value of such FPGA computer systems.

Why build an undergraduate architecture course around
FPGA-based processors and systems? Because there is
such value in the experience of building real hardware.

Besides the emotional appeal of booting a computer
made of your own ideas and your own hands (and how
many educators have had that pleasure?), FPGA CPUs
can impart a realism to the learning experience that is
probably not available in more textbook or simulator-
based approaches.

So much of computer architecture is about making
tradeoffs such as performance versus area versus cycle
time versus power, etc. While there is much value in a
course project to develop a processor model in an HDL,
and then study its behavior in a simulator, it doesn’t go
far enough. It’s like teaching how to balance a home
budget but with a bottomless checking account. By not
closing the loop with some kind of realistic cycle time,
area, and resource-usage data, the design tradeoffs
aspect suffers.

Of course, student projects could close the loop through
the use of real EDA tools, but that would be
unnecessarily expensive and complicated. In practice,
student editions of FPGA EDA tools suffice, producing
the desired timing analysis and resource usage reports.

In an implementation-oriented course, the tradeoffs are
so much more quantifiable. Students can now
experience, as did the author, that there is an area and
delay cost to everything, even a multiplexer; how to
find a critical path and how retiming moves them about;
how to trade-off area for new functionality vs. area for
reduced cycle times; the importance of floorplanning;
and may even discover that adding something to a
design can make it slower.

Of course, the lessons of FPGA implementation will not
directly apply to custom silicon implementations. A
student of FPGA CPUs might be surprised to learn that
a 16x32-bit register file, 32-bit adder, or 32-bit 2-1
multiplexer, each 16 CLBs in an FPGA, vary widely in
area in a full custom design. But the method of
systematically evaluating design alternatives and
tradeoffs is the same regardless of the implementation
technology.

(Since, compared to an FPGA, a full custom design
offers perhaps 20 times more gates, each 10 times
faster, it follows that designing processors in
programmable logic is not unlike taking a time machine
back through the last seven years of Moore’s Law. 100
MHz pipelined scalar and 2-issue RISC processors are
feasible, but 800 MHz associatively indexed out-of-
order issue buffers are not!)

Here are some other benefits of the realism imposed by
a hardware-based course project.
• There is less hand-waving allowed – designs must be

more thorough and complete or the implementation
tools will fail to compile them.

• Students learn the testing imperative – to the extent
students produce an untestable design, or skimp on
writing test-benches, they will learn their lesson in the
lab hunched over a hot oscilloscope.

• Students live the “system bring up” experience,
working through the adversity of a design that does
not start or that fails intermittently, and ending with
the sublime glow felt when the darn thing finally
works.

Realism aside, FPGA CPUs have other benefits. The
use of a custom, teaching-oriented CPU, FPGA or
otherwise, should permit course material on architecture
and implementation to be streamlined as compared to a
legacy instruction set architecture or even a subset. For
example, the xr16 core is so simple that a student
should be able to understand the purpose and function
of every last gate.

Studying computer design with FPGAs also confers
vocational training benefits. As FPGAs get faster,
larger, and cheaper, and as the minimum volume for
gate array starts continues to rise, FPGAs will
increasingly displace gate arrays and even full custom
implementations from many application areas. In time,
the majority of digital systems designs could well be in
programmable logic, and FPGA CPU cores could
become as commonplace as are discrete embedded
processors today. FPGA system design expertise should
be a quite marketable skill.

V. FPGA CPU Project Ideas
Is it realistic to expect undergraduates (perhaps working
in teams) to produce working FPGA CPUs and
systems? Perhaps – it would not seem to be too difficult
a stretch, at least for EE students who have already had
a first course in digital design and exposure to HDLs.

Of course, the specific course project can be tailored to
the class level, class prerequisites, and to available
teaching and lab resources. Assume students receive a
kit with infrastructure software (instruction set
architecture and core interface specifications, compiler,
assembler, instruction set simulator, test suites), system-
on-chip cores, and in some cases, the processor core
itself. Here are some projects they might tackle:
• Implement a processor core for the given ISA.

• Double its performance – evolve a non-pipelined core
into a pipelined core.

• Add a cache, MMU, or exceptions.
• Given C code with a critical inner loop, build an (on-

chip) coprocessor to speed it up. Or add new custom
instructions to speed it up. Don’t forget to enhance
the compiler, assembler, simulator, and test suite!

• Port the design to a new FPGA device architecture,
and retime the pipeline.

• Build a system-on-a-chip for a particular embedded
application.

• Add a new (on-chip) peripheral core – design the
core, add it to the SoC, write the interrupt handler or
device driver, add testing support to the test bench.

• Develop a test suite or test bench for the system or
processor.

• Reimplement a subset of a famous legacy ISA.

Our favorite project idea simulates the competitive
processor design industry. Student teams are issued a
CPU design kit, including compiler tools, a working,
non-pipelined processor core, a benchmark suite, and an
FPGA board, which runs “out of the box”, and are
instructed to evolve and optimize their processor,
including its instruction set architecture and tools, in
order to run the benchmark suite as fast as possible (or
in as little total energy as possible). At end of term,
teams submit their designs and vie for the coveted
“fastest CPU design” trophy. This sort of project could
uniquely motivate students to practice all manner of
quantitative analysis and design activities.

VI. FPGA CPUs for Advanced Computer
Architecture Studies and Research
FPGA devices improve at a rapid pace. Comparing the
Xilinx XC4013 (1152 logic cells in 1993) with the
XCV3200E (73,008 logic cells in 2000), reveals an
improvement of 26 in just seven years. Recent FPGAs
from Xilinx and Altera, include Virtex-E and APEX,
now provide vast quantities of programmable logic and
some dozens of large (e.g. 256x16b) embedded RAM
blocks. This section considers how these new devices
enable direct prototyping of some more advanced areas
of computer architecture research.

The xr16 core consumes 270 logic cells. The 32-bit
xr32 core will be approximately 430 logic cells.
Redesigning xr32 for Virtex, and trading off some logic
for speed (using dual-port RAM for the register files,
and replacing the result multiplexer TBUFs with actual
LUT-based muxes), this could rise to 600-700 logic

cells. Even so, such a streamlined 32-bit RISC would
still use only 1% of the largest Virtex-E device, and less
than 5% of a mid-range (15,552 logic cell) XCV600E.
Therefore FPGAs now have adequate capacity to
prototype 8-32-way 32-bit chip multiprocessors.

Then there are the new embedded RAM blocks. The
XCV600E provides 72 256x16 (or 512x8, etc.) dual-
port synchronous SRAMs with sub-5 ns cycle times.
Block RAM has many architectural applications [8],
including:
• registers: vector register files, windowed register

files, and multi-context register files;
• stacks: operands, activation records, control;
• on-chip RAM, ROM, and microcode control stores;
• caches: data, tags, write-accumulation structures,

victim buffers;
• branch prediction: branch history tables and branch

target address/instruction caches;
• MMUs: segmentation registers, and translation

lookaside buffers (no associative lookup though);
• debug and tracing support: breakpoint code and data

address, count or value registers, branch traces, PC
traces, memory access traces.

and systems applications, including:
• interconnects: on-chip packet/cell buffers, queues,

and virtual channel buffers;
• graphics: video line input or output buffers or delay

lines, texture caches, sprites, pattern generators,
display lists, span buffers (color, Z), color mapping
LUTs.

• garbage collection: read, write barriers via page table
attribute bits or region table address checks, card
marking bit array;

• multimedia: DCT and IDCT support (8x8 pixel
blocks, coefficient tables, compression tables);

Indeed, there are enough embedded RAM blocks in that
mid-range XCV600E to prototype an 8 or 16 CPU chip
multiprocessor, where each processor is multithreaded
with an 8-context 32x32-register file (2 block RAMs),
and with a 256x32b I-cache (2 block RAMs), that share
one 1024x32b L2 cache (8 block RAMs).

FPGA I/O capabilities have also made great strides,
with the newer devices supporting a smorgasbord of
signaling standards and supporting interfaces such as
200 MHz ZBT SSRAM and 266 MHz DDR SDRAM,
and providing inter-FPGA signaling rates of up to 300
Mbps/pin. It should be possible to prototype fast multi-
banked memory systems and interconnect fabrics.

Returning to the subject of advanced architecture
studies, again it would seem that there is some value in
the additional grounding in reality inherent in a project-
oriented course.

Assume once again that students are issued an FPGA
CPU and system-on-a-chip kit, including software tools
and a toolkit of processor, system, interface, and
peripheral cores designs. Here are some of the topics
students might investigate, analyze, simulate, and then
prototype.
• Build a 2-3 operation long-instruction word machine,

including tools support. (Challenges here are mostly
in the register file design and the code generator.)

• Build a 2-issue superscalar processor.
• Build a chip multiprocessor including a suitable

memory system.
• Build a multithreaded processor for a given workload.
• Build a fault tolerant processor from several lock-step

self-checking processor pairs.
• Add architectural support for non-pausing multi-

threaded garbage collection via hardware read and
write barriers.

• Add architectural support for network routing, packet
inspection, etc. possibly including integrated memory
streaming or DMA instructions.

• Add architectural support for message passing
between two processors on one (or separate) devices.

• Add architectural support for debugging or tracing.
• For a particular signal processing problem, add a

fixed FPGA DSP datapath to the FPGA computer
system.

Put another way, modern FPGAs make it possible to
study-by-prototype just about anything that appears in a
modern computer system. Indeed, except for large or
content associative or many-ported memories, there are
few structures in the computer architect’s toolbox that
are not easily implemented in an FPGA.

VII. Related Work
Several schools have used FPGA processor design
projects to help teach computer design.

At Virginia Tech in 1995, students of EE6504, Rapid
Prototyping of Computing Machinery, designed 16-bit
HOKIE RISC processors for an XC4010 FPGA. [9]

The 1998 Cornell EE475 architecture class labs
included VHDL design and FPGA verification of a
simple CPU and a subsequent pipelined version. [10]

At Hiroshima City University, “more than 75% (about
40) of the students in a class succeed to create their own
original FPGA computers within 15 weeks in the first
term of their junior student days every year since 1996.”
Students work in pairs, design RISC or CISC CPUs,
write HDL and target FPGAs. [11]

At Georgia Tech, students model pipelined RISC
processors in HDLs and synthesize and run them in
low-cost Altera and Xilinx prototyping cards. [12]

VIII. Conclusion
Simulation is good, but it does not model the elation felt
when one’s computer design boots in real hardware. All
that material on architectural tradeoffs, retiming, and
floorplanning, seems so much more relevant as applied
to the device on your laboratory workbench.

“I hear and forget. I see and I remember.
I do and I understand.”

– old Chinese saying, courtesy Prof. Philip Leong

IX. References
[1] J. Gray, “FPGA CPU Usenet Posting Archives”,
www.fpgacpu.org/usenet/, March 2000.

[2] J. Gray, “Homebrewing RISC Microprocessors In FPGAs”,
www3.sympatico.ca/jsgray/homebrew.htm, August 1996.

[3] J. Gray, “FPGA CPU Links”, www.fpgacpu.org/links.html, March 2000.

[4] J. Gray, “Building a RISC System in an FPGA: Part 1: Tools, Instruction
Set, and Datapath; Part 2: Pipeline and Control Unit Design; Part 3: System-
on-a-Chip Design”, Circuit Cellar Magazine, #116-118, March-May 2000.

[5] J. Gray, “The XSOC Project Kit”, www.fpgacpu.org/xsoc/, March 2000.

[6] D Vanden Bout, The Practical Xilinx® Designer Lab Book, Prentice
Hall, 1998.

[7] C. Fraser and D. Hanson, A Retargetable C Compiler: Design and
Implementation, Benjamin Cummings, 1995. www.cs.princeton.edu/lcc.

[8] J. Gray, “The Myriad Uses of Block RAM”,
www.fpgacpu.org/usenet/bb.html, Oct. 1998.

[9] P. Athenas, “The Hokie Instant RISC Microprocessor”,
www.ee.vt.edu/courses/ee6504/, 1995.

[10] B. Land, “Elect Eng 475 Microprocessor Architectures”,
instruct1.cit.cornell.edu/Courses/ee475/.

[11] R. Takahashi and N. Yoshida: “Diagonal Examples for Design Space
Exploration in an Educational Environment CITY-1”, Proc. 1999 Int’l Conf.
on Microelectronic Systems Education pp.71-73 (1999). Also
“Microcomputer Design Educational Environment City-1”,
www.lcl.ce.hiroshima-cu.ac.jp/~activity/City-1/.

[12] J. Hamblen, “Using Large CPLDs and FPGAs for Prototyping and VGA
Video Display Generation in Computer Architecture Design Laboratories”,
IEEE Technical Committee on Computer Architecture Newsletter, Feb.
1999, pp.12-14.

	I. Introduction
	II. The XSOC Project
	III. xr16 Processor
	A. Instruction set design
	
	Assembly

	B. Implementation
	C. Development tools

	IV. Teaching Applications of FPGA CPUs
	V. FPGA CPU Project Ideas
	VI. FPGA CPUs for Advanced Computer Architecture Studies and Research
	VII. Related Work
	VIII. Conclusion
	IX. References

