
NIKTECH INC

Architecture Guide

N I K T E C H I N C

Architecture Guide

 NikTech Inc
190 Shooting Star Isle

Foster City, CA - 94404

 MANIK Reference Guide

www.niktech.com 2

Table of Contents

TABLE OF CONTENTS ... 2

ABOUT THIS GUIDE. .. 5

OVERVIEW ... 5

FEATURES... 5
Hardware Features... 5

WISHBONE BUS COMPLIANT INTERFACE. .. 5

Software Development Tools .. 5
BLOCK DIAGRAM ... 6

CONFIGURATION OPTIONS .. 6

REGISTERS ... 7

GENERAL PURPOSE REGISTERS .. 7
SPECIAL FUNCTION REGISTERS. ... 7

PSW (Program Status Word) (R/W) SFR0.. 8
RA (R/W) SFR1 ... 8
IPC (R/W) SFR2.. 8
TIMER (R/W) SFR3 .. 8
IBASE(R/W) SFR4 .. 9
USREG(R/W) SFR5 .. 9
HWDBG(R/W) SFR6... 9
HWBP0(R/W) SFR7 .. 9
HWBP1(R/W) SFR8 .. 9
HWWP0(R/W) SFR9 ... 9
HWWP1(R/W) SFR10 ... 9

INSTRUCTIONS.. 9

INSTRUCTION TYPES... 9
ALU Instructions.. 10
Load/store Instructions .. 10
Jump Instructions .. 11
Multiply and Shift Instructions. .. 12
Compare Instructions .. 12
Conditional instructions. ... 12
User Defined Instructions.. 13

PIPELINE. .. 13

Multiply/Shift. ... 14

CACHE OPERATION. ... 14

INTERRUPT HANDLING.. 15

HARDWARE DEBUG AID .. 17

A) HARDWARE SINGLE STEPPING. .. 17
B) HARDWARE BREAKPOINTS... 17
C) HARDWARE WATCHPOINTS.. 18

TIMER. ... 18

POWER DOWN MODE.. 19

 MANIK Reference Guide

www.niktech.com 3

USER INSTRUCTION INTERFACE.. 20

MANIK WISHBONE BUS INTERFACE.. 22

APPLICATION BINARY INTERFACE. .. 22

Function calling convention.. 22
Layout of data in memory .. 23

APPENDIX – A . HDL INSTANTIATION TEMPLATE. ... 24

APPENDIX – B. ALPHABETIC LIST OF INSTRUCTIONS... 26

ADD ADD , UPDATE CARRY .. 26
ADDC ADD WITH CARRY, UPDATE CARRY .. 26
ADDF CONDITIONAL ADD IF FALSE .. 26
ADDI ADD WITH IMMEDIATE ... 27
ADDIF CONDITIONAL ADD WITH IMMEDIATE , IF FALSE ... 27
ADDIT CONDITIONAL ADD WITH IMMEDIATE, IF TRUE ... 27
ADDT CONDITIONAL ADD, IF TRUE .. 28
AND LOGICAL BITWISE AND .. 28
ANDI LOGICAL AND WITH IMMEDIATE.. 29
ASR ARITHMETIC SHIFT RIGHT (DYNAMIC)... 29
ASRI ARITHMETIC WITH IMMEDIATE (STATIC) .. 29
CMPEQ COMPARE FOR EQUAL .. 30
CMPEQI COMPARE WITH IMMEDIATE FOR EQUAL ... 30
CMPGT COMPARE FOR GREATER THAN (SIGNED)... 31
CMPGTI COMPARE WITH IMMEDIATE FOR GREATER THAN (SIGNED) ... 31
CMPHS COMPARE FOR HIGHER OR SAME (UNSIGNED).. 31
CMPLS COMPARE FOR LESS THAN OR SAME (UNSIGNED)... 32
CMPLT COMPARE FOR LESS THAN (SIGNED) .. 32
CMPLTI COMPARE WITH IMMEDIATE FOR LESS THAN (SIGNED) ... 33
J UNCONDITIONAL BRANCH (PC RELATIVE).. 33
JF CONDITIONAL BRANCH IF FALSE .. 33
JL BRANCH TO SUBROUTINE; UPDATE RA... 34
JR BRANCH REGISTER INDIRECT.. 34
JRL BRANCH TO SUBROUTINE; REGISTER INDIRECT; UPDATE RA ... 35
JSFR BRANCH SPECIAL FUNCTION REGISTER INDIRECT.. 35
JT CONDITIONAL BRANCH IF TRUE.. 36
LDR[BH] LOAD REGISTER FROM MEMORY .. 36
LDRPC LOAD WORD(32BITS) FROM LITERAL POOL (PC RELATIVE).. 37
LSL LOGICAL SHIFT LEFT (DYNAMIC)... 37
LSLI LOGICAL SHIFT LEFT WITH IMMEDIATE (STATIC) ... 37
LSR LOGICAL SHIFT RIGHT (DYNAMIC) .. 38
LSRI LOGICAL SHIFT RIGHT WITH IMMEDIATE (STATIC)... 38
MFSFR MOVE FROM SFR TO GPR.. 38
MOV UNCONDITIONAL MOVE FROM GPR TO GPR .. 39
MOVF CONDITIONAL MOVE FROM GPR TO GPR, IF FALSE... 39
MOVI UNCONDITIONAL MOVE IMMEDIATE TO GPR .. 40
MOVT CONDITIONAL MOVE FROM GPR TO GPR, IF TRUE .. 40
MTSFR MOVE FROM SFR TO GPR.. 40
MULT MULTIPLY .. 41
MULTI MULTIPLY WITH IMMEDIATE .. 41
OR LOGICAL OR .. 41
STR[BH] STORE WORD(32 BITS) TO MEMORY.. 42
SUB SUBTRACT; UPDATE CARRY ... 42
SUBC SUBTRACT WITH CARRY; UPDATE CARRY ... 43
SUBF CONDITIONAL SUBTRACT; IF FALSE.. 43
SUBT CONDITIONAL SUBTRACT; IF TRUE ... 43

 MANIK Reference Guide

www.niktech.com 4

SWINT SOFTWARE INTERRUPT ... 44
SXB SIGN EXTEND BYTE... 44
SXH SIGN EXTEND HALF WORD.. 44
UDI[0-3] USER DEFINED INSTRUCTIONS ... 45
XHW EXCHANGE HALF WORD.. 45
XOR LOGICAL XOR.. 46
ZXH ZERO EXTEND .. 46

 MANIK Reference Guide

www.niktech.com 5

About this guide.
This guide describes the Hardware architecture, Application Binary Interface and the

instruction set of MANIK – a 32 bit RISC microprocessor.
Overview
MANIK is a 32 bit RISC Microprocessor. The salient features of the processor are listed

below.

Features

Hardware Features

• Data Path Width 32 bits, with Four stage pipeline.

• Mixed 16/32 bit instructions for code density

• Von Neumann Architecture (Data and Instruction in the same

address space).

• Sixteen, 32 bit General Purpose Registers.

• Four USER defined instructions (with Register File Write back

capability).

• In-order issue Out-of-order completion.

• Some Conditional Instructions (Reduces branches & increases

code density).

• Built in 32 bit Timer, (count down and interrupt modes)

• Power Down Mode.

• Multiplier and Barrel shifter (2 configurations, size Vs

Performance trade off)

• Configurable Data & Instruction cache sizes.

Wishbone bus compliant interface.

• Six External interrupts

• Hardware single step, Breakpoint & Watch point facility

Software Development Tools

• GNU Assembler, Linker (binutils)

• GCC (C,C++ Compiler)

• GDB (Debugger) and Instruction Set Simulator

• Standalone C-Library (RedHat newlib)

 MANIK Reference Guide

www.niktech.com 6

Block Diagram

Configuration Options

Option Name Default

Value

Description

WIDTH 32 Data Width (should not be changed)

ADDR_WIDTH 32 Address Width should not exceed Data Width

USREG_ENABLED True Enable USREG special function register

TIMER_WIDTH 32 Width of the built-in timer counter

TIMER_CLK_DIV 0 Timer counter decremented every this

cycles

INTR_VECBASE 0 Configuration value of ibase (vector base)

INTR_SWIVEC 4 Offset of swi vector in the vector table

INTR_TMRVEC 8 Offset of Timer vector in the vector table

INTR_EXTVEC 12 Offset of external interrupt vector

INTR_BERVEC 16 Offset of Buserror interrupt vector

USER_INST True Logic for User defined instruction enabled

Data/Instruction Cache Module

I

N

S

T

R

U

C

T

I

O

N

R

E

G

S

Instruction

Address Generation

Unit

D

E

C

O

D

E

R

E

G

F

I

L

E

D

E

C

O

D

E

R

F

S

T

A

G

E

R

E

G

S

ALU

MULT/

SHIFT

USER

Logic

LOAD/

STORE

E

X

S

T

A

G

E

R

E

G

S

M

U

X

Pipeline Control

D

E

S

T

A

G

E

R

E

G

External Interruppts (4) Wishbone BUS Interface

Interrupt

controller

 MANIK Reference Guide

www.niktech.com 7

ICACHE_ENABLED True Instruction Cache enabled

DCACHE_ENABLED True Data Cache enabled

ICACHE_ADDR_WIDTH 10 Address of icache memory (determines

icache size)

DCACHE_ADDR_WIDTH 10 Address of dcache memory (determines

dcache size)

ICACHE_LINE_WORDS 1 Number of words(32 bit) per cache line

(Number of read requests issued for a

icache miss). Valid values (1,2,4,8)

DCACHE_LINE_WORDS 1 Number of words(32 bit) per cache line

(Number of read requests issued for a

dcache miss). Valid values (1,2,4,8)

ICACHE_SETS 1 Number of icache sets. Valid values

(1,2,4)

DCACHE_SETS 1 Number of dcache sets. Valid values

(1,2,4)

SHIFT_SWIDTH 3 Number of bits the barrel shifter will

shift per cycle (max – 5, min – 1)

MULT_BWIDTH 32 Multiplier will take this/32 cycles to

complete. (max – 32, min – 2)

HW_BPENB True Enable 2 Hardware break points

HW_WPENB True Enable 2 Hardware watch points

Registers
There are sixteen 32-bit General Purpose registers in MANIK and four Special Function

Registers.

General Purpose Registers
All sixteen General Purpose registers in MANIK are 32 bits wide, and are numbered from R0 to

R15. The RESET value of all of them is UNDEFINED. The General Purpose Registers are

orthogonal; there is no special or implied usage of any GPR by the hardware.

Register Name Compiler Usage
R0 Stack Pointer

R1 1
st
 Argument Register / Return Value

R2 2
nd
 Argument Register / Return Value

R3 3
rd
 Argument Register

R4 4
th
 Argument Register

R5 Temporary register

R6 Temporary register

R7 Temporary register

R8 Register Variable (callee saved)

R9 Register Variable (callee saved)

R10 Register Variable (callee saved)

R11 Register Variable (callee saved)

R12 Register Variable (callee saved)

R13 Register Variable (callee saved)

R14 Register Variable (callee saved)

R15 Register Variable (callee saved)

Special Function Registers.

MANIK core has ten Special Function Registers. These registers can be read using the

“mfsfr” instruction, and written to using the “mtsfr” instruction. The registers can be

 MANIK Reference Guide

www.niktech.com 8

referred to using their number (SFR0 – SFR10) or using their synonyms, PSW, RA, IPC,

TIMER, IBASE, USREG, HWDBG, BP0, BP1, WP0 and WP1.

PSW (Program Status Word) (R/W) SFR0

Bit Position(s) Description
0 SW – Soft Interrupt in progress

1 EI – External Interrupt in progress

2 TI – Timer Interrupt in progress

3 IP – Some interrupt in progress

4 TE – Enable timer interrupt

5 IE – Interrupt enable (global interrupt enable)

6 BIP- Backup IP flag. See General Interrupt handling for more details

7 PD – Power Down flag. See section on Power Down Mode for more details

8 TF – True false flag, 1 if last compare instruction is true. See

Compare Instructions for more details

9 CY – Carry flag

10 BD – Flag Bypass Data Cache. See Cache operations for details.

11 II – Invalidate Instruction cache. See Cache Operations for details.

12 TR – Timer reload flag. See Section Timer for more details.(W/O)

12 TU – Timer underflow flag. See Section Timer for more details.(R/O)

13 SS – Single Step flag. See Section Single Stepping for more details

14 DBER – Data bus error, flag is set when a BUS error is detected during

data load or store operation. See section Bus Error for more details.

15 IBER – Instruction bus Error, flag is set when a BUS error is detected

during an instruction fetch. See section Bus Error for more details

19:16 SWI- Bits 3:0 of SWI instruction

20 EI0 – Enable External interrupt 0. See External Interrupt for details

21 EI1 – Enable External interrupt 1. See External Interrupt for details

22 EI2 – Enable External interrupt 2. See External Interrupt for details

23 EI3 – Enable External interrupt 3. See External Interrupt for details

24 EI4 – Enable External interrupt 4. See External Interrupt for details

25 EI5 – Enable External interrupt 5. See External Interrupt for details

26 ES0 – External interrupt 0 status. See External Interrupt for details

27 ES1 – External interrupt 1 status. See External Interrupt for details

28 ES2 – External interrupt 2 status. See External Interrupt for details

29 ES3 – External interrupt 3 status. See External Interrupt for details

30 ES4 – External interrupt 4 status. See External Interrupt for details

31 ES5 – External interrupt 5 status. See External Interrupt for details

RA (R/W) SFR1

Return address register, updated when a jump and link instruction is executed; it can also

be updated using the “mtsfr ra,Rn” instruction , in this case the value is available after

2 cycles; there should not be a branch and link instruction within two instructions after a

“mtsfr ra, Rn” instruction. See Jump Instructions for more details.

IPC (R/W) SFR2

Address of the instruction that would have executed when the core started processing an

interrupt, the special function register can also be updated by software with the

“mtsfr ipc,Rn” instruction.

TIMER (R/W) SFR3

Timer counter register, determines the frequency of timer interrupts see Timer for more

details. Read returns the cycles remaining to zero.

 MANIK Reference Guide

www.niktech.com 9

IBASE(R/W) SFR4

This register determines the base address for the interrupt vector. The register can be

configured with a value during system generation, or can be assigned a value by software,

see section Interrupt handling for details.

USREG(R/W) SFR5

The register is available when the configuration parameter USREG_ENB is set to true.

The register is not used by the processor and can be used a global register by the user

application program.

HWDBG(R/W) SFR6

Hardware break/watch point control/status register.

Bit

Position(s)

Description

0 BPENB (R/O)– Hardware break point is available. ‘1’ when HW_BPENB = true

1 WPENB (R/O)– Hardware watch point is available. ‘1’ when HW_WPENB = true

2 BP0_ENB (R/W)– enable BP0, the PC is compared with BP0 register

3 BP1_ENB (R/W)– enable BP1, the PC is compared with BP1 register

4 WP0_ENB (R/W)– enable WP0, the load/store address is compared with WP0

register

5 WP1_ENB (R/W)– enable WP0, the load/store address is compared with WP1

register

6 BP_HIT (R/O) - Hardware Break point is hit

7 WP0_HIT (R/O) – Watchpoint 0 is hit

8 WP1_HIT (R/O) – Watchpoint 1 is hit

9:31 (Reserved) - zeros

HWBP0(R/W) SFR7

Hardware Breakpoint address , available when HP_BPENB is true

HWBP1(R/W) SFR8

Hardware Breakpoint address , available when HP_BPENB is true

HWWP0(R/W) SFR9

Hardware Watchpoint address , available when HP_WPENB is true

HWWP1(R/W) SFR10

Hardware Watchpoint address , available when HP_WPENB is true

Instructions

Instruction Types

MANIK has six different types of instructions. Most of the instructions are 16 bits wide;

the PC relative jump instructions are 32 bit wide. Following is a table of notations used in

describing the instruction set.

 MANIK Reference Guide

www.niktech.com 10

Notation Description
Rd General Purpose Register operand R0 – R15

Rb General Purpose Register operand R0 – R15

UIMM4 Unsigned 4 bit immediate operand [0..15]

SIMM4 Signed 4 bit immediate operand [-8..+7]

UIMM8 Unsigned 8 bit immediate operand [0..255]

SIMM8 Signed 8 bit immediate operand [-128..127]

SFRn Special Function Register SFR0 – SFR3

EA Effective address

SIMM27 Signed 27 bit immediate operand [-256 MB ... +256 MB]

sxt(x) Sign Extend x to 32 bit

zxt(x) Zero Extent x to 32 bit

ALU Instructions

All ALU instructions are executed by the arithmetic and logic unit and take one clock

cycle to execute. MANIK has two formats for ALU instructions RR (Register, Register)

and RI (Register, Immediate)

RR Form (Register, Register)

Syntax 15:12 11:8 7:4 3:0 Semantics
add Rd, Rb 0x2 0x1 Rd Rb Rd = Rd + Rb;

addc Rd, Rb 0x2 0x3 Rd Rb Rd = Rd + Rb + CY;

sub Rd, Rb 0x2 0x0 Rd Rb Rd = Rd – Rb;

subc Rd, Rb 0x2 0x2 Rd Rd Rd = Rd – Rb – CY;

mov Rd, Rb 0x2 0x4 Rd Rb Rd = Rb;

and Rd, Rb 0x2 0x5 Rd Rb Rd = Rd & Rb;

or Rd, Rb 0x2 0x6 Rd Rb Rd = Rd | Rb;

xor Rd, Rb 0x2 0x7 Rd Rb Rd = Rd ^ Rb;

sxb Rd, Rb 0x2 0x8 Rd Rb Rd[31:8] = Rb[7]; Rd[7:0] = Rb[7:0];

xhw Rd, Rb 0x2 0x9 Rd Rb Rd = (Rb << 16) | (Rb >> 16); Exchange HalfWord

sxh Rd, Rb 0x2 0xa Rd Rb Rd[31:16] = Rb[15]; Rd[15:0] = Rb[15:0];

zxh Rd, Rb 0x2 0xb Rd Rb Rd[31:16] = 0; Rd[15:0] = Rb[15:0];

RI Form (Register, Immediate)

Syntax 15:12 11:8 7:4 3:0 Semantics
andi Rd, UIMM8 0x5 UIMM8[7:4] Rd UIMM8[3:0] Rd = Rd & zxt(UIMM8);

addi Rd, SIMM8 0x6 SIMM8[7:4] Rd SIMM8[3:0] Rd = Rd + sxt(SIMM8);

movi Rd, SIMM8 0x7 SIMM8[7:4] Rd SIMM8[3:0] Rd = sxt(SIMM8);

Load/store Instructions

MANIK can load and store data in 32 bit (word) , 16 bit (half word) or 8 bit (byte)

chunks. The core aligns the address depending on the data size of the operation; four

byte aligned for 32 bit (word) access (lower order 2 bits of address forced to zero); two

byte aligned for 16 bit (half word) access (lowest order bit of address forced to zero).

When loading data narrower than 32 bits , the upper (MS bits) of the destination register

are set to zero, i.e. for half word load bits 31 - 16 of the destination register are set to

zero, similarly for 8 bits loads bit positions 31 – 8 of the destination register are set to

zero.

Syntax 15-12 11-8 7-4 3-0 Semantics

 MANIK Reference Guide

www.niktech.com 11

ldr Rd,uimm4(Rb) 0x8 UIMM4 Rd Rb EA = zxt(UIMM4 << 2) + Rb;

Rd[31:0] = MEM[EA & 0xFFFFFFFFC];

str Rd,uimm4(Rb) 0x9 UIMM4 Rd Rb EA = zxt(UIMM4 << 2)+ Rb;

MEM[EA & 0xFFFFFFFC] = Rd;

ldrh Rd,uimm4(Rb) 0xa UIMM4 Rd Rb EA = zxt(UIMM4 << 1)+ Rb;

Rd[31:16] = 0,

Rd[15:0] = MEM[EA & 0xFFFFFFFE];

strh Rd,uimm4(Rb) 0xb UIMM4 Rd Rb EA = zxt(UIMM4 << 1)+ Rb;

MEM[EA & 0xFFFFFFFFFE] = Rd[15:0];

ldrb Rd,uimm4(Rb) 0xc UIMM4 Rd Rb EA = zxt(UIMM4)+ Rb;

Rd[31:8] = 0; Rd[7:0] = MEM[EA] ;

strb Rd,uimm4(Rb) 0xd UIMM4 Rd Rb EA = zxt(UIMM4)+ Rb; MEM[EA] = Rd[7:0];

In addition to the above mentioned Register Indexed loads, the MANIK instruction set

also provides a PC Relative load, this allows for loads of large constants that cannot be

loaded into a register using the ALU instructions. The assembler generates a literal pool

and puts address of LABEL in the literal pool; the offset of the entry in the literal pool is

then inserted into the instruction. The LABEL can be replaced by a constant, in which

case the assembler will put the constant value in the literal pool.

Syntax 15:12 11:8 7:4 3:0 Semantics

ldrpc Rd, LABEL 0x4 UIMM8[7:4] Rd UIMM8[3:0] EA = PC + UIMM8*4; Rd = MEM[EA]

Jump Instructions

MANIK has three types of jump instructions a) short PC relative , b) long PC relative

and c) Register indirect. Short PC relative jump instructions are 16 bits wide and have a

range of +/- 1KB, the Long PC relative jumps are 32 bit wide have a range of +/- 64MB;

when the sjt, sjf or sj mnemonics are used the assembler determines the branch distance

and generates the appropriate jump instruction, the jt, jf & j instruction forces the

assembler to use long branch. Register indirect jump instructions are 16 bits wide. The

register indirect form can use both General purpose registers and Special function

registers as its source. The assembler inserts a NOP instruction after all “jrl” instruction

to compensate for the size difference between the size of a “jl” and “jrl” instruction.

PC Relative Jumps

Syntax 15:10 9:0 Semantics
SJF Label 0xe4 SIMM10 If TF = 0 then PC += sxt(SIMM10*2);

SJT Label 0xed SIMM10 If TF = 1 then PC += sxt(SIMM10*2);

SJ Label 0xf4 SIMM10 PC += sxt(SIMM27*2);

Syntax 31:27 26:0 Semantics
JF Label 0xe0 SIMM26 If TF = 0 then PC += sxt(SIMM26*2);

JT Label 0xe8 SIMM26 If TF = 1 then PC += sxt(SIMM26*2);

J Label 0xf0 SIMM26 PC += sxt(SIMM26*2);

JL Label 0xf8 SIMM26 RA = PC + 4; PC += sxt(SIMM26*2);

Register Indirect Jumps

Syntax 15:8 7:4 3:0 Semantics
JRL Rb 0x1c 0 Rb RA = PC + 4; PC = Rb;

JR Rb 0x1d 0 Rb PC = Rb;

JSFR SFRn 0x1e 0 SFRn PC = SFRn

 MANIK Reference Guide

www.niktech.com 12

Multiply and Shift Instructions.

Multiply and shift operations are performed by a separate unit. The instructions a have

two forms RR (Register, Register) and RI (Register Immediate). The Register Immediate

form allows immediate values 0...15, to shift by more than 15 bits use the “xhw”

instruction in combination with the shift instruction.

Syntax 15:12 11:8 7:4 3:0 Semantics
lsl Rd, Rb 0x2 0xc Rd Rb Rd = Rd << Rb;

lsr Rd, Rb 0x2 0xd Rd Rb Rd = Rd >> Rb; (Logical)

asr Rd, Rb 0x2 0xe Rd Rb Rd = Rd >> Rb; (Arithmetic)

mult Rd, Rb 0x2 0xf Rd Rb Rd = Rd * Rb;

lsli Rd, UIMM4 0x0 0xc Rd UIMM4 Rd = Rd << UIMM4;

lsri Rd, UIMM4 0x0 0xd Rd UIMM4 Rd = Rd >> UIMM4; (Logical)

asri Rd, UIMM4 0x0 0xe Rd UIMM4 Rd = Rd >> UIMM4; (Arithmetic)

multi Rd, UIMM4 0x0 0xf Rd UIMM4 Rd = Rd * UIMM4;

Compare Instructions

Compare instructions update the True/False flag (TF) in the PSW. These instructions will

implicitly subtract the second operand from the first operand, and will set the True/False

flag depending on the Carry, Overflow and Negative flag (Overflow and Negative flags

are intermediate values and are not accessible by software). The compare instructions

also have two forms RR (Register, Register) and RI (Register, Immediate); the RI form is

only available for “equal-to” and the signed compares.

Syntax 15:12 11:8 7:4 3:0 Semantics
cmpeqi Rd, SIMM4 0x3 0x0 Rd SIMM4 TF = (Rd == sxt(SIMM4))

cmpeq Rd, Rb 0x3 0x1 Rd Rb TF = (Rd == Rb)

cmphs Rd, Rb 0x3 0x2 Rd Rb TF = ((unsigned) Rd >= (unsigned) Rb)

cmpls Rd, Rb 0x3 0x3 Rd Rb TF = ((unsigned) Rd <= (unsigned) Rb)

cmplt Rd, Rb 0x3 0x4 Rd Rb TF = ((signed) Rd < (signed) Rb)

cmpgt Rd, Rb 0x3 0x5 Rd Rb TF = ((signed) Rd > (signed) Rb)

cmplti Rd, SIMM4 0x3 0x6 Rd SIMM4 TF = ((signed) Rd < sxt(SIMM4))

cmpgti Rd, SIMM4 0x3 0x7 Rd SIMM4 TF = ((signed) Rd > sxt(SIMM4))

Conditional instructions.

The MANIK instruction set provides conditional forms for some of the ALU instructions.

The results of these instructions are written back to the register file depending on the

value of the TF flag in the PSW.

Syntax 15:12 11:8 7:4 3:0 Semantics
addit Rd, SIMM4 0x3 0xe Rd SIMM4 If TF = 1 then Rd += sxt(SIMM4)

addif Rd, SIMM4 0x3 0xa Rd SIMM4 If TF = 0 then Rd += sxt(SIMM4)

movt Rd, Rb 0x3 0xc Rd Rb If TF = 1 then Rd = Rb

movf Rd, Rb 0x3 0x8 Rd Rb If TF = 0 then Rd = Rb

addt Rd, Rb 0x3 0xf Rd Rb If TF = 1 then Rd += Rb

addf Rd, Rb 0x3 0xb Rd Rb If TF = 0 then Rd += Rb

subt Rd, Rb 0x3 0xd Rd Rb If TF = 1 then Rd -= Rb

subf Rd, Rb 0x3 0x9 Rd Rb If TF = 0 then Rd -= Rb

 MANIK Reference Guide

www.niktech.com 13

User Defined Instructions.

MANIK allows four user defined instructions, each of these instructions can write back

data to the register file. See USER Instruction interface for details.

Syntax 15:12 11:8 7:4 3:0 Sematics
udi0 Rd, Rb 0 0x8 Rd Rb Rd = User Defined Function (Rd, Rb)

udi1 Rd, Rb 0 0x9 Rd Rb Rd = User Defined Function (rd, Rb)

udi2 Rd, Rb 0 0xa Rd Rb Rd = User Defined Function (rd, Rb)

udi3 Rd, Rb 0 0xb Rd Rb Rd = User Defined Function (rd, Rb)

Pipeline.

The following sections describe the current pipeline implementation, it is likely to change

in future releases of the processor core. The MANIK core has a four stage bypassed and

interlocked pipeline. The pipeline stages are.

a) Instruction Fetch , Decode (IF)

b) Decode Stage (DE)

c) Register File Read (RF)

d) Execute (EX)

The execute (EX) stage consists of four units.

a) Arithmetic and Logic unit. This unit executes addition, subtraction and bitwise

logic operations. All instructions executing in this unit has a latency of one

cycle.

b) Multiply and Shift unit. This unit executes multiply and shift instructions, the

MANIK pipeline can continue executing instructions following it in the

pipeline as long they do not depend on the result of the multiply or shift

instruction.

c) Load / Store unit, load and store instructions take two cycles when accessing

data in the internal (on chip) storage, for external memory the number of

cycles is variable. The core can continue executing instructions that do not

depend on the result of the load instruction.

d) User defined unit. The interface to the User instruction is described in USER

Instruction interface. All user instructions are assumed to write back to the

register file, the pipeline will continue to execute instructions that do not

depend on the result of the user instruction.

The pipeline will generally issue and retire one instruction per cycle; the order of retiring

an instruction may not be same as the order of issue. In case a multi-cycle instruction is

executing in the MULT/SHIFT, LOAD/STORE or User Defined Unit, instructions

following it may proceed to completion if they do not depend on the result of the multi

cycle instruction. If a dependent instruction is detected; i.e. an instruction that requires

 MANIK Reference Guide

www.niktech.com 14

the result of an incomplete multi-cycle instruction; the pipeline is stalled and no other

instructions are allowed to proceed till the dependency has been resolved.

More than one multi cycle instruction may be executing simultaneously, e.g. a load

instruction may be issued while a multiply /shift operation is in progress. More than one

multi cycle instruction may complete in the same cycle; since the register file has only

one write back port the pipeline is stalled till all the values are written back into the

register file.

Branch Instructions take 2 cycles for a taken branch, 3 cycles for a not-taken branch.

These latencies are when the code is resident in cache; if a cache miss occurs add the

number of cycles taken to fetch the instruction from external memory into cache.

Multiply/Shift.

Multiply and Shift instructions are executed by the same unit. This unit has two

configurations, a) for size and for b) for performance.

a) In the size optimized configuration multiply is performed 32x2 bits per clock

cycle, it can take up to 16 cycles to complete. The shift operation is performed at

the rate of one bit per clock cycle.

b) In the performance optimized configuration, the multiplication is performed with

a 32x32 bit multiplier and takes 2 cycles to complete. The shifter is capable of

shifting 8 bits per cycle; this implies that a shift operation can take between 2 to 5

cycles depending on the amount of shift. Shift amounts 0-7 completes in 2 cycles,

8-15 completes in 3 cycles, 16-23 takes 4 cycles, and shift amounts greater than

23 will take 5 cycles.

Cache operation.

MANIK has separate data & instruction caches. The data cache uses a write through

policy. The cache sizes can be configured by changing the address line width. Each cache

line can be configured to have 1,2,4 or 8 entries. The cache line size determines the

number of 32 bit read requests a cache refill operation will perform. Increasing the cache

line size will increase the size of the processor and can have adverse effect on the

maximum frequency.

Both the data & instruction cache can be configured to have 1, 2 or 4 sets. The cache size

is doubled or quadrupled when sets sizes of 2 or 4 chosen.

Although the instruction and data caches are separate, the MANIK core has one

Wishbone master bus. In case of a simultaneous cache miss on the data and the

instruction caches, the instruction cache is given priority over the data cache. Every store

operation will write data into both the cache and the external memory.

The memory space is divided into two regions cacheable and I/O space. The size of the

regions are configurable.

 MANIK Reference Guide

www.niktech.com 15

By default both the Data and Instruction cache are enabled. The data cache can be

bypassed by setting the BD flag (bit position 10) in the PSW. The contents of the data

cache are not preserved when the data cache bypass is activated.

The Instruction cache cannot be bypassed, specific instruction cache lines can be

invalidated. This is done by setting the II Flag (bit position 11) in the PSW and

performing a load or store operation; the instruction cache line corresponding to the

address of the load or store will be invalidated. This facility can be used to download

programs into memory as well as set break points, or any other situation that requires

modifying code.

Fetching data or instructions from I/O space will bypass the corresponding cache.

Interrupt handling
MANIK has five interrupt vectors. The upper 24 Bits of the interrupt vector address is

obtained from the IBASE (Special Function Register). The lower 8 bits can be

configured during system generation the default values are listed below. By writing to the

IBASE register the software could change the location of the interrupt vectors to a new

location (useful during operating system boot process). The operation to complete a write

to ibase register takes 2 cycles. The configuration value for the ibase can be set by the

INTR_VECBASE.

Vector

Address

Configuration

Value

Description PSW Bits

effected
0 - Reset Vector None

4 INTR_SWIVEC Software/Single step

instruction.

SS flag, SW flag,

IP flag

8 INTR_TMRVEC Timer Interrupt TI flag, IP flag

12 INTR_EXTVEC External Interrupt EI0-EI5 flags

16 INTR_BERVEC Bus Error IBER and DBER Flags

When the processor recognizes an interrupt and branches to the Interrupt vector

address, the IP flag (PSW bit 3) is copied to the BIP (PSW bit 6) flag and the IP flag is

set to ‘1’. When the processor executes a “jsfr ipc” instruction, the BIP flag (PSW bit 6)

is copied to the IP flag , and the BIP flag is set to zero. The BIP & IP flags can be

updated by writing to the corresponding bit positions in the PSW.

The processor will branch to the interrupt service routine within 4 cycles of the detecting

an interrupt. If there were instructions pending in the USER, Multiply/Shift or Load/Store

units, they will continue to execute, the processor will stall if the Interrupt service routine

accesses any of the registers being defined by any of the pending instructions.

The Timer & External interrupts are not recognized if the global interrupt enable flag IE

(PSW bit 5) is zero, or if the processor is already servicing an interrupt; IP flag (PSW bit

3) is set.

 MANIK Reference Guide

www.niktech.com 16

The interrupt handler software is responsible for saving and restoring the PSW and any

other registers it might use (including the Return Address register, RA (R/W) SFR1).

Stack space can be created to save the registers can be created by using the “addi”

instruction (this instruction does not update the PSW).

Nested Timer or External interrupts can be handled, by saving the IPC (R/W) SFR2,

register on the stack, and re-enabling the interrupts by setting the IP & BIP flags in the

PSW to zero.

Reset/Power up

On Reset / Power Up the processor will branch to the address 0 and start executing code

from that address. This is a non-maskable interrupt. After Power up the values in General

and Special purpose registers are undefined. The software is response for assigning initial

values to the registers. The cache values remain unchanged after a reset interrupt.

Software Interrupt

When processor executes a SWI instruction, it executes a branch to address 0x4. The

address of the next instruction is put into IPC (R/W) SFR2, register and the SW flag (bit

position 0 in the PSW) is set to ‘1’, the IP flag (bit position 3 in the PSW) is also set to

‘1’. It is recommended that the instruction “swint 0x0f” be used as a break point

instruction. Bits 3:0 of the instruction are copied to bit positions 19:16 of the PSW.

The software interrupt (“swint”) is NOT disabled by the IP flag, i.e. if an interrupt

handler executes an “swint” instruction the processor will branch to the corresponding

interrupt vector , and the IPC (R/W) SFR2, register will be updated. The TI & EI0-EI5

will retain their value upon return from the software interrupt. This allows the user to set

breakpoints in the interrupt handler, the breakpoint should NOT be set before the

interrupt service routine has had a chance to save the registers including the special

function registers on the stack. Setting a breakpoint or single stepping in the software

interrupt handler will have unpredictable results.

Timer Interrupt

The processor will jump to timer interrupt vector at address 0x8 when a Timer Interrupt

occurs; see section Timer for more details. The address of the next instruction to be

executed is stored in IPC (R/W) SFR2, and flags TI (PSW bit 2) and IP (PSW bit 3) are

set to ‘1’. Note that the global interrupt enable bit IE (PSW bit 5) must be set for the

timer to generate interrupts.

External Interrupt

MANIK Core has six External interrupt lines, each of the interrupt lines can be

individually disabled by setting the EI0-EI5 bits in the PSW (bit positions 20 through 25);

They can be collectively enable or disabled global interrupt enable flag, IE (bit position 5

in the PSW).

 MANIK Reference Guide

www.niktech.com 17

All the interrupts are level triggered, when the EXTRN_int line goes high the processor

will jump to address 0x0c. The address of the next instruction to be executed is stored in

IPC (R/W) SFR2, and flags EI (bit position 1 in the PSW) and IP (bit position 3 in the

PSW) are set to ‘1’, the External interrupt status flags ES0-ES5 (bit positions 26 through

31) are set depending on the interrupt being processed.

The interrupts are prioritized, with EI0 as the highest priority and interrupt EI5 as the

lowest priority.

Bus Error Interrupt.

The core will branch to the Bus Error interrupt vector if the WBM_ERR_I (Wishbone

bus error) signal is asserted during an instruction fetch or a data load/store operation. This

is a non-maskable interrupt. The PSW bit 15 (IBER flag) is set if the exception occurred

during an instruction fetch; the DBER flag (bit position 14 in the PSW) is set if the

interrupt was generated during a load/store operation. This interrupt is an imprecise

exception, i.e. the IPC register may not point to the instruction following the instruction

that caused the exception, the IPC will point to the general vicinity of the instruction that

caused the exception. It is recommended that the core do a software restart after a BUS

error is signaled.

Hardware Debug aid

a) Hardware Single Stepping.

This facility is provided to help software debugging. When the Single Step flag in the

PSW (Bit position 10) is set, the processor will generate an interrupt for every instruction

executed, after it executes a “jsfr ipc” instruction. The Single step flag in the PSW

would normally be set in an interrupt handling routine. The flag has no effect on

execution till the “jsfr ipc” instruction is executed, the core will generate an interrupt

when the instruction at the addresses pointed to by ipc is executed. The processor will

branch to the same address as Software Interrupt, bit positions 23:16 of the PSW are all

set to ‘1’. The software interrupt handler can determine the cause by examining bit

position 0 in the PSW, a ‘1’ in this field means it was invoked by a swint instruction, else

it was entered due to a single step instruction.

The IPC register will contain the address of the instruction that would have executed

next. External and Timer interrupts are disabled during the Single Step operation.

b) Hardware Breakpoints

The configuration option HW_BPENB enables two hardware breakpoint registers. This

allows the debugger to place breakpoints in the application without modifying the code

space. This is useful for setting breakpoints in readonly program area such as flash

memory. Hardware breakpoints can be set using the following steps

 MANIK Reference Guide

www.niktech.com 18

a) Enable HW_BPENB configuration option

b) Set the address for the breakpoint in one or both of the two hardware

breakpoint registers (BP0 and/or BP1)

c) Enable the corresponding bit(s) in the HWDBG register. BP0_ENB for BP0,

or BP1_ENB for BP1.

When the RF stage PC matches one the BP registers (BP0 or BP1), and the corresponding

enable bits are set in the HWDBG register, the processor core will branch to the address

of Software Interrupt, bit positions 23:16 of the PSW are all set to ‘1’.The software

interrupt handler can determine the cause of the interrupt by examining the BP_HIT (bit

6) in the HWDBG register.

Note the interrupt is generated before the instruction with the address match is executed.

The IPC register will contain the address of the instruction.

c) Hardware Watchpoints

The configuration option HW_WPENB will enable two hardware watchpoints registers.

The debugger can use these registers to be notified when a certain memory address is

read(load) or written(store) to. The following steps are required to use this feature.

a) Enable HW_WPENB configuration option

b) Set the address(es) of the memory location in either or both of the watchpoint

registers (WP0 and/or WP1).

c) Enable the corresponding bit(s) in the HWDBG register. WP0_ENB for WP0, or

WP1_ENB for WP1.

The processor will compare the load/store address to the WP0 and/or WP1 register, if

they match and the corresponding enable bit(s) (WP0_ENB and/or WP1_ENB) are

set in the HWDBG register, the processor will branch to the address of Software

Interrupt, bit positions 23:16 of the PSW are all set to ‘1’. The processor will also set

bits WP0_HIT (if address in WP0 matched), and/or WP1_HIT (if address in WP0

matched). The software interrupt handler can use the WP0_HIT, WP1_HIT flags in

the HWDBG registers to determine the cause of the interrupt.

Note that the interrupt is generated after the load/store instruction with the matching

address is executed.

Timer.

The MANIK core includes a built in 32 bit timer. The Timer has two modes of

operations.

a) Interrupt Mode. In this mode the Timer is started by enabling the TE flag (bit

position 4 in the PSW) and by writing a value in the TIMER (R/W) SFR3 register. The

timer is implemented as a down counter, the value written to the timer is copied to a

register, this register is then decremented every clock (“coreclk”) cycle. A Timer

interrupt is generated when the value of this register becomes zero. Note the IE flag (bit

position 5 in the PSW) must be set for the timer to generate interrupts.

 MANIK Reference Guide

www.niktech.com 19

The TIMER (R/W) SFR3, can be updated either in normal operation mode (IP flag is

zero) or when the core is processing a timer interrupt (IP flag is one and TI flag is one).

Reading the Timer register returns the current value. The timer interrupt can occur in

Power Down Mode.

b) Counter Mode. In this mode the Timer register can be used to count the number of

cycles. To operate the Timer in this mode an initial value must be written to the Timer

register, then a ‘1’ is written into the TR bit (position 12) in the PSW. The Timer will

start the down counter, it will stop when the counter reaches zero. To determine the

number of cycles executed the Timer register must be read and subtracted from the

reload value. If the TU flag (Bit position 12) in the PSW is set to ‘1’ then the there was

an underflow, to get a more accurate cycle count the reload value should be increased.

The largest reload value is 0xffffffff (4294967295 cycles).

Power Down Mode.
The processor can be put into a Power Down mode by setting the PD flag (bit position 7

in the PSW). In this mode the Timer & External interrupt are enabled but no instructions

are fetched. On receiving an interrupt the processor will branch to the corresponding

vector, IPC (R/W) SFR2 register will contain the address of the instruction following the

“mtsfr PSW, Rn” instruction that caused the processor to go into Power Down mode. The

following assembly language snippet illustrates the usage of Power Down Mode.

 .text

 .global _start

_start:

 j main

 j null_isr

 j timer_isr

 j null_isr

main:

 ldrpc r0,_SP_START

 # timer expires after 16 cycles

 movi r1,16

 mtsfr timer,r1

 # enable timer & interrupt

 movi r1,0x30

 mfsfr r2,psw

 or r2,r1

 mtsfr psw,r2

stop:

 movi r2,-1

 andi r2,0x80

 mfsfr r1,psw

 or r1,r2

 mtsfr psw,r1 # Set Power Down Flag

 sj stop # will come here when timer_isr finishes

timer_isr:

 addi r0,-8

 str r1,0(r0)

 str r2,4(r0)

 # re enable timer interrupt

 mfsfr r1,psw

 movi r2,0x10

 or r1,r2

 mtsfr psw,r1

 ldr r2,4(r0)

 ldr r1,0(r0)

 MANIK Reference Guide

www.niktech.com 20

 addi r0,8

null_isr:

 jsfr ipc

_SP_END:

 .org _SP_END+126

_SP_START:

USER Instruction interface.

The User defined extensions to the microprocessor can take two 32-bit values as input and write

back one 32-bit value to the register file. The contents of the registers Rd, and Rb used in the user

instruction are given as two operands to the User extension, the output value from the user

extension is written back to the Rd register. The current implementation of the pipeline allows for

the core to continue execution of other independent instructions, however only one User

instruction can be outstanding at any time. Eight signals are used to interface the User extension

to the core of the microprocessor; these are described in the following table. All signals are

synchronized on clock signal “coreclk”.

Name Width (Bits) Direction Description

UINST_uiop 2 Out Has values 0-3 corresponding to udi0-3

UINST_uinst 1 Out 1 indicates that UINST_uiop signal is valid. The

operands may not be valid.

UINST_Nce 1 Out The operand values are valid when ‘0’. The user

extension should latch UINST_uiop and the

operands when this signal is ‘0’ and UINST_uinst

is ‘1’.

UINST_uiopA 32 Out 1
st
 operand .Value of Rd

UINST_uiopB 32 Out 2
nd
 operand .Value of Rb

UINST_ip 1 In Should be set to ‘1’ when user core is busy.

UINST_out is considered valid when this signal is

low.

UINST_out 32 In Value to be written back to Rd.

UINST_wbc 1 Out UINST_out and UINST_ip signals should be held

valid till this signal goes high. The core will

set this signal to high when the value is written

back to the register file.

The following VHDL snippet shows an example state machine which implements the

USER interface.

Architecture sample of UDI_sample is

 type udi_states is (S0, S1, ... SWRITE_BACK, SLAST);

 attribute ENUM_ENCODING : string;

 attribute ENUM_ENCODING of udi_states : type is "000 001 010 011 . . . ";

 signal curr_udistate : udi_states := S0;

 signal opa_latch : std_logic_vector (WIDTH-1 downto 0) := (others => '0');

 signal opb_latch : std_logic_vector (WIDTH-1 downto 0) := (others => '0');

BEGIN

 -- simulate simple USER instruction

 udi_proc : process (coreclk)

 begin

 if rising_edge(coreclk) then

 case curr_udistate is

 when S0 =>

 -- idle then latch operands when we should

 if UINST_uiop = "00" and UINST_uinst = '1' and

 UINST_Nce = '0' then

 opa_latch <= UINST_uiopA;

 opb_latch <= UINST_uiopB;

 UINST_uip <= '1';

 MANIK Reference Guide

www.niktech.com 21

 curr_udistate <= S1;

 else

 curr_udistate <= S0;

 UINST_uip <= '0';

 end if;

 when S1 =>

 --- Do Processing WITH opa_latch & opb_latch

 ...

 ...

 when SWRITE_BACK =>

 UINST_out <= opa_latch;

 UINST_uip <= '0';

 curr_udistate <= SLAST;

 when SLAST =>

 if UINST_wbc = '1' then

 curr_udistate <= S0;

 else

 curr_udistate <= SLAST;

 end if;

 when others => null;

 end case;

 end if;

 end process udi_proc;

 MANIK Reference Guide

www.niktech.com 22

MANIK Wishbone Bus Interface.

MANIK uses the open standard Wishbone Bus to interface with external memory and I/O

devices. The Wishbone bus specifications can be found at

http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf. MANIK’s bus

interface signals are listed in the following table.

Signal Name In/Out Width Description
WBM_DAT_I In 32 Input data from the external device

WBM_ACK_I In 1 Input data is valid

WBM_DAT_O Out 32 Data output to the external device

WBM_SEL_O Out 4 Byte lane select (see following table)

WBM_WE_O Out 1 Write enable output

WBM_STB_O Out 1 Write/Read Strobe High through entire cycle

WBM_CYC_O Out 1 Valid bus Cycle in progress

WBM_LOCK_O Out 1 Cycle in progress no arbitration allowed

WBM_ADR_O Out 32 Address

WBM_CTI_O Out 3 Cycle Type

WBM_BTE_O Out 2 Burst Type

In the current implementation the Bus transactions generated, does not use the CTI_O

and the BTE_O signals. Future implementations will support variable cache line lengths

and will use these signals.

The following table shows the values of WBM_SEL_O signal depending on the Address

and the size of the load/store requested.

ADDR_O(1:0) Size SEL_O Data[31:24]

valid

Data[23:16]

valid

Data[15:8]

valid

Data[7:0]

valid

xx Word 1111 Y Y Y y

1x Half 0011 N N Y Y

0x Half 1100 Y Y N N

00 Byte 1000 Y N N N

01 Byte 0100 N Y N N

10 Byte 0010 N N Y N

11 Byte 0001 N N N Y

Application Binary Interface.
This section describes the ABI for the MANIK processor. It describes

• Function calling convention. Includes parameter passing and return values

• Layout of data in memory

Function calling convention

The ABI usage of registers are described in the section General Purpose Registers.

The first four integral parameters are passed in registers R1 through R4, the rest of the

parameters are passed on the stack. Types that are shorter than 32 bits (bytes & chars) are

sign or zero extended to 32 bits when passed as parameters. When a structure is passed as

 MANIK Reference Guide

www.niktech.com 23

a parameter a copy of it passed to the called function, the copy of the structure may be

passed partially in registers are partially on the stack.

Integral return values are all returned in register R1. Return values less the 64 bits in

width are returned in the register pair R1-R2. The lower order word is returned in R1. For

return values greater than 64 bits in width the caller must provide a pointer to the return

area as the first parameter.

Layout of data in memory

MANIK is a BIG Endian machine. The layout of three data types supported shown in

the following tables.

 Word Data Type (32 bits) (4 bytes)

N N+1 N+2 N+3

31 0

MSB LSB

 Half Data Type (16 bits) (2 bytes)

N N+1

15 0

MSB LSB

 Byte (8 bits)

N

7 0

Msbit Lsbit

 MANIK Reference Guide

www.niktech.com 24

Appendix – A . HDL Instantiation template.

The signal names prefixed with WBM_ are the Wishbone Bus Master interface. See

section MANIK Bus Interface. The signals names prefixed with UINST_ are meant for

the User Instruction interface. See section USER Instruction interface.

component manik2top

 port (
 sysclk : in std_logic;

 coreclk : out std_logic;
 EXTRN_int : in std_logic_vector(NUM_INTRS-1 downto 0) := (others => '0');

 RESET_int : in std_logic := '0';
 INTR_ack : out std_logic;

 WBM_DAT_I : in std_logic_vector (WIDTH-1 downto 0) := (others => '0');
 WBM_ACK_I : in std_logic := '0';

 WBM_ERR_I : in std_logic := '0';
 WBM_DAT_O : out std_logic_vector (WIDTH-1 downto 0);

 WBM_SEL_O : out std_logic_vector (3 downto 0);
 WBM_WE_O : out std_logic;

 WBM_STB_O : out std_logic;
 WBM_CYC_O : out std_logic;

 WBM_LOCK_O : out std_logic;
 WBM_ADR_O : out std_logic_vector (ADDR_WIDTH-1 downto 0) := (others => '0');

 WBM_CTI_O : out std_logic_vector (2 downto 0);
 WBM_BTE_O : out std_logic_vector (1 downto 0);

 UINST_uiop : out std_logic_vector(1 downto 0);
 UINST_uinst : out std_logic;

 UINST_Nce : out std_logic;

 UINST_wbc : out std_logic;
 UINST_uiopA : out std_logic_vector(UINST_WIDTH-1 downto 0);

 UINST_uiopB : out std_logic_vector(UINST_WIDTH-1 downto 0);
 UINST_uip : in std_logic := '0';

 UINST_out : in std_logic_vector(UINST_WIDTH-1 downto 0) := (others => '0'));
end component;

The “sysclk” input signal is the primary input clock to the core. The output signal

“coreclk” is the same as “sysclk” in this implementation.

External interrupts should be connected to the “EXTRN_int” signal, these are level

triggered signals; see section External Interrupt for more details.

 MANIK Reference Guide

www.niktech.com 25

 MANIK Reference Guide

www.niktech.com 26

Appendix – B. Alphabetic list of Instructions.

ADD Add , update Carry

Operation:
Rd = Rd + Rb; CY = Carryout

Assembler Syntax : add Rd,Rb

Description:
Add the contents of Register D and the contents of Register B, and put the result in

Register D.

PSW Flags updated: CY = Carryout;

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

ADDC Add with Carry, update Carry

Operation:
Rd = Rd + Rb + CY; CY = Carryout

Assembler Syntax: addc Rd,Rb

Description:
Add the contents of Register B, the CY bit (in the PSW), and the contents of Register D;

and store the result in Register D.

PSW Flags updated: CY = Carryout.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

ADDF Conditional Add if False

Operation:
 If (TF=0) then Rd = Rd + Rb;

Assembler Syntax: addf Rd,Rb

Description:
Add the contents of Register Rd and Rb, and store the result in Rd; perform the operation

only if TF = 0.

 MANIK Reference Guide

www.niktech.com 27

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

ADDI Add with immediate

Operation:
 Rd = Rd + sign extended(Simm8)

Assembler Syntax: addi Rd,Simm8

Description:
Sign extend 8 bit immediate value to 32 bits and add it to the contents of register Rd,

store the result in register Rd. Immediate value can range between –127 to +127.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 S S S S Rd Rd Rd Rd S S S S

ADDIF Conditional Add with immediate , if False

Operation:
 If (TF=0) then

Rd = Rd + Sign extend (Simm4)

Assembler Syntax: addif Rd,Simm4

Description:
Sign extend 4 bit immediate to 32 bits and add to the contents of Register D, store the

result into Register D , if the TF flag in the PSW is equal to 0.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 1 0 Rd Rd Rd Rd S S S S

 ADDIT Conditional Add with immediate, if True

Operation:
 If (TF=1) then

Rd = Rd + Sign extend (Simm4)

Assembler Syntax: addit Rd,Simm4

 MANIK Reference Guide

www.niktech.com 28

Description:
Sign extend 4 bit immediate to 32 bits and add to the contents of Register D, store the

result into Register D , if the TF flag in the PSW is equal to 1.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 0 Rd Rd Rd Rd S S S S

ADDT Conditional Add, if True

Operation:
 If (TF=1) then

Rd = Rd + Rb;

Assembler Syntax: addt Rd,Rb

Description:
Add the contents of register D, and contents of Register B and put the result into Register

D, if the TF flag in the PSW = 1.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

AND Logical Bitwise And

Operation:
 Rd = Rd & Rb

Assembler Syntax: and Rd,Rb

Description:
Logically AND the contents of Register D with the contents of Register B, and store the

results in Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 29

ANDI Logical And with immediate

Operation:
 Rd = Rd & zero extend(UIMM8);

Assembler Syntax: andi Rd,Uimm8

Description:
Zero extend the 8 bit immediate to 32 bits and perform a logical AND with the contents

of Register D, the result is store into Register D. The immediate must be a positive

integer between 0 and 255.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 U U U U Rd Rd Rd Rd U U U U

ASR Arithmetic Shift Right (Dynamic)

Operation:
 Rd = (signed) Rd >> Rb[5:0]

Assembler Syntax: asr Rd,Rb

Description:
Arithmetic shift right the contents of Rd by Rb[5:0] bits; store the result into register D. If

Rb[5:0] is greater than 31 then the result is either 0, or –1 depending on the initial value

of bit 31 of register D. Bits 31 through 6 of Register B are ignored.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

ASRI Arithmetic with immediate (Static)

Operation:
 Rd = Rd >> (Uimm4);

Assembler Syntax: asri Rd,Uimm4

Description:
Arithmetic shift right the contents of Register D by uimm4 bits, and store the result in

Register D. Uimm4 must be a positive integer between 0 and 15.

 MANIK Reference Guide

www.niktech.com 30

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 Rd Rd Rd Rd U U U U

CMPEQ Compare for Equal

Operation:
 if Rd == Rb then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmpeq Rd,Rb

Description:
Compare the contents of Register D, with the contents of Register B; if they are equal set

the TF in the PSW to 1 else set the flag to 0.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

CMPEQI Compare with Immediate for Equal

Operation:
 if Rd == sign extend(4 bit immediate) then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmpeqi Rd,simm4

Description:
Sign extend 4 bit immediate to 32 bits and compare with the contents of Register D, if

they are equal set the TF flag in the PSW to 1 , else set it to 0. The immediate value must

be an integer between –8 and +7.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 0 Rd Rd Rd Rd S S S S

 MANIK Reference Guide

www.niktech.com 31

CMPGT Compare for Greater Than (Signed)

Operation:
 if Rd > Rb (Signed compare) then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmpgt Rd,Rb

Description:
Set TF flag in the PSW to 1 if contents of Register D, is greater than contents of Register

B else set TF flag to 0 ; the contents of both registers are treated as signed numbers.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

CMPGTI Compare with Immediate for Greater than (signed)

Operation:
 If Rd > Sign extended (simm4) then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmpgti Rd,simm4

Description:
Set TF flag to 1 if the contents of Register D, is greater than sign extended 4 bit

immediate value, else set TF flag to 0. The contents of Register D is treated as an

unsigned number; the Simm4 must be an integer between –8 and +7.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 1 1 Rd Rd Rd Rd S S S S

CMPHS Compare for Higher or Same (Unsigned)

Operation:
 If Rd >= Rb then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmphs Rd,Rb

 MANIK Reference Guide

www.niktech.com 32

Description:
Set TF flag to 1 if the contents of Register D is the equal to or greater than contents of

Register B. The contents of both registers are treated as unsigned quantities.

PSW Flags updated: TF Flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 0 Rd Rd Rd Rd Rb Rb Rb Rb

CMPLS Compare for Less than or Same (Unsigned)

Operation:
 If Rd <= Rb then

 TF = 1

 Else

 TF = 0

Assembler Syntax: cmpls Rd,Rb

Description:
Set TF flag to 1 if the contents of Register D is the equal to or less than contents of

Register B. The contents of both registers are treated as unsigned quantities.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

CMPLT Compare for Less Than (Signed)

Operation:
 If Rd < Rb then

 TF = 1;

 Else

 TF = 0;

Assembler Syntax: cmplt Rd,Rb

Description:
Set the TF flag to 1 if the contents of Register D is less than the contents to Register B,

else set the TF flag to 0. The contents of both registers are treated as signed numbers.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 33

CMPLTI Compare with Immediate for Less than (Signed)

Operation:
 If Rd < Sign Extend(simm4) then

 TF = 1;

 Else

 TF = 0;

Assembler Syntax: cmplti Rd,simm4

Description:
Set TF flag to 1 if the contents of Registers D, is less than the sign extended 4 bit

immediate value. The contents of Register D is treated as a signed number. The 4 bit

immediate value must be an integer between –8 and +7.

PSW Flags updated: TF flag.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 1 0 Rd Rd Rd Rd S S S S

J Unconditional Branch (PC relative)

Operation:
 PC = PC + (Sign extended(Simm27) << 1);

Assembler Syntax: j [Assembler Label]

Description:

The PC is updated by adding its contents to a scaled sign extended 27 bit displacement

field. The displacement represents the offset to the destination address in half words from

the branch instruction. This gives the branch instruction a range of +/- 255 MB.

PSW Flags updated: None.

Instruction Format:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 1 0 S S S S S S S S S S S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S S S S S S S S S S S S S S S

JF Conditional Branch if False

Operation:

 If TF = 0 then

 PC = PC + (sign extend (simm27)) << 1;

 Else

 PC = PC + 4;

Assembler Syntax: jt <Assembler Label>

 MANIK Reference Guide

www.niktech.com 34

Description:
If the TF flag in the PSW is zero then the PC is updated by adding its contents to scaled

sign extended 27 bit displacement field; otherwise the PC is incremented by 4. The

displacement represents the offset to the destination address in half words from the

branch instruction. This gives the branch instruction a range of +/- 255 MB.

PSW Flags updated: None.

Instruction Format:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 S S S S S S S S S S S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S S S S S S S S S S S S S S S

JL Branch to subroutine; Update RA

Operation:
 RA = PC + 4;

 PC = PC + ((sign extend (simm27)) << 1;

Assembler Syntax: jl <Assembler Label>

Description:
Jump and Link ; The return address (PC+4) is saved in the Special Function Register 1

(RA). The PC is updated by adding its contents to scaled sign extended 27 bit

displacement field. The displacement represents the offset to the destination address in

half words from the branch instruction. This gives the branch instruction a range of +/-

255 MB.

PSW Flags updated: None.

Instruction Format:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 1 1 S S S S S S S S S S S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S S S S S S S S S S S S S S S

JR Branch Register Indirect

Operation:
 PC = (Rb) & 0xFFFFFFFE;

Assembler Syntax: jr Rb

Description:
The PC is updated with the contents of Register B. The lowest order bit of Register B is

ignored.

 MANIK Reference Guide

www.niktech.com 35

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 0 0 0 0 Rb Rb Rb Rb

JRL Branch to Subroutine; Register Indirect; Update RA

Operation:
 RA = PC + 4;

 PC = (Rb) & 0xFFFFFFFE;

Assembler Syntax: jrl Rb

Description:
The return address address (PC+2) is saved in the Special Function Register 1 (RA). The

PC is updated with the contents of Register B, the lowest order bit of the register is

ignored. The assembler inserts a NOP instruction after all “jrl” instruction to compensate

for the size difference between the size of a “jl” and “jrl” instruction.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 0 0 0 0 Rb Rb Rb Rb

JSFR Branch Special Function Register Indirect

Operation:
 PC = (SFRn) & 0xFFFFFFFE;

 If SFRn == SFR2 (IPC) then

IP_flag = 0 ;

Assembler Syntax: jsfr SFRn

Description:
The PC is updated with the contents of Special Function Register (n); the least significant

bit of the SFRn is ignored. This instruction is typically used to return from leaf functions;

or from return from interrupt routines. If the SFR number is 2 (i.e. Interrupt PC) then the

ip_flag in the PSW is also cleared.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 Sfrn Sfrn

 MANIK Reference Guide

www.niktech.com 36

JT Conditional Branch if True

Operation:
 If TF = 1 then

 PC = PC + (sign extend (simm27)) << 1;

 Else

 PC = PC + 4;

Assembler Syntax: jt <Assembler Label>

Description:
If the TF flag in the PSW is set then the PC is updated by adding its contents to scaled

sign extended 27 bit displacement field; otherwise the PC is incremented by 4. The

displacement represents the offset to the destination address in half words from the

branch instruction. This gives the branch instruction a range of +/- 255 MB.

PSW Flags updated: None.

Instruction Format:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 S S S S S S S S S S S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S S S S S S S S S S S S S S S

LDR[BH] Load Register from memory

Operation:
 Rd = MEM[Rb + unsigned IMM4 << {0,1,2}]

Assembler Syntax:

 ldr Rd,Uimm4(Rb)

 ldrb Rd,Uimm4(Rb)

 ldrh Rd,Uimm4(Rb)

Description:
The effective address of the load operation is computed by adding the scaled unsigned

immediate value to the contents of Register B. The scaling is performed by left shifting

the unsigned immediate 4 bit value by the size of the load operation. The effective

address is aligned to the size boundary of the load operation (i.e. for word loads the

lowest two bits are forced to zero; for half word loads the lowest order bit is forced to

zero). For load sizes less than word the Destination register (Rd) is zero extended.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Sz Sz 0 U U U U Rd Rd Rd Rd Rb Rb Rb Rb

Sz = 00 -> Word Unsigned IMM4 << 2;

01 -> Half Word Unsigned IMM4 << 1;

 MANIK Reference Guide

www.niktech.com 37

 10 -> Byte Unsigned IMM4;

LDRPC Load Word(32bits) from literal pool (PC relative)

Operation:
 Rd = MEM[(PC + UIMM8 << 2) & 0xFFFFFFFC]

Assembler Syntax: ldrpc Rd,<assembler Label>

 ldrpc Rd,<Immediate value>

Description:
The assembler creates a literal table entry containing the address of the label or the

immediate value and sets the eight bit immediate value to point to the table entry. The

effective address is computed by left shifting the 8 bit immediate by two and zero

extending the result, this is added to the contents of PC and the lower order two bits are

forced to zero.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 U U U U Rd Rd Rd Rd U U U U

LSL Logical Shift Left (Dynamic)

Operation:
 Rd = Rd << Rb[5:0];

Assembler Syntax: lsl Rd,Rb

Description:
The contents of the Register D, is left shifted by Rb[5:0] bits, and the results are stored in

Register B; if Rb[5:0] > 31 then Rd = 0.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

LSLI Logical Shift Left with immediate (Static)

Operation:
 Rd = Rd << UIMM4 ;

Assembler Syntax: lsli Rd, Uimm4

Description:
The contents of Register D is left shifted by Uimm4 bits and the results are stored back

into Register D. The Uimm4 value must be an integer between 0 and 15.

 MANIK Reference Guide

www.niktech.com 38

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 Rd Rd Rd Rd U U U U

LSR Logical Shift Right (Dynamic)

Operation:
 Rd = Rd >> Rb[5:0];

Assembler Syntax: lsr Rd,Rb

Description:
The contents of Register D is right shifted by Rb[5:0] bits; the result is stored back into

Register D. If Rb[5:0] is greater than 31 then Rd = 0;

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

LSRI Logical Shift Right with immediate (Static)

Operation:
 Rd = Rd >> UIMM4;

Assembler Syntax: lsri Rd, Uimm4

Description:
The contents of Register D is right shifted by Uimm4 bits and the results are stored back

into Register D. The Uimm4 value must be an integer between 0 and 15.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 Rd Rd Rd Rd U U U U

MFSFR Move From SFR to GPR

Operation:
 Rd = SFRn;

Assembler Syntax: mfsfr Rd,SFRn

 MANIK Reference Guide

www.niktech.com 39

Description:
The contents of the Special Function Register n is stored into the Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0 Rd Rd Rd Rd 0 0 SFR SFR

SFR 00 SFR0 PSW

 01 SFR1 RA

 10 SFR2 IPC

 11 SFR3 TIMER

MOV Unconditional move from GPR to GPR

Operation:
 Rd = Rb;

Assembler Syntax: mov Rd, Rb

Description:
The contents of Register B is stored into Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

MOVF Conditional Move from GPR to GPR, if False

Operation:
 If TF==0 then

 Rd = Rb;

Assembler Syntax: movf Rd, Rb

Description:
The contents of Register B are conditionally moved to Register D if TF flag is 0.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 40

MOVI Unconditional Move immediate to GPR

Operation:
 Rd = sign extend(SIMM8);

Assembler Syntax: movi Rd, Simm8

Description:
The eight immediate value is sign extended and stored into Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 S S S S Rd Rd Rd Rd S S S S

MOVT Conditional Move from GPR to GPR, if True

Operation:
 If TF == 1 then

 Rd = Rb;

Assembler Syntax: movt Rd, Rb

Description:
The contents of Register B are conditionally moved to Register D if TF flag is 1.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

MTSFR Move from SFR to GPR

Operation:
 SFRn = Rb;

Assembler Syntax: mtsfr SFRn, Rb

Description:
The value of SFRn is updated with the contents of Register B. Currently only PSW

(SFR0), IPC (SFR2) and TIMER (SFR3) can be updated by software.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 1 0 0 Sfr Sfr Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 41

MULT Multiply

Operation:
 Rd = Rd * Rb;

Assembler Syntax: mult Rd,Rb

Description:
The contents of Register D and the contents of Register B are multiplied and the lower

order 32 bits are stored in the Register D. The results are the same regardless of wether

the source operands are considered signed or unsigned.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 Rd Rd Rd Rd Rb Rb Rb Rb

MULTI Multiply with immediate

Operation:
 Rd = Rb * Uimm4;

Assembler Syntax: multi Rd, Uimm4

Description:
The contents of Register D is multiplied by the zero extended unsigned 4 bit immediate

value and the results are stored in back in Register D. The Uimm4 must be an integer in

between 0 and 15.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 Rd Rd Rd Rd U U U U

OR Logical OR

Operation:
 Rd = Rd | Rb;

Assembler Syntax: or Rd, Rb

Description:
A bitwise logical “or” operation is performed with the contents of Register D & the

contents of Register B; the results are stored back into Register D.

PSW Flags updated: None.

 MANIK Reference Guide

www.niktech.com 42

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 0 Rd Rd Rd Rd Rb Rb Rb Rb

STR[BH] Store Word(32 bits) to memory

Operation:
 MEM[Rb + (UIMM4) << {0,1,2}] = Rd;

Assembler Syntax: str Rd, Uimm4(Rb)

 strh Rd, Uimm4(Rb)

 strb Rd, Uimm4(Rb)

Description:

Store the contents of Register D into memory. The store operation can be performed in

three sizes Word, Half word (h), or Byte (b). The effective address is computed by

scaling the Uimm4 value (left shift by 2 for word, left shift by 1 for half word) and

adding the result to the contents of Register B. The effective address is aligned to the

size boundary of the store operation (i.e. for word loads the lowest two bits are forced to

zero; for half word loads the lowest order bit is forced to zero).

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Sz Sz 1 U U U U Rd Rd Rd Rd Rb Rb Rb Rb

 SZ -> 10 Byte

 00 Word UIMM4 << 2

 01 Half word UIMM4 << 1

SUB Subtract; Update carry

Operation:
 Rd = Rd – Rb;

 CY = carry out from the subtract;

Assembler Syntax: sub Rd, Rb

Description:
The contents of Register B is subtracted from the contents of Register D and the result

stored in Register D. The CY flag is updated with the carry out from this operation.

PSW Flags updated: CY flag carryout from the subtract.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 43

SUBC Subtract with carry; update carry

Operation:
 Rd = Rd – Rb – C;

 CY = Carry out from the subtract

Assembler Syntax: subc Rd, Rb

Description:
The contents of Register B and the CY bit is subtracted from the contents of Register D

and the result stored in Register D. The CY flag is updated with the carry out from this

operation.

PSW Flags updated: CY flag carryout from the subtract.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 0 Rd Rd Rd Rd Rb Rb Rb Rb

SUBF Conditional Subtract; if false

Operation:
 If TF == 0 then

 Rd = Rd – Rb;

Assembler Syntax: subf Rd, Rb

Description:
If the TF flag is zero subtract the contents of Register B from the contents of Register B

and store the result in Register D. The operation is not performed if the TF is set.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

SUBT Conditional Subtract; if true

Operation:
 If TF == 1 then

 Rd = Rd – Rb;

Assembler Syntax: subt Rd, Rb

Description:
If the TF is set then subtract the contents of Register B from the contents of Register B

and store the result in Register D. The operation is not performed if the TF is set.

 MANIK Reference Guide

www.niktech.com 44

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

SWINT Software Interrupt

Operation:
 IPC = PC;

 PC = 0x8;

 PSW[23:16] = SW (swint code from instruction field);

 IP & SW flag = 1;

Assembler Syntax: swint [0-255]

Description:

Software interrupt; the address of the instruction following the swint instruction is

captured in the IPC (SFR) ; IP & SW flags in the PSW are set to 1. The lowest order

8 bits from the instruction field are copied into the PSW bits [23:16].

PSW Flags updated: SW, IP flags & SWINT.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 Sw Sw Sw Sw Sw Sw Sw Sw

SXB Sign extend byte

Operation:
 Rd = sign extend(Rb[7:0])

Assembler Syntax: sxtb Rd, Rb

Description:
Sign extend the lower order byte (eight bits) , and put the result in Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 0 0 Rd Rd Rd Rd Rb Rb Rb Rb

SXH Sign Extend half word

Operation:
 Rd = sign extend (Rb[15:0])

 MANIK Reference Guide

www.niktech.com 45

Assembler Syntax: sxh Rd, Rb

Description:
Sign extend the lower order half word of Register B (16 bits) and put the result in

Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 Rd Rd Rd Rd Rb Rb Rb Rb

UDI[0-3] User Defined instructions

Operation:
 Rd = result of user defined operation(Rd, Rb)

Assembler Syntax: udi[0,1,2,3] Rd, Rb

Description:
For more details see section USER Instruction interface.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 FN FN Rd Rd Rd Rd Rb Rb Rb Rb

XHW Exchange half word

Operation:
 Rd = (Rb << 16) | ((Rb >> 16) & 0x0000FFFF);

Assembler Syntax: xhw Rd, Rb

Description:
The Upper half word Register B is placed in the Lower half word of Register D; the

lower half word of Register B is placed in the Upper half word of Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 0 1 Rd Rd Rd Rd Rb Rb Rb Rb

 MANIK Reference Guide

www.niktech.com 46

XOR Logical XOR

Operation:
 Rd = Rd ^ Rb;

Assembler Syntax: xor Rd, Rb

Description:
The contents of Register B is bitwise exclusive or ed with the contents of Register D and

the results put into Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

ZXH Zero Extend

Operation:
 Rd = zero extend (Rb[15:0])
Assembler Syntax: zxh Rd, Rb

Description:
Zero extend the lower half word of Register B and put the result in Register D.

PSW Flags updated: None.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 1 Rd Rd Rd Rd Rb Rb Rb Rb

