

VME64 to PCI Bridge System-on-Chip (SoC)
Technical Reference Manual

Silicore Corporation

•

Silicore Corporation
6310 Butterworth Lane; Corcoran, MN (USA) 55340
TEL: (763) 478-3567 FAX: (763) 478-3568
URL: www.silicore.net

Electronic Design
Sensors • IP Cores

 2

VME64 to PCI Bridge System-on-Chip (SoC)

Copyright  2002 Silicore Corporation. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 as pub-
lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section at the end of this manual
entitled "GNU Free Documentation License".

US Government rights: this manual was produced for the U.S. Government under Contract No.
DAAE30-95-C-0009 and is subject to the Rights in Noncommercial Computer Software and
Noncommercial Computer Software Documentation Clause (DFARS) 252.227-7014 (JUN
1995). The Licensee agrees that the US Government will not be charged any license fee and/or
royalties related to this software.

Silicore is a registered trademark of Silicore Corporation. All other trademarks are the property
of their respective owners.

 3

Table of Contents

TABLE OF CONTENTS ..3

MANUAL REVISION LEVEL ..4

1.0 INTRODUCTION ...5
1.1 FEATURES OF THE BRIDGE...6
1.2 GLOSSARY OF TERMS...7
1.3 RECOMMENDED SKILL LEVEL ..11
1.4 REFERENCES...12

2.0 SYSTEM ARCHITECTURE ...13
2.1 VMEBUS INTERFACE..14
2.2 PCI INTERFACE...14
2.3 REGISTER DESCRIPTIONS..16
2.4 OPERATION OF SHARED MEMORY BUFFERS AND REGISTERS ...27
2.5 RESET OPERATION..30

3.0 HARDWARE REFERENCE..31
3.1 VHDL SIMULATION AND SYNTHESIS TOOLS..31
3.2 VHDL PORTABILITY ..32
3.3 REQUIRED RESOURCES ON THE TARGET DEVICE..33

4.0 VHDL ENTITY REFERENCE..39
4.1 CEEPROM ENTITY..40
4.2 MISCREG ENTITY...50
4.3 PCIWRAP ENTITY...54
4.4 SEMABUD ENTITY ...71
4.5 SEMABUF ENTITY..72
4.6 SEMAREG ENTITY..77
4.7 VMECORE™ ENTITY ...81
4.8 VMEPCIBR ENTITY ..102
4.9 VMEPCIBR_SOC ENTITY ..106
4.10 VPWWRAP ENTITY ..108

APPENDIX A – GNU LESSER GENERAL PUBLIC LICENSE...111

APPENDIX C – GNU FREE DOCUMENTATION LICENSE ..120

INDEX ..128

 4

Manual Revision Level

Manual Revisions

Manual
Revision

Level

Date

Description of Changes

0 02 JAN 2002 Preliminary release for comment.
PCI Rev ID Code: 0x0000

1 30 SEP 2002 Project complete.
PCI Rev ID Code: 0x0001

2 09 OCT 2002 Incorporate the following changes:
 - Fix typographical errors
 - Add SPECIALREG register
 - Add three-state clock enable to EEPROM clock (CEEPROM entity)

3 7 DEC 2002 Incorporate the following changes:
 - Reset all sections (except PCI core) after VMEbus [SYSRESET*].
 - Add ‘PCIResetMonitor’ bit (D04) to the DMC_HW_CONTROL register.
 - PCI Rev ID Code: 0x0002

4 17 JAN 2004 Release under the GNU Free Documentation License

 5

1.0 Introduction

The VME64 to PCI Bridge is a System-on-Chip that allows data transfer between a VMEbus
slave interface and a PCI target interface. It is delivered as a VHDL soft core module that is in-
tended for use on a Xilinx Spartan 2 FPGA. However, with minor modifications this soft system
can be implemented on other types or brands of FPGA and ASIC devices. Figure 1-1 shows a
functional diagram of the bridge.

A
N

SI
/V

IT
A

-1
 (V

M
E6

4)

Address (A24)

Data (D32/D16)

Control

+5.0 VDC

+3.3 VDC

32
-b

it
PC

I /
 3

3.
33

3
M

H
z /

 V
2.

2

Control

AD[31::00]

C/BE[3::0]

VMEbus PCI
V

M
Eb

us
 S

LA
V

E
Si

lic
or

e V
M

Ec
or

e(
tm

)

PC
I T

A
RG

ET
X

ili
nx

 L
og

iC
O

RE
 P

CI

W
IS

H
BO

N
E

M
A

ST
ER

PC
IW

RA
P

PCLK
33.333 MHz

W
IS

H
BO

N
E

IN
TE

RC
O

N
 'A

'

W
IS

H
BO

N
E

IN
TE

RC
O

N
 'B

'

FPGA or ASIC Target Device

VMEbus
Address

Comparator
(A19-A23)

5 + parity

SEM_BUF_A

BUF_A

BUF_B

BUF_C

BUF_D

BUF_E

BUF_F

BUF_G

VME64 to PCI Bridge
(VMEPCIBR)

SEM_BUF_B

SEM_BUF_C

SEM_BUF_D

SEM_BUF_E

SEM_BUF_F

SEM_BUF_G

DMC_STATUS

DMC_FAULT

DMC_CMD

DMC_HW_CONTROL

CONFIG_PROM_DATA

CONFIG_PROM_STAT

CONFIG_PROM_CMD

N_ConfSerEn

ConfSerDat

ConfSerClk

Co
nf

ig
ur

at
io

n
PR

O
M

V
PW

W
RA

P

SYSRESET* SPARTAN1

N_VACFailBACFAIL*

WatchdogFaultDSP

D
M

CR
es

et

BUF_H

07 DEC 2002

WCLK
WRSTD Q

WCLK

Figure 1-1. Functional diagram of the VMEbus to PCI bridge.

 6

1.1 Features Of The Bridge

• VMEbus interface features:

- Silicore VMEcore™ IP Core technology1
- A24:D32:D16 slave interface
- Posted read and write capabilities
- Synchronous interface design
- Conforms to ANSI/VITA 1 – 1994

• PCI interface features:
- Xilinx LogiCORE™ PCI IP Core technology2
- D32 target interface
- 0 - 33.333 MHz operation
- Conforms to PCI Revison 2.2

• Shared memory features:
- Nine, 256 x 32-bit shared memory buffers
- Semaphore control register for each buffer (except BUF H)
- Buffers use independent memory arbitration

• Serial EEPROM interface for Atmel AT17 Series of FPGA Configuration ROM.

• Internal WISHBONE bus features3:

- Conforms to WISHBONE Revision B.2
- Simple, compact, logical hardware interfaces
- Portable across FPGA and ASIC target devices
- Third party support (including open source) is available at www.opencores.org

• Straightforward and highly reliable synchronous design.

• Written in flexible and portable VHDL hardware description language. All compo-

nents (with the exception of the Xilinx LOGIcore PCI interface) are delivered as soft
cores, meaning that all VHDL source code and test benches are supplied. This allows
the end user to maintain and modify the design. Complete documentation is also pro-
vided.

1 VMEcore™ is a VMEbus interface that is generated by the Silicore Bus Interface Writer™. The Bus Interface
Writer is a parametric core generator that generates VHDL source code files.

2 The VME64 to PCI Bridge SoC described in this manual interfaces to the back end of the Xilinx LOGIcore PCI,
and is purchased separately from Xilinx. For more information, please refer to the Xilinx, Inc. web site at
www.xilinx.com and the Xilinx LOGIcore PCI Design Guide.

3 The internal WISHBONE SoC components were modified from source code in the public domain. Open source
WISHBONE SoC components are available on the web from the WISHBONE Service Center at
www.silicore.net/wishbone.htm or from www.opencores.org.

 7

1.2 Glossary Of Terms

0x (numerical prefix)
The ‘0x’ prefix indicates a hexadecimal number. It is the same nomenclature as commonly used
in the ‘C’ programming language.

Active High Logic State
A logic state that is ‘true’ when the logic level is a binary ‘1’ (high state). The high state is at a
higher voltage than the low state.

Active Low Logic State
A logic state that is ‘true’ when the logic level is a binary ‘0’ (low state). The low state is at a
lower voltage than the high state.

ASIC
Acronym for: Application Specific Integrated Circuit. A general term which describes a generic
array of logic gates or analog building blocks which are programmed by a metallization layer at a
silicon foundry. High level circuit descriptions are impressed upon the logic gates or analog
building blocks in the form of metal interconnects.

Asserted
(1) A verb indicating that a logic state has switched from the inactive to the active state. When
active high logic is used it means that a signal has switched from a logic low level to a logic high
level. (2) Assert: to cause a signal line to make a transition from its logically false (inactive)
state to its logically true (active) state. Opposite of negated.

Bit
A single binary (base 2) digit.

Bridge
An interconnection system that allows data exchange between two or more buses. The buses
may have similar or different electrical, mechanical and logical structures.

Bus Interface
An electronic circuit that drives or receives data or power from a bus.

Bus Cycle
The process whereby digital signals effect the transfer of data across a bus by means of an inter-
locked sequence of control signals.

BYTE
A unit of data that is 8-bits wide. Also see: WORD, DWORD and QWORD.

Data Organization
The ordering of data during a transfer. Generally, 8-bit (byte) data can be stored with the most
significant byte of a multi byte transfer at the higher or the lower address. These two methods

 8

are generally called BIG ENDIAN and LITTLE ENDIAN, respectively. In general, BIG EN-
DIAN refers to byte lane ordering where the most significant byte is stored at the lower address.
LITTLE ENDIAN refers to byte lane ordering where the most significant byte is stored at the
higher address. The terms BIG ENDIAN and LITTLE ENDIAN for data organization was
coined by Danny Cohen of the Information Sciences Institute, and was derived from the book
Gulliver’s Travels by Jonathan Swift.

DWORD
A unit of data that is 32-bits wide. Also see: BYTE, WORD and QWORD.

ENDIAN
See the definition under ‘Data Organization’.

Firm Core
An IP Core that is delivered in a way that allows conversion into an integrated circuit design, but
does not allow the design to be easily reverse engineered. It is analogous to a binary or object
file in the field of computer software design.

FPGA
Acronym for: Field Programmable Gate Array. Describes a generic array of logical gates and
interconnect paths which are programmed by the end user. High level logic descriptions are im-
pressed upon the gates and interconnect paths, often in the form of IP Cores.

Granularity
The smallest unit of data transfer that a port is capable of transferring. For example, a 32-bit port
can be broken up into four 8-bit BYTE segments. In this case, the granularity of the interface is
8-bits. Also see: port size and operand size.

Hard Core
An IP Core that is delivered in the form of a mask set (i.e. a graphical description of the features
and connections in an integrated circuit).

Hardware Description Language (HDL)
(1) Acronym for: Hardware Description Language. Examples include VHDL and Verilog. (2)
A general-purpose language used for the design of digital electronic systems.

IP Core
Acronym for: Intellectual Property Core. Also see: soft core, firm core and hard core.

Negated
A verb indicating that a logic state has switched from the active to the inactive state. When ac-
tive high logic is used it means that a signal has switched from a logic high level to a logic low
level. Also see: asserted.

 9

Operand Size
The operand size is the largest single unit of data that is moved through an interface. For exam-
ple, a 32-bit DWORD operand can be moved through an 16-bit port with two data transfers.
Also see: granularity and port size.

PCI
Acronym for: Peripheral Component Interconnect. Generally used as an interconnection scheme
(bus) between integrated circuits. It also exists as a board level interconnection known as Com-
pact PCI (or cPCI).

Port Size
The width of a data port in bits. Also see: granularity and operand size.

Posted Read and Write Cycles
A method for minimizing data transfer latency between a data source and its destination. During
a posted read or write cycle a bus interface, lying between a data source and its destination, cap-
tures the data and completes any handshaking protocols with the data source. At the same time,
the bus interface initiates handshaking with the data destination. This alleviates the need for the
data source to wait until the destination is ready to accept the data.

QWORD
A unit of data that is 64-bits wide. Also see: BYTE, WORD and DWORD.

Register (REG)
A device capable of retaining information for control purposes that is contained in a single
BYTE, WORD or DWORD of storage area. Said storage area is not general purpose memory.
Also see: shared register (SREG).

Shared Memory (SMEM)
(1) The address space in a system which is accessible to all modules. (2) A type of memory that
is shared between two or more ports. Shared memory uses a hardware arbitration scheme that
allows simultaneous accesses from two or more processors. However, during simultaneous ac-
cesses one processor may be required to wait until the another has completed its accesses into the
shared memory area. Also see: shared register (SREG).

Shared Register (SREG)
(1) A register space in a system which is accessible to all modules. (2) A type of register that is
shared between two or more ports. Shared registers uses a hardware arbitration scheme that al-
lows simultaneous accesses from two or more processors. However, during simultaneous ac-
cesses one processor may be required to wait until the another has completed its accesses into the
shared memory area. Also see: register, shared memory (SMEM).

SoC
Acronym for System-on-Chip. Also see: System-on-Chip.

 10

Soft Core
An IP Core that is delivered in the form of a hardware description language or schematic dia-
gram.

System-on-Chip (SoC)
A method by which whole systems are created on a single integrated circuit chip. In many cases,
this requires the use of IP cores which have been designed by multiple IP core providers. Sys-
tem-on-Chip is similar to traditional microcomputer bus systems whereby the individual compo-
nents are designed, tested and built separately. The components are then integrated to form a
finished system.

Target Device
The semiconductor type (or technology) onto which the IP core design is impressed. Typical
examples include FPGA and ASIC target devices.

VHDL
Acronym for: VHSIC Hardware Description Language. [VHSIC: Very High Speed Integrated
Circuit]. A textual based computer language intended for use in circuit design. The VHDL lan-
guage is both a synthesis and a simulation tool. Early forms of the language emerged from US
Dept. of Defense ARPA projects in the 1960’s, and have since been greatly expanded and re-
fined. Complete descriptions of the language can be found in the IEEE 1076, IEEE 1073.3, and
IEEE 1164 specifications.

VMEbus
Acronym for: Versa Module Eurocard bus. A popular microcomputer (board) bus. Standardized
under IEC 821, IEEE 1014 and ANSI/VITA 1-1994.

WISHBONE
A flexible System-on-Chip (SoC) design methodology. WISHBONE establishes common inter-
face standards for data exchange between modules within an integrated circuit chip. Its purpose
is to foster design reuse, portability and reliability of SoC designs. WISHBONE is a public do-
main standard.

Wrapper
A circuit element that converts a non-WISHBONE IP Core into a WISHBONE compatible IP
Core. For example, consider a 16-byte synchronous memory primitive that is provided by an IC
vendor. The memory primitive can be made into a WISHBONE compatible SLAVE by layering
a circuit over the memory primitive, thereby creating a WISHBONE compatible SLAVE. A
wrapper is analogous to a technique used to convert software written in ‘C’ to that written in
‘C++’.

WORD
A unit of data that is 16-bits wide. Also see: BYTE, DWORD and QWORD.

 11

1.3 Recommended Skill Level

It is recommended that the user have some experience with VHDL syntax and synthesis before
attempting to integrate this core (or almost any other HDL core for that matter) into an FPGA or
ASIC device. Most VHDL users report a fairly stiff learning curve on their first project, so it’s
better to have that experience before attempting to integrate the core. Prior experience with one
or two medium size VHDL projects should be sufficient. On the other hand, some users may
find the integration of the core a good way to learn many of the concepts in the VHDL language.
Those users should find the integration experience rewarding.

 12

1.4 References

• Ashenden, Peter J. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers, Inc.

1996. ISBN 1-55860-270-4. Excellent general purpose reference guide to VHDL. Weak
on synthesis, stronger on test benches. Good general purpose guide, very complete.

• IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1993. IEEE, New

York NY USA 1993. This is a standard, and not a tutorial by any means. Useful for de-
fining portable VHDL code.

• IEEE Standard VHDL Synthesis Packages. IEEE Std 1076.3-1997. IEEE, New York NY

USA 1997. This is a standard, and not a tutorial by any means. Useful for defining port-
able VHDL code.

• IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_logic_1164). IEEE Std 1164-1993. IEEE, New York NY USA 1993. This is a stan-
dard, and not a tutorial by any means. Useful for defining portable VHDL code.

• Pellerin, David and Douglas Taylor. VHDL Made Easy. Prentice Hall PTR 1997. ISBN

0-13-650763-8. Good introduction to VHDL synthesis and test benches, and closely fol-
lows the IEEE standards.

• PCI Special Interest Group. PCI Local Bus Specification Revision 2.0.

• Peterson, Wade D. The VMEbus Handbook, 4th Ed. VITA 1997 ISBN 1-885731-08-6

• Peterson, Wade D. WISHBONE System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores. Revision B.2.

• Schmitz, Manfred. “PCI-to-VME Bridging: Keeping the Best of Both Worlds”. RTC

Magazine, Dec 2001. pp 59-64.

• Shanley, Tom and Don Anderson. PCI System Architecture 4th Ed. Addison-Wesley

2001. ISBN 0-201-30974-2.

• Skahill, Kevin. VHDL For Programmable Logic. Addison-Wesley 1996. ISBN 0-201-

89573-0. Excellent reference for VHDL synthesis. Very good treatment of practical
VHDL code for the synthesis of logic elements. Weak on test benches and execution of the
IEEE standards.

• VITA. American National Standard for VME64: ANSI/VITA 1-1994.

• Xilinx, Inc. LogiCORE™ PCI Design Guide Version 3.0. Xilinx Inc 2001.

 13

2.0 System Architecture

The VME64 to PCI Bridge connects a VMEbus slave interface to a PCI target interface. Com-
munication between the two sides of the bridge is made through a set of four control registers,
seven semaphore registers and nine shared memory buffers. Data is loaded into a buffer on one
side of the bridge, and unloaded from the other side. The semaphore registers can also be used
by system software to determine when and if a buffer is being used. The VMEbus side of the
bridge also includes an EEPROM interface for programming Atmel AT17 series devices. Table
2-1 shows the address map from both sides of the bridge.

Table 2-1. Address Map.
VMEbus

BYTE Address4
(Base Offset)

PCI
BYTE Address
(BAR Offset)

Name

Type

Access
Types

0x00000 0x0000 DMC_HW_CONTROL SREG R/W
0x00004 (*) CONFIG_PROM_CMD REG R/W
0x00008 (*) CONFIG_WRITE_DATA REG R/W
0x0000C (*) CONFIG_READ_DATA REG R
0x00010 0x0010 DMC_CMD SREG R/W
0x00014 0x0014 DMC_FAULT SREG R/W
0x00018 0x0018 DMC_STATUS SREG R/W
0x0001C 0x001C SPECIALREG SREG R/W
0x00020 0x0020 SEM_BUF_A SREG R/W
0x00024 0x0024 SEM_BUF_B SREG R/W
0x00028 0x0028 SEM_BUF_C SREG R/W
0x0002C 0x002C SEM_BUF_D SREG R/W
0x00030 0x0030 SEM_BUF_E SREG R/W
0x00034 0x0034 SEM_BUF_F SREG R/W
0x00038 0x0038 SEM_BUF_G SREG R/W

0x0003C – 0x007FF 0x003C – 0x07FF Unused / Unreserved - -
0x00800 – 0x00BFF 0x0800 – 0x0BFF BUF_A SMEM R/W
0x00C00 – 0x00FFF 0xC00 – 0x0FFF BUF_B SMEM R/W
0x01000 – 0x013FF 0x1000 – 0x13FF BUF_C SMEM R/W
0x01400 – 0x017FF 0x1400 – 0x17FF BUF_D SMEM R/W
0x01800 – 0x01BFF 0x1800 – 0x1BFF BUF_E SMEM R/W
0x01C00 – 0x01FFF 0x1C00 – 0x1FFF BUF_F SMEM R/W
0x02000 – 0x023FF 0x2000 – 0x23FF BUF_G SMEM R/W
0x02400 – 0x027FF 0x2400 – 0x27FF BUF_H SMEM (**) R/W
0x02800 – 0x0FFFF 0x2800 – 0xFFFF Unused / Unreserved - -
0x10000 – 0x7FFFF - Unused / Unreserved - -

Notes:
Access types: ‘R’: read cycle, ‘W’: write cycle.
Type: REG (register), SREG (shared register) and SMEM (shared memory) are defined in the glossary.
 (*) Not implemented on the PCI side of the bridge.
(**) ‘BUF_H’ is formed from Xilinx distributed RAM, and is the only region that will accept PCI burst transfers. All
other buffers will only respond to single read and write cycles.

4 By definition, VMEbus and PCI addresses are specified at byte locations. The first address given in the table is the
byte address that should be used when accessing the register or memory area using DWORD (32-bit) values.

 14

2.1 VMEbus Interface

The VMEbus slave interface is compatible with ANSI/VITA 1-1994. It has a D32:D16 data in-
terface, and responds to A24 SLAVE base addresses5 on 512 Kbyte boundaries. Stated another
way, the interface responds to A24 base address locations starting at byte locations of 0x000000,
0x080000, 0x100000 and so forth. For example, if the board resides at base address 0x0C0000,
then the ‘DMC_CMD’ register can be accessed at 0x100000 + 0x000010 = 0x100010.

The bridge responds to VMEbus single read and write cycles. It does not respond to the VME-
bus block transfer cycle, nor does it support the VMEbus read-modify-write (RMW) cycle.

All registers and buffer memory areas have port sizes of 32-bits (DWORD). All have 16-bit
(WORD) granularity, meaning that they can be accessed as 16 or 32-bit quantities. Byte ac-
cesses are not supported.

The VMEbus interface is almost, but not totally compliant, with ANSI/VITA 1-1994. That
specification requires (under RULE 2.77) that the interface support byte, or D08(EO), data trans-
fer modes. However, this interface only responds to WORD (16-bit) accesses on 2-byte bounda-
ries, and DWORD (32-bit) accesses on 4-byte boundaries6.

All VMEbus accesses to ‘unused’ address areas are terminated with the VMEbus [BERR*] sig-
nal.

2.2 PCI Interface

The PCI target interface is implemented with a Xilinx LogiCORE PCI interface7. Unless other-
wise noted, it is compatible with the PCI Version 2.2 bus specification.

The target interface responds to the following PCI command cycles:

• Configuration Read (CBE[3:0] = 1010)
• Configuration Write (CBE[3:0] = 1011)
• Memory Read (CBE[3:0] = 0110)
• Memory Write (CBE[3:0] = 0111)
• Memory Read Multiple (CBE[3:0] = 1100)
• Memory Read Line (CBE[3:0] = 1110)

The PCI interface responds to 64 Kbyte of memory I/O space starting at the address programmed
in the BAR0 register.

5 The VMEbus interface responds to A24 address modifier codes 0x3E, 0x3D, 0x3A and 0x39.
6 This caveat is required because the target device for the bridge core is the Xilinx Spartan 2 FPGA. The limited
number of block memories on that device forces an internal memory architecture (granularity) of 16-bits.
7 For more details, please refer to the Xilinx LogiCORE PCI Design Guide.

 15

All registers and buffer memory areas located on the PCI target interface have port sizes of 32-
bits (DWORD). All have 16-bit (WORD) granularity, meaning that they can be accessed as 16
or 32-bit quantities. The bridge uses a 16/32-bit data interface, which means that it can read and
write 16-bit WORD or 32-bit DWORD values. The interface does not support BYTE accesses.

All PCI accesses to ‘unused’ address areas are terminated with a PCI TARGET ABORT.

Special ‘wrapper’ circuitry connected to Xilinx LogiCore PCI interface controls how the target
interface responds to the PCI commands. During the initial phase of a PCI burst cycle, a binary
counter (located inside the wrapper circuitry) latches the starting PCI address. The counter then
increments during subsequent phases within the burst cycle, thereby generating the next address.
The counter is incremented after every cycle that accesses the high byte of a 32-bit DWORD
transfer. The high byte is indicated when [S_CBE(3)] is low. That means that the address
counter is incremented after every 32-bit transfer or after a high order 16-bit transfer.

PCI single and burst transactions are supported by the bridge. However, burst transactions8 are
not supported by all memory locations or registers. If a burst transaction is attempted in a mem-
ory region that does not support burst transfers, then the bridge responds with a TARGET
ABORT termination9.

Reading or writing to more than one ‘SREG’ or ‘SMEM’ area during a single PCI burst cycle
may result in an unexpected behavior, and is not recommended.

Also note that the 8-bit address counter rolls over from 0xFF to 0x00 during burst cycles. This
means that burst transfers cannot cross boundaries from one shared memory to another. For ex-
ample, a 256 DWORD burst to the middle of ‘BUF_H’ will wrap around to the beginning of the
same buffer.

The Xilinx LogiCORE PCI handles all transactions with the bridge. The core is implemented as
a PCI target, meaning that it cannot initiate transactions. This manual does not attempt to define
the operation of the Xilinx LogiCORE PCI interface.

The PCI core returns a PCI Device ID and a PCI Rev ID that are unique to the VMEbus to PCI
Bridge core. These are returned from PCI configuration registers 0x00 and 0x08 respectively.
The PCI Device ID always returns 0x030. The PCI Rev ID identifies the hardware revision level
as shown in the ‘Manual Revision’ section at the front of this manual.

8 Burst transactions are bus cycles with more than one data transfer phase.
9 Burst transactions in excess of one data transfer are allowed as long as the memory structure supports it. This is
because the core can be implemented on a number of target devices, memory types and speeds. The Xilinx Logi-
Core PCI requires that memories must support single clock data transfers. If this type of memory is implemented on
the device, then the burst operation is supported. If this type of memory is not implemented with the core, then burst
transactions are not supported. For more information please refer the Hardware Reference section of this manual.

 16

2.3 Register Descriptions

Unless otherwise noted, the VMEbus and PCI shared registers (SREG) have identical bit descrip-
tions.

2.3.1 DMC_HW_CONTROL Register

Tables 2-2 and 2-3 show the operation of the DMC_HW_CONTROL Register.

Table 2-2. DMC_HW_CONTROL Definition

Bit #

Name

Write

Read
D00 DMCReset 0 = Local run (*)

1 = Local reset
Readback

D01 SysfailLocalDriver 0 = Assert SYSFAIL (*)
1 = Negate SYSFAIL

Readback

D02 SysfailSystemMonitor 0 0 = SYSFAIL asserted
1 = SYSFAIL negated

D03 AcfailSystemMonitor 0 0 = ACFAIL asserted
1 = ACFAIL negated

D04 PCIResetMonitor 0 0 = No PCI reset
1 = PCI reset

D05-D31 Unused / Unreserved 0 0
Notes:
(1) Always set unused bits to ‘0’ to support future upgrades.
(2) Condition after VMEbus reset or device configuration denoted by: (*).

 17

Table 2-3. DMC_HW_CONTROL Detailed Description

Bit #

Detailed Description

D00

DMCReset

WRITE: Clearing this bit asserts the [SPARTAN1] output pin on the
device. Setting this bit negates the [SPARTAN1] output pin. [SPAR-
TAN1] is an active high signal.

READ: Returns the current state of the WRITE bit.

D01

SysfailLocalDriver

WRITE: Clearing this bit causes the local SYSFAIL* driver to assert
the VMEbus SYSFAIL* signal. Setting this bit negates the local
SYSFAIL driver. For more information about the operation of this bit,
please see the SYSFAIL* Operation section of this manual.

READ: Returns the current state of the WRITE bit.

D02

SysfailSystemMonitor

WRITE: Always set to ‘0’ to support future upgrades of this register.

READ: Returns the current state of the VMEbus SYSFAIL* signal.
When cleared, the VMEbus SYSFAIL* signal is asserted (i.e. failure
mode). When negated, the VMEbus SYSFAIL signal is negated.

D03

AcfailSystemMonitor

WRITE: Always set to ‘0’ to support future upgrades of this register.

READ: Returns the current state of the VMEbus ACFAIL* signal.
When cleared, the VMEbus ACFAIL* signal is asserted (i.e. AC power
failure mode). When negated, the VMEbus ACFAIL* signal is ne-
gated.

D04

PCIResetMonitor

WRITE: Always set to ‘0’ to support future upgrades of this register.

READ: Returns the current state of the PCI [RST#] signal. When set,
the PCI bus is in its reset condition. When cleared, PCI bus is in its
‘run’ condition.

D05-D31
Unused / Unreserved

WRITE: Always set to ‘0’ to support future upgrades of this register.
READ: Always returns ‘0’.

The VME64 to PCI Bridge supports a standard implementation of the SYSFAIL* line. This in-
cludes both its start-up diagnostic and run-time failure capabilities. While these capabilities are
not defined by the VMEbus specification, they do conform to standard industry practices.

SYSFAIL* is an open-collector class VMEbus signal. That means it operates as a ‘wire-nor’
circuit that is asserted if one or more VMEbus modules drives it low. It is negated only after all
VMEbus modules negate their on-board SYSFAIL* drivers.

 18

The standard start-up diagnostic operation of SYSFAIL* is shown in Figure 2-1. Under that
practice, SYSFAIL* is asserted by all modules in response to the VMEbus SYSRESET* signal.
After SYSRESET* is negated, all modules are tested to see if they are operating correctly. As
each module passes its test it negates its SYSFAIL* driver. SYSFAIL* is negated only after all
modules pass these diagnostic tests. This procedure follows a standard industry practice where
all modules boot up in a failed state (i.e. they are assumed to be ‘bad’ until proven ‘good’).
SYSFAIL* is negated only after all of the modules are proven to be good.

SYSRESET*

SYSFAIL*

SYSFAIL* asserted
by on all modules
after SYSRESET*.

Self test performed
on all modules.

SYSFAIL* negated
after self test

passes on all modules.

19 SEP 2002
Figure 2-1. Standard VMEbus SYSFAIL* operation.

Very often a red/green LED is attached to a module’s local SYSFAIL* driver. This allows quick
diagnosis of the system at boot up time by an operator. Under this situation the system is booted
and all LEDs turn red. As each module passes its diagnostic test, its LED turns green. In this
way the system operator can quickly determine if one or more modules has failed.

A run-time failure can be indicated by a module at any time. To indicate the failure, the module
simply asserts SYSFAIL*.

The VME64 to PCI Bridge has several capabilities that are specifically designed to support
SYSFAIL* operation. Control and status bits are available from the DMC_HW_CONTROL
VMEbus register.

The SYSFAIL* control and status bits are configured so that they look like an emergency stop
(ESTOP) button. ESTOP buttons are a common practice in industrial systems. These are gener-
ally arranged into a ‘wire-or’ chain whereby pushing any ESTOP button in the chain causes the
system to shut down in a known and controllable manner. This is a standard technique in all sys-
tems where a failure could cause damage to life or property. Commonly, ESTOP is a large red
button that is pushed to immediately stop all motion or other hazardous conditions (such as de-
energizing high voltage power supplies).

A common practice in industrial control systems is to provide an electronic ESTOP button for
the control system. This allows the control system to safely power down the system in response
to a failure. A common practice in VMEbus systems is to provide each critical module with it’s
own ESTOP button, and to wire-or them together with the SYSFAIL* line. SYSFAIL* on the
backplane can then be wired to a relay (or other logic) that connects into the main system ES-
TOP chain.

 19

The VME64 to PCI Bridge provides this capability on both sides of the bridge. Furthermore,
each side of the bridge can monitor the other side of the bridge. For more information, please
refer to the register descriptions.

2.3.2 Configuration EEPROM Registers

The Configuration EEPROM Interface assists in programming of the Atmel AT17 Series of
FPGA Configuration EEPROM. The interface is configured by three registers:

• CONFIG_PROM_CMD: Command/status register
• CONFIG_WRITE_DATA: Write data register (8-bits).
• CONFIG_READ_DATA: Read data register (8-bits).

The user is encouraged to study the following data sheets (provided by Atmel) before program-
ming a device:

1) Programming Specification for Atmel’s AT17 and AT17A Series FPGA Configuration
EEPROMS. Atmel Corporation 2002. See www.atmel.com.

2) AT17LV040 FPGA Configuration EEPROM Memory (data sheet).

The CONFIG_PROM_CMD register is shown in Tables 2-4 and 2-5. The bits in this register
control the various operations of the interface. The CONFIG_READ_DATA and CON-
FIG_WRITE_DATA registers are for reading and writing data to the EEPROM. Load the lower
eight bits of the CONFIG_WRITE_DATA register before issuing a write command, and read the
lower eight bits of the CONFIG_READ_DATA register after completion of a read command.

The EEPROM interface can be reset (initialized) in one of two ways: (1) under hardware control
in response to a system reset (via the WISHBONE reset line [RST_I]) or (2) under software con-
trol in response to the ‘ResetPromInterface’ bit in the CONFIG_PROM_CMD register.

After a system reset the ‘ResetPromInterface’ bit is set by hardware. This causes all sections of
the EEPROM interface to be initialized. The reset operation may take some time to complete, as
the interface operates with a clock speed of about 400 KHz. This means that the reset interval
can last in excess of 3 – 6 microseconds. During this time all processor inquires to the ‘Reset-
PromInterface’ will return a ‘BUSY’ state. While busy, the host processor should not attempt to
initiate EEPROM accesses.

To reset the EEPROM interface, the VMEbus host processor should perform the following:

1) Reset the interface by setting the ‘ResetPromInterface’ bit (D00) in the CON-
FIG_PROM_CMD register.

2) Monitor bit D00 (‘BUSY’) until the bit is cleared.
3) Perform other operations as needed.

 20

Table 2-4. CONFIG_PROM_CMD

Bit #

Name

Write

Read
D00 ResetPromInterface 0 = Operate interface (*)

1 = Reset interface
0 = Not busy
1 = Busy

D01 SendStartCondition 0 = No operation (*)
1 = Send start condition

0 = Not busy
1 = Busy

D02 SendStopCondition 0 = No operation (*)
1 = Send stop condition

0 = Not busy
1 = Busy

D03 WriteByteWithAck 0 = No operation (*)
1 = Write data byte

0 = Not busy
1 = Busy

D04 ReadByteWithAck 0 = No operation (*)
1 = Read data byte

0 = Not busy
1 = Busy

D05 ReadByteWithStop 0 = No operation (*)
1 = Read data byte

0 = Not busy
1 = Busy

D06 AckStat 0 0 = ACK received
1 = No ACK received

D07 ConfSerEn 0 = Disable configuration (*)
1 = Enable configuration

Readback

D08 ManualConfigOverride
(Manual Override)

0 = Normal operation (*)
1 = Manual configuration

Readback

D09 ConfSerClkOverride
(Manual Override)

0 = ConfSerClk cleared (*)
1 = ConfSerClk set

Readback

D10 ConfSerDatOverride
(Manual Override)

0 = ConfSerDat cleared (*)
1 = ConfSerDat set

Readback

D11 ConfSerDat
(Manual Override)

0 Input State

D12-D31 Unused / Unreserved 0 0
Notes:
(1) Always set unused bits to ‘0’ to support future upgrades.
(2) Condition after system reset or device configuration denoted by: (*).

 21

Table 2-5. CONFIG_PROM_CMD Detailed Description

Bit #

Detailed Description

D00

ResetPromInterface

WRITE: Setting this bit resets the EEPROM interface. Negating the bit
has no effect. This bit need only be set once to initiate a reset.

READ: Returns the current state of the reset that was initiated by as-
serting the WRITE bit. The bit returns ‘1’ while the interface is busy
implementing the reset operation, and ‘0’ when it has completed.

NOTE: a ‘ResetPromInterface’ command is initiated in response to a
system reset or device configuration. That means that host processor
could read this bit as a ‘1’ shortly after a system reset. However, the bit
will be eventually be negated when the EEPROM interface has com-
pleted its reset cycle.

D01

SendStartCondition

WRITE: Setting this bit initiates an EEPROM START CONDITION.
Negating the bit has no effect.

READ: Returns the current state of the START CONDITION which
was initiated by asserting the WRITE bit. The bit returns ‘1’ while the
interface is busy implementing the START CONDITION, and ‘0’
when it has completed.

D02

SendStopCondition

WRITE: Setting this bit initiates an EEPROM STOP CONDITION.
Negating the bit has no effect.

READ: Returns the current state of the STOP CONDITION which was
initiated by asserting the WRITE bit. The bit returns ‘1’ while the in-
terface is busy implementing the STOP CONDITION, and ‘0’ when it
has completed.

D03

WriteByteWithAck

WRITE: Setting this bit writes a byte of data to the EEPROM. Negat-
ing the bit has no effect. Before setting this bit the data must be loaded
into lower eight bits of the CONFIG_WRITE_DATA register.

READ: Returns the current state of the write operation which was initi-
ated by asserting the WRITE bit. The bit returns ‘1’ while the interface
is busy writing data, and ‘0’ when it has completed. The state of the
‘ACK’ bit (returned by the EEPROM) is indicated by bit D06 (below).

 22

Table 2-5. CONFIG_PROM_CMD Detailed Description (con’t)

Bit #

Detailed Description

D04

ReadByteWithAck

WRITE: Setting this bit reads a byte of data from the EEPROM and
terminates it with an ACK CONDITION. Negating the bit has no ef-
fect.

READ: Returns the current state of the read operation which was initi-
ated by asserting the WRITE bit. The bit returns ‘1’ while the interface
is busy writing data, and ‘0’ when it has completed.

Note: After completion of the ‘ReadByteWithAck’ command, the
EEPROM data byte is returned in the lower eight bits of the CON-
FIG_READ_DATA register.

D05

ReadByteWithStop

WRITE: Setting this bit reads a byte of data from the EEPROM and
terminates it with a STOP CONDITION. Negating the bit has no ef-
fect. The data is returned in the CONFIG_READ_DATA register.

READ: Returns the current state of the read operation which was initi-
ated by asserting the WRITE bit. The bit returns ‘1’ while the interface
is busy writing data, and ‘0’ when it has completed.

Note: After completion of the ‘ReadByteWithStop’ command, the
EEPROM data byte is returned in the lower eight bits of the CON-
FIG_READ_DATA register.

D06

AckStat

WRITE: Always write a ‘0’ to this location.

READ: Returns the current state of the ACK bit after implementing the
WriteByteWithAck and ReadByteWithAck commands. Query this bit
to determine if the EEPROM successfully acknowledged the com-
mands.

D07

ConfSerEn

WRITE: Setting this bit enables configuration of the EEPROM. Negat-
ing the bit disables configuration. Always set this bit before attempting
to read or write to the EEPROM. Always negate it when completed.

READ: Returns the state of the WRITE bit.

 23

Table 2-5. CONFIG_PROM_CMD Detailed Description (con’t)

Bit #

Detailed Description

D08

ManualConfigOverride

WRITE: Clearing this bit allows the interface to operate normally. Set-
ting this bit overrides all other functions and allows the ConfSerClk
and ConfSerDat to be operated manually. This function is used for test
and debugging purposes.

READ: Returns the state of the WRITE bit.

D09

ConfSerClkOverride

WRITE: asserts or negates the ConfSerClk signal when the Manual-
ConfigOverride bit is set.

READ: Returns the state of the WRITE bit.

D10

ConfSerDatOverride

WRITE: asserts or negates the ConfSerDat signal when the Manual-
ConfigOverride bit is set.

READ: Returns the state of the ConfSerDat signal.

D11
ConfSerDat Input

WRITE: Always write a ‘0’ to this location.

READ: Returns the state of the ConfSerDat input.

D12 – D31

Unused / Unreserved

WRITE: Always write a ‘0’ to this location.

READ: Always returns ‘0’.

When programming a configuration EEPROM the user is directed to the programming algorithm
in the Atmel Programming specification. The interface provides much of the timing. For exam-
ple, Figure 2-2 shows how the interface implements the first few bytes of data shown in the
“Write to Whole Device” algorithm.

The Atmel AT17 series parts must be programmed at a speed that is sufficiently high to guaran-
tee the ‘Write Cycle Time’ (TWR) indicated in the data sheet. Stated another way, data written to
the device must be delivered within a minimum length of time. For example, the Write Cycle
Time of the Atmel AT17LV040 is specified as 25.0 ms (max). This means that the theoretical,
maximum time required to deliver the data to the EEPROM is:

256 data bytes/page x 9 bits/byte10 = 2,304 data bits/page

4 address bytes/page x 9 bits/byte = 36 address bits/page

2304 data bits/page + 36 address bits/page = 2,340 bits/page

10 An address or data byte includes eight bits of information plus one acknowledge bit, or 9 bits total.

 24

The EEPROM interface11 operates at an clock speed (ECLK) of 393 KHz, and each address or
data bit requires 4 clock cycles to complete. This means that the minimum, total Write Cycle
Time is:

2,340 bits/page x 4/393 KHz = 23.8 ms

Under best case conditions a block of data takes at least 23.8 ms to write to the EEPROM. How-
ever, since the maximum Write Cycle Time for the AT17LV040 is 25.0 ms, this leaves only a
very small guard band (1.2 ms) to meet the specification.

In order to achieve this data rate the host processor must deliver data to the interface in an expe-
dient manner. During write cycles this usually means that back-to-back data write cycles (using
the ‘WriteByteWithAck’ command) must occur seamlessly...one after the other. Stated another
way, a new ‘WriteByteWithAck’ command must be issued immediately after the ‘BUSY’ bit has
been negated from a previous command.

Once the EEPROM interface hardware has written a data byte to the device with the ‘Write-
ByteWithAck’ command, it negates the associated ‘BUSY’ bit. Once this happens, the host
processor has [Tav] seconds to load the CONFIG_WRITE_DATA register and set the ‘Write-
ByteWithAck’ command bit. If the host processor does not meet [Tav] the interface will proba-
bly work just fine. However, if [Tav] is exceeded for too many cycles, then there is a risk that
maximum Write Cycle Time of 25.0 ms could be exceeded.

The maximum time available [Tav] from ‘BUSY’ negated to ‘WriteByteWithAck’ set is found
from the relation:

ECLKsetup
ICLKECLK

Tav −−=
_

61

Given an EEPROM clock [ECLK] of 393 KHz, a WISHBONE clock speed [CLK_I] of 33.0
MHz and [ECLKsetup] of 1 WISHBONE clock yields a [Tav] of:

uS
MHzMHzKHz

Tav 34.2
33

1
33

6
393

1
=−−=

The system integrator / software programmer should also remember that non real-time operating
systems (such as Unix or Windows®) may introduce significant time delays into software execu-
tion. These delays can be large when compared to the maximum Write Cycle Time of 25.0 ms.
Use of such non deterministic software systems should be carefully evaluated.

11 For more information about the EEPROM interface please refer to the ‘CEEPROM.VHD’ hardware reference
located elsewhere in this manual.

Important Notice:
The first byte on the AT17 series EEPROM cannot be reliably read by the FPGA unless

power is cycled after programming. For more information, please refer
to the programming instructions.

 25

EEPROM High Level Software Algorithm
17 AUG 2002

START

ResetPromInterface = 1

ResetPromInterface
'Busy' (READ bit)

?

NO

YES

SendStartCondition = 1;

SendStartCondition
'Busy' (READ bit)

?

YES

NO
Load Device Address

(AE\h or A6\h)
Into CONFIG_WRITE_DATA

WriteByteWithAck = 1

WriteByteWithAck
'Busy' (READ bit)

?

YES

NO

'ACK Received'
(READ bit D06)

?

YES

NO

Load MSB of EEPROM address
into CONFIG_WRITE_DATA

WriteByteWithAck = 1

WriteByteWithAck
'Busy' (READ bit)

?

YES

NO

'ACK Received'
(READ bit D06)

?

YES

NO

...etc.

Figure 2-2. High level software control algorithm for the EEPROM Interface.

 26

2.3.5 DMC_CMD Register

DMC_CMD is a 32-bit, user defined, general purpose read/write register.

2.3.6 DMC_FAULT Register

DMC_FAULT is a 32-bit read/write register, with the bit definitions shown in Table 2-6.

Table 2-6. DMC_FAULT Definition

Bit #

Name

Write

Read
D00 WatchdogFaultDSP 0 ‘0’ = No timeout

‘1’ = Timeout
D01-D31 User defined Latched Returns current state

2.3.7 DMC_STATUS Register

DMC_STATUS is a 32-bit, user defined, general purpose read/write register.

2.3.8 SPECIALREG Register

SPECIALREG is a 32-bit, user defined, general purpose read/write register.

2.3.9 PCI_SEM_BUF_(A-G)

The seven semaphore registers SEM_BUF_(A-G) are used by VMEbus or PCI system proces-
sors to obtain ownership rights for the seven buffer memories. Table 2-7 is representative of the
seven semaphore registers. Each SEM_BUF(A-G) semaphore register corresponds to a related
BUF(A-G) shared buffer memory.

Table 2-7. SEM_BUF_(A-G) Definition

Bit #

Name

Write

Read
D00 SemaphoreBufferN

(G ≥ N ≥ A)
0 = Buffer released
1 = No effect

0 = Grant
1 = Busy

D01-D31 Unused / Unreserved 0 0

 27

The ‘SemaphoreBufferN’ bit indicates whether a VMEbus or PCI system processor has obtained
the memory space. The semaphore does not lock the memory buffer but just provides a mecha-
nism for software to determine if the particular memory buffer is being used. If the semaphore is
not used, or is disregarded by software, the associated buffer arbitration still operates normally.

The semaphore is accessed by reading the bit. If the bit is returned as ‘0’, then the processor has
obtained ownership of the buffer. If the bit is returned as ‘1’, the buffer is busy. If a processor
obtains the buffer by reading ‘0’ (becomes the owner), and the bit is sampled for a second time,
then the bit is returned as ‘1’ on the second access.

If a VMEbus and PCI semaphore access occurs at the same time (i.e. during the same clock cy-
cle), then the VMEbus access has priority.

The buffer is released by writing a ‘0’ to the semaphore. Writing a ‘1’ to the bit does not have
any effect. The buffer may be released from either the VMEbus or PCI side of the bridge.

2.4 Operation of Shared Memory Buffers and Registers

The VME64 to PCI Bridge contains several different types of memories and buffers. These are
classified as SMEM (shared memory), REG (register) and SREG (shared register). The classifi-
cation for any particular memory or register can be found in the VMEbus and PCI address maps
located elsewhere in this manual.

SMEM and SREG types are shared by both sides of the bridge12. Each has its own arbiter circuit
that resolves any contention between the two sides of the shared resource. For the most part, this
operation is transparent to the software programmer. However, in some cases it is important to
understand how the arbitration works.

2.4.1 Shared Buffers

There are eight shared memory buffers named ‘BUF_A’ through ‘BUF_H’. These can be used
to pass data between the two sides of the bridge. They operate as 32-bit wide memories with 16-
bit granularity. This means that information can be passed in WORD (16-bit) and DWORD (32-
bit) data formats.

Each buffer operates as an independent shared memory. This means that both sides of the bridge
supports full, simultaneous, read/write privileges into each buffer. This provides the software
designer with a very flexible mechanism for moving data, as well as an excellent way to test
memory from both sides of the bridge.

There may be some undesirable side effects as a result of contention within the shared areas.
Specifically, the interface may slow down because a hardware arbiter must grant accesses to one

12 A third type called ‘REG’ (register) is a non-shared register. These operate independently from the opposite side
of the bridge.

 28

side of the bridge or the other. To alleviate this problem, multiple shared memory buffers are
provided. This allows one side of the bridge to access one buffer while the other side of the
bridge accesses the other. Under this method there are never any simultaneous memory con-
flicts, so neither side of the bridge ever waits for an access.

As an option, the software programmer has the ability to use a set of semaphore registers. These
can be used to determine which side of the bridge ‘owns’ a particular buffer. The semaphore
does not lock the memory buffer, but rather provides a mechanism for software to determine if
the particular memory buffer is being used. If the semaphore is not used, or is disregarded by
software, the associated buffer arbitration still operates normally.

The first seven memory buffers have an associated semaphore register called SEM_BUF_(A-G).
These are classified as type SREG, meaning that they also operate as a shared resource with its
own hardware arbiter. The arbitration of SMEM and SREG types are identical. An eighth
buffer, ‘BUF_H’, does not have an semaphore register associated with it.

2.4.2 Hardware Arbitration

Accesses from both the VMEbus and PCI side of the bridge proceed normally when they are un-
contested. When simultaneous accesses take place in a shared memory or shared register, a
hardware arbiter holds off the access from either the VMEbus or the PCI side of the bridge. This
means that only one access can take place at any given time. Each SMEM or SREG contains an
identical arbiter.

If a simultaneous access occurs from both the VMEbus and PCI sides of the bridge (over a single
clock period), then the hardware arbiter will grant the access to the VMEbus side of the bridge,
and hold off the PCI side.

2.4.3 PCI Accesses

Each register or buffer arbiter assigns a resource at the beginning of every bus cycle. If the PCI
side of the bridge wins the arbitration, then it holds the resource until it is done with its bus cy-
cle. This means that arbitration only takes place once, at the beginning of a bus cycle. For ex-
ample, if the PCI side of the bridge does a burst transfer into a shared memory, then arbitration
occurs immediately before the first data transfer within the burst. The shared memory remains
granted to the PCI side during the transfer. At the end of the burst transfer the shared memory is
automatically relinquished13.

13 Note that behavior during burst transfers depends upon the type of memory used in SMEM. For more information
see the ‘Memory Requirements’ section of this manual.

 29

2.4.4 VMEbus Accesses

The VMEbus side of the bridge works somewhat differently. That side of the bridge supports
posted read and write operations. During a posted read or write operation the VMEbus interface
captures the data and completes any handshaking protocols with the data source (e.g. a memory
buffer). At the same time it initiates handshaking with the data destination. This alleviates the
need for the data source to wait until the destination is ready to accept the data.

During a VMEbus posted write operation to an SREG or SMEM region, the bridge does three
things: (1) it captures the VMEbus data, (2) it asserts the DTACK* signal to begin termination of
the VMEbus cycle and (3) it begins writing the data to its destination. The data is held in the
posted write latch14 until the destination arbiter is ready to accept it. When ready, the interface
completes the data transfer into the SREG or SMEM region.

Once the VMEbus posted write latch has captured the data, it continues to hold it until the desti-
nation is ready to accept it. In SREG regions the data is delivered within a few clock cycles be-
cause the PCI side of the bridge is limited to single transfer cycles. However, in SMEM regions
it could take some time for the data to be delivered to its destination. For example, if a 33.333
MHz PCI interface were to transfer 512 words of data during a burst transfer, then the delay be-
fore data is accepted is at least 15 uS:

512 WORDS/BURST x 1/(33.333 MHz x WORD) = 15 uS / BURST

Once the VMEbus posted write latch has captured the data, it prevents the interface from re-
sponding to further VMEbus cycles until the data has been transferred to its destination. This
prevents subsequent VMEbus cycles from overwriting the posted write data latch. The VMEbus
cycle will be accepted only after the posted write data has been transferred from the latch.

Under these circumstances the waiting period could be long enough to trigger some VMEbus
BERR* watchdog timers (depending upon how they are configured). However, if software uses
the semaphore registers (SEM_BUF_A, etc.) to determine ownership of a buffer, then data will
always be delivered within a few clock cycles.

The VMEbus posted read cycles operate in a similar, reverse manner. During read cycles from
an SREG or SMEM region the VMEbus interface waits for the arbiter to grant the source to the
interface. During this interval the VMEbus MASTER participating in the cycle waits until the
data is ready. Once the arbiter has granted ownership of the data source to the VMEbus interface
it does three things: (1) it captures the read data in the posted read latch, (2) it completes hand-
shaking with the data source and (3) it asserts the VMEbus DTACK* signal to begin termination
of the cycle. The data is held in the posted read latch until the VMEbus cycle is completed.

The posted read capability prevents the VMEbus side of the bridge from ‘hogging’ the SREG or
SMEM area. Once arbitrated, the source data is delivered to the posted read latch in a few clock
cycles. Once the data is delivered, the arbiter can service any pending accesses on the PCI side
of the bridge.

14 The VMEbus posted write latch is physically located in the VPWWRAP hardware section.

 30

2.5 Reset Operation

The VME64 to PCI Bridge SoC responds to both the VMEbus [SYSRESET*] signal and the PCI
[RST#] signal. Most sections of the bridge are initialized whenever the VMEbus [SYSRESET*]
signal is asserted. Only the Xilinx LogiCORE PCI core is reset in response to the PCI [RST#]
signal.

 31

3.0 Hardware Reference

Most of the VME64 to PCI Bridge SoC was created and delivered in the VHDL hardware de-
scription language. VHDL source code must be synthesized before operation on a particular tar-
get device (such as an FPGA or ASIC). A variety of simulation, synthesis and CASE15 tools can
be used with the core.

Most of the components used by the core are provided with the source code. However, there are
a few exceptions. RAM and I/O drivers must be synthesized with entities provided by the FPGA
or ASIC vendor. That’s because portable, synthesizable RAM and ROM elements are not sup-
ported by the VHDL standards. Furthermore, the SoC uses a PCI target interface that was made
from a Xilinx LogiCORE PCI element. Xilinx does not provide source code for this core, but
rather a ‘firm core’ in the form of a proprietary Xilinx ‘.ngo’ file. This file is combined with the
rest of the SoC at route time.

With the exceptions noted above, the VME64 to PCI Bridge is provided as a ‘soft core’. This
means that all VHDL source code and test benches are provided with the design. This enables
the user to see inside of the design, thereby allowing a better understanding of it. This is useful
from both a design and test standpoint. From a design standpoint the user can tweak the source
code to better fit the application. From a test standpoint, it allows the user to create custom test
benches that incorporate both the core and other entities on the same IC.

The soft core approach allows the VME64 to PCI Bridge to be synthesized and tested with a va-
riety of software tools. This reduces the cost of special VHDL development software. Users
should verify that their software tools conform to the IEEE standards listed in the next section of
this manual.

3.1 VHDL Simulation and Synthesis Tools

It is assumed by Silicore Corporation that all simulation and synthesis tools conform to the fol-
lowing standards16:

• IEEE Standard VHDL Language Reference Manual, IEEE STD 1076-1993.
• IEEE Standard VHDL Synthesis Packages, IEEE STD 1073.3-1997.
• IEEE Standard Multivalue Logic System for VHDL Model Interoperability, IEEE STD

1164-1993.

In most cases the VHDL source code should be fully portable as long as the simulation and syn-
thesis tools conform to these standards. However, if incompatibilities between the source code
and the user’s tools are found, please contact Silicore Corporation so that the problem can be re-
solved.

15 CASE: Computer Aided Software Environment
16 Copies of the standards can be obtained from: IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ USA 08855 (800) 678-4333 or from: www.ieee.org

 32

It is strongly recommended that the user have a set of VHDL simulation tools before integrating
the VME64 to PCI Bridge. These help in two ways: (a) they build confidence that the core syn-
thesizes correctly and (b) they help resolve any integration problems. The simulation tools do
not need to be fancy...a simple logical, non-graphical simulator is adequate.

Explicit instructions for synthesis and routing of the core on a Xilinx Spartan 2 FPGA are pro-
vided in the source disk. These take the form of batch files that exactly define the various syn-
thesis and routing operations needed to form the final target device. The following tools are used
in the source disk examples:

• Xilinx Integrated Software Environment (ISE) 4.2 (FPGA Router)
• Xilinx XST Tools (VHDL Synthesis)
• ModelSim 5.5b (VHDL Simulator)

All original VHDL source files have been edited with a MS-DOS editor. Font style: COURIER
(monotype), tab spacing: 4. Almost any editor can be used, but the user may find that the style
and formatting of the source code is more readable using this (or a compatible) editor.

3.2 VHDL Portability

Portability of the VHDL source code is a very high priority in the VME64 To PCI Bridge design.
It is assumed that the core will be used with a variety of target devices and tools.

Several proven techniques have been used in the source code to enhance its portability. These
apply to the synthesizable code, and not to the test benches. These include:

• No variable types are used. Variables tend to synthesize unusual logic in some VHDL

compilers, and have not been used in the synthesizable entities. For example, all count-
ers are designed with logic functions, and not with incremental variables. Variable
types are used in the test benches, however.

• No internal three-state buses are used17. Some FPGA architectures do not support

three-state buses well, and have been eliminated from the core (except for the I/O port
interfaces, which are user defined). However, some VHDL synthesis tools will auto-
matically create three-state buses on large multiplexors. This is perfectly acceptable if
the target device supports them.

• Synchronous resets and presets are used on flip-flops. No asynchronous resets or pre-

sets are used in the design. Most FPGA and ASIC flip-flops will handle synchronous

17 The Xilinx LogiCORE PCI does contain a three-state bus. Because this core contains licensing provisions which
restrict its use to Xilinx parts, and because Xilinx parts do have three-state buses, this is not a problem in this appli-
cation.

 33

resets and presets very well. The asynchronous resets and presets are less portable, but
are still supported by most devices. Asynchronous presets are least portable, and have
been eliminated from the design.

• Asynchronous, unintended latches have been eliminated from the design. These are

usually the result of incompletely specified if-then-elsif VHDL statements.

• Each source file contains one entity/architecture pair. Some simulator and synthesis

tools cannot handle more than one entity/architecture pair per file.

3.3 Required Resources on the Target Device

The logic resources required by the VME64 To PCI Bridge are fairly common, and are available
on many FPGA and ASIC target devices. However, before synthesis the user should confirm
that the following elements are available on the target device:

• At least two global, low skew clock interconnects for [PCLK] and [ECLK]. Most of

the logic in the core is synchronous, and the global clocks coordinates all of the internal
activity.

• Logic elements such as NAND gates, NOR gates, inverters and D-type flip-flops. Only

elements defined by the IEEE STD 1164-1993 standard are used in the core.

• D-type flip-flops with known power-up conditions. The VME64 To PCI Bridge has

some internal bits that must be set to pre-defined states after a power-up or configura-
tion reset.

• Fourteen 256 x 16-bit block RAMs, and two 256 x 16-bit distributed RAMs. These are

used for shared memory buffers. In order to support PCI burst transfers the RAM ele-
ments must be capable of operating within a single clock cycle. For more information
see the section below regarding memory integration.

3.3.1 Clock Requirements

Three clocks are required by the VME64 to PCI Bridge. These are called [PCLK], [VCLK] and
[ECLK]. [PCLK] stands for PCI CLocK, and is used by the Xilinx LogiCORE PCI IP core.
[VCLK] stands for Vme CLocK, and is used by the Silicore VMEcore(tm) element. [ECLK]
stands for EEPROM clock, and generates the clock for the EEPROM hardware interface.
[ECLK] is formed from [PCLK]. Under certain conditions [PCLK] and [VCLK] may be tied
together to form a single clock interconnection. This is done on the VMEbus to PCI Bridge
Core. Table 3-1 shows the requirements for the two clocks.

 34

Table 3-1. Allowable Frequency Range for [PCLK] and [VCLK].
Clock Fmin Fmax Duty Cycle Controlled by

PCLK 0 33.333 MHz 40/60 – 60/40 PCI Rev 2.2
VCLK 33.333 MHz 50.000 MHz 40/60 – 60/40 VITA 1-1994 & VMEcore™

The [PCLK] clocking constraints follow those given in the PCI bus specification. However, the
Xilinx LogiCORE PCI has several constraints as well. That core requires that the clock be oper-
ated at a fixed frequency18, and not be driven by a device such as a phase lock loop (PLL). Fur-
thermore, they do not guarantee that the core will operate correctly using industrial speed com-
ponents19.

The [VCLK] clocking constraints are governed by the Silicore VMEcore™ IP Core. That core
samples an asynchronous bus, and must be provided with a clock using the constraints shown in
Figure 3-1. The 33.333 MHz minimum frequency is dictated by the need to sample the asyn-
chronous VMEbus signals fast enough to prevent aliasing problems. However, it can’t go above
50.000 MHz because the period of [VCLK] must not exceed the data strobe skew on the back-
plane.

If [PCLK] and [VCLK] operate at (or near) 33.333 MHz, then they may be tied together. If the
user believes that the manufacturing guard band on frequency is insufficient at this frequency,
then it is recommended that the two cores be operated at separate frequencies.

18 The PCI specification allows the PCI clock to vary as long as it remains monotonic and within the duty cycle
specification.
19 Xilinx offers countermeasures for these problems on their web site.

 35

JAN 24, 2002

0 1 2 3VCLK(min)

DSB*

DSA*

(a) AT VCLK(min) (33.333 MHz) AT LEAST ONE ASSERTED SAMPLE IS ASSURED ON BOTH DATA STROBES.

VCLK(max)

DSB*

DSA*

(b) AT VCLK(max) (50.000 MHz) AT LEAST ONE ASSERTED SAMPLE IS ASSURED AT MAXIMUM BUS SKEW.

10 2 3 4 5

4

30 nS (min)

20 nS (max)

Figure 3-1. VMEbus requirements (constraints).

3.3.2 Memory Requirements

A wide variety of RAM memory elements can be used with the design. However, some types
will operate faster and more efficiently than others. In general, if the memory interface closely
resembles that needed by the IP cores in the design, then everything will run fast. If the memory
is significantly different, then everything will slow down.

The internal architecture of the VME64 to PCI Bridge assumes that all memories conform to
something called ‘FASM’, or the FPGA and ASIC Subset Model20. That’s because the Xilinx
LogiCORE PCI, the Silicore VMEcore and the WISHBONE interconnection all rely on the same
type of FASM synchronous RAM elements.

The FASM synchronous RAM model conforms to the generic connection and timing diagram
shown in Figure 3-2. During write cycles, FASM synchronous RAM stores input data at the in-
dicated address whenever: (a) the write enable (WE) input is asserted, and (b) there is a rising
clock edge.

20 The original FASM model actually encompasses many type of devices, but here the focus will be on the FASM
synchronous RAM models.

 36

CLK 10

DIN()

DOUT()

ADR()

SYNCHRONOUS
WRITE CYCLE

WE

VALID

DIN DOUT

WE
ADR

CLK 10

DIN()

DOUT()

ADR()

ASYNCHRONOUS
READ CYCLE

WE

VALID

VALID

VALID

VALID

RAM

FEB 2001

Figure 3-2. Generic FASM synchronous RAM connection and timing diagram.

During read cycles, FASM synchronous RAM works like an asynchronous ROM. Data is
fetched from the address indicated by the ADR() inputs, and is presented at the data output
(DOUT). The clock input is ignored. However, during write cycles, the output data is updated
immediately after the rising clock edge.

The basic advantage behind the FASM synchronous RAM is its ability to work in systems that
use single clock data transfer mechanisms. The limiting factor in this design is the Xilinx Logi-
CORE PCI IP Core, which requires single clock data transfers during burst read and write cycles.
However, this is complicated by the fact that the core does not include any provision for throt-
tling the data transfers.

The Silicore VMEcore and WISHBONE interconnection systems both support single clock data
transfers and data throttling.

While most FPGA and ASIC devices provide RAM that follow the FASM guidelines, many also
support other types of memories too. Some of these interface smoothly to WISHBONE, while
others introduce a wait-state. In all cases that we have found, all modern FPGA and most ASIC
devices do support at least one style of FASM memory.

Since a Xilinx IP Core product is used in this design, and relatively large memories are needed,
the SoC must support the Xilinx Block SelectRAM+ memories. Unfortunately, these do not

 37

conform to the FASM guidelines, and will not work in single clock systems. They require an
extra clock cycle either at the front of the cycle (to register the address) or at the back end of the
cycle (to register the data). Although these can be adapted to operate in a single clock configura-
tion (see Figure 3-3), this option was omitted in the design because the Xilinx LogiCORE PCI
would not route to these memories at 33 MHz on a Xilinx Spartan 2.

N_CLK

DIN()

DOUT()

ADR()

WE

DIN DOUT

WE
ADR

XILINX
SPARTAN2
BLOCK
RAM

0

CLK

1 2 3

EN

RST

READ CYCLE

VALID VALID VALID VALID

0 1 2

EN
RST

WRITE CYCLE

VALID

Tas

Tas

VALID VALID VALIDVALID

Tds

VALID

VALID

Tds

WISHBONE
CYCLE

WISHBONE
CYCLE

FEB 2001

Figure 3-3. Xilinx LogiCORE PCI block RAMs when configured for single cycle operation.

The Xilinx Spartan 2 distributed RAM can support single clock bus cycles. Their main disad-
vantages are that they contain fewer memory bits than the Xilinx Block SelectRAM+ elements,
and consume many logic LUTs (look up tables).

 38

The internal memory buffers and circuits of the VME64 to PCI Bridge are designed to accept
either single or double clock memory cycles. This is done by substituting the buffer memories
for one or the other. If single clock memories are used then the burst transfers are supported on
the PCI target interface. If double clock memories are used, then burst transfers are not sup-
ported. If Xilinx Block SelectRAM+ elements are used in a single clock configuration (as de-
scribed above), the FPGA circuit will be more difficult to route because the clock rate of the in-
ternal circuit is effectively doubled from 33 to 66 Mhz.

Table 3-2 shows the Xilinx RAM types used for the buffer memories in the VMEbus to PCI
bridge.

Table 3-2. RAMs Used for Buffer Memories.
Memory RAM Used
BUF_A 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_B 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_C 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_D 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_E 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_F 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_G 2 ea. 256 byte x 16-bit Xilinx Block SelectRAM+
BUF_H 2 ea. 256 byte x 16-bit Xilinx Distributed RAM

 39

4.0 VHDL Entity Reference

The VME64 To PCI Bridge is organized as a series of VHDL entities. These are tied together
into an entity called VMEPCIBR_SOC. All of the higher level (first and second tier) entities are
described in this chapter in alphabetical order. For more information about the SoC hierarchy
please refer to the VMEPCIBR_SOC entity description below.

 40

4.1 CEEPROM Entity

The CEEPROM entity forms a stand-alone interface for programming the Atmel AT17 Series of
FPGA configuration EEPROM. Figure 4-1 shows a block diagram and Figure 4-2 shows a func-
tional diagram for the interface. The entity has a WISHBONE compatible data bus interfaces
with characteristics shown in Table 4-1.

ConfSerDat

ConfSerClk

N_ConfSerEn

WI
SH
BO
NE
 '
A'
 (
VM
Eb
us
 S
id
e
of
 B
ri
dg
e)

EEPROM
Configuration
Registers

&
Logic

33 MHz

WI
SH
BO
NE
 I
NT
ER
FA
CE

33
 M
Hz
 <
->
 4
00
 K
Hz

Cl
oc
k
Do
ma
in
 T
ra
ns
fo
rm
at
io
n

Vcc

33 MHz DIV BY 42 DIV BY 2 393 KHz

Pull Up

FP
GA

Global Clock

CEEPROM.VHD: HIGH LEVEL BLOCK DIAGRAM
17 AUG 2002

Figure 4-1. Block diagram of the configuration EEPROM Interface.

Data transactions over the data interface are synchronized to the WISHBONE clock [CLK_I].
The entity also includes a clock divider circuit to generate an EEPROM control clock called
[ECLK__O]. The nominal frequency of [ECLK_O] is 393 KHz when the [CLK_I] is operated at
33 MHz. The clock divider value can be adjusted to any frequency by editing the VHDL entity.
Any frequency of [CLK_I] and [ECLK_O] can be used as long as the frequency of [CLK_I] is at
least four times the frequency of [ECLK_O].

EEPROM control clock [ECLK_O] is routed out of the module and then back in again via clock
signal [ECLK_I]. This allows the [ECLK_O] signal to be routed to the highest level system en-
tity so that it can drive a global clock net. This allows a global clock net buffer to reside at the
highest system level for convenience.

 41

Table 4-1. WISHBONE DATASHEET for the CEEPROM Entity

General Description

SLAVE interface for the Atmel AT17 series
of FPGA configuration EEPROM.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

SLAVE: READ/WRITE

Data port, size

32-bit

Data port, granularity

16-bit

Data port, maximum operand size

32-bit

Data transfer ordering

BIG ENDIAN or LITTLE ENDIAN

Data transfer sequencing

None

Signal Description

All WISHBONE signal names are identical to

those defined in the specification.

Terminating Signals

The WISHBONE interface on both ports sup-

port only the [ACK_O] terminating signal.

 42

NO
TE
:
WH
EN
 [
CL
K_
I]
 i
s
33
 M
Hz
 t
he
n
[E
CL
K_
O]
 i
s
ab
ou
t
40
0
KH
z
(3
93
 K
Hz
).

EE
PR
OM

ST
AT
E

MA
CH
IN
E

BI
T

CO
UN
TE
R

WI
SH
BO
NE

IN
TE
RF
AC
E

EC
LK

EC
LK
_I

EE
PR
ST

BI
T0

EC
LK
_I

EC
LK
_I

CL
K_
I

ST
B_
I

WE
_I

AC
K_
O

DA
T_
O(
31
..
0)

DA
T_
I(
31
..
0)

AD
R_
I(
2.
.1
)

SH
IF
T

RE
GI
ST
ER

Co
nf
Se
rC
lk

OE
NA

OD
AT

ID
AT

N_
Co
nf
Se
rE
n

Co
nf
Se
rD
at

Vc
c

Pu
ll
 U
p

SR
(7
..
0)

EC
WD
(7
..
0)

EE
PR
ST

CL
OC
K

GE
NE
RA
TO
R

EC
LK
_I

ST
AR
T

ST
OP

WB
WA

RB
WA

RB
WS

SC
EN

SR
LE

1 0

DF
SM

DS
RC

EE
PR
ST

BOUNDARY OF TARGET DEVICE

3
M(
2.
.0
)

SR
(7
)

DO
NE

D
Q

D
Q

EC
LK
_I

D
Q

AC
KB
IT

DO
NE

CE
EP
RO
M.
VH
D
BL
OC
K
DI
AG
RA
M

08
 O
CT
 2
00
2

1 0 1 0 1 0

MA
NU

ME
CL
K

ME
DA
T

SE
L_
I(
1.
.0
)

RS
T_
I

EC
LK
_O

EC
LK
_T

DA
SH
ED
 L
IN
E
IN
DI
CA
TE
S
BO
UN
DA
RY
 O
F
TH
E
'C
EE
PR
OM
.V
HD
'
IP
 C
OR
E.

EE
PD
_I

EE
PD
_O

EE
PD
EN

EE
PC
LK

EE
PE
NA

EC
LK
_I

SR
EE
PR
ST

BN
_C
on
fS
er
En

Figure 4-2. Functional diagram of CEEPROM.VHD.

 43

The [EEPENA] signal is asserted whenever the ‘ConfSerEn’ bit (D07) is set in the CON-
FIG_PROM_CMD register. This indicates that the EEPROM is enabled for configuration. It
also indicates that the three-state clock and data pin drivers on the target device are enabled. Ex-
ternal hardware (other than the EEPROM itself) must refrain from driving these signals when
[EEPENA] is asserted.

The WISHBONE interface includes all registers that are accessible through the interface. They
operate at the nominal WISHBONE clock speed of 33 MHz. The WISHBONE interface also
includes a clock domain transformation circuit as shown in Figure 4-3(a). Figure 4-3(b) de-
scribes the relationship between the two clock domains. The clock transformation circuit allows
two clock domains to communicate seamlessly. Figure 4-4 shows a timing diagram for the cir-
cuit.

The EEPROM state machine controls all low frequency activity for the EEPROM interface, with
its state diagram shown in Figure 4-5. The state machine forms an instruction set with six in-
structions. Five of these instructions correspond to the bits in the CONFIG_PROM_CMD regis-
ter described elsewhere in this manual. A sixth instruction (WAIT) is a type of NOP (no opera-
tion). When an instruction is requested (e.g. SendStartCondition), the state machine generates
four ‘RISC type’ instructions. These, in combination with some control bits, handshakes with
the EEPROM. A loop instruction is formed with a the BIT_COUNTER process. Figures 4-6
and 4-7 shows the high-level timing for the EEPROM.

 44

CEEPROM.VHD: HANDSHAKING CIRCUIT
20 AUG 2002

D Q
CE
SPDAT_I()

DAT_O()

CLK_I

D Q

ECLK_I

EEPRST

DONEQ DMS0
RST

INP

MONOSTABLE
STATE
MACHINE

RST_I

10

01

00 11 UNUSEDX
1

0

1

1

0
0

RST_I

MONOSTABLE STATE MACHINE

STATES: MS1, MS0
INPUTS: WCSDONE

EQUATIONS:

MS0 = /MS1 * /MS0 * WCSDONE;

MS1 = /MS1 * MS0 * WCSDONE
 + MS1 * /MS0 * WCSDONE;

STATE DIAGRAM

WISHBONE
INTERFACE

CLOCK DOMAIN
INTERFACE

Q D

SR

D00

D Q
CE
SR

D Q START
SR

D01

D Q
CE
SR

D Q STOP
SR

D02

D Q
CE
SR

D

WBWA

SR

D03

D Q
CE
SR

D Q RBWA
SR

D04

D Q
CE
SR

D Q RBWS

EC
PC
_C
EL

SR

D05

SR

D Q SRLEQ

WCSDONE

PROCESS: EEPC_REGISTER PROCESS: SYNC_COMMAND

CDONE

SR

Figure 4-3(a). Clock domain transformation circuit.

 45

NOTE: FOR PROPER OPERATION OF EACH BIT,THE FREQUENCY OF 'CLK_I'
MUST BE AT LEAST FOUR TIMES THE FREQUENCY OF 'ECLK'.

BECAUSE:

 1 CLK_I FLIP-FLOP SET-UP
 1 CLK_I SYNCHRONIZATION
 + 1 CLK_I MONOSTABLE STATE MACH.
 + 1 CLK_I DATA FLIP-FLOP
 + 2 CLK_I WISHBONE RMW CYCLE

 = 6 CLK_I OVERHEAD PER 1 ECLK
 + 1 ECLK FLIP-FLOP SET-UP PER 1 ECLK

FURTHERMORE, IT IS RECOMMENDED THAT THE FREQUENCY OF [CLK_I] BE SUFFICIENTLY
HIGHER THAN THE FREQUENCY OF [ECLK] TO ALLOW FOR A
HOST PROCESSOR TO READ AND WRITE TO THE BITS AND
RESPOND ACCORDINGLY.

THE MAXIMUM RESPONSE TIME OF THE HOST PROCESSOR CAN BE FOUND THUSLY:

 1 6
Tav = ----- - ----- - 1 ECLK_MAX_FF_SET-UP
 ECLK CLK_I

FOR EXAMPLE:

 F, CLK_I = 33.000 MHz
 F, ECLK = 0.400 MHz

 1 5 1
Tav = ------- - ------ - ------ = 2.32 uS
 0.4 MHz 33 MHz 33 MHz

FOR MORE INFORMATION, SEE THE TIMING DIAGRAM.
CEEPROM.VHD: HANDSHAKING CIRCUIT

20 AUG 2002

Figure 4-3(a). Clock domain transformation circuit (con’t).

 46

5
4

3
2

1
0

2
CL
K_
I

ST
B_
I

CY
C_
I

WD
EC

AC
K_
O

DA
T_
I(
N)

4
5

WISHBONE SLAVE INTERFACE

CE
EP
RO
M.
VH
D:
 B
IT
WI
SE
 H
AN
DS
HA
KI
NG
 A
CR
OS
S
TW
O
CL
OC
K
DO
MA
IN
S

17
 A
UG
 2
00
2

EC
LK

ER
EQ

DO
NE

'E' SIDE CLOCK DOMAIN
6

7
8

9

IN
P

EDGE 'W'

EDGE 'E'

EDGES 'W' & 'E'

DA
T_
O(
N) S0

WE
_I

3

EDGE 'W'

EDGE 'W'

EDGE 'W'

EDGE 'W'

EDGE 'W'

EDGE 'W'

EDGE 'E'

EDGE 'E'

Ts
yn
c

EDGE 'E'

EDGE 'W'

Tw
cs
u

EDGE 'E'

EDGE 'W'

Ts
yn
c

Tm
on
o

Td
at
a

Tw
rm
w

Te
cs
u

0
1

Figure 4-4. Timing for the clock domain transformation circuit.

 47

EE
PR
OM
 S
TA
TE
 M
AC
HI
NE

CL
OC
K:

40
0
KH
z

ST
AT
ES
:
M(
2.
.0
),

EC
LK
,
SC
EN
,
DO
NE
,
DS
RC
,
DF
SM
,
OE
NA

IN
PU
TS
:
M(
2.
.0
),

BI
T0
,
 R
BW
S,
 R
BW
A,
 W
BW
A,
 S
TO
P,
 S
TA
RT

SE
ND
 S
TA
RT
 C
ON
DI
TI
ON

SS
TA
1:
 0
01
 0
00
01
1

SS
TA
2:
 0
01
 1
01
01
1

SS
TA
3:
 0
01
 1
00
00
1

SS
TA
4:
 0
01
 0
00
00
1

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

WR
IT
E
AC
KN
OW
LE
DG
E
BI
T

WA
CK
1:
 1
10
 0
00
00
1

WA
CK
2:
 1
10
 1
01
00
1

WA
CK
3:
 1
10
 1
00
00
1

WA
CK
4:
 1
11
 0
00
00
1

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

WR
IT
E
BY
TE

WB
YT
1:
 0
11
 0
00
10
1

WB
YT
2:
 0
11
 1
00
10
1

WB
YT
3:
 0
11
 1
00
11
1

WB
YT
4:
 0
11
 0
10
10
1

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

EL
SE

RE
AD
 A
CK
NO
WL
ED
GE
 B
IT

RA
CK
1:
 1
00
 0
00
00
0

RA
CK
2:
 1
00
 1
01
00
0

RA
CK
3:
 1
00
 1
00
01
0

RA
CK
4:
 1
00
 0
00
01
0

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

RE
AD
 B
YT
E

RB
YT
1:
 1
01
 0
00
10
0

RB
YT
2:
 1
01
 1
00
10
0

RB
YT
3:
 1
01
 1
00
11
0

RB
YT
4:
 1
01
 0
10
10
0

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

EL
SE

XX
X
1
XX
XX
X

XX
X
1
1X
XX
X

XX
X
1
X1
XX
X

WA
IT
1:
 0
00
 0
00
00
0

XXX X XXXX1

XXX X XX1XX

XXX X XXX1X

XXX X X1XXX
XXX X 1XXXX

ELSE

CE
EP
RO
M.
VH
D:
 S
TA
TE
 D
IA
GR
AM

18
 S
EP
 2
00
2

XXX X XXXX1

XXX X XX1XX

XXX X XXX1X

XXX X X1XXX
XXX X 1XXXX

ELSE

XXX X XXXX1

XXX X XX1XX

XXX X XXX1X

XXX X X1XXX
XXX X 1XXXX

ELSE

XXX X XXXX1

XXX X XX1XX

XXX X XXX1X

XXX X X1XXX
XXX X 1XXXX

ELSE

EE
PR
ST

SS
TP
1:
 0
10
 0
00
00
1

SS
TP
2:
 0
10
 1
01
00
1

SS
TP
3:
 0
10
 1
00
01
1

SS
TP
4:
 0
10
 0
00
01
0

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XX
X
X
XX
XX
X

XXX X XXXX1

XXX X XX1XX

XXX X XXX1X

XXX X X1XXX
XXX X 1XXXX

ELSE

SE
ND
 S
TO
P
CO
ND
IT
IO
N

RE
AD
 B
YT
E
W/
AC
K+
ST
OP

SE
ND
 S
TO
P

WR
IT
E
BY
TE

SE
ND
 S
TA
RT

NO
P

Figure 4-5. State diagram for EEPROM State Machine.

 48

EC
LK

0
1

2
3

40
0K
HZ

DO
NE

4

CE
EP
RO
M.
VH
D:
 S
TA
RT
 A
ND
 S
TO
P
CO
ND
IT
IO
N
TI
MI
NG

21
 A
UG
 2
00
2

SC
EN

BC
()

DS
RC

DF
SM

OD
AT

ID
AT

OE
NA

'S
EN
D
ST
AR
T
CO
ND
IT
IO
N'
 A
ND
 '
SE
ND
 S
TO
P
CO
ND
IT
IO
N'

TI
MI
NG
 T
O
AT
ME
L
AT
17
LV
04
0
EE
PR
OM

00
0

EC
LK

0
1

2
3

40
0K
HZ

DO
NE

4

SC
EN

BC
()

DS
RC

DF
SM

OD
AT

ID
AT

OE
NA

00
0

SE
ND
 S
TA
RT
 C
ON
DI
TI
ON

SE
ND
 S
TO
P
CO
ND
IT
IO
N

SS
TA
1

SS
TA
2

SS
TA
3

SS
TA
4

SS
TP
1

SS
TP
2

SS
TP
3

SS
TP
4

SR
LE

SR
LE

Figure 4-6. EEPROM START and STOP condition timing.

 49

EC
LK

0
1

2
3

40
0K
HZ

WR
IT
E
BY
TE
 W
IT
H
AC
K

DO
NE

4
5

6
7

8
9

10
11

12
13

14
15

16

CE
EP
RO
M.
VH
D:
 R
EA
D
BY
TE
 A
ND
 W
RI
TE
 B
YT
E
TI
MI
NG

17
 S
EP
 2
00
2

OD
AT

ID
AT

OE
NA

RE
AD
 B
YT
E
WI
TH
 S
TO
P

D7
D6

D0

RE
SP
ON
SE

FR
OM
 E
EP
RO
M

NO
TE
S:

(1
)
Ne
w
co
mm
an
ds
 a
lw
ay
s
st
ar
t
at
 c
lo
ck
 e
dg
e
1.

(2
)
Wh
en
 E
NA
BL
E
is
 n
eg
at
ed
,
th
e
in
te
rn
al
 D
AT
A
ou
tp
ut
 i
s
as
se
rt
ed
.

(3
)
Sh
ad
ed
 l
in
es
 i
nd
ic
at
e
re
sp
on
se
 f
ro
m
EE
PR
OM
.

(4
)
Si
gn
al
 [
SR
LE
]
as
se
rt
ed
 o
nl
y
du
ri
ng
 '
WR
IT
E
BY
TE
 W
IT
H
AC
K'
 c
yc
le
.

SC
EN

BC
()

DS
RC

DF
SM

WB
YT
1

OD
AT

ID
AT

OE
NA

RE
AD
 B
YT
E
WI
TH
 A
CK

D7
D6

D0

RE
SP
ON
SE

FR
OM
 E
EP
RO
M

OD
AT

ID
AT

OE
NA

D7
D6

D0

RE
SP
ON
SE

FR
OM
 E
EP
RO
M

AC
K

RE
AD
 B
YT
E
AN
D
WR
IT
E
BY
TE
 T
IM
IN
G
TO
 A
TM
EL
 A
T1
7L
V0
40
 E
EP
RO
M

00
0

00
1

11
1
([
BI
T0
]
=
'1
')

00
0

WB
YT
2

WB
YT
3

WB
YT
4

WB
YT
1

WB
YT
1

RA
CK
1

WB
YT
2

WB
YT
2

WB
YT
3

WB
YT
3

WB
YT
4

WB
YT
4

RA
CK
2

SA
MP
LE
 A
CK

RA
CK
3

RA
CK
4

WA
CK
1

WA
CK
2

WA
CK
3

WA
CK
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

RB
YT
1

RB
YT
2

SA
MP
LE
 B
IT

RB
YT
3

RB
YT
4

SS
TP
1

SS
TP
2

SS
TP
3

SS
TP
4

ST
OP
 C
ON
DI
TI
ON

SR
LE

Ta
v

ST
AT
E
DE
PE
ND
AN
T

AC
K

Figure 4-7. EEPROM read and write byte timing.

 50

4.2 MISCREG Entity

The MISCREG entity contains all logic for controlling the lower seven registers in the VMEP-
CIBR address map. It contains two WISHBONE interfaces named ‘A’ and ‘B’. In the VMEP-
CIBR SoC the ‘A’ side is connected to the WISHBONE interconnection served by VMEbus, and
the ‘B’ side is connected to the interconnection served by the PCI interface. The entity also con-
tains all the arbitration logic necessary for handling accesses from the dual ‘A’ and ‘B’ ports.

Figure 4-8 shows a block diagram of the MISCREG entity, and Table 4-2 shows the
WISHBONE DATASHEET for the interfaces. The seven registers handled by the entity in-
clude:

• DMC_HW_CONTROL
• CONFIG_PROM_CMD (see the CEEPROM entity)
• CONFIG_WRITE_DATA (see the CEEPROM entity)
• CONFIG_READ_DATA (see the CEEPROM entity)
• DMC_CMD
• DMC_FAULT
• DMC_STATUS

BDAT_I()
BDAT_O()

BWE_I

BADR_I()

BSEL_I()
BSTB_I

BACK_O

ADAT_I()
ADAT_O()
AWE_I

AADR_I()

ASEL_I()
ASTB_I

AACK_O

ABRST_I

3

32

32

2

3

32

32

2

'A
'
SI
DE 'B
'
SI
DE

WISHBONE
MISCREG

BLOCK DIAGRAM
15 APR, 2002

ABCLK_I

ACYC_I BCYC_I

AERR_O BERR_O

Figure 4-8. MISCREG block diagram.

The MISCREG arbiter and arbiter timing are shown in Figures 4-9 and 4-10 respectively.

 51

Table 4-2. WISHBONE DATASHEET for the MISCREG Entity

General Description

Logic for the lower seven registers in the sys-
tem. Contains dual WISHBONE ports named
‘A’ and ‘B’. This datasheet applies to both in-

terfaces.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

SLAVE: READ/WRITE

Data port, size

32-bit

Data port, granularity

16-bit

Data port, maximum operand size

32-bit

Data transfer ordering

BIG ENDIAN or LITTLE ENDIAN

Data transfer sequencing

None

Signal Description

All WISHBONE signal names are identical to
those defined in the specification, except that
they have an ‘A’ or ‘B’ at the front. The ‘A’
and ‘B’ refer to PORT A and PORTB respec-

tively.

Terminating Signals

The WISHBONE interface on both ports sup-
port [ACK_O] and [ERR_O] terminating sig-
nals. [ERR_O] is generated when accesses to
the unused/reserved registers are attempted.

 52

00

01

10

11UNUSED

00

INPUTS: BCYC_I, ACYC_I
STATES: BGNT, AGNT
CLOCK: BCLK

'A' SIDE PRIORITY

ARBITER STATE MACHINE

XX

X1

10

00

1X

00

15 APR, 2002

10 01ABRST_I

ARBITER EQUATIONS

AGNT = /ABRST_I * /BGNT * ACYC_I
 + /ABRST_I * /BGNT * /BCYC_I * ACYC_I
 + /ABRST_I * /AGNT * /BCYC_I * ACYC_I;

BGNT = /ABRST_I * BGNT * /AGNT * BCYC_I
 + /ABRST_I * /BGNT * BCYC_I * /ACYC_I;

'A' SIDE GRANT

'B' SIDE GRANT

Figure 4-9. MISCREG arbiter.

 53

1
0

2
3

AC
LK
_I

AS
TB
_I

AA
CK
_O

4

AC
YC
_I

5
6

'A' SIDE

15
 A
PR
 2
00
2

MI
SC
RE
G
AR
BI
TR
AT
IO
N
TI
MI
NG

7
8

9
10

11
12

13
14

15
16

17
18

AG
NT

BS
TB
_I

BA
CK
_O

BC
YC
_I

BG
NT

'B' SIDE

'A
'
SI
DE
 B
US
 C
YC
LE
 T
O
SR
EG

'B
'
SI
DE
 B
US
 C
YC
LE
 T
O
SR
EG

SI
MU
LT
AN
EO
US
 '
A'
 &
 '
B'
 S
ID
E
BU
S
CY
CL
E
TO
 S
RE
G

('
A'
 S
ID
E
PR
IO
RI
TY
)

'B
'
SI
DE
 R
EQ
UE
ST
 T
O
SR
EG
 D
UR
IN
G
'A
'
SI
DE
 D
OU
BL
E
CY
CL
E

Figure 4-10. MISCREG arbiter timing.

 54

4.3 PCIWRAP Entity

The PCIWRAP entity is a wrapper between the Xilinx LogiCORE(tm) PCI 32-bit 33 MHz IP
Core and the WISHBONE SoC interconnection. As shown in the system block diagram of Fig-
ure 4-11, the wrapper establishes a PCI interface to the SoC. The wrapper is synthesized from
the ‘PCIWRAPc.VHD’ file.

PC
I B

us
 -

33
 M

H
z -

 3
2-

bi
t

Local
System-on-Chip

FPGA or ASIC Target Device

X
ili

nx
 L

og
iC

O
RE

(tm
)

PC
I I

P
Co

re
 (T

ar
ge

t O
nl

y)
WISHBONE

PC
IW

RA
PC

W
ra

pp
er

 E
nt

ity

W
IS

H
BO

N
E

M
A

ST
ER

20 SEP 2002

Figure 4-11. System block diagram showing the PCIWRAPc wrapper.

Figure 4-12 shows a functional diagram of the PCIWRAPc entity. Each box in the diagram cor-
responds to a VHDL process (as described below) of the same name.

The left side of the block diagram shows the signals connected to the PCI core. These are syn-
thesized, routed and connected to the PCI core. The PCI core is delivered as a ‘black box’, so
the signals must conform to the Xilinx specifications. The reader is directed to the Xilinx Logi-
CORE™ PCI Design Guide (Ver 3.0 – March 16, 2002 or later) for a complete description of the
PCI core and signal names.

The PCI target interface responds to the following PCI commands (cycles):

• Configuration Read (CBE[3:0] = 1010)
• Configuration Write (CBE[3:0] = 1011)
• Memory Read (CBE[3:0] = 0110)
• Memory Write (CBE[3:0] = 0111)
• Memory Read Multiple (CBE[3:0] = 1100)
• Memory Read Line (CBE[3:0] = 1110)

The PCI wrapper supports BYTE granularity. However, the WISHBONE interface can be easily
configured for WORD and DWORD granularity as well.

 55

All PCI accesses to ‘unused’ address areas are terminated with a PCI TARGET ABORT.

The wrapper circuitry connected to Xilinx LogiCore PCI interface controls how the target inter-
face responds to the PCI commands. During the initial phase of a PCI burst cycle, a binary
counter (located inside the wrapper circuitry) latches the starting PCI address. The counter in-
crements during subsequent phases within the burst cycle, thereby generating the next address.
The counter is incremented after every cycle that accesses the high byte of a 32-bit DWORD
transfer. The high byte is indicated when [S_CBE(3)] is low. That means that the address
counter is incremented after every 32-bit transfer or after a high order 16-bit transfer.

PCI single and burst transactions are supported by the wrapper. However, burst transactions21
may not necessarily be supported by all memory locations or registers. If a burst transaction is
attempted in a memory region that does not support burst transfers, then the memory should re-
spond with the WISHBONE [ERR_I] signal, which causes the wrapper to respond with a TAR-
GET ABORT termination22.

The wrapper is implemented as a PCI target, meaning that it cannot initiate PCI transactions.

The right side of the block diagram shows the signals connected to the WISHBONE MASTER
interface. The interface supports 8, 16 and 32-bit data transfers and a 32-bit address bus. Table
4-3 is the WISHBONE DATASHEET that specifies the interface. The reader is directed to the
WISHBONE specification, revision B.2 for a complete description of the WISHBONE MAS-
TER and related signal names.

21 Burst transactions are bus cycles with more than one data transfer phase.
22 Burst transactions in excess of one data transfer are allowed as long as the memory structure supports it. This is
because the core can be implemented on a number of target devices, memory types and speeds. The Xilinx Logi-
Core PCI requires that memories must support single clock data transfers. If this type of memory is implemented on
the target device, then the burst operation is supported. If this type of memory is not implemented on the target de-
vice, then burst transactions are not supported. For more information please refer the Hardware Reference section of
this manual.

 56

ADIO(31..0)

LO
WE
R
AD
DR
ES
S

CO
UN
TE
R
(8
-B
IT
)

UP
PE
R
AD
DR
ES
S

RE
GI
ST
ER
 (
22
-B
IT
)

ADIO(31..10)

ADIO(09..02)

ADR(31..10)

ADR(09..02)

ADR_O(31..02)

CO
MM
AN
D

RE
GI
ST
ER

S_CBE(3..0)

ADDR_VLD

PCMD(3..0)

PLINC

CE

S_DATA_VLD
COUNTER

INC CONTROL
CINC

DAT_O(31..0)

DAT_I(31..0)

S_SRC_EN

WE_OS_WRDN

CY
CL
E
CO
NT
RO
L

&
HA
ND
SH
AK
IN
GBASE_HIT

S_DATA

S_TERM

S_ABORT

S_READY

STB_O

ACK_I

CYC_O

XILINX LOGICORE PCI TO WISHBONE WRAPPER
VHDL ENTITY: PCIWRAP

06 AUG 2002

WISHBONE
INTERFACE

LOGICORE PCI
INTERFACE

SE
LE
CT

CO
NT
RO
L SEL_O(3..0)

CLK_OCLK

D Q

GLOBAL CLOCK NET

RST_ORST

RST_I

SEL(1)

CLK_I

ERR_I

RTY_I

WISHBONE
SYSCON

ADIO THREESTATE
DI_REG

DQ
FETCH

ICYC

Figure 4-12. Functional diagram of the PCIWRAPC entity.

 57

Table 4-3. WISHBONE DATASHEET for the PCIWRAP Interface.

General Description

Wrapper between a 32-bit Xilinx Logi-

CORE(tm) PCI interface and WISHBONE SoC
interface.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

MASTER: READ/WRITE

MASTER: BLOCK READ/WRITE

Data port, size

32-bit

Data port, granularity

8-bit

Data port, maximum operand size

32-bit

Data transfer ordering

LITTLE ENDIAN

Data transfer sequencing

Sequential (burst) data transfers must be made
from lower to higher addresses. The internal

address counter rolls over whenever a most sig-
nificant byte is transferred.

Signal Description

All WISHBONE signal names are identical to
those defined in the specification. Refer to the

signal descriptions for more details.

Terminating Signals

The WISHBONE interface supports all three
termination signals: [ACK_I], [RTY_I] and
[ERR_I]. See the text for more information

about the operation of these signals.

 58

4.3.1 PCIWRAP Timing Conversion

PCIWRAP is a VHDL ‘wrapper’, which means that it is a chunk of code that converts the PCI
core signals to the WISHBONE MASTER signals. Figures 4-13 and 4-14 show the relationship
between the PCI bus signals and the Xilinx PCI core back end (user application) signals. Dia-
grams for burst read and write cycles are shown. Figure 4-15 and 4-16 show the relationship be-
tween the PCI core back end (user application) signals and the WISHBONE MASTER interface
signals. Diagrams for read and write cycles are shown.

 59

PC
LK

3
2

PC
I_
CM
D(
)

LogiCORE (User Application) Signals

4
5

X
6

7
8

9
10

11
12

13
14

15
16

17
18

19

VA
LI
D

AD
DR
_V
LD

BA
SE
_H
IT

S_
WR
DN

AD
IO
()

S_
CB
E(
)

S_
DA
TA

S_
DA
TA
_V
LD

S_
SR
C_
EN

S_
RE
AD
Y

S_
TE
RM

S_
AB
OR
T

-W
SS
-

27 APR 2002

AD
DR
()

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
N

LC
 I
N

LC
 I
N

VA
LI
D

PC
I
Bu
s
to
 L
og
iC
OR
E(
tm
)
(U
se
r
Ap
pl
ic
at
io
n)
 S
ig
na
ls
 -
 P
CI
 M
EM
OR
Y
BU
RS
T
RE
AD
 T
O
WI
SH
BO
NE
 B
LO
CK
 R
EA
D
-
PA
RT
IC
IP
AT
IN
G
TA
RG
ET
 W
/N
OR
MA
L
TE
RM
IN
AT
IO
N

AD
DR

11
00

BE
 #
1-
3

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

BE
 #
8

BE
 #
9

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

DA
TA
 #
8

DA
TA
 #
1

AD
_I
O(
)

CB
E_
IO
()

FR
AM
E_
IO

IR
DY
_I
O

TR
DY
_I
O

ST
OP
_I
O

DE
VS
EL
_I
O

PCI Bus Signals

AD
DR
ES
S

DA
TA
 #
1

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

11
00

BE
 #
1

BE
 #
2

BE
 #
3

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 I
NO
UT

LC
 I
N

LC
 I
N

Figure 4-13. READ timing between PCI and Xilinx PCI core back end signals.

 60

PC
LK

3
2

PC
I_
CM
D(
)

LogiCORE (User Application) Signals

4
5

X
6

7
8

9
10

11
12

13
14

15
16

17
18

19

VA
LI
D

AD
DR
_V
LD

BA
SE
_H
IT

S_
WR
DN

AD
IO
()

AD
DR
ES
S

DA
TA
 #
1

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

S_
CB
E(
)

01
11

BE
 #
1

BE
 #
2

BE
 #
3

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

S_
DA
TA

S_
DA
TA
_V
LD

S_
SR
C_
EN

S_
RE
AD
Y

S_
TE
RM

S_
AB
OR
T

-W
SS
-

27 APR 2002

AD
DR
()

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
N

LC
 I
N

LC
 I
N

VA
LI
D

AD
_I
O(
)

CB
E_
IO
()

FR
AM
E_
IO

IR
DY
_I
O

TR
DY
_I
O

ST
OP
_I
O

DE
VS
EL
_I
O

PCI Bus Signals

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 I
NO
UT

LC
 I
N

LC
 I
N

PC
I
Bu
s
to
 L
og
iC
OR
E(
tm
)
(U
se
r
Ap
pl
ic
at
io
n)
 S
ig
na
ls
 -
 P
CI
 M
EM
OR
Y
BU
RS
T
WR
IT
E
TO
 W
IS
HB
ON
E
BL
OC
K
WR
IT
E
-
PA
RT
IC
IP
AT
IN
G
TA
RG
ET
 W
/N
OR
MA
L
TE
RM
IN
AT
IO
N

AD
DR
ES
S

DA
TA
 #
1

01
11

BE
 #
1

BE
 #
2

DA
TA
 #
2

BE
 #
3

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

DA
TA
 #
7

Figure 4-14. WRITE timing between PCI and Xilinx PCI core back end signals.

 61

PR
E-
FE
TC
H

UN
US
ED
 D
AT
A

CL
K

3
2

PC
I_
CM
D(
)

LogiCORE (User Application) Signals

4
5

X
6

7
8

9
10

11
12

13
14

15
16

17
18

19

VA
LI
D

AD
DR
_V
LD

BA
SE
_H
IT

S_
WR
DN

AD
IO
()

S_
CB
E(
)

S_
DA
TA

S_
DA
TA
_V
LD

S_
SR
C_
EN

S_
RE
AD
Y

S_
TE
RM

S_
AB
OR
T

AD
R_
O(
)

-W
SS
-

WB
 O
UT

WE
_O

SE
L_
O(
)

ST
B_
O

AC
K_
I

CY
C_
O

WISHBONE MASTER Signals

W.D. PETERSON - 06 AUG 2002

PR
EL
OA
D

AD
DR
ES
S

CO
UN
TE
R

AD
DR
()

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
N

LC
 I
N

LC
 I
N

WB
 O
UT

WB
 O
UT

WB
 O
UT

WB
 I
N

WB
 O
UT

VA
LI
D

Lo
gi
co
re
(t
m)
 T
O
WI
SH
BO
NE
 W
RA
PP
ER
 -
 P
CI
 M
EM
OR
Y
BU
RS
T
RE
AD
 T
O
WI
SH
BO
NE
 B
LO
CK
 R
EA
D
-
PA
RT
IC
IP
AT
IN
G
TA
RG
ET
 W
/N
OR
MA
L
TE
RM
IN
AT
IO
N

AD
DR

11
00

BE
 #
1-
3

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

BE
 #
8

BE
 #
9

AD
R
#1

AD
R
#2

AD
R
#3

AD
R
#4

AD
R
#5

AD
R
#6

AD
R
#7

AD
R
#8

AD
R
#9

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

DA
T_
I(
)

WB
 I
N

DA
TA
 #
1

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

DA
TA
 #
8

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

DA
TA
 #
8

3-
ST
AT
E
BU
FF
ER

CO
NT
RO
L

RE
AD
 O
NL
Y

DU
RI
NG
 R
EA
D
TR
AN
SF
ER

ST
B_
O
FO
LL
OW
S
S_
SR
C_
EN

AF
TE
R
TH
IS
 P
OI
NT

NO
RM
AL

TE
RM
IN
AT
IO
N

WA
IT
 S
TA
TE
(S
)

IN
C
AD
R

CN
TR
 A
FT
ER

MS
 B
YT
E
XF
ER

1
CL
OC
K

OV
ER
HE
AD

DA
TA
 #
1

PR
EF
ET
CH

DA
TA
 #
9

Figure 4-15. PCI memory burst read cycle to WISHBONE block read.

 62

IN
C
AD
R

CN
TR
 A
FT
ER

MS
 B
YT
E
XF
ER

CL
K

3
2

PC
I_
CM
D(
)

LogiCORE (User Application) Signals

4
5

X
6

7

Lo
gi
co
re
(t
m)
 T
O
WI
SH
BO
NE
 W
RA
PP
ER
 -
 P
CI
 M
EM
OR
Y
BU
RS
T
WR
IT
E
TO
 W
IS
HB
ON
E
BL
OC
K
WR
IT
E
-
PA
RT
IC
IP
AT
IN
G
TA
RG
ET
 W
/N
OR
MA
L
TE
RM
IN
AT
IO
N

8
9

10
11

12
13

14
15

16
17

18
19

VA
LI
D

AD
DR
_V
LD

BA
SE
_H
IT

S_
WR
DN

AD
IO
()

AD
DR
ES
S

DA
TA
 #
1

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

S_
CB
E(
)

01
11

BE
 #
1

BE
 #
2

BE
 #
3

BE
 #
4

BE
 #
5

BE
 #
6

BE
 #
7

S_
DA
TA

S_
DA
TA
_V
LD

S_
SR
C_
EN

S_
RE
AD
Y

S_
TE
RM

S_
AB
OR
T

AD
R_
O(
)

DA
T_
O(
)

-W
SS
-

AD
R
#1

AD
R
#2

AD
R
#3

AD
R
#4

AD
R
#5

AD
R
#6

AD
R
#7

WB
 O
UT

DA
TA
 #
1

DA
TA
 #
2

DA
TA
 #
3

DA
TA
 #
4

DA
TA
 #
5

DA
TA
 #
6

DA
TA
 #
7

WE
_O

SE
L_
O(
)

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

ST
B_
O

AC
K_
I

CY
C_
O

WISHBONE MASTER Signals

W.D. PETERSON - 06 AUG 2002

PR
EL
OA
D

AD
DR
ES
S

CO
UN
TE
R

AD
DR
()

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
NO
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 O
UT

LC
 I
N

LC
 I
N

LC
 I
N

WB
 O
UT

WB
 O
UT

WB
 O
UT

WB
 O
UT

WB
 I
N

WB
 O
UT

VA
LI
D

DU
RI
NG
 W
RI
TE
 T
RA
NS
FE
R

ST
B_
O
FO
LL
OW
S
S_
DA
TA
_V
LD

AF
TE
R
TH
IS
 P
OI
NT

WR
IT
E
ON
LY

NO
RM
AL

TE
RM
IN
AT
IO
N

WA
IT
 S
TA
TE
(S
)

1
CL
OC
K

OV
ER
HE
AD

Figure 4-16. PCI memory burst write cycle to WISHBONE block write.

 63

4.3.2 Operation of the WISHBONE Termination Signals

The PCIWRAP entity supports all three WISHBONE termination signals: [ACK_I], [RTY_I]
and [ERR_I]. These are translated to control signals used by the Xilinx LogiCORE(tm) PCI
core. The wrapper responds differently to these signals, depending upon when they are asserted
during the PCI bus cycle.

Also note that the WISHBONE specification requires that only one termination signal be applied
at any given time. Stated another way, [ACK_I] and [ERR_I] (or other combinations) cannot be
asserted at the same time. Assertion of two or more acknowledge signals at any given time could
result in an undefined operation.

4.3.3 PCI Normal Termination Using [ACK_I]

Figure 4-17 shows the timing diagram for a normal termination to a participating PCI TARGET
cycle. There, the WISHBONE MASTER cycle starts in response to the assertion of
BASE_HIT() by the Xilinx LogiCORE PCI (not shown). The PCIWRAPC wrapper then waits
for the participating WISHBONE SLAVE to respond by asserting its [ACK_I] signal.

MAR 18, 2002

CLK

Xi
li
nx
 L
og
iC
OR
E(
tm
)
PC
I
Si
gn
al
s

4

WB [ACK_I] -> PCI NORMAL TERMINATION

S_DATA

S_READY

S_TERM

S_ABORT

STB_O

ACK_I

RTY_I

WI
SH
BO
NE
 M
AS
TE
R
Si
gn
al
s

LC OUT

LC IN

LC IN

LC IN

WB OUT

WB IN

WB IN

5 X 18-WSM- 19

ERR_I

WB IN

-PCI Core WS-

WB OUT

CYC_O

Figure 4-17. PCI normal termination.

 64

In theory, the WISHBONE SLAVE can insert any number of wait states before responding to the
cycle. However, the Xilinx documentation states that it must respond within 16 clock cycles23.
This means that any arbitration on the WISHBONE SLAVE must be completed during this time.

It is also recommended that any WISHBONE SLAVEs be designed so that all arbitration is per-
formed in response to the assertion of [CYC_O] by the MASTER (rather than [STB_O]). Once
arbitration has been completed, the SLAVE should be made available to respond immediately to
multiple assertions of [STB_O] by the MASTER. Stated another way, the SLAVE should only
arbitrate at the beginning of a WISHBONE bus cycle. This allows immediate access to the
SLAVE’s resources throughout PCI burst transfers (if supported).

Once the WISHBONE MASTER interface has received the [ACK_I] signal, it asserts the
[S_READY] signal to the PCI core. This signal remains asserted for the entire duration of the
bus cycle, regardless of the state of the [ACK_I] signal. However, if the [RTY_I] or [ERR_I]
signals are asserted, then the wrapper will generate either a PCI TARGET DISCONNECT W/O
DATA or a TARGET ABORT.

During PCI burst transfers the [S_READY] signal remains asserted until the end of the PCI burst
cycle. After the first cycle the wrapper does not respond to the [ACK_I] signal. This is because
the PCI core requires that the WISHBONE SLAVE must supply or latch data during every clock
cycle. Stated another way, the Xilinx PCI core does not support any handshaking mechanisms to
throttle the speed of the transfer during this time.

4.3.4 PCI Target Retry Termination Using [RTY_I]

Figure 4-18 shows the timing diagram for a TARGET RETRY termination to a participating PCI
TARGET cycle. There, the WISHBONE MASTER cycle starts in response to the assertion of
BASE_HIT() (not shown) by the PCI core. The PCIWRAPC wrapper then waits for the partici-
pating WISHBONE SLAVE to respond. Normally, the WISHBONE SLAVE responds by as-
serting the [ACK_I] signal. However, if the SLAVE responds with [RTY_I], then the PCI-
WRAPC wrapper asserts [S_TERM] to the PCI core, which results in one of two behaviors:

• If the cycle is a burst cycle and the [ACK_I] had not been previously asserted, then
the assertion of the [RTY_I] signal results in termination of the PCI bus cycle with a
TARGET RETRY. The same reaction happens if the cycle is a non-burst cycle.

• If the [ACK_I] had been previously asserted during the current bus cycle, then the as-

sertion of the [RTY_I] signal results in the termination of the PCI bus cycle with a
TARGET DISCONNECT W/O DATA.

23 The allowed delay is probably less than 16 clock cycles. The 16 clock cycle delay is evidently imposed by the
PCI timer. However, there is probably some overhead added by the Xilinx LOGIcore(tm) PCI core.

 65

MAR 18, 2002

CLK

Xi
li
nx
 L
og
iC
OR
E(
tm
)
PC
I
Si
gn
al
s

4

WB [RTY_I] -> PCI TARGET RETRY

S_DATA

S_READY

S_TERM

S_ABORT

STB_O

ACK_I

RTY_I

WI
SH
BO
NE
 M
AS
TE
R
Si
gn
al
s

LC OUT

LC IN

LC IN

LC IN

WB OUT

WB IN

WB IN

5 X 18-WSM- 19

ERR_I

WB IN

-PCI Core WS-

WB OUT

CYC_O

Figure 4-18. PCI target retry termination.

4.3.5 PCI Target Abort Termination Using [ERR_I]

Figure 4-19 shows the timing diagram for a TARGET ABORT termination. There, the
WISHBONE MASTER cycle starts in response to the assertion of BASE_HIT() (not shown) by
the PCI core. The PCIWRAPC wrapper then waits for the participating WISHBONE SLAVE to
respond. Normally, the WISHBONE SLAVE responds by asserting the [ACK_I] signal. How-
ever, if the WISHBONE bus cycle is terminated by asserting the [ERR_I] signal, then the wrap-
per asserts [S_ABORT] to the PCI core. This results in a TARGET ABORT termination. The
TARGET ABORT can be generated at any time during a single or burst transfer.

 66

MAR 18, 2002

CLK

Xi
li
nx
 L
og
iC
OR
E(
tm
)
PC
I
Si
gn
al
s

4

WB [ERR_I] -> TARGET ABORT

S_DATA

S_READY

S_TERM

S_ABORT

STB_O

ACK_I

RTY_I

WI
SH
BO
NE
 M
AS
TE
R
Si
gn
al
s

LC OUT

LC IN

LC IN

LC IN

WB OUT

WB IN

WB IN

5 X 18-WSM- 19

ERR_I

WB IN

-PCI Core WS-

WB OUT

CYC_O

Figure 4-19. PCI target abort termination.

4.3.6 VHDL Entity Reference

The PCIWRAP entity is synthesized from a top level file called ‘PCIWRAPC.VHD’. Each
module of VHDL code is named with a seven character ‘handle’ that is related to its entity name.
An additional (final) character is added to indicate it’s use. A ‘C’ character indicates that it’s a
VHDL circuit file, a ‘T’ character indicates that it’s a test bench file, and a ‘V’ character indi-
cates that it’s a test vector file (with a ‘.txt’ file extension). The ‘PCIWRAP’ entity/architecture
has the following names associated with it:

Entity (circuit) name: PCIWRAPC
Architecture name: PCIWRAPC1

Entity/architecture filename: PCIWRAPC.VHD
Test bench filename: PCIWRAPT.VHD
Text vector filename: PCIWRAPV.TXT

 67

4.3.7 Process: ADIO_THREESTATE

The ADIO_THREESTATE process generates a three-state output buffer on the 32-bit ADIO
bus.

4.3.8 Process: COMMAND_REGISTER

The COMMAND_REGISTER process creates the command register. The command register
stores the state of the PCI command that is indicated on 'S_CBE()' during the initial (address)
phase of every bus cycle.

4.3.9 Process: COUNTER_INC_CONTROL

The COUNTER_INC_CONTROL generates the counter increment signal 'CINC'. The counter
is incremented at different times, depending on if it's a read or a write cycle. The type of cycle is
determined from the 'PCMD(3..0)' register, which stores the state of the PCI command (on
[C/BE[3:0]#). The counter is incremented only during Memory Read Multiple ([C/BE[3:0]# =
B"1100") and Memory Write ([C/BE[3:0]# = B"0111") cycles.

The counter is incremented after every cycle that accesses the high byte of a 32-bit DWORD
transfer. The high byte is indicated when [S_CBE(3)] is low. That means that the address
counter is incremented after every 32-bit transfer, after a high order 16-bit transfer and a high
order 8-bit transfer.

4.3.10 Process: CYCLE_CONTROL

The CYCLE_CONTROL process generates the WISHBONE [STB_O] and [CYC_O] signals. It
also generates the [S_READY], [S_TERM] and [S_ABORT] signals to the Xilinx Logi-
CORE(tm) PCI interface. The process uses the state machines and equations shown in Figure 4-
20.

 68

XILINX LOGICORE PCI TO WISHBONE WRAPPER
VHDL ENTITY: PCIWRAP

06 AUG 2002

HANDSHAKING STATE MACHINE (PART OF 'CYCLE CONTROL'):

STATES: ABORT, TERM, READY
INPUTS: SDATA, FSTB, ERR_I, RTY_I, ACK_I

EQUATIONS:

S_READY <= READY;
S_TERM <= TERM;
S_ABORT <= ABORT;

CYCLE CONTROL STATE MACHINE:

STATES: CYC, FSTB
INPUTS: PWC, PRC, S_DATA, BASE_HIT

EQUATIONS:

PRC = /S_WRDN * S_SRC_EN;
PWC = S_WRDN * S_DATA_VLD;

FSTB := /RST_I * /CYC * /FSTB * BASE_HIT
 + /RST_I * CYC * FSTB * /PWC * /PRC * S_DATA;

CYC := /RST_I * /CYC * /FSTB * BASE_HIT
 + /RST_I * CYC * /FSTB * S_DATA
 + /RST_I * CYC * FSTB * /PWC * S_DATA
 + /RST_I * CYC * /PRC * S_DATA;

CYC_O = CYC;

STB_O = /RST_I * FSTB
 + /RST_I * /S_WRDN * S_SRC_EN
 + /RST_I * S_WRDN * S_DATA_VLD;

00

11

10

01

UNUSED

RST_I

XXX1

XXX0

001X

101X
011X

XX1X

XX0X

000

010

001

100

0XXXX
11001

1X00X

1X1XX1X01X

0XXXX
00XXX
11000
11011
11101
11110
11111
1110011010

0XXXX 0XXXX

RST_I &
UNUSED STATES

1XXXX 1XXXX

READY

TERM ABORT

WAIT

XX0X
11XX

INITIAL CYCLE STATE MACHINE (PART OF 'CYCLE CONTROL'):

STATES: PCYC
INPUTS: BASE_HIT, AER

EQUATIONS:

AER = ACK_I + ERR_I + RTY_I;

PCYC := /RST_I * /PCYC * BASE_HIT
 + /RST_I * PCYC * /AER;

ICYC = PYC * AER;

1

0

1X

X0

X1

0X

RST_I

Figure 4-20. CYCLE CONTROL and HANDSHAKING state machines.

 69

4.3.11 Process: LOWER_ADDRESS_COUNTER

The lower address counter generates the lower eight bits of the WISHBONE address bus. The
counter is needed because the PCI core generates a base address during the first phase of a bus
cycle. Subsequent PCI bus cycles do not generate any address information. The initial base ad-
dress is preloaded into the counter. After that, each PCI cycle phase increments the counter.

The counter generates the lower eight bits of the local address bus ADR(9..2). The upper
twenty-four bits are held by a latch. Local address bus ADR(33..2) generates the WISHBONE
address bus ADR_O(33..2). The counter and latch implement the PCI to WISHBONE address
translation. The PCI interface uses a 32-bit address bus with four byte enables. This effectively
allows 34-bit byte addressability. The WISHBONE interface has an 8-bit granularity. For this
reason the PCI address bits are shifted up by two bits, and the byte enables are translated into the
WISHBONE SEL_O() bits.

The counter is designed in three sections, with the first two sections having a terminal count
(TCNTX) bit. This reduces the number of 'and' terms in the equations of the higher counter bits.

The counter design has been used in other projects, and represents a reasonable compromise be-
tween speed and complexity.

Important signals and their uses are:

ADR(9..2): COUNTER OUTPUT (LOCAL ADDRESS BUS)
ADIO(31..0): COUNTER DATA INPUT (USED FOR PRELOAD)
CINC: COUNTER INCREMENT
ADDR_VLD: COUNTER PRELOAD
TCNT2: TERMINAL COUNT FROM BIT 2
TCNT5: TERMINAL COUNT FROM BIT 5

4.3.12 Process: SELECT_CONTROL

The SELECT_CONTROL process generates the local [SEL()] and WISHBONE [SEL_O()] sig-
nals.

4.3.13 Process: UPPER_ADDRESS_REGISTER

The UPPER_ADDRESS_REGISTER process creates a 24-bit register, and captures the state of
the upper twenty-four address lines coming from ADIO(31..08). These remain static throughout
the entire PCI bus cycle, regardless of the type of PCI bus cycle. The lower eight bits are cap-
tured by the address counter.

 70

Important signals include:

ADR(33..10): REGISTER OUTPUT (LOCAL ADDRESS BUS)
ADIO(31..8): REGISTER DATA INPUT
ADDR_VLD: REGISTER LOAD

4.3.14 Process: WISHBONE_SYSCON

The WISHBONE_SYSCON process generates the WISHBONE SYSCON signals [CLK_O] and
[RST_O]. The [CLK_I] and [RST_I] signals should be tied to the [CLK_O] and [RST_O] sig-
nals outside of this entity.

[RST_O] is a synchronized version of the asynchronous [RST] signal generated by the Xilinx
LogiCORE.

4.3.15 Process: DI_REG

The DI_REG process is a ‘data in’ register. It’s only purpose is to overcome some timing prob-
lems associated with the three-state buffers used with the Xilinx LogiCORE PCI. If this register
is removed the router attempts to resolve the asynchronous data path from the data in port
[DAT_I()], through the three-state buffers, back to the data out port [DAT_O()] and then on to
other system components. This timing path is broken when the registers are added.

 71

4.4 SEMABUD Entity

The SEMABUD entity is a shared memory. It is very similar to the SEMABUF entity, except
that it implements the memory buffer with Xilinx Spartan 2 distributed RAM instead of Block-
Select+ RAM. Furthermore, this entity responds in one clock cycle (the SEMABUF entity re-
sponds in two cycles). For more information please see the ‘SEMABUF’ entity described else-
where in this manual.

 72

4.5 SEMABUF Entity

The SEMABUF entity is a shared memory buffer. As shown in the block diagram of Figure 4-
21, the entity has two WISHBONE SLAVE interfaces called ‘PORT A’ and ‘PORT B’. These
connect to two, 256 x 16-bit synchronous memories, thereby forming 32-bit data ports. The
memories are created from two Xilinx Spartan 2 BlockSelect+ memories, with details shown in
Figure 4-22.

BDAT_I()
BDAT_O()

BWE_I

BADR_I()

BSEL_I()
BSTB_I
BACK_O

ADAT_I()
ADAT_O()
AWE_I

AADR_I()

ASEL_I()
ASTB_I
AACK_O

ABRST_I

8

32

32

2

8

32

32

2

'A
'
SI
DE 'B
'
SI
DE

WISHBONE
SHARED MEMORY

SEMABUF

BLOCK DIAGRAM

10 APR, 2002

ABCLK_I

ACYC_I BCYC_I

Figure 4-21. SEMABUF block diagram.

The buffer operates as an independent shared memory. This means that both sides of the mem-
ory supports full, simultaneous, read/write privileges into each buffer. During simultaneous
transfers one side of the buffer or the other is held off until the other port has finished its opera-
tion. In this case the [AACK_O] or [BACK_O] signal holds off memory accesses. This activity
is controlled by an internal arbiter circuit.

Table 4-4 gives the specifications for the WISHBONE ports.

An internal arbiter determines whether PORT A or PORT B gains access to the shared memory
buffer. The arbiter is composed of a two bit state machine, with a state diagram shown in Figure
4-23, with the related timing diagram shown in Figure 4-24.

 73

WISHBONE ACKNOWLEDGE SIGNALS

AACK_O = ARDY * ASTB_I;

BACK_O = BGNT * BSTB_I;

XILINX SPARTAN 2 DUAL-PORT SelectRAM+ EQUATIONS

PORTA - BANK #0
WEA = AWE_I;
ENA = ARDY * ASTB_I * ASEL_I(0);
RSTA = GND;
CLKA = ABCLK_I;
ADDRA(7..0) = ADDR_I(8..1);
DINA(15..0) = ADAT_I(15..0);
ADAT_O(15..0) = DOA(15..0);

PORTB - BANK #0
WEB = BWE_I;
ENB = BGNT * BSTB_I * BSEL_I(0);
RSTB = GND;
CLKB = ABCLK_I;
ADDRB(7..0) = BDDR_I(8..1);
DINB(15..0) = BDAT_I(15..0);
BDAT_O(15..0) = DOB(15..0);

PORTA - BANK #1
WEA = AWE_I;
ENA = ARDY * ASTB_I * ASEL_I(1);
RSTA = GND;
CLKA = ABCLK_I;
ADDRA(7..0) = ADDR_I(8..1);
DINA(15..0) = ADAT_I(31..16);
ADAT_O(15..0) = DOA(31..16);

PORTB - BANK #1
WEB = BWE_I;
ENB = BGNT * BSTB_I * BSEL_I(1);
RSTB = GND;
CLKB = ABCLK_I;
ADDRB(7..0) = BDDR_I(8..1);
DINB(15..0) = BDAT_I(31..16);
BDAT_O(15..0) = DOB(31..16);

XILINX SelectRAM+ CONNECTION DIAGRAM

29 SEP 2002

Figure 4-22. Implementation details for the Xilinx BlockSelect+ RAM.

 74

Table 4-4. WISHBONE DATASHEET for the SEMABUF Entity

General Description

256 x 32-bit shared memory buffer with two

WISHBONE SLAVE interfaces. This datasheet
applies to both interfaces.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

MASTER: READ/WRITE

MASTER: BLOCK READ/WRITE

Data port, size

32-bit

Data port, granularity

16-bit

Data port, maximum operand size

32-bit

Data transfer ordering

BIG ENDIAN or LITTLE ENDIAN

Data transfer sequencing

None

Signal Description

All WISHBONE signal names are identical to
those defined in the specification, except that
they have an ‘A’ or ‘B’ at the front. The ‘A’
and ‘B’ refer to PORT A and PORTB respec-

tively.

Terminating Signals

The WISHBONE interface on both ports sup-
port only the [ACK_O] terminating signal.

 75

00

01

10

11UNUSED

00

INPUTS: BCYC_I, ACYC_I
STATES: BGNT, AGNT
CLOCK: BCLK

'A' SIDE PRIORITY

SEMABUF ARBITER STATE MACHINE

XX

X1

10

00

1X

00

10 APR, 2002

10 01ABRST_I

ARBITER EQUATIONS

AGNT = /ABRST_I * /BGNT * ACYC_I
 + /ABRST_I * /BGNT * /BCYC_I * ACYC_I
 + /ABRST_I * /AGNT * /BCYC_I * ACYC_I;

BGNT = /ABRST_I * BGNT * /AGNT * BCYC_I
 + /ABRST_I * /BGNT * BCYC_I * /ACYC_I;

Figure 4-23. SEMABUF arbiter state machine.

 76

1
0

2
3

AC
LK
_I

AS
TB
_I

AA
CK
_O

4

AC
YC
_I

5
6

'A' SIDE

10
 A
PR
 2
00
2

SH
AR
ED
 M
EM
OR
Y
AR
BI
TR
AT
IO
N
TI
MI
NG

7
8

9
10

11
12

13
14

15
16

17
18

AR
DY

BS
TB
_I

BA
CK
_O

BC
YC
_I

BG
NT

'B' SIDE

'A
'
SI
DE
 B
US
 C
YC
LE

'B
'
SI
DE
 B
US
 C
YC
LE

SI
MU
LT
AN
EO
US
 '
A'
 &
 '
B'
 S
ID
E
BU
S
CY
CL
E

('
A'
 S
ID
E
PR
IO
RI
TY
)

'B
'
SI
DE
 R
EQ
UE
ST
 D
UR
IN
G
'A
'
SI
DE
 D
OU
BL
E
CY
CL
E

Figure 4-24. SEMABUF shared memory arbiter timing.

 77

4.6 SEMAREG Entity

The SEMAREG entity provides a one-bit semaphore to two WISHBONE SLAVE interfaces.
The interfaces are called ‘A’ and ‘B’. The semaphore is intended to be used for shared memory
buffers where one interface or the other must gain access to the memory. The semaphore does
not lock the memory buffer (which is located elsewhere) but just provides a mechanism for sys-
tem software to determine if the particular memory buffer is being used. Figure 4-25 shows a
block diagram of the entity.

BDAT_I()
BDAT_O()

BWE_I
BSEL_I()

BSTB_I
BACK_O

ADAT_I()
ADAT_O()
AWE_I
ASEL_I()
ASTB_I
AACK_O
ABRST_I

32

32

2

32

32

2

'A
'
SI
DE

'B
'
SI
DE

WISHBONE
SEMAPHORE REGISTER

SEMAREG

SEMAREG BLOCK DIAGRAM

10 APR, 2002

ABCLK_I

Figure 4-25. SEMAREG block diagram.

The semaphore is accessed by reading the bit. If the bit is returned as ‘0’, then the WISHBONE
MASTER (usually a processor) accessing the device is granted the semaphore. If the bit is re-
turned as ‘1’, the buffer is busy. If a processor obtains the buffer by reading ‘0’ (becomes the
owner), and the bit is sampled for a second time, then the bit is returned as ‘1’ on the second ac-
cess.

If both ports attempt to access the semaphore t the same time (i.e. during the same clock cycle),
then port ‘A’ access has priority.

The buffer is released by writing a ‘0’ to the semaphore. Writing a ‘1’ to the bit does not have
any effect. The semaphore may be released from either port.

Table 4-5 shows the WISHBONE DATASHEET for the SEMAREG entity.

 78

Table 4-5. WISHBONE DATASHEET for the SEMAREG Entity

General Description

32-bit semaphore register with WISHBONE

SLAVE ports (‘A’ and ‘B’). This datasheet ap-
plies to both interfaces.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

MASTER: READ/WRITE

Data port, size

32-bit

Data port, granularity

16-bit

Data port, maximum operand size

32-bit

Data transfer ordering

BIG ENDIAN or LITTLE ENDIAN

Data transfer sequencing

None

Signal Description

All WISHBONE signal names are identical to
those defined in the specification, except that
they have an ‘A’ or ‘B’ at the front. The ‘A’
and ‘B’ refer to PORT A and PORTB respec-

tively.

Terminating Signals

The WISHBONE interface on both ports sup-
port only the [ACK_O] terminating signal.

 79

The circuit arbiter determines whether PORT A or PORT B gains access to the shared memory
buffer. The arbiter is composed of a two bit state machine, with a state diagram shown in Figure
4-26. The timing diagram is shown in Figure 4-27.

30 MAY, 2002

1

0

AGNT STATE MACHINE

10

STATES: AGNT
INPUTS: AREQ, GNT
CLOCKS: BCLK

'A' SIDE PRIORITY

EQUATIONS:

AGNT := /ABRST_I * AREQ * /GNT
 + /ABRST_I * AREQ * AGNT;

1X

0X

ABRST_I
00
01
11

1

0

GNT STATE MACHINE

1X

STATES: GNT
INPUTS: REQ, REL
CLOCKS: BCLK

EQUATIONS:

GNT := /ABRST_I * /GNT * REQ
 + /ABRST_I * GNT * /REL;

REQ = AREQ + BREQ;
REL = AREL + BREL;

X0

X1

ABRST_I 0X

1

0

BGNT STATE MACHINE

10

STATES: BGNT
INPUTS: MBREQ, GNT
CLOCKS: BCLK

'A' SIDE PRIORITY

EQUATIONS:

BGNT := /ABRST_I * MBREQ * /GNT
 + /ABRST_I * MBREQ * BGNT;

MBREQ = /AREQ * BREQ;

1X

0X

ABRST_I
00
01
11

OTHER EQUATIONS:

AREL = ASTB_I * AWE_I * ASEL_I(0) * /ADAT_I(0);
AREQ = ASTB_I * /AWE_I * ASEL_I(0);
SAACK := ASTB_I;
AACK_O = SAACK * ASTB_I;

BREL = BSTB_I * BWE_I * BSEL_I(0) * /BDAT_I(0);
BREQ = BSTB_I * /BWE_I * BSEL_I(0;
SBACK := BSTB_I;
BACK_O := SBACK * BSTB_I;

Figure 4-26. SEMAREG state machines.

The semaphore is formed from a series of three, one-bit state machines called ‘GNT’, ‘AGNT’
and ‘BGNT’. The ‘GNT’ state machine indicates if the semaphore has been granted or not.
Semaphore accesses from either side of the entity will cause the semaphore to be set. The other
two state machines determine if one side of the entity or the other is granted the semaphore.

For example, if the semaphore is not granted, and a semaphore request occurs from the ‘A’ side,
then the ‘GNT’ state machine bit will transition from ‘0’ to ‘1’. At the same time the ‘AGNT’
state machine will also transition from ‘0’ to ‘1’. This grants the semaphore to the ‘A’ side.
Subsequent accesses from the ‘A’ side will not grant the semaphore, as it is designed so that the
semaphore is only granted during the first read access.

Once the semaphore has been granted, neither side can obtain it until the semaphore is released.
The release can come from either port of the interface.

 80

1
0

2
3

AC
LK
_I

AS
TB
_I

AA
CK
_O

4
5

6

'A' SIDE

10
 A
PR
 2
00
2

SE
MA
PH
OR
E
RE
GI
ST
ER
 (
SE
MA
RE
G)
 A
RB
IT
RA
TI
ON
 T
IM
IN
G

7
8

9
10

11

AD
AT
_O
(0
)

BS
TB
_I

BA
CK
_O

BD
AT
_O
(0
)

'B' SIDE

'A
'
SI
DE
 S
EM
AP
HO
RE
 R
EQ
UE
ST
 O
R
RE
LE
AS
E

SI
MU
LT
AN
EO
US
 '
A'
 &
 '
B'
 S
ID
E

SE
MA
PH
OR
E
RE
QU
ES
T
OR
 R
EL
EA
SE

('
A'
 S
ID
E
PR
IO
RI
TY
 O
N
RE
QU
ES
TS
)

'B
'
SI
DE
 S
EM
AP
HO
RE
 R
EQ
UE
ST
 O
R
RE
LE
AS
E

NO
TE
:
DA
TA
 O
UT
PU
T
ST
AT
ES
 F
OR
 R
EA
D
CY
CL
ES
 O
NL
Y.

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

Figure 4-27. Timing diagram for the SEMAREG entity.

 81

4.7 VMEcore™ Entity

The VMEcore™ entity is a A24:D32:D16:D08(O) VMEbus SLAVE to WISHBONE MASTER
bridge. As shown in Figure 4-28, the bridge allows connection to a local SoC interconnection.
The entire interface is synthesized as the ‘VMECOREc’ VHDL entity. Table 4-6 shows the
characteristics of the WISHBONE interface.

V
M

Eb
us

 /
V

M
E6

4

Local
System-on-Chip

FPGA or ASIC Target Device

V
M

EC
O

RE
C

En
tit

y
V

M
E6

4
SL

AV
E

WISHBONE

W
IS

H
BO

N
E

M
A

ST
ER

23 SEP 2002

Figure 4-28. Block diagram of the VMEcore™ interface.

Features of the VMEcore(tm) interface include:

• A24:D32:D16:D08(EO) VMEbus slave interface.

• Compact design minimizes gate count and per-unit costs.

• Enforces VMEbus interface rules and timing.

• 32-bit WISHBONE MASTER (backend) interface.

• Allows fabrication of a complete VMEbus SLAVE on a single chip (with peripherals).

• Provided as VHDL source code.

 82

Table 4-6. WISHBONE DATASHEET for the VMEcore(tm).

General Description

Backend interface for a VMEbus SLAVE IP

core. Operates as a WISHBONE SoC interface.

WISHBONE Revision Level

B.2

Supported WISHBONE Cycles

MASTER: READ/WRITE

MASTER: RMW

Data port, size

32-bit

Data port, granularity

8-bit

Data port, maximum operand size

32-bit

Data transfer ordering

BIG ENDIAN

Data transfer sequencing

UNDEFINED

Signal Description

All WISHBONE signal names are identical to

those defined in the specification. Signal
[A24SGL_O] is a tag with TAG TYPE:

[TGA_O]. Refer to the signal descriptions for
more details.

Optional [ERR_I] support

WISHBONE cycles terminated with [ERR_I]
terminate VMEbus cycles with BERR*.

 83

4.7.1 VMEbus SLAVE Interface Signals

All VMEbus slave signal names have the ‘_I’ or ‘_O’ characters attached to them. These indi-
cate if the signals are an input (to the core) or an output (from the core). For example, [ACK_I]
is an input and [ACK_O] is an output. This convention is used to clearly identify the direction of
each signal.

Signal arrays are identified by a name followed by a set of parenthesis. For example, [DAT_I()]
is a signal array. Array limits may also be shown within the parenthesis. In this case the first
number of the array limit indicates the most significant bit, and the second number indicates the
least significant bit. For example, [DAT_I(31..0)] is a signal array with upper array boundary
number thirty-one (the most significant bit), and lower array boundary number zero (the least
significant bit). The array size on any particular core may vary. In many cases the array bounda-
ries are omitted if they are irrelevant to the context of the description.

When used as part of a sentence, signal names are enclosed in brackets ‘[]’. This helps to dis-
criminate signal names from the words in the sentence.

The VMEbus interface signals can be directly connected to the target device, or routed through
buffer chips. Buffer chips are generally used on the VMEbus interface because FPGA and ASIC
target devices usually do not have compatible inputs and outputs. VMEbus is based on TTL
interface standards, and regulate24:

• Noise margins
• Load current (inputs)
• Output short circuit current
• Input clamp voltage
• Capacitive loading
• Output current
• Backplane impedance

VA_I()
VMEbus address input signal array [VA_I()]. Connect these signals to the corresponding VME-
bus address lines A01 – A31 (either directly or through a buffer).

VAM_I()
 VMEbus address modifier input signal array [VAM_I()]. Connect these signals to the corre-
sponding VMEbus address modifier lines AM0 – AM5 (either directly or through a buffer).

24 For more information, the reader is directed to the ANSI/VITA 1-1994 standard.

 84

VD_I()
VMEbus data input signal array [VD_I()]. Connect these signals to the corresponding VMEbus
data lines D00 – D31 (either directly or through a buffer).

VD_O()
VMEbus data signal output array [VD_O()]. Connect these signals (usually through a buffer) to
the corresponding VMEbus data lines D00 – D31. They are generally connected through a
buffer to provide sufficient drive current to the VMEbus backplane.

VNAS_I
VMEbus address strobe input signal [VNAS_I]. Connect this signal to the VMEbus [AS*] sig-
nal (either directly or through a buffer). Also note that both [VNAS_I] and [AS*] are active low
signals.

VNBERR_O
VMEbus bus error output signal [VNBERR_O]. Connect this signal to the VMEbus [BERR*]
signal. It is generally connected through a buffer to provide sufficient current drive to the VME-
bus backplane. Also note that both [BERR*] and [VNBERR_O] are active low signals.

VNDS0_I
VMEbus data strobe input signal [VNDS0_I]. Connect this signal to the VMEbus [DS0*] signal
(either directly or through a buffer). Also note that both [DS0*] and [VNDS0_I] are active low
signals.

VNDS1_I
VMEbus data strobe input signal [VNDS1_I]. Connect this signal to the VMEbus [DS1*] signal
(either directly or through a buffer). Also note that both [DS1*] and [VNDS1_I] are active low
signals.

VNDTACK_O
VMEbus data transfer acknowledge output signal [VNDTACK_O]. Connect this signal to the
VMEbus [DTACK*] signal. It is generally connected through a buffer to provide sufficient cur-
rent drive to the VMEbus backplane. Also note that both [DTACK*] and [VNDTACK_O] are
active low signals.

VNIACK_I
VMEbus interrupt acknowledge input signal [VNIACK_I]. Connect this signal to the VMEbus
[IACK*] signal (either directly or through a buffer). Also note that both [IACK*] and
[VNIACK_I] are active low signals.

 85

VNLWORD_I
VMEbus long word input signal [VNLWORD_I]. Connect this signal to the VMEbus
[LWORD*] signal (either directly or through a buffer). Also note that both [LWORD*] and
[VNLWORD_I] are active low signals.

VNSYSRESET_I
VMEbus system reset input signal [VNSYSRESET_I]. Connect this signal to the VMEbus
[SYSRESET*] signal (either directly or through a buffer). Also note that both [SYSRESET*]
and [VNSYSRESET_I] are active low signals.

VNWRITE_I
VMEbus write input signal [VNWRITE_I]. Connect this signal to the VMEbus [WRITE*] sig-
nal (either directly or through a buffer). Also note that both [WRITE*] and [VNWRITE_I] are
active low signals.

VSAC24_I()
A24 VMEbus SLAVE address compare input signal array [VSAC24_I()]. This array determines
when the SLAVE interface is selected by a VMEbus cycle. It is used by the local address com-
parator to decode the destination address of a bus cycle. They may be connected to a dip-switch
or latch on the board which holds the base address of the SLAVE.

VSAE24_I
The A24 VMEbus SLAVE address enable input signal [VSAE24_I] enables the SLAVE inter-
face. In most cases it should be permanently asserted (i.e. tied high). However, in some cases
this signal is useful if the interface needs to be disabled.

VTST_I
The simulation test input signal [VTST_I] forces all self-starting counters and other devices in
the VMEbus interface to an initial state. It is used for test simulation purposes, and should be
negated (i.e. tied low) during normal core operation.

 86

4.7.2 WISHBONE MASTER Interface Signals

A24SGL_O
The [A24SGL_O] signal indicates that a valid A24 VMEbus cycle is in progress, and that the
core is participating in the cycle. It conforms to WISHBONE TAG TYPE: [TGA_O]. In many
cases this signal is superfluous and can be ignored.

CLK_I
The clock input [CLK_I] coordinates all activities for the internal logic within the WISHBONE
interconnect. All WISHBONE output signals are registered at the rising edge of [CLK_I]. All
WISHBONE input signals are stable before the rising edge of [CLK_I].

DAT_I()
The data input array [DAT_I()] is used to pass binary data. The array boundaries are determined
by the port size, with a maximum port size of 64-bits (e.g. [DAT_I(63..0)]). Also see the
[DAT_O()] and [SEL_O()] signal descriptions.

DAT_O()
The data output array [DAT_O()] is used to pass binary data. The array boundaries are deter-
mined by the port size, with a maximum port size of 64-bits (e.g. [DAT_I(63..0)]). Also see the
[DAT_I()] and [SEL_O()] signal descriptions.

RST_I
The reset input [RST_I] forces the WISHBONE interface to restart. Furthermore, all internal
self-starting state machines will be forced into an initial state. This signal only resets the
WISHBONE interface. It is not required to reset other parts of an IP core (although it may be
used that way).

TGD_I()
Data tag type [TGD_I()] is used on MASTER and SLAVE interfaces. It contains information
that is associated with a data lines [DAT_I()], and is qualified by signal [STB_I]. For example,
parity protection, error correction and time stamp information can be attached to the data bus.
These tag bits simplify the task of defining new signals because their timing (in relation to every
bus cycle) is pre-defined by this specification. The name and operation of a data tag must be de-
fined in the WISHBONE DATASHEET.

TGD_O()
Data tag type [TGD_O()] is used on MASTER and SLAVE interfaces. It contains information
that is associated with a data lines [DAT_O()], and is qualified by signal [STB_O]. For example,
parity protection, error correction and time stamp information can be attached to the data bus.
These tag bits simplify the task of defining new signals because their timing (in relation to every

 87

bus cycle) is pre-defined by this specification. The name and operation of a data tag must be de-
fined in the WISHBONE DATASHEET.

ACK_I
The acknowledge input [ACK_I], when asserted, indicates the termination of a normal bus cycle.
Also see the [ERR_I] and [RTY_I] signal descriptions.

ADR_O()
The address output array [ADR_O()] is used to pass a binary address. The maximum size of the
array is specified as [ADR_O(63..0)]. However, the higher array boundary is specific to the ad-
dress width of the core, and the lower array boundary is determined by the data port size (e.g. the
maximum array size on a 32-bit data port is [ADR_O(63..2)]. In some cases (such as FIFO inter-
faces) the array may not be present on the interface.

CYC_O
The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress. The
signal is asserted for the duration of all bus cycles. For example, during a BLOCK transfer cycle
there can be multiple data transfers. The [CYC_O] signal is asserted during the first data trans-
fer, and remains asserted until the last data transfer. The [CYC_O] signal is useful for interfaces
with multi-port interfaces (such as dual port memories). In these cases, the [CYC_O] signal re-
quests use of a common bus from an arbiter. Once the arbiter grants the bus to the MASTER, it
is held until [CYC_O] is negated.

ERR_I
The error input [ERR_I] indicates an abnormal cycle termination. The source of the error, and
the response generated by the MASTER is defined by the IP core supplier. Also see the
[ACK_I] and [RTY_I] signal descriptions.

RTY_I
The retry input [RTY_I] indicates that the interface is not ready to accept or send data, and that
the cycle should be retried. When and how the cycle is retried is defined by the IP core supplier.
Also see the [ERR_I] and [RTY_I] signal descriptions.

SEL_O()
The select output array [SEL_O()] indicates where valid data is expected on the [DAT_I()] signal
array during READ cycles, and where it is placed on the [DAT_O()] signal array during WRITE
cycles. The array boundaries are determined by the granularity of a port. For example, if 8-bit
granularity is used on a 64-bit port, then there would be an array of eight select signals with
boundaries of [SEL_O(7..0)]. Each individual select signal correlates to one of eight active bytes
on the 64-bit data port. For more information about [SEL_O()], please refer to the data organiza-

 88

tion section in Chapter 3 of this specification. Also see the [DAT_I()], [DAT_O()] and [STB_O]
signal descriptions.

STB_O
The strobe output [STB_O] indicates a valid data transfer cycle. It is used to qualify various
other signals on the interface such as [SEL_O()]. The SLAVE asserts either the [ACK_I],
[ERR_I] or [RTY_I] signals in response to every assertion of the [STB_O] signal.

TGA_O()
Address tag type [TGA_O()] contains information associated with address lines [ADR_O()], and
is qualified by signal [STB_O]. For example, address size (24-bit, 32-bit etc.) and memory man-
agement (protected vs. unprotected) information can be attached to an address. These tag bits
simplify the task of defining new signals because their timing (in relation to every bus cycle) is
defined by this specification. The name and operation of an address tag must be defined in the
WISHBONE DATASHEET.

TGC_O()
Cycle tag type [TGC_O()] contains information associated with bus cycles, and is qualified by
signal [CYC_O]. For example, data transfer, interrupt acknowledge and cache control cycles can
be uniquely identified with the cycle tag. They can also be used to discriminate between
WISHBONE SINGLE, BLOCK and RMW cycles. These tag bits simplify the task of defining
new signals because their timing (in relation to every bus cycle) is defined by this specification.
The name and operation of a cycle tag must be defined in the WISHBONE DATASHEET.

WE_O
The write enable output [WE_O] indicates whether the current local bus cycle is a READ or
WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE cycles.

4.7.3 VHDL Synthesis and Test

The VMEcore is organized as a series of VHDL entities. These are synthesized together from a
top level entity known as ‘VMECOREC.VHD’. Figure 4-29 shows the hierarchy and Figure 4-
30 shows a functional diagram for the core.

Each module of VHDL code is named with a seven character ‘handle’ that is related to its entity
name. An additional (final) character is added to indicate it’s use. The ‘C’ character indicates
that it’s a VHDL circuit file (i.e. entity/architecture pair, usually contained in a file), the ‘T’
character indicates that it’s a test bench file, and a ‘V’ character indicates that it’s a test vector
file. For example, the top level entity has the following names associated with it:

 89

Entity (circuit) name: VMECOREC
Architecture name: VMECOREC1

Entity/architecture filename: VMECOREC.VHD
Test bench filename: VMECORET.VHD
Text vector filename: VMECOREV.TXT

Only the top level module in the hierarchy includes a VHDL test bench. It is assumed that all of
the files are simulated and synthesized as a group.

VMECOREC.VHD

BUSSCNTC.VHD

LOCLADRC.VHD

LOCLDATC.VHD

SLAVCNTC.VHD

SLAVDECC.VHD

VMEBADBC.VHD

23 SEP 2002
Figure 4-29. VMEcore entities.

The entire set of VMEcore™ entities is created with a parametric core generator called the
VMEbus Interface Writer™. The tool itself is a trade secret of Silicore Corporation, and is not
available under any license. However, the output files provided as VMEcore entities, test
benches and test vector files are fully readable with standard editors. They may be easily and
fully modified and maintained without the parametric core generator.

 90

(15..08)

DAT_O(31..00)
1

0

VD_I(31..00)

(15..00)

D16EO

DLOAD

LOCLDATC

ADR_O(18..2)

LOCLADRC

VA_I(23..01)

ALOAD

REG

REG

CE

CE

REG

CE

DAT_I(31..16)

VMEBADBC

(31..16) REG

CE VLOAD

REG

CE

1

0

DAT_I(31..24)

DAT_I(15..08)

REG

CE

1

0

DAT_I(23..16)

DAT_I(07..00)
(07..00)

D16EO * /A(1)

SLAVDECC

VAM_I(5..0) CMPA

0x3E
0x3D
0x3A
0x39

VNIACK_I A24SGL

CMPA

SAC24_I(23..19)

SAE24_I

REG

CEALOAD

A24SGL_O

SLAVCNTC

CYC_O

STB_O

SEL_O()

WE_O

VA_I(1)

VNAS_I

VNDS0_I

VNDS1_I

VNLWORD_I

VNWRITE_I

VNDTACK_O

VNBERR_O

ACK_I

ERR_I

ALOAD

DLOAD

VLOAD

A(1)

D16(EO)

WISHBONE INTERFACEVMEbus INTERFACE

VMECOREC Entity
14 FEB 2002

ADC

DAT_I(31..24)

(31..16)

VD_O(31..16)

(31..16)

(15..00)

(18..02)

(23..19)

RST_I

CLK_I

Figure 4-30. Functional diagram of the VMECOREC entity.

 91

4.7.4 Bus Interface Timing

Before routing the VMEcore(tm) interface, correct timing specifications must be entered into the
design. Furthermore, these timing specifications must take into account not only the require-
ments of the VMEcore design, but also of any external driver or receiver chips. These external
chips are needed because FPGA and ASIC target devices aren’t compatible with the electrical
characteristics of the VMEbus backplane.

The VMEcore logical design has only three simple timing constraints:

• Input-to-clock setup time: 1 [VCLK]
• Flop-to-flop transition: 1 [VCLK]
• Clock-to-output delay time: 1 [VCLK]

The input-to-clock setup time can be analyzed with Figures 4-31(a) and 4-32(a). This timing pa-
rameter includes the time it takes for a VMEbus backplane signal to propagate through an input
buffer, through the input pin of the target device and then to set up at the input of a flip-flop.

For example, consider a VMEbus input signal that traverses through an input buffer that has a
timing delay [Tplh] of 7.0 ns. Furthermore, assume that [VCLK] operates at a clock speed of
50.000 MHz (or a period of 20.0 ns). This means that the target device must be routed with a
worse case input-to-clock delay of:

Tpdlhin(max) = Tvclk(min) – Tphl

Tpdlhin(max) = 20.0 ns – 7.0 ns = 13.0 ns

Although these numbers are given for the ‘low-to-high’ transition delay, a similar case exists for
the ‘high-to-low’ transition delay. The method by which this time specification is entered into
the software development tools depends upon the target technology and router used. For exam-
ple, the timespec for the VMEbus data strobe [N_VDS0] input would be entered into a Xilinx
FPGA router thusly:

NET "N_VDS0" OFFSET = IN 13 ns BEFORE "VCLK";

 92

VCLK

QD QD

INPUT
BUFFER

VMEbus
Signal

OUTPUT
BUFFERQD

Tplh
Tphl

Tpdhlin(max)
Tpdlhin(max) Tvclk(min)

Tpdhlout(max)
Tpdlhout(max) Tplh

Tphl
Tpoe

Target Device

Tpoe

VCLK

QD QD

BIDIR
BUFFER

VMEbus
Signal

QD

Tpdhlin(max)
Tpdlhin(max)

Tvclk(min)
Tpdhlout(max)
Tpdlhout(max) Tplh

Tphl
Tpoe

Target Device

DIR
OE

A B

'1'

(a) VMEbus Input & Output Signals

(b) VMEbus Bi-directional Signals

23 SEP 2002

Figure 4-31. Determining bus interface timing characteristics.

 93

FEB 08, 2002

0 1 2 3VCLK(min)
(Internal)

Buffered VMEbus
Input Signal

VMEbus Signal

(a) VMEcore Input Timing Constraints

4

TplhTphl

Tvclk(min) Tvclk(min)

Device input to VCLK setup, high-to-low transition: Tpdhlin(max) = Tvclk(min) - Tphl
Device input to VCLK setup, low-to-high transition: Tpdlhin(max) = Tvclk(min) - Tplh

0 1 2 3VCLK(min)
(Internal)

Device Output
Signal

Buffered
VMEbus Signal

(b) VMEcore Output Timing Constraints

4

TplhTphl

Tvclk(min) Tvclk(min)

VCLK to device output, high-to-low transition: Tpdhlout(max) = Tvclk(min) - Tphl
VCLK to device output, low-to-high transition: Tpdlhout(max) = Tvclk(min) - Tplh

Tpdhlin(max) Tpdlhin(max)

Tpdhlout(max) Tpdlhout(max)

Figure 4-32. VMEbus interface timing.

 94

The flop-to-flop transition time is the time it takes for a synchronous signal (inside the core) to
move from the output of one flip-flop and be set-up at the input of another. Stated another way,
it is the internal timing of the core’s RTL25 logic. This is shown as [Tvclk(min)] in Figure 4-
32(a). For example, if [VCLK] operates at 50.000 MHz, then [Tvclk(min)] is 1/VCLK, or 20.0
ns. It would be entered into a Xilinx FPGA router thusly:

NET "VCLK" PERIOD = 30.000;

There are additional constraints place on [VCLK] by the VMEbus timing specification. Since
VMEbus is asynchronous it must be sampled sufficiently fast to prevent aliasing problems. As
shown in Figure 4-33 the core frequency must be at least 33.333 MHz (or a period of 30.0 ns).
However, it can’t go above 50.000 MHz because the period of [VCLK] must not exceed the data
strobe skew on the backplane.

JAN 24, 2002

0 1 2 3VCLK(min)

DSB*

DSA*

(a) AT VCLK(min) (33.333 MHz) AT LEAST ONE ASSERTED SAMPLE IS ASSURED ON BOTH DATA STROBES.

VCLK(max)

DSB*

DSA*

(b) AT VCLK(max) (50.000 MHz) AT LEAST ONE ASSERTED SAMPLE IS ASSURED AT MAXIMUM BUS SKEW.

10 2 3 4 5

4

30 nS (min)

20 nS (max)

Figure 4-33. VMEbus constraints place on [VCLK] frequency.

25 Register-transfer-logic.

 95

The clock-to-output delay time is the time it takes for a synchronous signal to exit a flip-flop,
propagate through the FPGA or ASIC target device, an output buffer, and then arrive at the
VMEbus signal interconnection.

For example, consider a VMEbus input signal that traverses through an output buffer that has a
timing delay [Tplh] of 10.0 ns. Furthermore, assume that [VCLK] operates at a clock speed of
50.000 MHz (or a period of 20.0 ns). This means that the target device must be routed with a
worse case clock-to-output delay of:

Tpdlhout(max) = Tvclk(min) – Tphl

Tpdlhout(max) = 20.0 ns – 10.0 ns = 10.0 ns

Although these numbers are given for the ‘low-to-high’ transition delay, a similar case exists for
the ‘high-to-low’ transition delay. The method by which this time specification is entered into
the software development tools depends upon the target technology and router used. For exam-
ple, the timespec for the VMEbus data line [VD<0>] output would be entered into a Xilinx
FPGA router thusly:

NET "VD<0>" OFFSET = OUT 10 ns AFTER "VCLK";

The timing diagram of Figures 4-34 and 4-35 show how VMEbus read and write cycles are
translated to WISHBONE read and write cycles.

 96

VCLK

VNAS_I

1 32

VD_I()

VMEcore(tm) TIMING - VMEbus TO WISHBONE SINGLE READ CYCLE
PARTICIPATING VMEbus SLAVE W/NORMAL TERMINATION

VNDTACK_O

4 5

VAM_I()

VNWRITE_I

VD_O()

ADR_O()

DAT_I()

DAT_O()

CYC_O

ACK_I

-WSS- -WSM-

SEL_O()

VA_I()
VNLWORD_I

WE_O

FEB 15, 2002

VALID

0

Bu
ff
er
ed
 V
ME
bu
s
Si
gn
al
s

STB_O()WI
SH
BO
NE
 M
AS
TE
R
Si
gn
al
s

VNIACK_I()

VALID

6

VNDSA_I

VNDSB_I

VALID

VALID

VALID

VALID

VM
Eb
us
 I
NP
UT
S
LA
TC
HE
D
AT
 T
HI
S
ED
GE
 I
N
RE
SP
ON
SE

TO
 F
IR
ST
 D
AT
A
ST
RO
BE
 A
SS
ER
TE
D.

IF
 P
AR
TI
CI
PA
TI
NG
 S
LA
VE
,
TH
EN

AD
DR
ES
S
WI
SH
BO
NE
 C
YC
LE
 S
TA
RT
S
HE
RE

1 CYCLE PROP
DELAY IN

1 CYCLE PROP
DELAY OUT

'DSA' & 'DSB'
REFERS TO FIRST
AND SECOND DATA
STROBE TRANSITION

SUBSEQUENT
VMEbus CYCLE
CAN BEGIN

HERE

Figure 4-34. VMEbus to WISHBONE read cycle translation.

 97

VCLK

VNAS_I

1 32

VD_I()

VNDTACK_O

4 5

VAM_I()

VNWRITE_I

VD_O()

ADR_O()

DAT_I()

DAT_O()

CYC_O

ACK_I

-WSS- -WSM-

SEL_O()

VA_I()
VNLWORD_I

WE_O

FEB 15, 2002

VALID

0

Bu
ff
er
ed
 V
ME
bu
s
Si
gn
al
s

STB_O()WI
SH
BO
NE
 M
AS
TE
R
Si
gn
al
s

VNIACK_I()

VALID

6

VNDSA_I

VNDSB_I

VALID

VALID

VMEcore(tm) TIMING - VMEbus TO WISHBONE SINGLE WRITE CYCLE
PARTICIPATING VMEbus SLAVE W/NORMAL TERMINATION

VALID

VALID

VM
Eb
us
 I
NP
UT
S
LA
TC
HE
D
AT
 T
HI
S
ED
GE
 I
N
RE
SP
ON
SE

TO
 F
IR
ST
 D
AT
A
ST
RO
BE
 A
SS
ER
TE
D.

IF
 P
AR
TI
CI
PA
TI
NG
 S
LA
VE
,
TH
EN

AD
DR
ES
S
WI
SH
BO
NE
 C
YC
LE
 S
TA
RT
S
HE
RE

1 CYCLE PROP
DELAY IN

1 CYCLE PROP
DELAY OUT

'DSA' & 'DSB'
REFERS TO FIRST
AND SECOND DATA
STROBE TRANSITION

SUBSEQUENT
VMEbus CYCLE
CAN BEGIN

HERE

Figure 4-35. VMEbus to WISHBONE write cycle translation.

 98

4.7.5 BUSSCNTC Entity

The BUSSCNTC (bus controller) entity renames signals used in the core.

4.7.6 LOCLADRC Entity

The LOCLADRC entity latches and routes the VME address bus [VA_I(18..02)] to the
WISHBONE address bus [ADR_O(18..02)]. The upper VME address bits [VA_I(23..19)] are
only used for address decoding purposes, and are not incorporated into the local SoC address
bus. The lower two WISHBONE address bits [ADR_O(01..00)] are not present because they are
encoded into select signals [SEL_O(3..0)].

4.7.7 LOCLDATC Entity

The LOCLDATC entity provides two functions: (a) it multiplexes VMEBus data to the correct
WISHBONE data bank and (b) it latches the data.

4.7.8 SLAVCNTC Entity

The SLAVCNTC (slave controller) performs miscellaneous control functions for the VMEbus
slave interface. This includes VMEbus address and data strobe synchronization, logic sequencer,
cycle type generator, slave select logic, slave strobe logic, cycle termination generator (for
DTACK*, etc.) and other functions. The SLAVCNTC entity includes the following VHDL
processes:

• DCYC process
• DTACK_GENR process
• SEL_GENR process
• SEQU process
• STROBES process
• SYNC process
• TERMINATOR process

The DCYC (data cycle function generator) process identifies the type of participating VMEbus
data cycle. During D32 cycles, it asserts signal D32. During D16EO cycles, it asserts D16EO.
These signals are used by other processes to correctly route data through the interface.

The DTACK_GENR process is drives the VMEbus DTACK* and BERR* signals. The process
also informs other parts of the interface that read data is available the [DREAD] signal.

The [DREAD] signal is asserted when local bus data is available during read cycles. This in-
forms other circuits that data should be latched and presented to the VMEbus data lines.

 99

The [VNDTACK_O] signal is connected to DTACK* on the VMEbus interface. During write
cycles [VNDTACK_O] is asserted one [CLK_I] edge after WISHBONE acknowledge [ACK_I]
is asserted. During read cycles the interface waits for an extra clock cycle before asserting
[VNDTACK_O]. This provides extra time to route data through the target device. If the
WISHBONE [ERR_I] signal is asserted instead of [ACK_I], then the [VNBERR_O] signal will
be asserted instead of [VNDTACK_O]. This indicates that an error occurred during the cycle,
and causes the VMEbus [BERR*] signal to be asserted.

The SEL_GENR process drives the WISHBONE MASTER [SEL_O(3..0)] data select signal ar-
ray. The signal array is used for bank select lines during data transfers. Figure 4-36 shows how
the data select signals are asserted during VMEbus transfers.

All of the select signals are asserted during the data load portion of a participating SLAVE cycle.
This is indicated by the local [DLOAD] signal, which is generated by the SEQU process. Fur-
thermore, the assertion of an individual signal in the [SEL_O()] array depends on the type of
VMEbus data cycle (D32 or D16(EO)) and the address of the transfer. If an individual signal is
selected it remains asserted until the cycle is terminated (using [ACK_I], etc.), or when a VME-
bus cycle is aborted (indicated by the negation of VMEbus [DS0*] or [DS1*].

BYTE(0) BYTE(1) BYTE(2) BYTE(3)
D15..D08 D07..D00D23..D16D31..D24

BYTE(2) BYTE(3)
D07..D00D15..D08

BYTE(0) BYTE(1)
D07..D00D15..D08

07..0015..0823..1631..24

DAT_I(31..0) / DAT_O(31..0)

A1DS0*DS1*Cycle LWORD*

VMEbus Signals

NOTES: EVEN - DS1* asserted during D16 or even byte transfer.
 ODD - DS0* asserted during D16 or odd byte transfer.
 LW* - VMEbus LWORD* Signal
 (DB) - Carries Data Bit
 SEL_X() - For SLAVE or IREQ: 'X' => 'I'; for MASTER or IHAND: 'X' => '0'.

D3
2

D1
6(
EO
)

000 0

EVEN

EVEN

ODD

ODD

1

1 0

1

VMEcore(tm) WISHBONE MASTER Data Bus Routing - LDSIZE:32

M/
S

IACK*

1

SEL_O(0)SEL_O(1)SEL_O(2)SEL_O(3)

MA
ST
ER
/S
LA
VE 1

1

23 SEP 2002
Figure 4-36. Data select signals during VMEbus transfers.

The SEQU process is a state machine (sequencer) that generates master timing for the core. Fig-
ures 4-37 and 4-38 show the state and timing diagrams for the process.

 100

STATE DIAGRAM

CLOCK: CLK_I
INPUTS: IHLD, AS, DS
STATES: P2, P1, P0

000

001

010

011

100

101

111

110

011

X11

X10

X11 X11

X10

X11

X10

X11

X0X
XX0
111 XX1

X00

X00

X00

X00

X00

X10

X01

XX0

1110XX

1XX

X10

23 SEP 2002

Figure 4-37. State diagram for SEQU process state machine.

DSX

ASX

ALOAD

DLOAD

not(AMX) and not(BMC)

PH0 PH1 PH2 PH3 PH4 PH5 PH4 PH5 PH6 PH0

ALOAD & DLOAD FUNCTIONS

non-AMC/BMC

Figure 4-38. Timing diagram (relative) for the SEQU process state machine.

 101

The STROBES process drives the WISHBONE [CYC_O], [STB_O] and [WE_O] signals. For
more information about these signals please refer to the WISHBONE specification.

The SYNC process synchronizes the VMEbus AS*, DS0* and DS1* signals. It generates local
signals [AS], [DS] and [SLDS].

The TERMINATOR process drives a common local signal [ACK] in response to the assertion of
[ACK_I] or [ERR_I]. In general, either of these signals can be used to terminate a WISHBONE
bus cycle.

4.7.9 SLAVDECC Entity

The SLAVDECC entity decodes the upper five bits of the VMEbus address bus and the address
modifier code. When a participating VMEbus interface is selected, the entity asserts the address
compare signal [ADC]. The circuit responds to address modifier codes 0x3E, 0x3D, 0x3A and
0x39.

The upper five VMEbus address bits [VA_I(23..19)] are compared to local address compare bits
[SAC24_I(23..19)]. When these match (along with the address modifier codes), the interface is
selected for a bus cycle.

The interface may be enabled or disabled with signal [SAE24_I]. If the interface is to be perma-
nently enabled, tie [SAE24_I] to logic ‘1’. Otherwise, it may be used as a generic control signal
to enable or disable the interface.

4.7.10 VMEBADBC Entity

The VMEBADBC entity is the data multiplexor and register for the VMEbus data out (VD_O())
signal array. During read cycles, VMEbus output data is routed (using multiplexors) from the
WISHBONE data input signal array [DAT_I()] to the correct VMEbus output data signal array
[VD_O()]. The routing depends upon the type of VMEbus data transaction (i.e. D32, D16(E)
WORD or D16(O) WORD).

 102

4.8 VMEPCIBR Entity

The VMEPCIBR entity is a top level, dual, WISHBONE System-on-Chip (SoC). It is a classic
public domain WISHBONE shared bus with multiplexor interconnections that has been modified
in several ways. These modifications include:

• Single WISHBONE MASTER operation.
• Dual WISHBONE interconnection buses for VMEbus and PCI sides of the bridge.
• Re-encoded, variable address decoder.

The VMEPCIBR entity is the highest ‘RTL’ level of the system. A description of the system
hierarchy can be found with the VMEPCIBR_SOC description located elsewhere in this manual.

Figure 4-39 is representative of the WISHBONE SoC for both the VMEbus and PCI sides of the
bridge. These are called the ‘A SIDE’ and ‘B SIDE’ system interconnections, respectively. On
the ‘A SIDE’ interconnection the VMEbus SLAVE (VMEcore) is the WISHBONE MASTER.
On the ‘B SIDE’ interconnection the PCI target (the Xilinx LogiCORE PCI core) is the
WISHBONE MASTER. Both sides of the bridge are interconnected through the WISHBONE
SLAVEs (i.e. registers and memory buffers).

The WISHBONE variable address decoder was also modified. WISHBONE system address de-
coders are simplest (and work fastest) when all of the SLAVEs are decoded at locations that are
‘powers-of-two’ (2, 4, 8, 16, etc.). However, in this design the SLAVES are located at other ad-
dresses, so a re-encoded variable address decoder is used. Functionally, this is a standard ad-
dress decoder except that the decoded outputs are again re-encoded to generate evenly spaced
select signals for the [ACK_O] and [DRD()] multiplexors. This will slow the system down
somewhat, but is necessary in order to generate the correct address map.

Figure 4-40 shows the address decoding for the VMEbus (A_SIDE) WISHBONE interconnec-
tion. The PCI side of the bridge has a similar map that is not shown.

Figure 4-41 shows the error decoding for the VMEbus side of the bridge. One requirement of
the system is that all non-decoded addresses return an error [ERR_I]. The error decoder output
is asserted whenever an error address is selected.

 103

WI
SH
BO
NE
 S
HA
RE
D
BU
S
WI
TH

MU
LT
IP
LE
XO
R
IN
TE
RC
ON
NE
CT
IO
NS

(A
S
MO
DI
FI
ED
 F
OR
 V
ME
 T
O
PC
I
BR
ID
GE
 I
NT
ER
CO
N)

17
 A
PR
,
20
02

DE
CN
N

DE
C0
1

DE
C0
0

AD
DR
ES
S
DE
CO
DE
R

AD
R_
I(
)

WE
_I

ST
B_
I

DA
T_
O(
)

RS
T_
I

DA
T_
I(
)

SE
L_
I(
)

CY
C_
I SL
AV
E
#N
N

MA
ST
ER
 #
00

SL
AV
E
#0
1

N 0

AD
R(
)

CL
K

SL
AV
E
#0
0

CL
K

CL
K

CL
K

RS
T

RS
T

RS
T

RS
T

CY
C

ST
B

WE

SE
L(
)

DW
R(
)

AD
R(
)

AC
K_
O

AD
R_
I(
)

WE
_I

ST
B_
I

DA
T_
O(
)

RS
T_
I

DA
T_
I(
)

SE
L_
I(
)

CY
C_
I

AC
K_
O

AD
R_
I(
)

WE
_I

ST
B_
I

DA
T_
O(
)

RS
T_
I

DA
T_
I(
)

SE
L_
I(
)

CY
C_
I

AC
K_
O

1

RS
T_
I

AD
R_
O(
)

WE
_O

ST
B_
O

DA
T_
O(
)

DA
T_
I(
)

AC
K_
I

SE
L_
O(
)

CY
C_
O

. . .

. . .

SY
SC
ON

CL
K

RS
T

RS
T_
O

CL
K_
O

DR
D(
)

N 01

AC
K

(*
)

(*
)
IN
DI
CA
TE
S
MO
DI
FI
CA
TI
ON

ON
 S
HA
RE
D
ME
MO
RY
 B
UF
FE
RS

TO
 S
UP
PO
RT
 S
IM
UL
TA
NE
OU
S

ME
MO
RY
 A
CC
ES
SE
S
FR
OM

BO
TH
 S
ID
ES
 O
F
BR
ID
GE
.

ER
R_
I

NO
TE
:
SI
GN
AL
 N
AM
ES
 A
RE
 M
OD
IF
IE
D
WI
TH
 T
HE

'A
'
OR
 '
B'
 P
RE
FI
X
TO
 I
ND
IC
AT
E
WH
IC
H
SI
DE

OF
 T
HE
 B
RI
DG
E
TH
EY
 O
CC
UP
Y.

FO
R
EX
AM
PL
E,

TH
E
AD
DR
ES
S
BU
S
'A
DR
()
'
WO
UL
D
BE
 M
OD
IF
IE
D
AS
:

'A
'
SI
DE
:
AA
DR
()

'B
'
SI
DE
:
BA
DR
()

DE
CN
N

DE
C0
1

DE
C0
0

. . . MU
X
EN
CO
DE
R

AM
E(
)

ER
R_
O

DRD() MUX

ACK MUX

ST
B_
S0
0

ST
B_
S0
1

ST
B_
SN
N

CY
C_
SN
N

DR
D_
SN
N

DR
D_
S0
1

DR
D_
S0
0

AC
K_
S0
0

ER
R_
S0
0

AC
K_
S0
1

AC
K_
SN
N

ER
R

UN
US
ED
 A
DD
RE
SS
 D
ET
EC
T

RE
-E
NC
OD
ED
 V
AR
IA
BL
E

AD
DR
ES
S
DE
CO
DE
R

Figure 4-39. Modified public domain WISHBONE shared bus.

 104

1

1

1

0000000

0000000

0000000

AA
DR
(0
1)

AA
DR
(0
2)

AA
DR
(0
3)

AA
DR
(0
4)

AA
DR
(0
5)

AA
DR
(0
6)

AA
DR
(0
7)

AA
DR
(0
8)

AA
DR
(0
9)

AA
DR
(1
0)

AA
DR
(1
1)

AA
DR
(1
2)

AA
DR
(1
3)

AA
DR
(1
4)

AA
DR
(1
5)

AA
DR
(1
6)

AA
DR
(1
7)

0x00000

0x0001F

0 0 0 0 0 0 0 0 0 0 0

ADEC00 10 0 0 0 0 0 0 0

DECODE 0 0 0 0 0 0 0 0 X

ADEC01

0x00020

0x00023

DECODE

1 11

0 00

X

10 0 0 0 00

1 11000

10 0 0

ADEC02

0x00024

0x00027

DECODE

ADEC03

0x00028

0x0002B

DECODE

ADEC04

0x0002C

0x0002F

DECODE

ADEC05

0x00030

0x00033

DECODE

ADEC06

0x00034

0x00037

DECODE

ADEC07

0x00038

0x0003B

DECODE

ADEC08

0x00800

0x00BFF

DECODE

ADEC09

0x00C00

0x00FFF

DECODE

ADEC0A

0x01000

0x013FF

DECODE

ADEC0B

0x01400

0x017FF

DECODE

ADEC0C

0x01800

0x01BFF

ADEC0D

0x01C00

0x01FFF

1

1

1

1

00

0 0

00

1

1

00

0

1 0

ADEC0E

0x02000

0x023FF

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

'A
'
SI
DE
 A
DD
RE
SS
 D
EC
OD
IN
G

25
 J
UL
 2
00
2

0000

MUX
ENCODING
AME()

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

DECODE
REGION

-
VMEbus BYTE
ADDRESSING

DECODE
SIGNAL
NAME

DESTINATION
ENTITY / FILE

NAME

MISCREGc.VHD

SEMAREGc.VHD
'A'

SEMAREGc.VHD
'B'

SEMAREGc.VHD
'C'

SEMAREGc.VHD
'D'

SEMAREGc.VHD
'E'

SEMAREGc.VHD
'F'

SEMAREGc.VHD
'G'

SEMABUFc.VHD
'A'

SEMABUFc.VHD
'B'

SEMABUFc.VHD
'C'

SEMABUFc.VHD
'D'

SEMABUFc.VHD
'E'

SEMABUFc.VHD
'F'

SEMABUFc.VHD
'G'

VA
_I
(0
2)

VA
_I
(0
3)

VA
_I
(0
4)

VA
_I
(0
5)

VA
_I
(0
6)

VA
_I
(0
7)

VA
_I
(0
8)

VA
_I
(0
9)

VA
_I
(1
0)

VA
_I
(1
1)

VA
_I
(1
2)

VA
_I
(1
3)

VA
_I
(1
4)

VA
_I
(1
5)

VA
_I
(1
6)

VA
_I
(1
7)

VA
_I
(1
8)

SE
L(
3.
0)

00000

10

0

0

X

0

0

0

0

00

11

1

1

0

0

0

1

1

1

10 000

111

1

0

0

0

0

00

11111 0

1 1 100

0

0 01 1 1

0

0

0

1

1

1

00

110

0

1

1

0

0

1 0

0

0

0

1

1

1

00

11

1

1

1

--

--

--

--

--

--

--

1

1

0

0

1 0

0

0

0

1

1

1

1

1

1

00

11

--

00

--

00000000010 0

111111111

X X X X X X XX000

0 0 0 1

00

--

11

000000000 0

0 0 1 1 1 1 1 1 1 1 1

X X X X X X XX00 1

00

--

11

000000000

0 1 1 1 1 1 1 1 1

X X X X X X XX0

00

--

11

000000000

0 1 1 1 1 1 1 1 1

X X X X X X XX0

00

--

11

000000000 1

0 1 1 1 1 1 1 1 1 1

X X X X X X XX0 1DECODE

0

0

0

00

--

11

000000000 1

0 1 1 1 1 1 1 1 1 1

X X X X X X XX0 1DECODE

1

1

1

DECODE

00

--

11

0000000001

01 1 1 1 1 1 1 1 1

X X X X X X XX01

0

0

0

00000

00000

1

1

11

1

1

001

1 0 0

001

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

ADEC0F

0x02400

0x027FF 1111SEMABUFc.VHD
'H'

DECODE

00

--

11

0000000001

01 1 1 1 1 1 1 1 1

X X X X X X XX01

0

0

000000

00000

00000

1

1

1

Figure 4-40. VMEbus (A_SIDE) address decoder.

 105

11

00

000 10

000

000

000000

AA
DR
(0
1)

AA
DR
(0
2)

AA
DR
(0
3)

AA
DR
(0
4)

AA
DR
(0
5)

AA
DR
(0
6)

AA
DR
(0
7)

AA
DR
(0
8)

AA
DR
(0
9)

AA
DR
(1
0)

AA
DR
(1
1)

AA
DR
(1
2)

AA
DR
(1
3)

AA
DR
(1
4)

AA
DR
(1
5)

AA
DR
(1
6)

AA
DR
(1
7)

0x0003C

0x0003F

DECODE

11

1

'A
'
SI
DE
 E
RR
OR
 D
EC
OD
IN
G

04
 O
CT
 2
00
2

DECODE
REGION

-
VMEbus BYTE
ADDRESSING

LOCATION NAME

HIGH REGISTERS

VA
_I
(0
2)

VA
_I
(0
3)

VA
_I
(0
4)

VA
_I
(0
5)

VA
_I
(0
6)

VA
_I
(0
7)

VA
_I
(0
8)

VA
_I
(0
9)

VA
_I
(1
0)

VA
_I
(1
1)

VA
_I
(1
2)

VA
_I
(1
3)

VA
_I
(1
4)

VA
_I
(1
5)

VA
_I
(1
6)

VA
_I
(1
7)

VA
_I
(1
8)

SE
L(
3.
0)

--

1 1 1

1111

1 1 10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0000x000FF

DECODE

11

0x00100

0x001FF

DECODE

--

--

111111

X0

0

0

0

0

0

0

0

0

0

000x00200

0x003FF

DECODE

11

0x00400

0x007FF

DECODE

00

11

--

--

000x02400

0x027FF

DECODE

11

0x04000

0x07FFF

DECODE

00000 0 00

11

--

--

111111111

XXXX0

0

0

0

0

0

0

0

0

0

0

0

0

000000

111111111111

XXXXXXXX

000x08000

0x0FFFF

DECODE

11

HIGH MEMORY

0x10000

0x1FFFF

DECODE

00

11

--

--

000

000

000

0000000x00040

0x0007F

DECODE

11

--

11111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00000

00000

1 0 0 0 0

XXXX1

0000

0000

0x00080 1 0 0 0 0 000

000

000

0 0 0 0 00 0 0 0 00

1111111

1 0000 00

1 X X X X

XXXXXX1

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 X X X X X X X

1 0 0 0 0 0 0 0 0

1 1 1 11 1 1 11

1 X X X X X X X X

0 0 000 0 00

0 0 000 0 00

0 0 000 0 00

0 0 00 0 0 00

0 000 0 00

0 0 00 0 000

0

0

0

0 0

00

00000000

00000000

00000000

00

0

0000000010010 0

1

X X X X1

1

1

10

0

0

0

0

0

0

0

0 0 0 0

XXXX

00000 0 00000

111111111111

XXXXXXXX0

0

0

0

0

0

0 0 0 0

XXXX

1

1

1

1

0

X

00000 0 0000

111111111111

XXXXXXXX0

0

0

0

0 0 0 0

XXXX

1

0

X

1

1

1

1

0

X

0x20000

0x3FFFF

DECODE

00

11

--

00000 0 000

111111111111

XXXXXXXX0

0

0 0 0 0

XXXX

1

0

X

1

1

1

1

0

X

0x40000

0x7FFFF

DECODE

00

11

--

00000 0 00

111111111111

XXXXXXXX

0 0 0 0

XXXX

1

0

X

1

1

1

1

0

X

1

0

X

1

0

X

1

0

X

00

10 0

000x02800

0x02FFF

DECODE

11

--

111111111

XXXX0

0

0

0

0

0

0

0

0

0

0

0

0 000000001 0010 0

1

X X X X1

0

10

000x03000

0x03FFF

DECODE

11

--

11111111

XXXX0

0

0

0

0

0

0

0

0

0

0

0

0 0000000010 0

1

X X X X1

1

1

1

1

X

00

1 1

XX

Figure 4-41. VMEbus (A_SIDE) error decoder.

 106

4.9 VMEPCIBR_SOC Entity

As shown in Figure 4-42, the highest level entity in the SoC hierarchy is VMEPCIBR_SOC.
The entity has two functions: (1) to define the VMEPCIBR entity as a component (the highest
level RTL in the SoC) and (2) to specify all of the application specific I/O pads. With the excep-
tion of the PCI I/O pads (which Xilinx locates in their PCI core), all I/O pads are located here.

VMECOREC.VHD

BUSSCNTC.VHD

LOCLADRC.VHD

LOCLDATC.VHD

SLAVCNTC.VHD

SLAVDECC.VHD

VMEBADBC.VHD

SEMAREGc.VHD

MISCREGc.VHD

SEMABUDc.VHD

VPWWRAPc.VHD

VMEPCIBRc.VHD

VMEPCIBR_SOC System Heirarchy
27 SEP 2002

VMEPCIBR_SOCt.VHD

VMEPCIBR_SOCv.TXT

(NOTE 1)

(NOTE 1,2)

DISTRAMc_XST.VHD (NOTE 3)

(NOTE 4)

PCIWRAPc.VHD

pcim_lc_33_3_s.VHD

pci_lc_i.ngo

CFG_mod.VHD

pcim_top_mod.VHD (NOTE 5)

(NOTE 5)

pcim_lc.vhd

pci_lc_i.vhd
(NOTE 1)

VMEPCIBR_SOCc.VHD

SEMABUFc.VHD

BLOKRAMc_XST.VHD (NOTE 3)

CEEPROMc.VHD

Figure 4-42(a). VMEPCIBR_SOC system hierarchy.

 107

NOTES:

(1) Add or substitute the files shown during pre-synthesis simulation.

 The top level test bench named 'VMETOPCI_SOCt.VHD' is used for both the pre-synthesis and
 post-routing top level simulation. Also note that the test bench uses (reads) a test
 vector file named 'VMETOPCI_SOCv.TXT'. If the simulator can't find the file, it probably
 means that its path (as declared in 'VMETOPCI_SOCt.VHD') is wrong.

 The unmodified Xilinx PCI wrapper named 'pcim_lc_33_3_s.VHD' is used for synthesis.
 Substitute file 'pcim_lc.vhd' for pre-synthesis simulation.

 The Xilinx PCI core black-box primative named 'pcim_lc_i.ngo' is incorporated into the
 system by the Xilinx router. Substitute file 'pcim_lc_i.vhd' for pre-synthesis simulation.

 Special instructions when using ModelSim:
 (a) After creating the project, be sure to check the "Use 1993 Language Syntax"
 under Options >> Compile.
 (b) Compile all files from their source directory.

(2) During synthesis, the VHDL source file 'VMETOPCI_SOCc.VHD' is the top level entity.

 Route the system with modified Xilinx user constraint file named 2s200pq208_32_33_mod.ucf.

(3) Contains block or distributed RAM primatives generated by Xilinx XST synthesis software.

(4) Silicore VMEcore(tm). Also note that all VMEcore(tm) files are in the VMECORE directory.

(5) Xilinx LogiCORE(tm) PCI file modified for this application. File is located under
 directory named 'PCIMODS'.

VMEPCIBR_SOC System Heirarchy
27 SEP 2002

Figure 4-42(b). VMEPCIBR_SOC system hierarchy (con’t).

 108

4.10 VPWWRAP Entity

VPWWRAP is a VMEbus posted write wrapper for the VMEcore entity. As shown in the func-
tional diagram of Figure 4-43, it contains a register that holds data written from the VMEbus side
of the bridge. Immediately after latching the write data, the entity simultaneously: (1) acknowl-
edges the VMEbus cycle by asserting [ACK_O], and (2) begins a WISHBONE write cycle with
the latched data. Figure 4-44 and 4-45 shows the timing diagram for read and write cycles (re-
spectively).

FEB 21, 2002

00

10

01

0,X

INPUT STATE MACHINE

SIGNALS:

CLOCK: CLK_I
INPUTS: STB_I, WE_I
STATES: WRC, RDC

OTHER EQUATIONS:

ACK_O = RDC * STB_I * ACK_I DATA SOURCE READ CYCLE
 + WRC * STB_I * /PWR; DATA SOURCE WRITE CYCLE

STB_O = RDC * STB_I DATA DESTIN READ CYCLE
 + WRC * STB_I * PWR;

CYC_O = STB_O;

WRITE

READ

1,1

1,0

1,X

1,X

0,X

0,X

0

1

X,0
0,0

POSTED
WRITE

0,1

0,X

1,X

OUTPUT STATE MACHINE

SIGNALS:

CLOCK: CLK_I
INPUTS: ACK_I, LOAD
STATES: PWR

OTHER EQUATIONS:

LOAD = STB_I * WE_I * WRC * /PWR;
MODE = /PWR;

RST_I

RST_I

D
CE

1

0

STB_I()

CYC_I()

ACK_O

STB_O()

ACK_I

CYC_O()

VP
WW

CO
NT
RO
L

ADR_I()

Q
ADR_O()

D
CE

1

0

DATS_I()

Q
DATM_O()

DATM_I()DATS_O()

D
CE

1

0

SEL_I()

Q
SEL_O()

D
CE

1

0

WE_I

Q
WE_O

MODE
LOAD

WISHBONE SLAVE WISHBONE MASTER

RST_I()

QADR

QDAT

QSEL

QWE

11

Figure 4-43. Functional diagram of the VPWWRAP entity.

 109

16
17

15
VC
LK

1
3

2

Ti
mi
ng
 f
or
 t
he
 V
ME
co
re
(t
m)
 P
os
te
d
Wr
it
e
Wr
ap
pe
r
(V
PW
W)

4
5

AD
R_
O(
)

SE
L_
O(
)

DA
TM
_I
()

DA
TM
_O
()

CY
C_
O

AC
K_
I

WE
_O

FE
B
21
,
20
02

0

ST
B_
O(
)

WISHBONE MASTER Interface Signals

6

AD
R_
I(
)

SE
L_
I(
)

DA
TS
_O
()

DA
TS
_I
()

AC
K_
O

WE
_I

ST
B_
I(
)

WISHBONE SLAVE Interface Signals

7
9

8
10

11
12

13
14

WR
C

RD
C

RE
AD

PW
R

CY
C_
I

RE
AD

RE
AD

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

WR
IT
E

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

Local Signals

VA
LI
D

VA
LI
D

VA
LI
D

VA
LI
D

WR
IT
E

WR
IT
E

RE
AD

RE
AD

RE
AD

WR
IT
E

WR
IT
E

WR
IT
E

Figure 4-44. VPWWRAP read cycle.

 110

16
17

15
VC
LK

1
3

2
4

5

AD
R_
O(
)

SE
L_
O(
)

DA
TM
_I
()

DA
TM
_O
()

CY
C_
O

AC
K_
I

WE
_O

FE
B
21
,
20
02

0

ST
B_
O(
)

WISHBONE MASTER Interface Signals
6

VM
Ec
or
e(
tm
)
TI
MI
NG
 -
 V
ME
bu
s
TO
 W
IS
HB
ON
E
SI
NG
LE
 W
RI
TE
 C
YC
LE
 P
AR
TI
CI
PA
TI
NG
 V
ME
bu
s
SL
AV
E
W/
NO
RM
AL
 T
ER
MI
NA
TI
ON

VA
LI
D

AD
R_
I(
)

SE
L_
I(
)

DA
TS
_O
()

DA
TS
_I
()

AC
K_
O

WE
_I

ST
B_
I(
)

WISHBONE SLAVE Interface Signals

VA
LI
D

7
9

8
10

11
12

13
14

WR
C

RD
C

PW
R

CY
C_
I

Local Signals

Figure 4-45. VPWWRAP write cycle.

 111

Appendix A – GNU LESSER GENERAL PUBLIC LICENSE

GNU LESSER GENERAL PUBLIC LICENSE - Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this li-
cense document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU
Library Public License, version 2, hence the version number 2.1.]

PREAMBLE

 The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share
and change free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages--typically libraries--of the Free Software Foundation and other authors who decide to
use it. You can use it too, but we suggest you first think carefully about whether this license or
the ordinary General Public License is the better strategy to use in any particular case, based on
the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Pub-
lic Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish); that you receive source code or can get it if
you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these
rights or to ask you to surrender these rights. These restrictions translate to certain responsibili-
ties for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get
the source code. If you link other code with the library, you must provide complete object files
to the recipients, so that they can relink them with the library after making changes to the library
and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you
this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free
library. Also, if the library is modified by someone else and passed on, the recipients should

 112

know that what they have is not the original version, so that the original author's reputation will
not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to
make sure that a company cannot effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that any patent license obtained for
a version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated li-
braries, and is quite different from the ordinary General Public License. We use this license for
certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combi-
nation of the two is legally speaking a combined work, a derivative of the original library. The
ordinary General Public License therefore permits such linking only if the entire combination fits
its criteria of freedom. The Lesser General Public License permits more lax criteria for linking
other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's
freedom than the ordinary General Public License. It also provides other free software develop-
ers Less of an advantage over competing non-free programs. These disadvantages are the reason
we use the ordinary General Public License for many libraries. However, the Lesser license pro-
vides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use
of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job
as widely used non-free libraries. In this case, there is little to gain by limiting the free library to
free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater num-
ber of people to use a large body of free software. For example, permission to use the GNU C
Library in non-free programs enables many more people to use the whole GNU operating sys-
tem, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does en-
sure that the user of a program that is linked with the Library has the freedom and the where-
withal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a "work based on the library" and a "work that uses the li-
brary". The former contains code derived from the library, whereas the latter must be combined
with the library in order to run.

 113

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPY-
ING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a no-
tice placed by the copyright holder or other authorized party saying it may be distributed under
the terms of this Lesser General Public License (also called "this License"). Each licensee is ad-
dressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conven-
iently linked with application programs (which use some of those functions and data) to form
executables.

The "Library", below, refers to any such software library or work which has been distributed un-
der these terms. A "work based on the Library" means either the Library or any derivative work
under copyright law: that is to say, a work containing the Library or a portion of it, either verba-
tim or with modifications and/or translated straightforwardly into another language. (Hereinaf-
ter, translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it.
For a library, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installa-
tion of the library.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running a program using the Library is not restricted, and output
from such a program is covered only if its contents constitute a work based on the Library (inde-
pendent of the use of the Library in a tool for writing it). Whether that is true depends on what
the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and distribute a copy of this License
along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option of-
fer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of Sec-
tion 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed

the files and the date of any change.

 114

c) You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied

by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the
event an application does not supply such function or table, the facility still operates,
and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires
that any application-supplied function or table used by this function must be optional: if
the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered inde-
pendent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distribu-
tion of the whole must be on the terms of this License, whose permissions for other li-
censees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu-
tion of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to
this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change
in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program that is
not a library.

 115

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you ac-
company it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a "work that uses the Library".
Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the
scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a "work that
uses the library". The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library,
the object code for the work may be a derivative work of the Library even though the source
code is not. Whether this is true is especially significant if the work can be linked without the
Library, or if the work is itself a library. The threshold for this to be true is not precisely defined
by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file
is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the
work under the terms of Section 6. Any executables containing that work also fall under Section
6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Li-
brary" with the Library to produce a work containing portions of the Library, and distribute that
work under terms of your choice, provided that the terms permit modification of the work for the
customer's own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that
the Library and its use are covered by this License. You must supply a copy of this License. If
the work during execution displays copyright notices, you must include the copyright notice for

 116

the Library among them, as well as a reference directing the user to the copy of this License.
Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be dis-
tributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable "work that uses the Library", as object
code and/or source code, so that the user can modify the Library and then relink to pro-
duce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be
able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable

mechanism is one that (1) uses at run time a copy of the library already present on the
user's computer system, rather than copying library functions into the executable, and
(2) will operate properly with a modified version of the library, if the user installs one,
as long as the modified version is interface-compatible with the version that the work
was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same

user the materials specified in Subsection 6a, above, for a charge no more than the cost
of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,

offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have al-

ready sent this user a copy.

 For an executable, the required form of the "work that uses the Library" must include

any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

 It may happen that this requirement contradicts the license restrictions of other proprie-

tary libraries that do not normally accompany the operating system. Such a contradic-
tion means you cannot use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you do these two things:

 117

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms
of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work

based on the Library, and explaining where to find the accompanying uncombined form
of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These ac-
tions are prohibited by law if you do not accept this License. Therefore, by modifying or distrib-
uting the Library (or any work based on the Library), you indicate your acceptance of this Li-
cense to do so, and all its terms and conditions for copying, distributing or modifying the Library
or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify
the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not permit royalty-
free redistribution of the Library by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system which is implemented by public license
practices. Many people have made generous contributions to the wide range of software distrib-
uted through that system in reliance on consistent application of that system; it is up to the au-

 118

thor/donor to decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this Li-
cense may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser Gen-
eral Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you may choose any ver-
sion ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

 119

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

 HOW TO APPLY THESE TERMS TO YOUR NEW LIBRARIES

If you develop a new library, and you want it to be of the greatest possible use to the public, we
recommend making it free software that everyone can redistribute and change. You can do so by
permitting redistribution under these terms (or, alternatively, under the terms of the ordinary
General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public Li-
cense for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a "copyright disclaimer" for the library, ifnecessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweak-
ing knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

 120

Appendix C – GNU Free Documentation License

GNU Free Documentation License - Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or refer-
ence.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a no-
tice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-
tion may not explain any mathematics.) The relationship could be a matter of historical connec-

 121

tion with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this Li-
cense. If a section does not fit the above definition of Secondary then it is not allowed to be des-
ignated as Invariant. The Document may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include pro-
prietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this defi-
nition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by

 122

reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this Li-
cense applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copy-
ing in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using pub-
lic has access to download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edi-
tion to the public.

 123

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated ver-
sion of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modi-
fication of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-

mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

 124

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of

the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title

with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secon-
dary Sections and contain no material copied from the Document, you may at your option desig-
nate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version's license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

 125

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for ver-
batim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves deriva-
tive works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

 126

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invari-
ant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or dis-
claimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Docu-
ment does not specify a version number of this License, you may choose any version ever pub-
lished (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

 127

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

 128

Index

0x (prefix)..7
A24SGL_O..86
ACK_I signal...87
active high logic state ..7
active low logic state ...7
address map ...13
ADR_O() signal array ...87
architecture, system ...13
ASIC..7
asserted signal..7
BATTLESHORT register..26
big endian ...See endian
bit...7
bridge...7
bus cycle, defined ..7
bus interface...7
BYTE...7
CEEPROM entity ..40
CLK_I signal ...86
clock

requirements ..33
skew...33

CONFIG_PROM_CMD register19
CONFIG_READ_DATA register19
CONFIG_WRITE_DATA register..........................19
CYC_O signal ...87
DAT_I() signal array ...86
DAT_O() signal array..86
data organization ...7
diagnostic capabilities..18
DMC_CMD register ..26
DMC_FAULT register ..26
DMC_HW_CONTROL register..............................16
DMC_STATUS register ..26
DWORD..8
EEPROM programming ..19
endian ..7
ERR_I signal ...87
FASM memories ...35
features of the bridge ...6
firm core ..8
flip-flop power-up conditions33
FPGA...8
granularity..8
hard core ..8
hardware arbitration...28
Hardware Description Language (HDL)8
Hardware revision level...15
IEEE standards ..12, 33
introduction..5

IP core..8
License, source code (LGPL)111
License, user manual (FDL)120
little endian ...See endian
logic state

active high ...7
active low...7

Manual license (FDL)..120
memory requirements ..35
MISCREG entity ...50
negated signal ..8
operand size ...9
PCI

accesses..28
address counter ..15
commands supported14, 15
defined ...9
Device ID...15
interface ...14
Revision ID..15
target abort...15

PCI_SEM_BUF_(A-G) registers.............................26
PCIWRAP entity ...54
PCLK signal ..34
port size ...9
posted read and write...9
power-up conditions, flip-flop33
QWORD..9
Register

BATTLESHORT...26
CONFIG_PROM_CMD......................................19
CONFIG_READ_DATA19
CONFIG_WRITE_DATA...................................19
defined ...9
DMC_CMD...26
DMC_FAULT ...26
DMC_HW_CONTROL.......................................16
DMC_STATUS...26
PCI_SEM_BUF_(A-G)26

reset operation17, 19, See register description
resources required on target device33
RST_I signal..86
RTY_I signal ...87
SEL_O(7..0) signal array...87
SEMABUD entity..71
SEMABUF entity ..72
SEMAREG entity ..77
shared buffers ..27
shared memory (SMEM) ...9
shared register (SREG)..9

 129

signal
asserted state ..7
negated...8

skill level, recommended...11
SoC ..9
soft core ...10, 31
Source code license (LGPL)..................................111
STB_O signal ..88
SYSFAIL* signal, VMEbus17
System-on-Chip (SoC) ..10
tags

address tag ...88
cycle tag...88
data tag...86
TGA_O() TAG TYPE ...88
TGC_O() TAG TYPE ...88
TGD_I() TAG TYPE...86
TGD_O() TAG TYPE ...86

target device...10
target device resources required33
VA_I() signal array..83
VAM_I() signal array ..83
VCLK signal..34
VD_I() signal array..84
VD_O() signal array ..84
VHDL..10

entity/architecture pair ...33
hardware description language31
portability ..32
simulation tools ...31
synthesis ..31
synthesis tools..31
test benches..31
three-state bus usage..32
variable type usage ..32

VHDL entity
CEEPROM ..40
MISCREG ...50
PCIWRAP ...54
reference ..39
SEMABUD..71
SEMABUF ..72

SEMAREG..77
VMEcore ...81
VMEPCIBR...102
VMEPCIBR_SOC...106
VPWWRAP...108

VMEbus
accesses..29
BERR* operation...14, 29
BLT cycle ..14
defined ...10
interface ...14
interface timing..91
posted writes ..29
RMW cycle..14
supported cycles ..14
SYSFAIL* signal ..17

VMEcore entity ...81
VMEPCIBR entity...102
VMEPCIBR_SOC entity106
VNAS_I signal ..84
VNBERR_O signal..84
VNDS0_I signal ..84
VNDS1_I signal ..84
VNDTACK_O signal ..84
VNIACK_I signal..84
VNLWORD_I signal...85
VNSYSRESET_I signal ..85
VNWRITE_I signal...85
VPWWRAP entity...108
VSAC24_I() signal array...85
VSAE_I signal...85
VTST_I signal ...85
WE_O signal ...88
WISHBONE..10
WORD...10
wrapper ..10
Xilinx

BlockSelect+ RAM..36
distributed RAM..37
LogiCORE PCI..15
synthesis & routing..32

