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Chapter 1 - Introduction

The WISHBONE1 System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores is a
flexible design methodology for use with semiconductor IP cores.  Its purpose is to foster design
reuse by alleviating System-on-Chip integration problems.  This is accomplished by creating a
common interface between IP cores.  This improves the portability and reliability of the system,
and results in faster time-to-market for the end user.

Previously, IP cores used non-standard interconnection schemes that made them difficult to inte-
grate.  This required the creation of custom glue logic to connect each of the cores together.  By
adopting a standard interconnection scheme, the cores can be integrated more quickly and easily
by the end user.

This specification can be used for soft core, firm core or hard core IP.  Since firm and hard cores
are generally conceived as soft cores, the specification is written from that standpoint.

This specification does not require the use of specific development tools or target hardware.
Furthermore, it is fully compliant with virtually all logic synthesis tools.  However, the examples
presented in the specification do use the VHDL hardware description language.  These are pre-
sented only as a convenience to the reader, and should be readily understood by users of other
hardware description languages (such as Verilog).  Schematic based tools can also be used.

The WISHBONE interconnect is intended as a general purpose interface.  As such, it defines the
standard data exchange between IP core modules.  It does not attempt to regulate the application-
specific functions of the IP core.

The WISHBONE architects were strongly influenced by three factors.  First, there was a need for
a good, reliable System-on-Chip integration solution.  Second, there was a need for a common
interface specification to facilitate structured design methodologies on large project teams.
Third, they were impressed by the traditional system integration solutions afforded by micro-
computer buses such as PCI bus and VMEbus.

In fact, the WISHBONE architecture is analogous to a microcomputer bus in that that they both:
(a) offer a flexible integration solution that can be easily tailored to a specific application; (b)
offer a variety of bus cycles and data path widths to solve various system problems; and (c) al-
low products to be designed by a variety of suppliers (thereby driving down price while improv-
ing performance and quality).

                                                          
1 Webster’s dictionary defines a WISHBONE as “the forked clavicle in front of the breastbone of most birds.”  The
term ‘WISHBONE interconnect’ was coined by Wade Peterson of Silicore Corporation.  During the initial definition
of the scheme he was attempting to find a name that was descriptive of a bi-directional data bus that used either
multiplexors or three-state logic.  This was solved by forming an interface with separate input and output paths.
When these paths are connected to three-state logic it forms a ‘Y’ shaped configuration that resembles a wishbone.
The actual name was conceived during a Thanksgiving Day dinner that included roast turkey.  Thanksgiving Day is
a national holiday in the United States, and is observed on the third Thursday in November.  It is generally cele-
brated with a traditional turkey dinner.
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However, traditional microcomputer buses are fundamentally handicapped for use as a System-
on-Chip interconnection.  That’s because they are designed to drive long signal traces and con-
nector systems which are highly inductive and capacitive.  In this regard, System-on-Chip is
much simpler and faster.  Furthermore, the System-on-Chip solutions have a rich set of intercon-
nection resources.  These do not exist in microcomputer buses because they are limited by IC
packaging and mechanical connectors.

The WISHBONE architects have attempted to create a specification that is robust enough to in-
sure complete compatibility between IP cores.  However, it has not been over specified so as to
unduly constrain the creativity of the core developer or the end user.  It is believed that these two
goals have been accomplished with the publication of this document.

1.1 WISHBONE Features

The WISHBONE interconnection makes System-on-Chip and design reuse easy by creating a
standard data exchange protocol.  Features of this technology include:

• Simple, compact, logical IP core hardware interfaces that require very few logic gates.

• Supports structured design methodologies used by large project teams.

• Full set of popular data transfer bus protocols including:

- READ/WRITE cycle
- BLOCK transfer cycle
- RMW cycle

• Data bus widths2 and operand sizes up to 64-bits.

• Supports both BIG ENDIAN and LITTLE ENDIAN data ordering.

• Variable core interconnection methods support point-to-point, shared bus, crossbar
switch, and switched fabric interconnections.

• Handshaking protocol allows each IP core to throttle its data transfer speed.

• Supports single clock data transfers.

• Supports normal cycle termination, retry termination and termination due to error.

• Address widths3 up to 64-bits.
                                                          
2 Specifications are given for data port and operand sizes up to 64-bits.  However, the basic architecture can theo-
retically support any data width (e.g. 128-bit, 256-bit etc.).  Also, zero bit data bus accesses are permissible (gener-
ally used in FIFO interfaces).
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• Partial address decoding scheme for SLAVEs.  This facilitates high speed address de-
coding, uses less redundant logic and supports variable address sizing and interconnec-
tion means.

• User-defined tag support.  This is useful for identifying transfers such as:

- Data transfers
- Interrupt vectors
- Cache control operations

• MASTER / SLAVE architecture for very flexible system designs.

• Multiprocessing (multi-MASTER) capabilities.  This allows for a wide variety of Sys-
tem-on-Chip configurations.

• Arbitration methodology is defined by the end user (priority arbiter, round-robin arbi-
ter, etc.).

• Supports various IP core interconnection means, including:

- Unidirectional bus
- Bi-directional bus
- Multiplexor based interconnections
- Three-state based interconnections
- Off chip I/O

• Synchronous design assures portability, simplicity and ease of use.

• Very simple, variable timing specification.

• Documentation requirements allow the end user to quickly evaluate interface needs.

• Independent of hardware technology (FPGA, ASIC, etc.).

• Independent of delivery method (soft, firm or hard core).

• Independent of synthesis tool, router and layout tool technology.

• Independent of FPGA and ASIC test methodologies.

• Seamless design progression between FPGA prototypes and ASIC production chips.

                                                                                                                                                                                          
3 Specifications are given for address widths between zero and 64-bits.  However, the basic architecture can theo-
retically support any address width.
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1.2 WISHBONE Objectives

The main objective of the specification is to create a flexible interconnection means for use with
semiconductor IP cores.  This allows various IP core modules to be connected together to form a
System-on-Chip.

A further objective of the specification is to enforce good compatibility between IP core mod-
ules.  This enhances design reuse.

A further objective of the specification is to create a robust standard, but one that does not un-
duly constrain the creativity of the core developer or the end user.

A further objective of the specification is to make it easy to understand by both the core devel-
oper and the end user.

A further objective of the specification is to facilitate structured design methodologies on large
project teams.  With structured design, individual team members can build and test small parts of
the design.  Each member of the design team can interface to the common, well-defined WISH-
BONE specification.  When all of the sub-assemblies have been completed, the full system can
be integrated.

A further objective of the specification is create a portable interface that is independent of the
underlying semiconductor technology.  For example, the interconnect must be capable of work-
ing with both FPGA and ASIC hardware target devices.

A further objective of the specification is to make the interface independent of logic signaling
levels.

A further objective of the specification is to create a flexible interconnection scheme that is inde-
pendent of the IP core delivery method.  For example, it may be used with ‘soft core’, ‘firm core’
or ‘hard core’ delivery methods.

A further objective of the specification is to be independent of the underlying hardware descrip-
tion.  For example, soft cores may be written and synthesized in VHDL, Verilog or some other
hardware description language.  Schematic entry may also be used.

A further objective of the specification is to require a minimum standard for documentation.
This allows IP core users to quickly evaluate and integrate new cores.

A further objective of the specification is to eliminate extensive interface documentation on the
part of the IP core developer.  In most cases, this specification along with the WISHBONE DA-
TASHEET is sufficient to completely document an IP core data interface.

A further objective of the specification is to identify critical System-on-Chip interconnection
technologies, and to place them into the public domain at the earliest possible date.  This makes
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it more difficult for individuals and organizations to create proprietary SoC technologies through
the use of patent, trademark, copyright and trade secret protection mechanisms.  This objective
applies only to the interconnection of IP cores, but not to the IP cores themselves.

A further objective is to create an architecture that has a smooth transition path to support new
technologies.  This increases the longevity of the specification as it can adapt to new, and as yet
un-thought-of, requirements.

A further objective is to create an architecture that allows various interconnection means be-
tween IP core modules.  This insures that the end user can tailor the System-on-Chip to his/her
own needs.  For example, the entire interconnection system (which is analogous to a backplane
on a standard microcomputer bus like VMEbus or cPCI) can be created by the system integrator.
This allows the interconnection to be tailored to the final target device.

A further objective is to create an architecture that requires a minimum of glue logic.  In some
cases the System-on-Chip needs no glue logic whatsoever.  However, in other cases the end user
may choose to use a more sophisticated interconnection method (for example with FIFO memo-
ries or crossbar switches) that requires additional glue logic.

A further objective is to create an architecture with variable address and data path widths to meet
a wide variety of system requirements.

A further objective is to create an architecture that fully supports the automatic generation of in-
terconnection systems.  This allows the WISHBONE interconnection to be generated with para-
metric core generators.

A further objective is to create an architecture that supports both BIG ENDIAN and LITTLE
ENDIAN data transfer organizations.

A further objective is to create an architecture that supports one data transfer per clock cycle.

A further objective is to create a flexible architecture that allows data to be tagged.  TAGs are
user defined signals that allow each IP core to communicate with the rest of the system.  They
are especially useful when novel or unusual control signals (such as parity, cache control or in-
terrupt acknowledge) are needed on an interface.

A further objective is to create an architecture with a MASTER/SLAVE topology.  Furthermore,
the system must be capable of supporting multiple MASTERs and multiple SLAVEs with an ef-
ficient arbitration mechanism.

A further objective is to create an architecture that supports point-to-point interconnections be-
tween IP cores.

A further objective is to create an architecture that supports shared bus interconnections between
IP cores.



WISHBONE SoC Architecture Specification, Revision B.2 12

A further objective is to create an architecture that supports crossbar switches between IP cores.

A further objective is to create an architecture that supports switched fabrics.

A further objective is to create a synchronous protocol to insure ease of use, good reliability and
easy testing.  Furthermore, all transactions can be coordinated by a single clock.

A further objective is to create a synchronous protocol that works over a wide range of interface
clock speeds.  The effects of this are: (a) that the WISHBONE interface can work synchronously
with all attached IP cores, (b) that the interface can be used on a large range of target devices, (c)
that the timing specification is much simpler and (d) that the resulting semiconductor device is
much more testable.

A further objective is to create a variable timing mechanism whereby the system clock frequency
can be adjusted so as to control the power consumption of the integrated circuit.

A further objective is to create a synchronous protocol that provides a simple timing specifica-
tion.  This makes the interface very easy to integrate.

A further objective is to create a synchronous protocol where each MASTER and SLAVE can
throttle the data transfer rate with a handshaking mechanism.

A further objective is to create a synchronous protocol that is optimized for System-on-Chip, but
that is also suitable for off-chip I/O routing.  Generally, the off-chip WISHBONE interconnect
will operate at slower speeds.

1.3 Specification Terminology

To avoid confusion, and to clarify the requirements for compliance, this specification makes use
of five keywords to define the operation of the WISHBONE interconnect.  The keywords are:

• RULE
• RECOMMENDATION
• SUGGESTION
• PERMISSION
• OBSERVATION

Any text not labeled with one of these keywords describes the operation in a narrative style.  The
keywords are defined as follows:

RULE
Rules form the basic framework of the specification.  They are sometimes expressed in text form
and sometimes in the form of figures, tables or drawings.  All rules MUST be followed to ensure
compatibility between interfaces.  Rules are characterized by an imperative style.  The upper-
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case words MUST and MUST NOT are reserved exclusively for stating rules in this document,
and are not used for any other purpose.

RECOMMENDATION
Whenever a recommendation appears, designers would be wise to take the advice given.  Doing
otherwise might result in some awkward problems or poor performance.  While this specification
has been designed to support high performance systems, it is possible to create an interconnec-
tion that complies with all the rules, but has very poor performance.  In many cases a designer
needs a certain level of experience with the system architecture in order to design interfaces that
deliver top performance.  Recommendations found in this document are based on this kind of
experience and are provided as guidance for the user.

SUGGESTION
A suggestion contains advice which is helpful but not vital.  The reader is encouraged to consider
the advice before discarding it.  Some design decisions are difficult until experience has been
gained.  Suggestions help a designer who has not yet gained this experience.  Some suggestions
have to do with designing compatible interconnections, or with making system integration easier.

PERMISSION
In some cases a rule does not specifically prohibit a certain design approach, but the reader might
be left wondering whether that approach might violate the spirit of the rule, or whether it might
lead to some subtle problem.  Permissions reassure the reader that a certain approach is accept-
able and will not cause problems.  The upper-case word MAY is reserved exclusively for stating
a permission and is not used for any other purpose.

OBSERVATION
Observations do not offer any specific advice.  They usually clarify what has just been discussed.
They spell out the implications of certain rules and bring attention to things that might otherwise
be overlooked.  They also give the rationale behind certain rules, so that the reader understands
why the rule must be followed.

1.4 Use of Timing Diagrams

Figure 1-1 shows some of the key features of the timing diagrams in this specification.  Unless
otherwise noted, the MASTER signal names are referenced in the timing diagrams.  In some
cases the MASTER and SLAVE signal names are different.  For example, in the single MAS-
TER / single SLAVE configuration, the [ADR_O] and [ADR_I] signals are connected together.
Furthermore, the actual waveforms at the SLAVE may vary from those at the MASTER.  That’s
because the MASTER and SLAVE interfaces can be connected together in different ways.  Un-
less otherwise noted, the timing diagrams refer to the connection diagram shown in Figure 1-2.
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Figure 1-1.  Use of timing diagrams.

Figure 1-2.  Standard connection for timing diagrams.

CLK_I 10

ADR_O() VALID

-WSS-

Signal Name

Signal Level
Undefined

Clock Edge
Transition

Point

Edge Number

Stable, Valid Data

Wait State

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE
 M
AS
TE
R

WI
SH
BO
NE
 S
LA
VE

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON



WISHBONE SoC Architecture Specification, Revision B.2 15

Individual signals may or may not be present on an specific interface.  That’s because many of
the signals are optional.

Two symbols are also presented in relation to the [CLK_I] signal.  These include the positive
going clock edge transition point and the clock edge number.  In most diagrams a vertical guide-
line is shown at the positive-going edge of each [CLK_I] transition.  This represents the theoreti-
cal transition point at which flip-flops register their input value, and transfer it to their output.
The exact level of this transition point varies depending upon the technology used in the target
device.  The clock edge number is included as a convenience so that specific points in the timing
diagram may be referenced in the text.  The clock edge number in one timing diagram is not re-
lated to the clock edge number in another diagram.

Gaps in the timing waveforms may be shown.  These indicate either: (a) a wait state or (b) a por-
tion of the waveform that is not of interest (in the context of the diagram).  When the gap indi-
cates a wait state, the symbols ‘-WSM-‘ or ‘-WSS-‘ are placed in the gap along the [CLK_I]
waveform.  These correspond to wait states inserted by the MASTER or SLAVE interfaces re-
spectively.  They also indicate that the signals (with the exception of clock transitions and
hatched regions) will remain in a steady state during that time.

Undefined signal levels are indicated by a hatched region.  This region indicates that the signal
level is undefined, and may take any state.  It also indicates that the current state is undefined,
and should not be relied upon.  When signal arrays are used, stable and predictable signal levels
are indicated with the word ‘VALID’.

1.5 Signal Naming Conventions

All signal names used in this specification have the ‘_I’ or ‘_O’ characters attached to them.
These indicate if the signals are an input (to the core) or an output (from the core).  For example,
[ACK_I] is an input and [ACK_O] is an output.  This convention is used to clearly identify the
direction of each signal.

In some cases, the input and output characters ‘I’ and ‘O’ may be omitted and replaced by an
‘X’.  For example: [TAG3_X].  This is not an actual signal name, but rather a shorthand form to
indicate both the [TAG3_I] and [TAG3_O] signal.

Signal arrays are identified by a name followed by the array boundaries in parenthesis.  For ex-
ample, [DAT_I(63..0)] is a signal array with upper array boundary number sixty-three, and lower
array boundary number zero.  Furthermore, the array boundaries indicate the full range of the
permissible array size.  The array size on any particular core may vary.  In many cases the array
boundaries are omitted if they are irrelevant to the context of the description.

When used as part of a sentence, signal names are enclosed in brackets ‘[ ]’.  This helps to dis-
criminate signal names from the words in the sentence.
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1.6 WISHBONE Logo

The WISHBONE logo can be affixed to SoC documents that are compatible with this standard.
Figure 1-3 shows the logo.

Figure 1-3.  WISHBONE logo.

PERMISSION 1.00
Documents describing a WISHBONE compatible SoC component that are 100% compliant with
this standard, MAY use the WISHBONE logo.

1.7 Glossary of Terms

0x (numerical prefix)
The ‘0x’ prefix indicates a hexadecimal number.  It is the same nomenclature as commonly used
in the ‘C’ programming language.

Active High Logic State
A logic state that is ‘true’ when the logic level is a binary ‘1’.  The high state is at a higher volt-
age than the low state.

Active Low Logic State
A logic state that is ‘true’ when the logic level is a binary ‘0’.  The low state is at a lower voltage
than the high state.

ASIC
Acronym for: Application Specific Integrated Circuit.  General term which describes a generic
array of logic gates or analog building blocks which are programmed by a metalization layer at a
silicon foundry.  High level circuit descriptions are impressed upon the logic gates or analog
building blocks in the form of metal interconnects.

Asserted
(1) A verb indicating that a logic state has switched from the inactive to the active state.  When
active high logic is used it means that a signal has switched from a logic low level to a logic high
level.  (2) Assert: to cause a signal line to make a transition from its logically false (inactive)
state to its logically true (active) state.  Opposite of negated.
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Bus
(1) A common group of signals.  (2) A signal line or a set of lines used by a data transfer system
to connect a number of devices.

Bus Interface
An electronic circuit that drives or receives data or power from a bus.

Bus Cycle
The process whereby digital signals effect the transfer of data across a bus by means of an inter-
locked sequence of control signals.  Also see: Phase (bus cycle).

Crossbar Interconnect (Switch)
Crossbar switches are mechanisms that allow modules to connect and communicate.  Each con-
nection channel can be operated in parallel to other connection channels.  This increases the data
transfer rate of the entire system by employing parallelism.  Stated another way, two 100
Mbyte/second channels can operate in parallel, thereby providing a 200 Mbyte/second transfer
rate.  This makes the crossbar switches inherently faster than traditional bus schemes.  Crossbar
routing mechanisms generally support dynamic configuration.  This creates a configurable and
reliable network system.  Most crossbar architectures are also scalable, meaning that families of
crossbars can be added as the needs arise.  A crossbar interconnection is shown in Figure 1-4.

Figure 1-4.  Crossbar (switch) interconnection.

Data Flow Interconnection
An interconnection where data flows through a prearranged set of IP cores in a sequential order.
Data flow architectures often have the advantage of parallelism, whereby two or more functions
are executed at the same time.  Figure 1-5 shows a data flow interconnection between IP cores.
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Figure 1-5.  Data flow interconnection.

Data Organization
The ordering of data during a transfer.  Generally, 8-bit (byte) data can be stored with the most
significant byte of a mult-byte transfer at the higher or the lower address.  These two methods are
generally called BIG ENDIAN and LITTLE ENDIAN, respectively.  In general, BIG ENDIAN
refers to byte lane ordering where the most significant byte is stored at the lower address.  LIT-
TLE ENDIAN refers to byte lane ordering where the most significant byte is stored at the higher
address.  The terms BIG ENDIAN and LITTLE ENDIAN for data organization was coined by
Danny Cohen of the Information Sciences Institute, and was derived from the book Gulliver’s
Travels by Jonathan Swift.

DMA Unit
Acronym for Direct Memory Access Unit.  (1) A device that transfers data from one location in
memory to another location in memory.  (2) A device for transferring data between a device and
memory without interrupting program flow.  (3) A device that does not use low-level instruc-
tions.  Intended for transferring data between memory or I/O locations.

ENDIAN
See the definition under ‘Data Organization’.

FIFO
Acronym for: First In First Out. A type of memory used to transfer data between ports on two
devices.  In FIFO memories, data is removed in the same order that they were added.  The FIFO
memory is very useful for interconnecting cores of differing speeds.

Firm Core
An IP Core that is delivered in a way that allows conversion into an integrated circuit design, but
does not allow the design to be easily reverse engineered.  It is analogous to a binary or object
file in the field of computer software design.
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Fixed Interconnection
An interconnection system that is fixed, and cannot be changed without causing incompatibilities
between bus modules (or SoC/IP cores).  Also called a static interconnection. Examples of fixed
interconnection buses include PCI, cPCI and VMEbus.  Also see: variable interconnection.

Fixed Timing Specification
A timing specification that is based upon a fixed set of rules.  Generally used in traditional mi-
crocomputer buses like PCI and VMEbus.  Each bus module must conform to the ridged set of
timing specifications.  Also see: variable timing specification.

Foundry
See silicon foundry.

FPGA
Acronym for: Field Programmable Gate Array.  Describes a generic array of logical gates and
interconnect paths which are programmed by the end user.  High level logic descriptions are im-
pressed upon the gates and interconnect paths, often in the form of IP Cores.

Full Address Decoding
A method of address decoding where each SLAVE decodes all of the available address space.
For example, if a 32-bit address bus is used, then each SLAVE decodes all thirty-two address
bits.  This technique is used on standard microcomputer buses like PCI and VMEbus.  Also see:
partial address decoding.

Gated Clock
A type of SYSCON interface where clock signal [CLK_O] can be stopped and restarted.  The
signal is always stopped in its low state.  This technique is often used to reduce the power con-
sumption of an integrated circuit.  Under WISHBONE, the gated clock generator is optional.
Also see: variable clock generator.

Glue Logic
(1) Logic gates and interconnections required to connect IP cores together.  The requirements for
glue logic vary greatly depending upon the interface requirements of the IP cores.  (2) A family
of logic circuits consisting of various gates and simple logic elements, each of which serve as an
interface between various parts of a computer system.

Granularity
The smallest unit of data transfer that a port is capable of transferring.  For example, a 32-bit port
can be broken up into four 8-bit BYTE segments.  In this case, the granularity of the interface is
8-bits.  Also see: port size and operand size.

Hard Core
An IP Core that is delivered in the form of a mask set (i.e. a graphical description of the features
and connections in an integrated circuit).
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Hardware Description Language (HDL)
(1) Acronym for: Hardware Description Language.  Examples include VHDL and Verilog.  (2)
A general-purpose language used for the design of digital electronic systems.

Interface
A combination of signals and data-ports on a module which are capable of either generating, re-
ceiving, controlling or interconnecting IP cores.  WISHBONE defines these as MASTER,
SLAVE, INTERCON and SYSCON interfaces respectively.  Also see: MASTER, SLAVE, IN-
TERCON and SYSCON.

INTERCON
A WISHBONE interface that interconnects MASTER, SLAVE and SYSCON interfaces.

IP Core
Acronym for: Intellectual Property Core.  Also see: soft core, firm core and hard core.

Mask Set
A graphical description of the features and connections in an integrated circuit.

MASTER
A WISHBONE interface that is capable of generating bus cycles.  All systems based on the
WISHBONE interconnect must have at least one MASTER interface.  Also see: SLAVE,
SYSCON and INTERCON.

Memory Mapped Addressing
An architecture that allows data to be stored and recalled in memory at individual, binary ad-
dresses.

Minimization (Logic Minimization)
A process by which HDL synthesis, router or other software development tools remove unused
logic.  This is important in WISHBONE because there are optional signals defined on many of
the interfaces.  If a signal is unused, then the logic minimization tools will remove these signals
and their associated logic, thereby making a faster and more efficient design.

Module
In the context of this specification, it’s another name for an IP core.

Multiplexor Interconnection
An interconnection that uses multiplexors to route address, data and control signals.  Often used
for System-on-Chip (SoC) applications.  Also see: three-state bus interconnection.

Negated
A verb indicating that a logic state has switched from the active to the inactive state.  When ac-
tive high logic is used it means that a signal has switched from a logic high level to a logic low
level.  Also see: asserted.
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Off-Chip Interconnection
An off-chip interconnection is used when a WISHBONE interface extends off-chip.  See Figure
1-6.

Figure 1-6.  Off-chip interconnection.

Operand Size
The operand size is the largest single unit of data that is moved through an interface.  For exam-
ple, a 32-bit DWORD operand can be moved through an 8-bit port with four data transfers.  Also
see: granularity and port size.

Parametric Core Generator
A software tool used for the generation of IP cores based on input parameters.  One example of a
parametric core generator is a DSP filter generator.  These are programs that create lowpass,
bandpass and highpass DSP filters.  The parameters for the filter are provided by the user, which
causes the program to produce the digital filter as a VHDL or Verilog hardware description.
Parametric core generators can also be used create WISHBONE interconnections.

Partial Address Decoding
A method of address decoding where each SLAVE decodes only the range of addresses that it
requires.  For example, if the module needs only four addresses, then it decodes only the two
least significant address bits.  The remaining address bits are decoded by the interconnection
system.  This technique is used on SoC buses, and has the advantages of: less redundant logic in
the system, it supports variable address buses, it supports variable interconnection buses and is
relatively fast.  Also see: full address decoding.

PCI
Acronym for: Peripheral Component Interconnect.  Generally used as an interconnection scheme
between integrated circuits.  It also exists as a board level interconnection known as Compact
PCI (or cPCI).  While this specification is very flexible, it isn’t practical for SoC applications.

Phase (Bus Cycle)
A periodic portion of a bus cycle.  For example, a WISHBONE BLOCK READ cycle could
contain ten phases, with each phase transferring a single 32-bit word of data.  Collectively, the
ten phases form the BLOCK READ cycle.
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Point-to-point Interconnection
(1) An interconnection system that supports a single WISHBONE MASTER and a single
WISHBONE SLAVE interface.  It is the simplest way to connect two cores.  See Figure 1-7.  (2)
A connection with only two endpoints.

Figure 1-7.  Point to point interconnection.

Port Size
The width of the WISHBONE data ports in bits.  Also see: granularity and operand size.

Router
A software tool that physically routes interconnection paths between logic gates.  Applies to both
FPGA and ASIC devices.

RTL
(1) Register-transfer logic.  A design methodology that moves data between registers.  Data is
latched in the registers at one or more stages along the path of signal propagation.  The WISH-
BONE specification uses a synchronous RTL design methodology that requires that each register
be clocked with a common clock.  (2) Register-transfer level.  A description of computer opera-
tions where data transfers from register to register, latch to latch and through logic gates.  (3) A
level of description of a digital design in which the clocked behavior of the design is expressly
described in terms of data transfers between storage elements, which may be implied, and com-
binational logic, which may represent any computing or arithmetic-logic-unit logic.  RTL mod-
eling allows design hierarchy that represents a structural description of other RTL models.

Shared Bus Interconnection
The shared bus interconnection is a system where a MASTER initiates addressable bus cycles to
a target SLAVE.  Traditional buses such as VMEbus and PCI bus use this type of interconnec-
tion.  As a consequence of this architecture, only one MASTER at a time can use the intercon-
nection resource (i.e. bus).    Figure 1-8 shows an example of a WISHBONE shared bus inter-
connection.

Figure 1-8.  Shared bus interconnection.
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Silicon Foundry
A factory that produces integrated circuits.

SLAVE
A WISHBONE interface that is capable of receiving bus cycles.  All systems based on the
WISHBONE interconnect must have at least one SLAVE.  Also see: MASTER, SYSCON and
INTERCON.

Soft Core
An IP Core that is delivered in the form of a hardware description language or schematic dia-
gram.

SoC
Acronym for System-on-Chip.  Also see: System-on-Chip.

Structured Design
(1) A popular method for managing complex projects.  Often used with large project teams.
When structured design practices are used, individual team members build and test small parts of
the design with a common set of tools.  Each sub-assembly is designed to a common standard.
When all of the sub-assemblies have been completed, the full system can be integrated and
tested.  This approach makes it much easier to manage the design process.  (2) Any disciplined
approach to design that adheres to specified rules based on principles such as modularity and
top-down design.

Switched Fabric Interconnection
A type of interconnection that uses large numbers of crossbar switches.  These are organized into
arrays that resemble the threads in a fabric.  The resulting system is a network of redundant in-
terconnections.

SYSCON
A WISHBONE module and interface.  The SYSCON module is the only module in the design
which may contain the SYSCON interface.  The SYSCON interface is the only interface in the
design which may drive the system clock [CLK_O] and reset [RST_O] signals.

System-on-Chip (SoC)
A method by which whole systems are created on a single integrated circuit chip.  In many cases,
this requires the use of IP cores which have been designed by multiple IP core providers.  Sys-
tem-on-Chip is similar to traditional microcomputer bus systems whereby the individual compo-
nents are designed, tested and built separately.  The components are then integrated to form a
finished system.

Target Device
The semiconductor type (or technology) onto which the IP core design is impressed.  Typical
examples include FPGA and ASIC target devices.
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Three-State Bus Interconnection
A microcomputer bus interconnection that relies upon three-state bus drivers.  Often used to re-
duce the number of interconnecting signal paths through connector and IC pins.  Three state
buffers can assume a logic low state (‘0’ or ‘L’), a logic high state (‘1’ or ‘H’) or a high imped-
ance state.  Three-state buffers are sometimes called Tri-State buffers. Tri-State is a regis-
tered trademark of National Semiconductor Corporation.  Also see: multiplexor interconnection.

Variable Clock Generator
A type of SYSCON interface where the frequency of [CLK_O] can be changed dynamically.
The frequency can be changed by way of a programmable phase-lock-loop (PLL) circuit or other
control mechanism.  This technique is used to reduce the power consumption of the circuit.  The
variable clock generator capability is optional.  Also see: gated clock generator and variable
timing specification.

Variable Interconnection
A microcomputer bus interconnection that can be changed without causing incompatibilities
between bus modules (or SoC/IP cores).  Also called a dynamic interconnection.  An example of
a variable interconnection bus is the WISHBONE SoC architecture.  Also see: fixed intercon-
nection.

Variable Timing Specification
A timing specification that is not fixed.  In WISHBONE, variable timing can be achieved in a
number of ways.  For example, the system integrator can select the SYSCON frequency rate of
[CLK_O] by enforcing a timing specification during the circuit design.  Variable timing can also
be achieved during circuit operation with a variable clock generator.  Also see: gated clock gen-
erator and variable clock generator.

Verilog
A textual based hardware description language (HDL) intended for use in circuit design.  The
Verilog language is both a synthesis and a simulation tool. Verilog was originally a proprie-
tary language first conceived in 1983 at Gateway Design Automation (Acton, MA), and was later
refined by Cadence Corporation.  It has since been greatly expanded and refined, and much of it
has been placed into the public domain.  Complete descriptions of the language can be found in
the IEEE 1364 specification.

VHDL
Acronym for: VHSIC Hardware Description Language.  [VHSIC: Very High Speed Integrated
Circuit].  A textual based computer language intended for use in circuit design.  The VHDL lan-
guage is both a synthesis and a simulation tool.  Early forms of the language emerged from US
Dept. of Defense ARPA projects in the 1960’s, and have since been greatly expanded and re-
fined.  Complete descriptions of the language can be found in the IEEE 1076, IEEE 1073.3,
IEEE 1164 specifications.

VMEbus
Acronym for: Versa Module Eurocard bus.  A popular microcomputer (board) bus.  While this
specification is very flexible, it isn’t practical for SoC applications.
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WISHBONE DATASHEET
A type of documentation required for WISHBONE compatible IP cores.  This helps the end user
understand the detailed operation of the core, and how to connect it to other cores.  The WISH-
BONE DATASHEET can be included as part of an IP core technical reference manual, or as part
of the IP core hardware description.

WISHBONE Signal
A signal that is defined as part of the WISHBONE specification.  Non-WISHBONE signals can
also be used on the IP core, but are not defined as part of this specification.  For example,
[ACK_O] is a WISHBONE signal, but [CLK100_I] is not.

WISHBONE Logo
A logo that, when affixed to a document, indicates that the associated SoC component is com-
patible with the WISHBONE standard.

Wrapper
A circuit element that converts a non-WISHBONE IP Core into a WISHBONE compatible IP
Core.  For example, consider a 16-byte synchronous memory primitive that is provided by an IC
vendor.  The memory primitive can be made into a WISHBONE compatible SLAVE by layering
a circuit over the memory primitive, thereby creating a WISHBONE compatible SLAVE. A
wrapper is analogous to a technique used to convert software written in ‘C’ to that written in
‘C++’.

1.8 References

IEEE 100: The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.  IEEE Press
2000.
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Chapter 2 – Interface Specification

This chapter describes the signaling method between MASTER, SLAVE, SYSCON and IN-
TERCON interfaces.  This includes numerous options which may or may not be present on a
particular interface.  Furthermore, it describes a minimum level of required documentation that
must be created for each IP core.

2.1 Required Documentation for IP Cores

WISHBONE compatible IP cores must include documentation that describes the interface.   This
helps the end user understand the operation of the core, and how to connect it to other cores.
This documentation takes the form of a WISHBONE DATASHEET.  It can be included as part
of the IP core technical reference manual, it can be embedded in source code or it can take other
forms as well.

2.1.1 General Requirements for the WISHBONE DATASHEET

RULE 2.00
Each WISHBONE compatible IP core MUST include a WISHBONE DATASHEET as part of
the IP core documentation.

RULE 2.05
The WISHBONE DATASHEET MUST include the revision level of the WISHBONE specifi-
cation to which it was designed.

RULE 2.10
The WISHBONE DATASHEET MUST indicate whether it is a MASTER, SLAVE, SYSCON
or INTERCON interface.  Furthermore, it MUST indicate the types of bus cycles it supports.

RULE 2.15
The WISHBONE DATASHEET for MASTER, SLAVE and INTERCON interfaces MUST in-
clude the following information:

(1) If a MASTER supports the optional [ERR_I] signal, then the WISHBONE DA-
TASHEET MUST describe how it reacts in response to the signal.  If a SLAVE sup-
ports the optional [ERR_O] signal, then the WISHBONE DATASHEET MUST de-
scribe the conditions under which the signal is generated.

(2) If a MASTER supports the optional [RTY_I] signal, then the WISHBONE DA-
TASHEET MUST describe how it reacts in response to the signal.  If a SLAVE sup-
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ports the optional [RTY_O] signal, then the WISHBONE DATASHEET MUST de-
scribe the conditions under which the signal is generated.

(3) All interfaces that support the [TAGN_I] or [TAGN_O] signal(s) MUST describe
their use in the WISHBONE DATASHEET.

(4) The WISHBONE DATASHEET MUST indicate the port size.  The port size MUST
be indicated as: 8-bit, 16-bit, 32-bit or 64-bit.

(5) The WISHBONE DATASHEET MUST indicate the port granularity.  The granular-
ity MUST be indicated as: 8-bit, 16-bit, 32-bit or 64-bit.

(6) The WISHBONE DATASHEET MUST indicate the maximum operand size.  The
maximum operand size MUST be indicated as: 8-bit, 16-bit, 32-bit or 64-bit.  If the
maximum operand size is unknown, then the maximum operand size shall be the
same as the granularity.

(7) The WISHBONE DATASHEET MUST indicate the data transfer ordering.  The or-
dering MUST be indicated as BIG ENDIAN or LITTLE ENDIAN.  When the port
size equals the granularity, then the interface shall be specified as BIG ENDIAN
and/or LITTLE ENDIAN.  [When the port size equals the granularity, then BIG EN-
DIAN and LITTLE ENDIAN transfers are identical].

(8) The WISHBONE DATASHEET MUST indicate the sequence of data transfer
through the port.  If the sequence of data transfer is not known, then the datasheet
MUST indicate that it is undefined.

(9) The WISHBONE DATASHEET MUST indicate if there are any constraints on the
[CLK_I] signal.  These constraints include (but are not limited to) clock frequency,
application specific timing constraints, the use of gated clocks or the use of variable
clock generators.

2.1.2 Signal Naming

RULE 2.20
Signal names MUST adhere to the rules of the native tool in which the IP core is designed.

PERMISSION 2.00
Any signal name MAY be used to describe the WISHBONE signals.

OBSERVATION 2.00
Most hardware description languages (such as VHDL or Verilog) have naming conventions.
For example, the VHDL hardware description language defines the alphanumeric symbols which
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may be used.  Furthermore, it states that UPPERCASE and LOWERCASE characters may be
used in a signal name.

RECOMENDATION 2.00
It is recommended that the interface use the signal names defined in this document.

OBSERVATION 2.05
Core integration is simplified if the signal names match those given in this specification.  How-
ever, in some cases (such as IP cores with multiple WISHBONE interconnects) they cannot be
used.  The use of non-standard signal names will not result in any serious integration problems
since all hardware description tools allow signals to be renamed.

RULE 2.25
The WISHBONE DATASHEET MUST include the signal names that are defined for a WISH-
BONE SoC interface.  If a signal name is different than defined in this specification then it
MUST be cross-referenced to the corresponding signal name which is used in this specification.

2.1.3 Logic Levels

RULE 2.30
All WISHBONE interface signals MUST use active high logic.

OBSERVATION 2.10
In general, the use of active low signals does not present a problem.  However, RULE 2.30 is
included because some tools (especially schematic entry tools) do not have a standard way of
indicating an active low signal.  For example, a reset signal could be named [#RST_I], [/RST_I]
or [N_RST_I].  This was found to cause confusion among users and incompatibility between
modules.  This constraint should not create any undue difficulties, as the system integrator can
invert any signals before use by the WISHBONE interface.

PERMISSION 2.05
Non-WISHBONE signals MAY be used with IP core interfaces.

OBSERVATION 2.15
Most IP cores will include non-WISHBONE signals.  These are outside the scope of this specifi-
cation, and no attempt is made to govern them.  For example, a disk controller IP core could
have a WISHBONE interface on one end and a disk interface on the other.  In this case the speci-
fication does not dictate any technical requirements for the disk interface signals.
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OBSERVATION 2.20
[TAGN_I] and [TAGN_O] are user defined signals that must adhere to the timing specifications
given in this document.

2.2 WISHBONE Signal Description

This section describes the signals used in the WISHBONE interconnect.  Some of these signals
are optional, and may or may not be present on a specific interface.

2.2.1 SYSCON Signals

CLK_O
The system clock output [CLK_O] is generated by the SYSCON interface.  It coordinates all ac-
tivities for the internal logic within the WISHBONE interconnect.  The INTERCON connects the
[CLK_O] output to the [CLK_I] input on MASTER and SLAVE interfaces.

RST_O
The reset output [RST_O] is generated by the SYSCON interface.  It forces all WISHBONE in-
terfaces to restart.  All internal self-starting state machines are forced into an initial state.  The
INTERCON connects the [RST_O] output to the [RST_I] input on MASTER and SLAVE inter-
faces.

2.2.2 Signals Common to MASTER and SLAVE Interfaces

CLK_I
The clock input [CLK_I] coordinates all activities for the internal logic within the WISHBONE
interconnect.  All WISHBONE output signals are registered at the rising edge of [CLK_I].  All
WISHBONE input signals must be stable before the rising edge of [CLK_I].

RST_I
The reset input [RST_I] forces the WISHBONE interface to restart.  Furthermore, all internal
self-starting state machines will be forced into an initial state.  This signal only resets the
WISHBONE interface.  It is not required to reset other parts of an IP core (although it may be
used that way).

TAGN_I
The tag input(s) [TAGN_I] are user defined, and are used with either MASTER or SLAVE inter-
faces.  ‘N’ in this signal name refers to a tag number because multiple tags may be used (e.g.
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[TAG3_I]).  Tag inputs are used whenever an IP core needs specific information from the inter-
connection.  For example, a MASTER can be designed to monitor the state of a FIFO.

TAGN_O
The tag output(s) [TAGN_O] are user defined, and are used with either MASTER or SLAVE
interfaces.  For example, the tag output(s) can be used to indicate the type of data transfer in pro-
gress.  Furthermore, ‘N’ in this signal name refers to a tag number because multiple tags may be
used.  For example, [TAG1_O] may indicate a valid data transfer cycle, [TAG2_O] may indicate
an interrupt acknowledge cycle and so on.  The exact meaning of each tag is defined by the IP
core provider in the WISHBONE DATASHEET.

2.2.3 MASTER Signals

ACK_I
The acknowledge input [ACK_I], when asserted, indicates the termination of a normal bus cycle.
Also see the [ERR_I] and [RTY_I] signal descriptions.

ADR_O(63..0)
The address output array [ADR_O(63..0)] is used to pass a binary address, with the most signifi-
cant address bit at the higher numbered end of the signal array.  The lower array boundary is
specific to the data port size.  The higher array boundary is core-specific.  In some cases (such as
FIFO interfaces) the array may not be present on the interface.

CYC_O
The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress.  The
signal is asserted for the duration of all bus cycles.  For example, during a BLOCK transfer cycle
there can be multiple data transfers.  The [CYC_O] signal is asserted during the first data trans-
fer, and remains asserted until the last data transfer.  The [CYC_O] signal is useful for interfaces
with multi-port interfaces (such as dual port memories).  In these cases, the [CYC_O] signal re-
quests use of a common bus from an arbiter.  Once the arbiter grants the bus to the MASTER, it
is held until [CYC_O] is negated.

DAT_I(63..0)
The data input array [DAT_I(63..0)] is used to pass binary data.  The array boundaries are de-
termined by the port size.   Also see the [DAT_O(63..0)] and [SEL_O(7..0)] signal descriptions.

DAT_O(63..0)
The data output array [DAT_O(63..0)] is used to pass binary data.  The array boundaries are de-
termined by the port size.   Also see the [DAT_I(63..0)] and [SEL_O(7..0)] signal descriptions.
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ERR_I
The error input [ERR_I] indicates an abnormal cycle termination.  The source of the error, and
the response generated by the MASTER is defined by the IP core supplier.  Also see the
[ACK_I] and [RTY_I] signal descriptions.

RTY_I
The retry input [RTY_I]  indicates that the interface is not ready to accept or send data, and that
the cycle should be retried.  When and how the cycle is retried is defined by the IP core supplier.
Also see the [ERR_I] and [RTY_I] signal descriptions.

SEL_O(7..0)
The select output array [SEL_O(7..0)] indicates where valid data is expected on the
[DAT_I(63..0)] signal array during READ cycles, and where it is placed on the [DAT_O(63..0)]
signal array during WRITE cycles.  Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_O]
signal descriptions.

STB_O
The strobe output [STB_O] indicates a valid data transfer cycle.  It is used to qualify various
other signals on the interface such as [SEL_O(7..0)].  The SLAVE must assert either the
[ACK_I], [ERR_I] or [RTY_I] signals in response to every assertion of the [STB_O] signal.

WE_O
The write enable output [WE_O] indicates whether the current local bus cycle is a READ or
WRITE cycle.  The signal is negated during READ cycles, and is asserted during WRITE cycles.

2.2.4 SLAVE Signals

ACK_O
The acknowledge output [ACK_O], when asserted, indicates the termination of a normal bus cy-
cle.  Also see the [ERR_O] and [RTY_O] signal descriptions.

ADR_I(63..0)
The address input array [ADR_I(63..0)] is used to pass a binary address, with the most signifi-
cant address bit at the higher numbered end of the signal array.  The lower array boundary is
specific to the data port size.  The higher array boundary is core-specific.  In some cases (such as
FIFO interfaces) the array may not be present on the interface.
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CYC_I
The cycle input [CYC_I], when asserted, indicates that a valid bus cycle is in progress.  The sig-
nal is asserted for the duration of all bus cycles.  For example, during a BLOCK transfer cycle
there can be multiple data transfers.  The [CYC_I] signal is asserted during the first data transfer,
and remains asserted until the last data transfer.

DAT_I(63..0)
The data input array [DAT_I(63..0)] is used to pass binary data.  The array boundaries are de-
termined by the port size.   Also see the [DAT_O(63..0)] and [SEL_O(7..0)] signal descriptions.

DAT_O(63..0)
The data output array [DAT_O(63..0)] is used to pass binary data.  The array boundaries are de-
termined by the port size.   Also see the [DAT_I(63..0)] and [SEL_O(7..0)] signal descriptions.

ERR_O
The error output [ERR_O] indicates an abnormal cycle termination.  The source of the error, and
the response generated by the MASTER is defined by the IP core supplier. Also see the
[ACK_O] and [RTY_O] signal descriptions.

RTY_O
The retry output [RTY_O] indicates that the indicates that the interface is not ready to accept or
send data, and that the cycle should be retried.  When and how the cycle is retried is defined by
the IP core supplier.  Also see the [ERR_O] and [RTY_O] signal descriptions.

SEL_I(7..0)
The select input array [SEL_I(7..0)] indicates where valid data is placed on the [DAT_I(63..0)]
signal array during WRITE cycles, and where it should be present on the [DAT_O(63..0)] signal
array during READ cycles.  Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_I] signal
descriptions.

STB_I
The strobe input [STB_I], when asserted, indicates that the SLAVE is selected.  A SLAVE shall
respond to other WISHBONE signals only when this [STB_I] is asserted, except for the [RST_I]
signal which should always be responded to.  The SLAVE must assert either the [ACK_O],
[ERR_O] or [RTY_O] signals in response to every assertion of the [STB_I] signal.

WE_I
The write enable input [WE_I] indicates whether the current local bus cycle is a READ or
WRITE cycle.  The signal is negated during READ cycles, and is asserted during WRITE cycles.
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Chapter 3 – Bus Cycles

WISHBONE bus cycles are described in terms of their general operation, reset operation, hand-
shaking protocol and the data organization during transfers.  Additional requirements for bus cy-
cles (especially those relating to the common clock) can be found in the timing specifications in
Chapter 4.

3.1 General Operation

Each MASTER and SLAVE are interconnected with a set of signals that permit them to ex-
change data.  For descriptive purposes these signals are cumulatively known as a bus, and are
contained within a functional module called the INTERCON.  Address, data and other informa-
tion is impressed upon this bus in the form of bus cycles.

3.1.1 Reset Operation

All hardware interfaces must be initialized to a pre-defined state.  This is accomplished with the
reset signal [RST_O], which can be asserted at any time.  It is also used for test simulation pur-
poses by initializing all self-starting state machines and counters which may be used in the de-
sign.  The reset signal [RST_O] is driven by the SYSCON interface.  It is connected to the
[RST_I] signal on all MASTER and SLAVE interface.  Figure 3-1 shows the reset cycle.

Figure 3-1.  Reset cycle.
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RULE 3.00
All WISHBONE interfaces MUST initialize themselves at the rising [CLK_O] edge following
the assertion of [RST_O].  They MUST stay in the initialized state until the rising [CLK_O] edge
that follows the negation of [RST_O].

RULE 3.05
[RST_I] MUST be asserted for at least one complete clock cycle on all WISHBONE interfaces.

PERMISSION 3.00
[RST_O] MAY be asserted for more than one clock cycle, and MAY be asserted indefinitely.

RULE 3.10
All WISHBONE interfaces MUST be capable of reacting to [RST_I] at any time.

RULE 3.15
All self-starting state machines and counters in WISHBONE interfaces MUST initialize them-
selves at the rising [CLK_I] edge following the assertion of [RST_I].  They MUST stay in the
initialized state until the rising [CLK_I] edge that follows the negation of [RST_I].

OBSERVATION 3.00
In general, self-starting state machines do not need to be initialized.  However, this may cause
problems because some simulators may not be sophisticated enough to find an initial starting
point for the state machine.  Furthermore, self-starting state machines can go through an inde-
terminate number of initialization cycles before finding their starting state, thereby making it dif-
ficult to predict their behavior at start-up time. The initialization rule prevents both problems by
forcing all state machines to a pre-defined state in response to the assertion of [RST_I].

RULE 3.20
The following MASTER signals MUST be negated at the rising [CLK_I] edge following the as-
sertion of [RST_I], and MUST stay in the negated state until the rising [CLK_I] edge that fol-
lows the negation of [RST_I]: [STB_O], [CYC_O].  The state of all other MASTER signals are
undefined in response to a reset cycle.

OBSERVATION 3.05
On MASTER interfaces [STB_O] and [CYC_O] may be asserted beginning at the rising
[CLK_I] edge following the negation of [RST_I].
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OBSERVATION 3.10
SLAVE interfaces automatically negate [ACK_O], [ERR_O] and [RTY_O] when their [STB_I]
is negated.

RECOMENDATION 3.00
Design SYSCON circuits so that they assert [RST_O] during a power-up condition.  [RST_O]
should remain asserted until all voltage levels and clock frequencies in the system are stabilized.
When negating [RST_O], do so in a synchronous manner that conforms to this specification.

OBSERVATION 3.15
If a gated clock generator is used, and if the clock is stopped, then the WISHBONE interface is
not capable of responding to its [RST_I] signal.

SUGGESTION 3.00
Some circuits require an asynchronous reset capability.  If an IP core or other SoC component
requires an asynchronous reset, then define it as a non-WISHBONE signal.  This prevents confu-
sion with the WISHBONE reset [RST_O] signal, which uses a purely synchronous protocol, and
need be applied only to the WISHBONE interface.

OBSERVATION 3.20
All WISHBONE interfaces must respond to the reset signal.  However, the IP Core connected to
a WISHBONE interface does not necessarily need to respond to the reset signal.

3.1.2 Handshaking Protocol

All bus cycles use a handshaking protocol between the MASTER and SLAVE interfaces.  As
shown in Figure 3-2, the MASTER asserts [STB_O] when it is ready to transfer data.  [STB_O]
remains asserted until the SLAVE asserts one of the cycle terminating signals [ACK_I], [ERR_I]
or [RTY_I].  At every rising edge of [CLK_I] the terminating signal is sampled.  If it is asserted,
then [STB_O] is negated.  This gives both the MASTER and SLAVE interfaces the possibility to
control the rate at which data is transferred.

If the SLAVE guarantees it can keep pace with all MASTER interfaces,  and if the [ERR_I] and
[RTY_I] signals are not used, then the [ACK_I] signal may be tied to the SLAVE’s [STB_I] in-
put.  The interface will function normally under these circumstances.
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Figure 3-2.  Local bus handshaking protocol.

Most of the examples in this specification describe the use of [ACK_I] to terminate a local bus
cycle.  However, the SLAVE can optionally terminate the cycle with an error [ERR_O], or re-
quest that the cycle be retried [RTY_O].

All interfaces include the [ACK_I] terminator signal.  Asserting this signal during a bus cycle
causes it to terminate normally.

Asserting the [ERR_I] signal during a bus cycle will terminate the cycle.  It also serves to notify
the MASTER that an error occurred during the cycle.  This signal is generally used if an error
was detected by SLAVE logic circuitry.  For example, if the SLAVE is a parity-protected mem-
ory, then the [ERR_I] signal can be asserted if a parity fault is detected.  This specification does
not dictate what the MASTER will do in response to [ERR_I].

Asserting the optional [RTY_I] signal during a bus cycle will terminate the cycle.  It also serves
to notify the MASTER that the current cycle should be aborted, and retried at a later time.  This
signal is generally used for shared memory and bus bridges.  In these cases SLAVE circuitry
would assert [RTY_I] if the local resource is busy.  This specification does not dictate when or
how the MASTER will respond to [RTY_I].

RULE 3.25
As a minimum, the MASTER interface MUST include the following signals: [ACK_I], [CLK_I],
[CYC_O], [RST_I] and [STB_O].  As a minimum, the SLAVE interface MUST include the fol-
lowing signals: [ACK_O], [CLK_I] and [RST_I].  All other signals are optional.

PERMISSION 3.05
MASTER and SLAVE interfaces MAY be designed to support the [ERR_I] and [ERR_O] sig-
nals.  In these cases, the SLAVE asserts [ERR_O] to indicate that an error has occurred during
the bus cycle. This specification does not dictate what the MASTER does in response to
[ERR_I].
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STB_O

ACK_I
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PERMISSION 3.10
MASTER and SLAVE interfaces MAY be designed to support the [RTY_I] and [RTY_O] sig-
nals.  In these cases, the SLAVE asserts [RTY_O] to indicate that the interface is busy, and that
the bus cycle should be retried at a later time.  This specification does not dictate what the
MASTER will do in response to [RTY_I].

RULE 3.30
If a SLAVE supports the [ERR_O] or [RTY_O] signals, then the SLAVE MUST NOT assert
more than one of the following signals at any time: [ACK_O], [ERR_O] or [RTY_O].

RECOMMENDATION 3.00
Design WISHBONE MASTER interfaces so that there are no intermediate logic gates between a
registered flip-flop and the signal outputs on  [STB_O] and [CYC_O].  Delay timing for
[STB_O] and [CYC_O] are very often the most critical paths in the system.  This prevents
sloppy design practices from slowing down the interconnect because of added delays on these
two signals.

RULE 3.35
SLAVE interfaces MUST be designed so that the [ACK_O], [ERR_O] and [RTY_O] signals are
asserted and negated in response to the assertion and negation of [STB_I].  Furthermore, this ac-
tivity MUST occur asynchronous to the [CLK_I] signal (i.e. there is a combinatorial logic path
between [STB_I] and [ACK_O], etc.).

OBSERVATION 3.25
The asynchronous logic requirement assures that the interface can accomplish one data transfer
per clock cycle.  Furthermore, it simplifies the design of arbiters in multi-MASTER applications.

RECOMMENDATION 3.05
Design interconnection logic to prevent deadlock conditions when MASTER accesses are made
to unused address locations.  One solution to this problem is to include a watchdog timer func-
tion that monitors the MASTER’s [STB_O] signal, and asserts [ERR_I] or [RTY_I] if the cycle
exceeds some pre-defined time limit.

PERMISSION 3.15
Under certain circumstances SLAVE interfaces MAY be designed to hold [ACK_O] in the as-
serted state.  This situation occurs on point-to-point interfaces where there is a single SLAVE on
the interface, and that SLAVE always operates without wait states.
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RULE 3.40
MASTER interfaces MUST be designed to operate normally when SLAVE interface holds
[ACK_I] in the asserted state.

3.1.3 Use of [STB_O]

RULE 3.45
MASTER interfaces MUST qualify the following signals with [STB_O]: [ADR_O], [DAT_O()],
[SEL_O()], [WE_O], [SEL_O] and [TAGN_O].

RULE 3.50
MASTER interfaces MUST assert [CYC_O] for the duration of SINGLE READ / WRITE,
BLOCK and RMW cycles.  [CYC_O] MUST be asserted no later than the rising [CLK_I] edge
that qualifies the assertion of [STB_O].  [CYC_O] MUST be negated no earlier than the rising
[CLK_I] edge that qualifies the negation of [STB_O].

3.1.4 Use of [ACK_O], [ERR_O] and [RTY_O]

RULE 3.55
SLAVE interfaces MUST qualify the following signals with [ACK_O], [ERR_O] or [RTY_O]:
[DAT_O()].

3.1.5 Use of [TAGN_I] and [TAGN_O] Signals

The TAG signals [TAGN_I] and [TAGN_O] are used by both the MASTER and SLAVE inter-
faces.  They are used for three purposes: (a) to tag data with information such as parity or time
stamps, (b) to identify specialty bus cycles (like interrupts or cache control operations) and (c) to
communicate with the bus interconnection.  These signals are user defined.

For example, the designer of a MASTER may wish to add parity check bits to its bus cycle.  In
this case a [TAGN_O] signal is defined by the IP core designer, and logic would be created to
generate the bit.  Furthermore, the signal would be described in the WISHBONE DATASHEET.

In another example, the designer of a SLAVE interface may wish to notify the bus interconnec-
tion logic with the size of it’s data interface.  In this case a [TAGN_O] signal is defined by the IP
core designer, and logic would be created to reflect the bus size.  The signal would also be de-
scribed in the WISHBONE DATASHEET.

RULE 3.60
The [TAGN_I] and [TAGN_O] signals MUST adhere to the timing specifications given in this
document.
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3.2 SINGLE READ / WRITE Cycles

The SINGLE READ / WRITE cycles perform one data transfer at a time.  These are the basic
cycles used to perform data transfers on the WISHBONE interconnect.

RULE 3.65
All MASTER and SLAVE interfaces that support SINGLE READ or SINGLE WRITE cycles
MUST conform to the timing requirements given in sections 3.2.1 and 3.2.2.

PERMISSION 3.20
MASTER and SLAVE interfaces MAY be designed so that they do not support the SINGLE
READ or SINGLE WRITE cycles.
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3.2.1 SINGLE READ Cycle

Figure 3-3 shows a SINGLE READ cycle.  The bus protocol works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O] to qualify [ADR_O()], [SEL_O()] and [WE_O].

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I()].
SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data.
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I],
thereby allowing it to throttle the cycle speed.  Any number of wait states
may be added.

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] and [CYC_O] to indicate the end of the cycle.
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Figure 3-3.  SINGLE READ cycle.
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3.2.2 SINGLE WRITE Cycle

Figure 3-4 shows a SINGLE WRITE cycle.  The bus protocol works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.
MASTER presents bank select [SEL_O()] to indicate where it sends data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O] to qualify [ADR_O()], [SEL_O()] and [WE_O].

SETUP, EDGE 1: SLAVE decides inputs, and responds by asserting [ACK_I].
SLAVE presents prepares to latch data on [DAT_O()].
SLAVE asserts [ACK_I] in response to [STB_O] to indicate latched data.
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to terminate the cycle.

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I],
thereby allowing it to throttle the cycle speed.  Any number of wait states
may be added.

CLOCK EDGE 1: SLAVE latches data on [DAT_O()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] and [CYC_O] to indicate the end of the cycle.
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Figure 3-4.  SINGLE WRITE cycle.
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3.3 BLOCK READ / WRITE Cycles

The BLOCK transfer cycles perform multiple data transfers.  They are very similar to single
READ and WRITE cycles, but have a few special modifications to support multiple transfers.

During BLOCK cycles, the interface basically performs SINGLE READ/WRITE cycles as de-
scribed above.  However, the BLOCK cycles are modified somewhat so that these individual cy-
cles are combined together to form a single BLOCK cycle.  This function is most useful when
multiple MASTERs are used on the interconnect.  For example, if the SLAVE is a shared (dual
port) memory, then an arbiter for that memory can determine when one MASTER is done with it
so that another can gain access to the memory.

As shown in Figure 3-5, the [CYC_O] signal is asserted for the duration of a BLOCK cycle.
This signal can be used to request permission to access from a shared resource from a local arbi-
ter, and hold the access until the end of the current cycle.  During each of the data transfers
(within the block transfer), the normal handshaking protocol between [STB_O] and [ACK_I] is
maintained.

Figure 3-5.  Use of [CYC_O] signal during BLOCK cycles.

It should be noted that the [CYC_O] signal does not necessarily rise and fall at the same time as
[STB_O].  [CYC_O] may be asserted at the same time as [STB_O], or one or more [CLK_I]
edges before [STB_O].  Similarly, [CYC_O] may be negated at the same time as [STB_O], or
after an indeterminate number of [CLK_I] cycles.

RULE 3.70
All MASTER and SLAVE interfaces that support BLOCK cycles MUST conform to the timing
requirements given in sections 3.3.1 and 3.3.2.

PERMISSION 3.25
MASTER and SLAVE interfaces MAY be designed so that they do not support the BLOCK cy-
cles.
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3.3.1 BLOCK READ Cycle

Figure 3-6 shows a BLOCK READ cycle.  The BLOCK cycle is capable of a data transfer on
every clock cycle.  However, this example also shows how the MASTER and the SLAVE inter-
faces can both throttle the bus transfer rate by inserting wait states.  A total of five transfers are
shown.  After the second transfer the MASTER inserts a wait state. After the fourth transfer the
SLAVE inserts a wait state.  The cycle is terminated after the fifth transfer.  The protocol for this
transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER latches [TAGN_I].
MASTER presents new [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where data is.

SETUP, EDGE 2: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 2: MASTER latches data on [DAT_I()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 3: SLAVE negates [ACK_I] in response to [STB_O].

Note: any number of wait states can be inserted by the MASTER.

CLOCK EDGE 3: MASTER presents new [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()].
MASTER asserts [STB_O].
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SETUP, EDGE 4: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 4: MASTER latches data on [DAT_I()].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER latches [TAGN_I].
MASTER presents new bank select [SEL_O()] to indicate where it expects
data.

SETUP, EDGE 5: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 5: MASTER latches data on [DAT_I()].
MASTER latches [TAGN_I].
SLAVE negates [ACK_I] to introduce a wait state.

Note: any number of wait states can be inserted by the SLAVE at this point.

SETUP, EDGE 6: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 6: MASTER latches data on [DAT_I()].
MASTER terminates cycle by negating [STB_O] and [CYC_O].



WISHBONE SoC Architecture Specification, Revision B.2 47

Figure 3-6.  BLOCK READ cycle.
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3.3.2 BLOCK WRITE Cycle

Figure 3-7 shows a BLOCK WRITE cycle.  The BLOCK cycle is capable of a data transfer on
every clock cycle.  However, this example also shows how the MASTER and the SLAVE inter-
faces can both throttle the bus transfer rate by inserting wait states.  A total of five transfers are
shown.  After the second transfer the MASTER inserts a wait state. After the fourth transfer the
SLAVE inserts a wait state.  The cycle is terminated after the fifth transfer.  The protocol for this
transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] and [TAGN_O] to indicate cycle start.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to terminate current data phase.

CLOCK EDGE 1: SLAVE latches data on [DAT_O()].
MASTER latches [TAGN_I].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()].

SETUP, EDGE 2: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to terminate current data phase.

CLOCK EDGE 2: SLAVE latches data on [DAT_O()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 3: SLAVE negates [ACK_I] in response to [STB_O].

Note: any number of wait states can be inserted by the MASTER at this
point.

CLOCK EDGE 3: MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents bank select [SEL_O()] to indicate where it expects data.
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MASTER asserts [STB_O].

SETUP, EDGE 4: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to terminate data phase.

CLOCK EDGE 4: SLAVE latches data on [DAT_O()].
MASTER latches [TAGN_I].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects
data.

SETUP, EDGE 5: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to terminate data phase.

CLOCK EDGE 5: SLAVE latches data on [DAT_O()].
SLAVE negates [ACK_I] to introduce a wait state.
MASTER latches [TAGN_I].

Note: any number of wait states can be inserted by the SLAVE at this point.

SETUP, EDGE 6: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate data phase.

CLOCK EDGE 6: SLAVE latches data on [DAT_O()].
MASTER terminates cycle by negating [STB_O] and [CYC_O].
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Figure 3-7.  BLOCK WRITE cycle.
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3.4  RMW Cycle

The RMW (read-modify-write) cycle is used for indivisible semaphore operations.  During the
first half of the cycle a single read data transfer is performed.  During the second half of the cycle
a write data transfer is performed.  The [CYC_O] signal remains asserted during both halves of
the cycle.

RULE 3.75
All MASTER and SLAVE interfaces that support RMW cycles MUST conform to the timing
requirements given in section 3.4.

PERMISSION 3.30
MASTER and SLAVE interfaces MAY be designed so that they do not support the RMW cy-
cles.

Figure 3-8 shows a read-modify-write (RMW) cycle.  The RMW cycle is capable of a data trans-
fer on every clock cycle.  However, this example also shows how the MASTER and the SLAVE
interfaces can both throttle the bus transfer rate by inserting wait states.  Two transfers are
shown. After the first (read) transfer, the MASTER inserts a wait state.   During the second trans-
fer the SLAVE inserts a wait state.  The protocol for this transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] and [TAGN_O] to indicate the start of cycle.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 2: SLAVE negates [ACK_I] in response to [STB_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.

Note: any number of wait states can be inserted by the MASTER at this
point.
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CLOCK EDGE 2: MASTER presents the same [ADR_O()] and [TAGN_O] as was on clock 1.
MASTER presents WRITE data on [DAT_O()].
MASTER presents new bank select [SEL_O()].
MASTER asserts [STB_O].

SETUP, EDGE 3: SLAVE decodes inputs, and responds by asserting [ACK_I] (when ready).
SLAVE presents valid data on [DAT_I].
SLAVE presents [TAGN_O].
MASTER monitors [TAGN_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

Note: any number of wait states can be inserted by the SLAVE at this point.

CLOCK EDGE 3: SLAVE latches data on [DAT_O()].
MASTER latches [TAGN_I].
MASTER negates [STB_O] and [CYC_O] indicating the end of the cycle.
SLAVE negates [ACK_I] in response to negated [STB_O].
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Figure 3-8.  RMW cycle.
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3.5 Data Organization

Data organization refers to the ordering of data during transfers.  There are two general types of
ordering which are called BIG ENDIAN and LITTLE ENDIAN.  BIG ENDIAN refers to data
ordering where the most significant portion of an operand is stored at the lower address.  LIT-
TLE ENDIAN refers to data ordering where the most significant portion of an operand is stored
at the higher address.  The WISHBONE architecture supports both methods of data ordering.

3.5.1 Nomenclature

A BYTE(N), WORD(N), DWORD(N) and QWORD(N) nomenclature is used to define data or-
dering.  These terms are defined in Table 3-1.  Figure 3-9 shows the operand locations for input
and output data ports.

Table 3-1.  Data Transfer Nomenclature
Nomenclature Granularity Description

BYTE(N) 8-bit An 8-bit BYTE transfer at address ‘N’.
WORD(N) 16-bit A 16-bit WORD transfer at address ‘N’.

DWORD(N) 32-bit A 32-bit Double WORD transfer at address ‘N’.
QWORD(N) 64-bit A 64-bit Quadruple WORD transfer at address ‘N’.

The table also defines the granularity of the interface.  This indicates the minimum unit of data
transfer that is supported by the interface.  For example, the smallest operand that can be passed
through a port with 16-bit granularity is a 16-bit WORD.  In this case, an 8-bit operand cannot be
transferred.

Figure 3-10 shows an example of how the 64-bit value of 0x0123456789ABCDEF is transferred
through BYTE, WORD, DWORD and QWORD ports using BIG ENDIAN data organization.
Through the 64-bit QWORD port the number is directly transferred with the most significant bit
at DAT_I / DAT_O(63).  The least significant bit is at DAT_I / DAT_O(0).  However, when the
same operand is transferred through a 32-bit DWORD port, it is split into two bus cycles.  The
two bus cycles are each 32-bits in length, with the most significant DWORD transferred at the
lower address, and the least significant DWORD transferred at the upper address.  A similar
situation applies to the WORD and BYTE cases.

Figure 3-11 shows an example of how the 64-bit value of 0x0123456789ABC is transferred
through BYTE, WORD, DWORD and QWORD ports using LITTLE ENDIAN data organiza-
tion.  Through the 64-bit QWORD port the number is directly transferred with the most signifi-
cant bit at DAT_I / DAT_O(63).  The least significant bit is at DAT_I / DAT_O(0).  However,
when the same operand is transferred through a 32-bit DWORD port, it is split into two bus cy-
cles.  The two bus cycles are each 32-bits in length, with the least significant DWORD trans-
ferred at the lower address, and the most significant DWORD transferred at the upper address.  A
similar situation applies to the WORD and BYTE cases.
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Figure 3-9. Operand locations for input and output data ports.
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Figure 3-10.  Example showing a variety of BIG ENDIAN transfers over various port sizes.

Figure 3-11.  Example showing a variety of LITTLE ENDIAN transfers over various port sizes.
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RULE 3.80
Data organization MUST conform to the ordering indicated in Figure 3-9.

3.5.2 Transfer Sequencing

The sequence in which data is transferred through a port is not regulated by this specification.
For example, a 64-bit operand through a 32-bit port will take two bus cycles.  However, the
specification does not require that the lower or upper DWORD be transferred first.

RECOMMENDATION 3.10
Design interfaces so that data is transferred sequentially from lower addresses to a higher ad-
dresses.

OBSERVATION 3.30
The sequence in which an operand is transferred through a data port is not highly regulated by
the specification.  That is because different IP cores may produce the data in different ways.  The
sequence is therefore application-specific.

3.5.3 Data Organization for 64-bit Ports

RULE 3.85
Data organization on 64-bit ports MUST conform to Figure 3-12.
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Figure 3-12.  Data organization for 64-bit ports.
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3.5.4 Data Organization for 32-bit Ports

RULE 3.90
Data organization on 32-bit ports MUST conform to Figure 3-13.

Figure 3-13.  Data organization for 32-bit ports.
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3.5.5 Data Organization for 16-bit Ports

RULE 3.95
Data organization on 16-bit ports MUST conform to Figure 3-14.

Figure 3-14.  Data organization for 16-bit ports.
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3.5.6 Data Organization for 8-bit Ports

RULE 3.100
Data organization on 8-bit ports MUST conform to Figure 3-15.

Figure 3-15.  Data organization for 8-bit ports.

3.6 References
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Chapter 4 – Timing Specification

The WISHBONE specification is designed to provide the end user with very simple timing con-
straints.  Although the application specific circuit(s) will vary in this regard, the interface itself is
designed to work without the need for detailed timing specifications.  In all cases, the only tim-
ing information that is needed by the end user is the maximum clock frequency (for [CLK_I])
that is passed to a place & route tool.  The maximum clock frequency is dictated by the time de-
lay between a positive clock edge on [CLK_I] to the setup on a stage further down the logical
signal path.  This delay is shown graphically in Figure 4-1, and is defined as Tpd,clk-su.

Figure 4-1.  Definition for Tpd,clk-su.
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OBSERVATION 4.05
Realistically, the WISHBONE interface will never be expected to operate over a nearly infinite
frequency range.  However this requirement eliminates the need for non-portable timing con-
straints (that may work only on certain target devices).

OBSERVATION 4.10
The WISHBONE interface logic assumes that a low-skew clock distribution scheme is used on
the target device, and that the clock-skew shall be low enough to permit reliable operation over
the environmental conditions.

PERMISSION 4.05
The IP core connected to a WISHBONE interface MAY include application specific timing re-
quirements.

RULE 4.10
The clock input [CLK_I] MUST have a duty cycle that is no less than 40%, and no greater than
60%.

PERMISSION 4.10
The SYSCON interface MAY use a variable clock generator.  In these cases the clock frequency
can be changed by the SYSCON interface so long as the clock edges remain clean and mono-
tonic, and if the clock does not violate the duty cycle requirements.

PERMISSION 4.15
The SYSCON interface MAY use a gated clock generator.  In these cases the clock shall be
stopped in the low logic state.  When the gated clock is stopped and started the clock edges must
remain clean and monotonic.

SUGGESTION 4.00
When using a gated clock generator, turn the clock off when the WISHBONE interconnection is
not busy.  One way of doing this is to create a MASTER interface whose sole purpose is to ac-
quire the WISHBONE interconnection and turn the clock off.  This assures that the WISHBONE
interconnection is not busy when gating the clock off.  When the clock signal is restored the
MASTER then releases the WISHBONE interconnection.

OBSERVATION 4.15
This specification does not attempt to govern the design of gated or variable clock generators.
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SUGGESTION 4.10
Design an IP core so that all of the circuits (including the WISHBONE interconnect) follow the
aforementioned RULEs, as this will make the core portable across a wide range of target devices
and technologies.

References

Orton et al.  CHANGING CLOCK FREQUENCY  US Patent No. 6,118,306
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Appendix A – WISHBONE Tutorial4

By: Wade D. Peterson, Silicore Corporation

The WISHBONE System-on-Chip (SoC) interconnection is a method for connecting digital cir-
cuits together to form an integrated circuit ‘chip’.  This tutorial provides an introduction to the
WISHBONE design philosophy and its practical applications.

The WISHBONE architecture solves a very basic problem in integrated circuit design.  That is,
how to connect circuit functions together in a way that is simple, flexible and portable.  The cir-
cuit functions are generally provided as ‘IP Cores’ (Intellectual Property Cores), which system
integrators can purchase or make themselves.

Under this topology, IP Cores are the functional building blocks in the system.  They are avail-
able in a wide variety of functions such as microprocessors, serial ports, disk interfaces, network
controllers and so forth.  Generally, the IP cores are developed independently from each other
and are tied together and tested by a third party system integrator.  WISHBONE aides the system
integrator by standardizing the IP Core interfaces.  This makes it much easier to connect the
cores, and therefore much easier to create a custom System-on-Chip.

A.1 An Introduction to WISHBONE

WISHBONE uses a MASTER/SLAVE architecture.  That means that functional modules with
MASTER interfaces initiate data transactions to participating SLAVE interfaces.  As shown in
Figure A-1, the MASTERs and SLAVEs communicate through an interconnection interface
called the INTERCON.  The INTERCON is best thought of as a ‘cloud’ that contains circuits.
These circuits allow MASTERs to communicate with SLAVEs.

The term ‘cloud’ is borrowed from the telecom community.  Oftentimes, telephone systems are
modeled as clouds that represent a system of telephone switches and transmission devices.  Tele-
phone handsets are connected to the cloud, and are used to make phone calls.  The cloud itself
represents a network that carries a telephone call from one location to another.  The activity go-
ing on inside the cloud depends upon where the call is made and where it is going.  For example,
if a call is made to another office down the hall, then the cloud may represent a local telephone
switch located in the same building.  However, if the call is made across an ocean, then the cloud
may represent a combination of copper, fiber optic and satellite transmission systems.

                                                          
4 This tutorial is not part of the WISHBONE specification.
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Figure A-1.  The WISHBONE interconnection.
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The cloud analogy is used because WISHBONE can be modeled in a similar way.  MASTER
and SLAVE interfaces (which are analogous to the telephones) communicate thorough an inter-
connection (which is analogous to the telephone network ‘cloud’).  The WISHBONE intercon-
nection network can be changed by the system integrator to suit his or her own needs.  In
WISHBONE terminology this is called a variable interconnection.

Variable interconnection allows the system integrator to change the way in which the MASTER
and SLAVE interfaces communicate with each other.  For example, a pair of MASTER and
SLAVE interfaces can communicate with point-to-point, data flow, shared bus or crossbar switch
topologies.

The variable interconnection scheme is very different from that used in traditional microcom-
puter buses such as PCI, cPCI, VMEbus and ISA bus.  Those systems use printed circuit back-
planes with hardwired connectors.  The interfaces on those buses can’t be changed, which se-
verely limits how microcomputer boards communicate with each other.  WISHBONE overcomes
this limitation by allowing the system integrator to change the system interconnection.

This is possible because integrated circuit chips have interconnection paths that can be adjusted.
These are very flexible, and take the form of logic gates and routing paths.  These can be  ‘pro-
grammed’ into the chip using a variety of tools.  For example, if the interconnection is described
with a hardware description language like VHDL or Verilog, then the system integrator has the
ability to define and adjust the interconnection.  Interconnection libraries can also be formed and
shared.

The WISHBONE interconnection itself is nothing more than a large, synchronous circuit.  It
must be designed to logically operate over a nearly infinite frequency range.  However, every
integrated circuit has physical characteristics that limit the maximum frequency of the circuit.  In
WISHBONE terminology this is called a variable timing specification.  This means that a
WISHBONE compatible circuit will theoretically function normally at any speed, but that it’s
maximum speed will always be limited by the process technology of the integrated circuit.

At Silicore Corporation we generally define our WISHBONE interconnections using the VHDL
hardware description language.  These take the form of an ASCII file that contains the VHDL
language instructions.  This allows us to fully define our interconnections in a way that best fits
the application.  However, it also allows us to share our interconnections with others, who can
adjust them to meet their own needs.  It’s important to note, though, that there’s nothing magic
about the interconnection itself.  It’s just a file, written with off-the-shelf tools, that fully de-
scribes the hardware in the interconnection.
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A.2 Types of WISHBONE Interconnection

The WISHBONE variable interconnection allows the system integrator to change the way that IP
cores connect to each other.  There are four defined types of WISHBONE interconnection, and
include:

• Point-to-point
• Data flow
• Shared bus
• Crossbar switch

A fifth possible type is the off-chip interconnection.  However, off-chip implementations gener-
ally fit one of the other four basic types.  For example, WISHBONE interfaces on two different
integrated circuits can be connected using a point-to-point interconnection.

The WISHBONE specification does not dictate how any of these are implemented by the system
integrator.  That’s because the interconnection itself is a type of IP Core interface called the IN-
TERCON.  The system integrator can use or modify an off-the-shelf INTERCON, or create their
own.

A.2.1  Point-to-point Interconnection

The point-to-point interconnection is the simplest way to connect two WISHBONE IP cores to-
gether.  As shown in Figure A-2, the point-to-point interconnection allows a single MASTER
interface to connect to a single SLAVE interface.  For example, the MASTER interface could be
on a microprocessor IP core, and the SLAVE interface could be on a serial I/O port.

Figure A-2.  The point-to-point interconnection.

A.2.2  Data Flow Interconnection

The data flow interconnection is used when data is processed in a sequential manner.  As shown
in Figure A-3, each IP core in the data flow architecture has both a MASTER and a SLAVE in-
terface.  Data flows from core-to-core.  Sometimes this process is called pipelining.

WISHBONE
SLAVE

WISHBONE
MASTER



WISHBONE SoC Architecture Specification, Revision B.2 69

Figure A-3.  The data flow interconnection.

The data flow architecture exploits parallelism, thereby speeding up execution time.  For exam-
ple, if each of the IP cores in the Figure represents a floating point processor, then the system has
three times the number crunching potential of a single unit.  This assumes, of course, that each IP
Core takes an equal amount of time to solve its problem, and that the problem can be solved in a
sequential manner.  In actual practice this may or may not be true, but it does illustrate how the
data flow architecture can provide a high degree of parallelism when solving problems.

A.2.3  Shared Bus Interconnection

The shared bus interconnection is useful for connecting two or more MASTERs with one or
more SLAVEs.  A block diagram is shown in Figure A-4.  In this topology a MASTER initiates
a bus cycle to a target SLAVE.  The target SLAVE then participates in one or more bus cycles
with the MASTER.

An arbiter (not shown in the Figure) determines when a MASTER may gain access to the shared
bus.  The arbiter acts like a ‘traffic cop’ to determine when and how each MASTER accesses the
shared resource.  Also, the type of arbiter is completely defined by the system integrator.  For
example, the shared bus can use a priority or a round robin arbiter.  These grant the shared bus
on a priority or equal basis, respectively.

The main advantage to this technique is that shared interconnection systems are relatively com-
pact.  Generally, it requires fewer logic gates and routing resources than other configurations,
especially the crossbar switch.  Its main disadvantage is that MASTERs may have to wait before
gaining access to the interconnection.  This degrades the overall speed at which a MASTER may
transfer data.
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Figure A-4.  Shared bus interconnection.

The WISHBONE specification does not dictate how the shared bus is implemented.  Later on,
we’ll see that it can be made either with multiplexer or three-state buses.  This gives the system
integrator additional flexibility, as some logic chips work better with multiplexor logic, and some
work better with three-state buses.

The shared bus is typically found in standard buses like PCI and VMEbus.  There, a MASTER
interface arbitrates for the common shared bus, and then communicates with a SLAVE.  In both
cases this is done with three-state buses.

A.2.4  Crossbar Switch Interconnection

The crossbar switch interconnection is used when connecting two or more WISHBONE MAS-
TERs together so that each can access two or more SLAVEs.  A block diagram is shown in Fig-
ure A-5.  In the crossbar interconnection, a MASTER initiates an addressable bus cycle to a tar-
get SLAVE.  An arbiter (not shown in the diagram) determines when each MASTER may gain
access to the indicated SLAVE.  Unlike the shared bus interconnection, the crossbar switch al-
lows more than one MASTER to use the interconnection (as long as two MASTERs don’t access
the same SLAVE at the same time).
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Figure A-5.  Crossbar switch interconnection.

Under this method, each master arbitrates for a ‘channel’ on the switch.  Once this is established,
data is transferred between the MASTER and the SLAVE over a private communication link.
The Figure shows two possible channels that may appear on the switch.  The first connects
MASTER ‘MA’ to SLAVE ‘SB’.  The second connects MASTER ‘MB’ to SLAVE ‘SA’.

The overall data transfer rate of the crossbar switch is higher than shared bus mechanisms. For
example, the figure shows two MASTER/SLAVE pairs interconnected at the same time.  If each
communication channel supports a data rate of 100 Mbyte/sec, then the two data pairs would op-
erate in parallel at 200 Mbyte/sec.  This scheme can be expanded to support extremely high data
transfer rates.

One disadvantage of the crossbar switch is that it requires more interconnection logic and routing
resources than shared bus systems.  As a rule-of-thumb, a crossbar switch with two MASTERs
and two SLAVEs takes twice as much interconnection logic as a similar shared bus system (with
two MASTERs and two SLAVEs).

The crossbar interconnection is a typical configuration that one might find in microcomputer
buses like5 RACEway, SKY Channel or Myrinet.

                                                          
5 Raceway: ANSI/VITA 5-1994.  SKYchannel: ANSI/VITA 10-1995.  Myrinet: ANSI/VITA 26-1998.  For more
information about these standards see www.vita.com.
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A.3 The WISHBONE Interface Signals

WISHBONE MASTER and SLAVE interfaces can be connected together in a number of ways.
This requires that WISHBONE interface signals and bus cycles be designed in a very flexible
and reusable manner.  The signals were defined with the following requirements:

• The signals allow MASTER and SLAVE interfaces to support point-to-point, data flow,
shared bus and crossbar switch interconnections.

• The signals allow three basic types of bus cycle.  These include SINGLE READ/WRITE,
BLOCK READ/WRITE and RMW (read-modify-write) bus cycles.  The operation of
these bus cycles are described below.

• A handshaking mechanism is used so that either the MASTER or the participating
SLAVE interface can adjust the data transfer rate during a bus cycle.  This allows the
speed of each bus cycle (or phase) to be adjusted by either the MASTER or the SLAVE
interface.  This means that all WISHBONE bus cycles run at the speed of the slowest in-
terface.

• The handshaking mechanism allows a participating SLAVE to accept a data transfer, re-
ject a data transfer with an error or ask the MASTER to retry a bus cycle.  The SLAVE
does this by generating the [ACK_O], [ERR_O] or [RTY_O] signals respectively.  Every
interface must support the [ACK_O] signal, but the error and retry acknowledgement
signals are optional.

• All signals on MASTER and SLAVE interfaces are either inputs or outputs, but are never
bi-directional (i.e. three-state).  This is because some FPGA and ASIC devices do not
support bi-directional signals.  However, it is permissible (and sometimes advantageous)
to use bi-directional signals in the interconnection logic if the target device supports it.

• Address and data bus widths can be altered to fit the application.  8, 16, 32 and 64-bit
data buses, and 0-64 bit address buses are defined.

• As shown in Figure A-6, all signals are arranged so that MASTER, SLAVE and
SYSCON interfaces can be connected directly together to form a simple point-to-point
interface.  This allows very compact and efficient WISHBONE interfaces to be built. For
example, WISHBONE could be used as the external system bus on a microprocessor IP
Core.  However, it’s efficient enough so that it can be used for internal buses inside of the
microprocessor.

• User defined signals in the form of ‘tags’ are allowed.  This allows the system integrator
to add special purpose signals to each WISHBONE interface.  For example, the system
integrator could add a parity bit to the address or data buses.

A comprehensive list of the WISHBONE signals and their descriptions is given in the specifica-
tion.
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Figure A-6.  The WISHBONE signals are selected to permit a MASTER, SLAVE and SYSCON
interface to be directly connected, thereby forming a simple point-to-point interface.
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A.4 The WISHBONE Bus Cycles

There are three types of defined WISHBONE bus cycles.  They include:

• SINGLE READ/WRITE
• BLOCK READ/WRITE
• READ MODIFY WRITE (RMW)

A.4.1 SINGLE READ/WRITE Cycle

The SINGLE READ/WRITE is the most basic WISHBONE bus cycle.  As the name implies, it
is used to transfer a single data operand.  Figure A-7 shows a typical SINGLE READ cycle.

The WISHBONE specification shows all bus cycle timing diagrams as if the MASTER and
SLAVE interfaces were connected in a point-to-point configuration.  They also show all of the
signals on the MASTER side of the interface.  This provides a standard way of describing the
interface without having to describe the whole system.  For example, the Figure shows a signal
called [ACK_I], which is an input to a MASTER interface.  In this configuration it is directly
connected to [ACK_O], which is driven by the SLAVE.  If the timing diagram were shown from
the perspective of the SLAVE, then the [ACK_O] signal would have been shown.  The SINGLE
READ cycle operates thusly:

1. In response to clock edge 0, the MASTER interface asserts [ADR_O()], [WE_O], [SEL_O],
[STB_O] and [CYC_O].

2. The SLAVE decodes the bus cycle by monitoring its [STB_I] and address inputs, and pres-
ents valid data on its [DAT_O()] lines.  Because the system is in a point-to-point configura-
tion, the SLAVE [DAT_O()] signals are connected to the MASTER [DAT_I()] signals.

3. The SLAVE indicates that it has placed valid data on the data bus by asserting the MAS-
TER’s [ACK_I] acknowledge signal.  Also note that the SLAVE may delay its response by
inserting one or more wait states.  In this case, the SLAVE does not assert the acknowledge
line.  The possibility of a wait state in the timing diagrams is indicated by ‘-WSS-‘.

4. The MASTER monitors the state of its [ACK_I] line, and determines that the SLAVE has
acknowledged the transfer at clock edge 1.

5. The MASTER latches  [DAT_I()] and negates its [STB_O] signal in response to [ACK_I].

The SINGLE WRITE cycle operates in a similar manner, except that the MASTER asserts
[WE_O] and places data on [DAT_O].  In this case the SLAVE asserts [ACK_O] when it has
latched the data.
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Figure A-7.  SINGLE READ cycle.
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A.4.2 BLOCK READ/WRITE Cycle

The BLOCK READ/WRITE cycles are very similar to the SINGLE READ/WRITE cycles.  The
BLOCK cycles can be thought of as two or more back-to-back SINGLE cycles strung together.
In WISHBONE terminology the term cycle refers to the whole BLOCK cycle.  The small, indi-
vidual data transfers that make up the BLOCK cycle are called phases.

The starting and stopping point of the BLOCK cycles are identified by the assertion and negation
of the MASTER [CYC_O] signal (respectively).  The [CYC_O] signal is also used in shared bus
and crossbar interconnections because it informs system logic that the MASTER wishes to use
the bus.  It also informs the interconnection when it is through with its bus cycle.

A.4.3 READ-MODIFY-WRITE (RMW) Cycle

The READ-MODIFY-WRITE cycle is used in multiprocessor and multitasking systems.  This
special cycle allows multiple software processes to share common resources by using sema-
phores.  This is commonly done on interfaces for disk controllers, serial ports and memory.  As
the name implies, the READ-MODIFY-WRITE cycle reads and writes data to a memory loca-
tion in a single bus cycle.  It prevents the allocation of a common resource to two or more proc-
esses.  The READ-MODIFY-WRITE cycle can also be thought of as an indivisible cycle.

The read portion of the cycle is called the read phase, and the write portion is called the write
phase.  When looking at the timing diagram of this bus cycle, it can be thought of as a two phase
BLOCK cycle where the first phase is a read and the second phase is a write.

The READ-MODIFY-WRITE cycle is also known as an indivisible cycle because it is designed
for multiprocessor systems.  WISHBONE shared bus interconnections must be designed so that
once an arbiter grants the bus to a first MASTER, it will not grant the bus to a second MASTER
until the first MASTER gives up the bus.  This allows a single MASTER (such as a microproces-
sor) to read some data, modify it and then write it back…all in a single, contiguous bus cycle.  If
the arbiter were allowed to change MASTERs in the middle of the cycle, then the two processors
could incorrectly interpret the semaphore.  The arbiter does this by monitoring the [CYC_O] cy-
cle from each MASTER on the interconnection.  The problem is averted because the [CYC_O]
signal is always asserted for the duration of the RMW cycle.

To illustrate this point, consider a two processor system with a single disk controller.  In this case
each processor has a MASTER interface, and the disk controller has a SLAVE interface.  Often-
times, these systems require that only one processor access the disk at any given time6.  To sat-
isfy this requirement, a semaphore bit somewhere in memory is assigned to act as a ‘traffic cop’
between the two processors.  If the bit is cleared, then the disk is available for use.  If it’s set,
then the disk controller is busy.

                                                          
6 This is a common requirement to prevent one form of disk ‘thrashing’.  In this case, if both processors were al-
lowed to access the disk during the same time interval, then one processor could request data from one sector of the
disk while the other requested data from another sector.  This could cause a situation where the disk head is con-
stantly moved between the two locations, thereby degrading its performance or causing it to fail altogether.
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Now consider a system where the two processors both need to use the disk.  We’ll call them
processor #0 and processor #1.  In order for processor #0 to acquire the disk it first reads and
stores the state of the semaphore bit, and then sets the bit by writing back to memory.  The read-
ing and setting of the bit takes place inside of a single RMW cycle.

Once the processor is done with the semaphore operation, it checks the state of the bit it read
during the first phase of the RMW cycle.  If the bit is clear it goes ahead and uses the disk con-
troller.  If the other processor attempts to use the disk controller at this time, it reads a ‘1’ from
the semaphore, thereby preventing it from accessing the disk controller.  When the first processor
(#0) is done with the disk controller, it simply clears the semaphore bit by writing a ‘0’ to it.
This allows the other processor to gain access to the controller the next time it checks the sema-
phore.

Now consider the same situation, except where the semaphore is set and cleared using a SINGLE
READ cycle followed by a SINGLE WRITE cycle.  In this case it is possible for both processors
to gain access to the disk controller at the same time…a situation that would crash the system.
That’s because the arbiter can grant the bus in the following order:

• Processor #0 reads ‘0’ from the semaphore bit.
• Processor #1 reads ‘0’ from the semaphore bit.
• Processor #0 writes ‘1’ to the semaphore bit.
• Processor #1 writes ‘1’ to the semaphore bit.

This leads to a system crash because both processors read a ‘0’ from the semaphore bit, thereby
causing both to access the disk controller.

It is important to note that a processor (or other device connected to the MASTER interface)
must support the RMW cycle in order for this to be effective.  This is generally done with special
instructions that force a RMW bus cycle.  Not all processors do this.  A good example is the
680XX family of microprocessors.  These use special compare-and-set (CAS) and test-and-set
(TAS) instructions to generate RMW cycles, and to do the semaphore operations.

A.5 Endian

The WISHBONE specification regulates the ordering of data.  This is because data can be pre-
sented in two different ways.  In the first way, the most significant byte of an operand is placed
at the higher (bigger) address.  In the second way, the most significant byte of an operand can be
placed at the lower (smaller) address.  These are called BIG ENDIAN and LITTLE ENDIAN
data operands, respectively.  WISHBONE supports both types.

ENDIAN becomes an issue when the granularity of a WISHBONE port is smaller than the oper-
and size.  For example, a 32-bit port can have an 8-bit (BYTE wide) granularity.  This results in
a fairly ambiguous situation where the most significant byte of the 32-bit operand could be
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placed at the higher or lower byte address of the port.  However, ENDIAN is not an issue when
the granularity and port size are the same.

The system integrator may wish to connect a BIG ENDIAN interface to a LITTLE ENDIAN in-
teface.  In many cases the conversion is quite straightforward, and does not require any exotic
conversion logic.  Furthermore, the conversion does not create any speed degradation in the in-
terface.  In general, the ENDIAN conversion takes place by renaming the data and select I/O sig-
nals at a MASTER or SLAVE interface.

Figure A-8 shows a simple example where a 32-bit BIG ENDIAN MASTER output (CORE ‘A’)
is connected to a 32-bit LITTLE ENDIAN SLAVE input (CORE ‘B’).  Both interfaces have 32-
bit operand sizes and 8-bit granularities.  As can be seen in the diagram, the ENDIAN conversion
is accomplished by cross coupling the data and select signal arrays.  This is quite simple since
the conversion is accomplished at the interconnection level, or using a wrapper.  This is espe-
cially simple in soft IP cores using VHDL or Verilog hardware description languages, as it
only requires the renaming of signals.

In some cases the address lines may also need to be modified between the two cores.  For exam-
ple, if 64-bit operands are transferred between two cores with 8-bit port sizes, then the address
lines may need to be modified as well.

Figure A-8.  BIG ENDIAN to LITTLE ENDIAN conversion example.
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A.6 SLAVE I/O Port Examples

In this section we’ll investigate several examples of WISHBONE interface for SLAVE I/O ports.
Our purpose is to:

• Show some simple examples of how the WISHBONE interface operates.
• Demonstrate how simple interfaces work in conjunction with standard logic primitives on

FPGA and ASIC devices.  This also means that very little logic is needed to implement the
WISHBONE interface.

• Demonstrate the concept of granularity.
• Provide some portable design examples.
• Give examples of the WISHBONE DATASHEET.
• Show VHDL implementation examples.

A.6.1 Simple 8-bit SLAVE Output Port

Figure A-9 shows a simple 8-bit WISHBONE SLAVE output port.  The entire interface is im-
plemented with a standard 8-bit ‘D-type’ flip-flop register (with synchronous reset) and a single
AND gate.  During write cycles, data is presented at the data input bus [DAT_I(7..0)], and is
latched at the rising edge of [CLK_I] when [STB_I] and [WE_I] are both asserted.

Figure A-9.  Simple 8-bit WISHBONE SLAVE output port.

The state of the output port can be monitored by a MASTER by routing the output data lines
back to [DAT_O(7..0)].  During read cycles the AND gate prevents erroneous data from being
latched into the register.

This circuit is highly portable, as all FPGA and ASIC target devices support D-type flip-flops
with clock enable and synchronous reset inputs.
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The circuit also demonstrates how the WISHBONE interface requires little or no logic overhead.
In this case, the WISHBONE interface does not require any extra logic gates whatsoever.  This is
because WISHBONE is designed to work in conjunction with standard, synchronous and combi-
natorial logic primitives that are available on most FPGA and ASIC devices.

The WISHBONE specification requires that the interface be documented.  This is done in the
form of the WISHBONE DATASHEET.  The standard does not specify the form of the da-
tasheet.  For example, it can be part of a comment field in a VHDL or Verilog source file or
part of a technical reference manual for the IP core.  Table A-1 shows one form of the WISH-
BONE DATASHEET for the 8-bit output port circuit.

The purpose of the WISHBONE DATASHEET is to promote design reuse.  It forces the origi-
nator of the IP core to document how the interface operates.  This makes it easier for another
person to re-use the core.

Table A-1.  WISHBONE DATASHEET for the 8-bit output port example.
Description Specification

General description: 8-bit SLAVE output port.

Supported cycles:
SLAVE, READ/WRITE
SLAVE, BLOCK READ/WRITE
SLAVE, RMW

Data port, size:
Data port, granularity:
Data port, maximum operand size:
Data transfer ordering:
Data transfer sequencing:

8-bit
8-bit
8-bit
Big endian and/or little endian
Undefined

Supported signal list and cross reference
to equivalent WISHBONE signals:

Signal Name WISHBONE Equiv.
ACK_O ACK_O
CLK_I CLK_I

DAT_I(7..0) DAT_I()
DAT_O(7..0) DAT_O()

RST_I RST_I
STB_I STB_I
WE_I WE_I

Figure A-10 shows a VHDL implementation of same circuit.  The WBOPRT08 entity imple-
ments the all of the functions shown in the schematic diagram of Figure A-9.
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library ieee;
use ieee.std_logic_1164.all;

entity WBOPRT08 is
port(

-- WISHBONE SLAVE interface:

ACK_O: out std_logic;
CLK_I: in std_logic;
DAT_I:  in std_logic_vector( 7 downto 0 );
DAT_O: out std_logic_vector( 7 downto 0 );
RST_I: in std_logic;
STB_I: in std_logic;
WE_I: in std_logic;

-- Output port (non-WISHBONE signals):

PRT_O: out std_logic_vector( 7 downto 0 )

    );
end entity WBOPRT08;

architecture WBOPRT081 of WBOPRT08 is

    signal  Q: std_logic_vector( 7 downto 0 );

begin

    REG: process( CLK_I )
    begin

        if( rising_edge( CLK_I ) ) then

            if( RST_I = '1' ) then
                Q <= B"00000000";
            elsif( (STB_I and WE_I) = '1' ) then
                Q <= DAT_I( 7 downto 0 );
            else
                Q <= Q;
            end if;

        end if;

    end process REG;

    ACK_O <= STB_I;
    DAT_O <= Q;
    PRT_O <= Q;

end architecture WBOPRT081;

Figure A-10.  VHDL implementation of the 8-bit output port interface.
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A.6.2 Simple 16-bit SLAVE Output Port With 16-bit Granularity

Figure A-11 shows a simple 16-bit WISHBONE SLAVE output port.  Table A-2 shows the
WISHBONE DATASHEET for this design.  It is identical to the 8-bit port shown earlier, except
that the data bus is wider.  Also, this port has 16-bit granularity.  In the next section, it will be
compared to a 16-bit port with 8-bit granularity.

Figure A-11.  Simple 16-bit WISHBONE SLAVE output port with 16-bit granularity

Table A-2.  WISHBONE DATASHEET
for the 16-bit output port with 16-bit granularity.

Description Specification
General description: 16-bit SLAVE output port.

Supported cycles:
SLAVE, READ/WRITE
SLAVE, BLOCK READ/WRITE
SLAVE, RMW

Data port, size:
Data port, granularity:
Data port, maximum operend size:
Data transfer ordering:
Data transfer sequencing:

16-bit
16-bit
16-bit
Big endian and/or little endian
Undefined

Supported signal list and cross reference
to equivalent WISHBONE signals:

Signal Name WISHBONE Equiv.
ACK_O ACK_O
CLK_I CLK_I

DAT_I(15..0) DAT_I()
DAT_O(15..0) DAT_O()

RST_I RST_I
STB_I STB_I
WE_I WE_I
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A.6.3 Simple 16-bit SLAVE Output Port With 8-bit Granularity

Figure A-12 shows a simple 16-bit WISHBONE SLAVE output port.  This port has 8-bit granu-
larity, which means that data can be transferred 8 or 16-bits at a time.

Figure A-12.  Simple 16-bit WISHBONE SLAVE output port with 8-bit granularity.

This circuit differs from the aforementioned 16-bit port because it has 8-bit granularity.  This
means that the 16-bit register can be accessed with either 8 or 16-bit bus cycles. This is accom-
plished by selecting the high or low byte of data with the select lines [SEL_I(1..0)].  When
[SEL_I(0)] is asserted, the low byte is accessed.  When [SEL_I(1)] is asserted, the high byte is
accessed.  When both are asserted, the entire 16-bit word is accessed.

The circuit also demonstrates the proper use of the [STB_I] and [SEL_I()] lines for slave de-
vices.  The [STB_I] signal operates much like a chip select signal, where the interface is selected
when [STB_I] is asserted.  The [SEL_I()] lines are only used to determine where data is placed
by the MASTER or SLAVE during read and write cycles.

In general, the [SEL_I()] signals should never be used by the SLAVE to determine when the IP
core is being accessed by a master.  They should only be used to determine where data is placed
on the data input and output buses.  Stated another way, the MASTER will assert the select sig-
nals [SEL_O()] during every bus cycle, but a particular slave is only accessed when it monitors
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that its [STB_I] input is asserted.  Stated another way, the [STB_I] signal is generated by address
decode logic within the WISHBONE interconnect, but the [SEL_I()] signals may be broadcasted
to all SLAVE devices.

Table A-3 shows the WISHBONE DATASHEET for this IP core.  This is very similar to the 16-
bit data port with 16-bit granularity, except that the granularity has been changed to 8-bits.

It should also be noted that the datasheet specifies that the circuit will work with READ/WRITE,
BLOCK READ/WRITE and RMW cycles.  This means that the circuit will operate normally
when presented with these cycles.  It is left as an exercise for the user to verify that the circuit
will indeed work with all three of these cycles.

Table A-3.  WISHBONE DATASHEET
for the 16-bit output port with 8-bit granularity.

Description Specification
General description: 16-bit SLAVE output port with 8-bit

granularity.

Supported cycles:
SLAVE, READ/WRITE
SLAVE, BLOCK READ/WRITE
SLAVE, RMW

Data port, size:
Data port, granularity:
Data port, maximum operand size:
Data transfer ordering:
Data transfer sequencing:

16-bit
8-bit
16-bit
Big endian and/or little endian
Undefined

Supported signal list and cross reference
to equivalent WISHBONE signals:

Signal Name WISHBONE Equiv.
ACK_O ACK_O
CLK_I CLK_I

DAT_I(15..0) DAT_I()
DAT_O(15..0) DAT_O()

RST_I RST_I
STB_I STB_I
WE_I WE_I

Figure A-13 shows a VHDL implementation of same circuit.  The WBOPRT16 entity imple-
ments the all of the functions shown in the schematic diagram of Figure A-12.
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entity WBOPRT16 is
port(

-- WISHBONE SLAVE interface:
ACK_O: out std_logic;
CLK_I: in std_logic;
DAT_I:  in std_logic_vector( 15 downto 0 );
DAT_O: out std_logic_vector( 15 downto 0 );
RST_I: in std_logic;
SEL_I: in std_logic_vector(  1 downto 0 );
STB_I: in std_logic;
WE_I: in std_logic;

-- Output port (non-WISHBONE signals):
PRT_O: out std_logic_vector( 15 downto 0 )

    );
end entity WBOPRT16;

architecture WBOPRT161 of WBOPRT16 is
    signal  QH: std_logic_vector( 7 downto 0 );
    signal  QL: std_logic_vector( 7 downto 0 );
begin

    REG: process( CLK_I )
    begin
        if( rising_edge( CLK_I ) ) then
            if( RST_I = '1' ) then
                QH <= B"00000000";
            elsif( (STB_I and WE_I and SEL_I(1)) = '1' ) then
                QH <= DAT_I( 15 downto 8 );
            else
                QH <= QH;
            end if;
        end if;

        if( rising_edge( CLK_I ) ) then
            if( RST_I = '1' ) then
                QL <= B"00000000";
            elsif( (STB_I and WE_I and SEL_I(0)) = '1' ) then
                QL <= DAT_I( 7 downto 0 );
            else
                QL <= QL;
            end if;
        end if;

    end process REG;

    ACK_O <= STB_I;
    DAT_O( 15 downto 8 ) <= QH;
    DAT_O(  7 downto 0 ) <= QL;
    PRT_O( 15 downto 8 ) <= QH;
    PRT_O(  7 downto 0 ) <= QL;

end architecture WBOPRT161;

Figure A-13.  VHDL implementation of the 16-bit output port with 8-bit granularity.
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A.7 WISHBONE Memory Interfacing

In this section we’ll examine WISHBONE memory interfacing and present some examples. The
purpose of this section is to:

• Introduce the FASM synchronous RAM and ROM models.
• Show a simple example of how the WISHBONE interface operates.
• Demonstrate how simple interfaces work in conjunction with standard logic primitives on

FPGA and ASIC devices.  This also means that very little logic (if any) is needed to im-
plement the WISHBONE interface.

• Present a WISHBONE DATASHEET example for a memory element.
• Describe portability issues with regard to FPGA and ASIC memory elements.

A.7.1  FASM Synchronous RAM and ROM Model

The WISHBONE interface can be connected to any type of RAM or ROM memory.  However,
some types will be faster and more efficient than others.  If the memory interface closely resem-
bles the WISHBONE interface, then everything will run very fast.  If the memory is significantly
different than WISHBONE, then everything will slow down.  This is such a fundamental and
important issue that both the WISHBONE interface and its bus cycles were designed around the
most common memory interface that could be found.

This was very problematic in the original WISHBONE concept.  That’s because there are very
few portable RAM and ROM types used across all both FPGA and ASIC devices.  In fact, the
most common memory type that could be found are what we call ‘FASM’, or the FPGA and
ASIC Subset Model7.

The FASM synchronous RAM model conforms to the connection and timing diagram shown in
Figure A-14.  The WISHBONE bus cycles all are designed to interface directly to this type of
RAM.  During write cycles, FASM Synchronous RAM stores input data at the indicated address
whenever: (a) the write enable (WE) input is asserted, and (b) there is a rising clock edge.

During read cycles, FASM Synchronous RAM works like an asynchronous ROM.  Data is
fetched from the address indicated by the ADR() inputs, and is presented at the data output
(DOUT).  The clock input is ignored.  However, during write cycles, the output data is updated
immediately during a write cycle.

A good exercise for the user is to compare the FASM Synchronous RAM cycles to the WISH-
BONE SINGLE READ/WRITE, BLOCK READ/WRITE and READ-MODIFY-WRITE cycles.
You will find that these three bus cycles operate in an identical fashion to the FASM Synchro-
nous RAM model.  They are so close, in fact, that FASM RAMs can be interfaced to WISH-
BONE with as little as one NAND gate.

                                                          
7 The original FASM model actually encompasses many type of devices, but in this tutorial we’ll focus only on the
FASM synchronous RAM and ROM models.
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While most FPGA and ASIC devices will provide RAM that follows the FASM guidelines, you
will probably find that most devices also support other types of memories as well.  For example,
in some brands of FPGA you will find block memories that use a different interface.  Some of
these will still interface very smoothly to WISHBONE, while others will introduce a wait-state.
In all cases that we found, all FPGAs and most ASICs did support at least one style of FASM
memory.

Figure A-14.  Generic FASM synchronous RAM connection and timing diagram.

The FASM ROM closely resembles the FASM RAM during its read cycle.  FASM ROM con-
forms to the connection and timing diagram shown in Figure A-15.
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Figure A-15.  FASM asynchronous ROM connection and timing diagram.

A.7.2 Simple 16 x 8-bit SLAVE Memory Interface

Figure A-16 shows a simple 8-bit WISHBONE memory.  The 16 x 8-bit memory is formed from
two 16 x 4-bit FASM compatible synchronous memories.  Besides the memory elements, the en-
tire interface is implemented with a single AND gate.  During write cycles, data is presented at
the data input bus [DAT_I(7..0)], and is latched at the rising edge of [CLK_I] when [STB_I] and
[WE_I] are both asserted.  During read cycles, the memory output data (DO) is made available at
the data output port [DAT_O(7..0)].
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Figure A-16.  Simple 16 x 8-bit SLAVE memory.

The memory circuit does not have a reset input.  That’s because most RAM memories do not
have a reset capability.

The circuit also demonstrates how the WISHBONE interface requires little or no logic overhead.
In this case, the WISHBONE interface requires a single AND gate.  This is because WISH-
BONE is designed to work in conjunction with standard, synchronous and combinatorial logic
primitives that are available on most FPGA and ASIC devices.

The WISHBONE specification requires that the interface be documented.  This is done in the
form of the WISHBONE DATASHEET.  The standard does not specify the form of the da-
tasheet.  For example, it can be part of a comment field in a VHDL or Verilog source file or
part of a technical reference manual for the IP core.  Table A-4 shows one form of the WISH-
BONE DATASHEET for the 16 x 8-bit memory IP core.

The purpose of the WISHBONE DATASHEET is to promote design reuse.  It forces the origi-
nator of the IP core to document how the interface operates.  This makes it easier for another
person to re-use the core.
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Table A-4.  WISHBONE DATASHEET for the 16 x 8-bit SLAVE memory.
Description Specification

General description: 16 x 8-bit memory IP core.

Supported cycles:
SLAVE, READ/WRITE
SLAVE, BLOCK READ/WRITE
SLAVE, RMW

Data port, size:
Data port, granularity:
Data port, maximum operand size:
Data transfer ordering:
Data transfer sequencing:

8-bit
8-bit
8-bit
Big endian and/or little endian
Undefined

Clock frequency constraints: NONE (determined by memory primitive)

Supported signal list and cross reference
to equivalent WISHBONE signals:

Signal Name WISHBONE Equiv.
ACK_O ACK_O

ADR_I(3..0) ADR_I()
CLK_I CLK_I

DAT_I(7..0) DAT_I()
DAT_O(7..0) DAT_O()

STB_I STB_I
WE_I WE_I

Special requirements:
Circuit assumes the use of synchronous
RAM primitives with asynchronous read
capability.

A.7.3 Memory Primitives and the [ACK_O] Signal

Memory primitives, specific to the FPGA or ASIC target device, are usually used for the RAM
storage elements.  That’s because most high-level languages (such as VHDL and Verilog)
don’t synthesize these very efficiently.  For this reason, the user should verify that the memory
primitives are available for the target device.

The memory circuits shown above are highly portable, but do assume that FASM compatible
memories are available. During write cycles, most synchronous RAM primitives latch the input
data when at the rising clock edge when the write enable input is asserted.  However, during read
cycles the RAM primitives may behave in different ways.

There are two types of RAM primitives that are generally found on FPGA and ASIC devices: (a)
those that synchronously present data at the output after the rising edge of the clock input, and
(b) those that asynchronously present data at the output after the address is presented to the RAM
element.

The circuit assumes that the RAM primitive is the FASM, asynchronous read type.  That’s be-
cause during read cycles the WISHBONE interface assumes that output data is valid at the rising
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[CLK_I] edge following the assertion of the [ACK_O] output.  Since the circuit ties the [STB_I]
signal back to the [ACK_O] signal, the asynchronous read RAM is needed on the circuit shown
here.

For this reason, if synchronous read type RAM primitives are used, then the circuit must be
modified to insert a single wait-state during all read cycles.  This is quite simple to do, and only
requires an additional flip-flop and gate in the [ACK_O] circuit.

Furthermore, it can be seen that the circuit operates faster if the asynchronous read type RAM
primitives are used.  That’s because the [ACK_O] signal can be asserted immediately after the
assertion of [STB_I].  If the synchronous read types are used, then a single-clock wait-state must
be added.

A.8 Point-to-point Interconnection Example

Now that we’ve reviewed some of the WISHBONE basics, it’s time to try them out with a sim-
ple example.  In this section we’ll create a complete WISHBONE system with a point-to-point
interconnection.  The system includes a 32-bit MASTER interface to a DMA8 unit, and a 32-bit
SLAVE interface to a memory.  In this example the DMA transfers data to and from the memory
using block transfer cycles.

The purpose of this system is to create a portable benchmarking device.  Although the system is
very simple, it does allow the user to determine the typical maximum speeds and minimum sizes
on any given FPGA or ASIC target device9.

Source code for this example can be found in the WISHBONE Public Domain Library for
VHDL (under ‘EXAMPLE1’ in the EXAMPLES folder).  The library also has detailed docu-
mentation for the library modules, including detailed circuit descriptions and timing diagrams for
the INTERCON, SYSCON, DMA and memory interfaces.  The reader is encouraged to review
and experiment with all of these files.

Figure A-17 shows the system.  The WISHBONE interconnection system (INTERCON) can be
found in file ICN0001a.  That system connects a simple DMA MASTER (DMA0001a) to an 8 x
32-bit register based memory SLAVE (MEM0002a).  The reset and clock signals are generated
by system controller SYSCON (SYC0001a).

                                                          
8 DMA: Direct Memory Access.
9 Benchmarking can be a difficult thing to do.  On this system the philosophy was to create a ‘real-world’ SoC that
estimates ‘typical maximum’ speeds and ‘typical minimum’ size.  It’s akin to the ‘flight envelope’ of an airplane.  A
flight envelope is a graph that shows the altitude vs. the speed of the aircraft.  It’s one ‘benchmark’ for the airplane.
While the graph may show that the airplane is capable of flying at MACH 2.3 at an altitude of 28,000 meters, it may
never actually fly in that situation during its lifetime.  The graph is simply a tool for quickly understanding the engi-
neering limits of the design.  The same is true for the WISHBONE benchmarks given in this tutorial.  However,
having said this it is important to remember that the benchmarks are real systems, and do include all of the logic and
routing resources needed to implement the design.
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Figure A-17.  Point-to-point interconnection example.

This system was synthesized and routed on two styles of Xilinx10 FPGA: the Spartan 2 and the
Virtex 2.  For benchmarking purposes the memories were altered so that they used Xilinx dis-
tributed RAMs instead of the register RAMs in MEM0002a.  A memory interface for the Xilinx
RAMs can be found in MEM0001a, which is substituted for MEM0002a.

It should be noted that the Xilinx distributed RAMs are quite efficient on the WISHBONE inter-
face.  As can be seen in the source code, only a single ‘AND’ gate was needed to interface the
RAM to WISHBONE.

The system for the Xilinx Spartan 2 was synthesized and operated on a Silicore evaluation board.
This was a ‘reality check’ that verified that things actually routed and worked as expected.  Some
of the common signals were brought out to test points on the evaluation board.  These were
monitored with an HP54620a logic analyzer to verify the operation.  Figure A-18 shows an ex-
ample trace from the logic analyzer.  Address lines, data write lines and several control signals
were viewed.  That Figure shows a write cycle with eight phases followed by a read cycle with
eight phases.  The data lines always show 0x67 because that’s the data transferred by the DMA
in this example.

                                                          
10 Xilinx is a registered trademark of Xilinx, Inc.
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Figure A-18.  Logic analyzer trace on the Spartan 2 evaluation board11.

Table A-5 shows the speed of the system after synthesis and routing.  The Spartan 2 bench-
marked at about 428 Mbyte/sec, and was tested in hardware (HW TEST).  The Virtex 2 part was
synthesized and routed, but was only tested under software (SW TEST).

Table A-5.  32-bit Point-to-point Interconnection Benchmark Results

MFG & Type Part Number HW
TEST

SW
TEST

Size
Timing

Constraint
(MIN)

Actual
Speed

(MAX)

Data Transfer
Rate

(MAX)
Xilinx

Spartan 2
(FPGA)

XC2S50-5-PQ208C √ 53 SLICE 100 MHz 107 MHz 428 Mbyte/sec

Xilinx
Virtex 2
(FPGA)

XC2V40-4-FG256C √ 53 SLICE 200 MHz 203 MHz 812 Mbyte/sec

Notes:
VHDL synthesis tool: Altium Accolade PeakFPGA 5.30a
Router: Xilinx Alliance 3.3.06I_V2_SE2
Hardware evaluation board: Silicore 170101-00 Rev 1.0
Listed size was reported by the router.
Spartan 2 test used ‘-5’ speed grade part (slower than the faster ‘-6’ part).

                                                          
11 The logic analyzer samples at 500 Mhz, so the SoC was slowed down to make the traces look better.  This trace
was taken with a SoC clock speed of 5 MHz.  Slowing the clock down is also a good way to verify that the speed of
the WISHBONE interface can be ‘throttled’ up and down.
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A.9 Shared Bus Example

Now that we’ve built a WISHBONE point-to-point interconnection, it’s time to look at a more
complex SoC design.  In this example, we’ll create a 32-bit shared bus system with four MAS-
TERs and four SLAVEs.  Furthermore, we’ll re-use the same DMA, memory and SYSCON in-
terfaces that we used in the point-to-point interconnection example above.  This will demonstrate
how WISHBONE interfaces can be adapted to many different system topologies.

This example will require the introduction of some new concepts.  As the system integrator,
we’ll need to  make some decisions about how we want our system to work.  After that, we’ll
need to create the various parts of the design in order to finish the job.  Some of the decisions
and tasks include:

• Choosing between multiplexed and non-multiplexed bus topology.
• Choosing between three-state and multiplexor based interconnection logic.
• Creating the interconnection topology.
• Creating an address map (using variable address decoding).
• Creating a four level round-robin arbiter.
• Creating and benchmarking the system.

A.9.1 Choosing Between Multiplexed and Non-multiplexed Bus Topology

The first step in designing a shared bus is to determine how we’ll move our data around the sys-
tem.  In this section we’ll explore multiplexed and non-multiplexed buses, and explore some of
the trade-offs between them.

The big advantage of multiplexed buses is that they reduce the number of interconnections by
routing different types of data over the same set of signal lines.  The most common form of mul-
tiplexed bus is where address and data lines share a common set of signals.  A multiplexed bus is
shown in Figure A-19.  For example, a 32-bit address bus and 32-bit data bus can be combined to
form a 32-bit common address/data bus.  This reduces the number of routed signals from 64 to
32.

The major disadvantage of the multiplexed bus is that it takes twice as long to move the infor-
mation.  In this case a non-multiplexed, synchronous bus can generally move address and data
information in as little as one clock cycle.  Multiplexed address and data buses require at least
two clock cycles to move the same information.

Since we’re creating a benchmarking system that is optimized for speed, we’ll use the non-
multiplexed scheme for this example.  This will allow us to move one data operand during every
clock cycle.

It should be noted that multiplexed buses have long been used in the electronics industry.  In
semiconductor chips the technique is used to reduced the number of pins on a chip.  In the mi-
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crocomputer bus industry the technique is often used to reduce the number of backplane con-
nector pins.

Figure A-19.  Circuit and timing diagram for a multiplexed address/data bus.

A.9.2 Choosing Between Three-State and Multiplexor Interconnection Logic

WISHBONE interconnections can use three-state12 or multiplexor logic to move data around a
SoC.  The choice depends on what makes sense in the application, and what’s available on the
integrated circuit.

Three-state I/O buffers have long been used in the semiconductor and microcomputer bus indus-
tries.  These reduce the number of signal pins on an interface.  In microcomputer buses with
master-slave architectures, the master that ‘owns’ the bus turns its buffers ‘on’, while the other
master(s) turn their buffers ‘off’13.  This prevents more than one bus master from driving any
signal line at any given time.  A similar situation also occurs at the slave end.  There, a slave that
participates in a bus cycle enables its output buffers during read cycles.

In WISHBONE, all IP core interfaces have ‘in’ and ‘out’ signals on the address, data and other
internal buses.  This allows the interface to be adapted to point-to-point, multiplexed and three-
state I/O interconnections.  Figure A-20 shows how the ‘in’ and ‘out’ signals can be connected to
a three-state I/O bus14.

                                                          
12 Three-state buffers are sometimes called Tri-State buffers. Tri-State is a registered trademark of National
Semiconductor Corporation.
13 Here, ‘on’ and ‘off’ refer to the three-state and non three-state conditions, respectively.
14 Also note that the resistor/current source shown in the figure can also be a pull-down resistor or a bus terminator,
or eliminated altogether.
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Figure A-20.  Connection of a data bus bit to a three-state interconnection.

A simple SoC interconnection that uses three-state I/O buffers is shown in the block diagram of
Figure A-21(a).  There, the data buses on two master and two slave modules are interconnected
with three-state logic.  However, this approach has two major drawbacks.  First, it is inherently
slower than direct interconnections.  That’s because there are always minimum timing parame-
ters that must be met to turn buffers on-and-off.  Second, many IC devices do not have any inter-
nal three-state routing resources available to them, or they are very restrictive in terms of loca-
tion or quantity of these interconnects.

As shown in Figure A-21(b), the SoC bus can be adapted to use multiplexor logic to achieve the
same goal.  The main advantage of this approach is that it does not use the three-state routing
resources which are not available on many FPGA and ASIC devices.

The main disadvantage of the multiplexor logic interconnection is that it requires a larger number
of routed interconnects and logic gates (which are not required with the three-state bus ap-
proach).

However, there is also a growing body of evidence that suggests that this type of interconnection
is easier to route in both FPGA and ASIC devices.  Although this is very difficult to quantify, the
author has found that the multiplexor logic interconnection is quite easily handled by standard
FPGA and ASIC routers.  This is because:

• Three-state interconnections force router software to organize the SoC around the fixed
three-state bus locations.  In many cases, this constraint results in poorly optimized and/or
slow circuits.
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• Very often, ‘bit locations’ within a design are grouped together.  In many applications, the
multiplexor logic interconnection is easier to handle for place & route tools.

• Pre-defined, external I/O pin locations are easier to achieve with multiplexor logic inter-
connections.  This is especially true with FPGA devices.

For the shared bus example we will use multiplexor logic for the interconnection.  That’s be-
cause multiplexor logic interconnections are more portable than three-state logic designs.  The
shared bus design in this example is intended to be used on many brands of FPGA and ASIC de-
vices.

Figure A-21.  Three-state bus interconnection vs. multiplexor logic interconnection.
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A.9.3 Creating the Interconnection Topology

In the previous two sections it was decided to use multiplexor interconnections with non-
multiplexed address and data buses.  In this section we’ll refine those concepts into a broad in-
terconnection topology for our system.  However, we’ll save the details for later.  For now, we’re
just interested in looking at some of the general issues.

In WISHBONE nomenclature, the interconnection is also called the INTERCON.  The INTER-
CON is an IP Core that connects all of the MASTER, SLAVE and SYSCON cores together.

Figure A-22 shows the generic topology of an INTERCON that supports multiplexor intercon-
nections with multiplexed address and data buses.  By ‘generic’, we mean that there are ‘N’
MASTERs and SLAVEs shown in the diagram.  The actual number of MASTER and SLAVE
interfaces can be adjusted up or down, depending upon what’s needed in the system.  In the
shared bus example we’ll use four MASTERs and four SLAVEs.  However, for now we’ll think
in more general terms.

An interface called the SYSCON provides the system with a stable clock [CLK_O] and reset
signal [RST_O].  For now, we’ll assume that the clock comes from off-chip, and that the reset
signal is synchronized from some global system reset.

After the initial system reset, one or more MASTERs request the interconnection, which we’ll
call a ‘bus’ for now.  MASTERs do this by asserting their [CYC_O] signal.  An arbiter, which
we’ll discuss shortly, determines which MASTER can use the bus.  One clock edge after the as-
sertion of a [CYC_O] signal the arbiter grants the bus to one of the MASTERs that requested it.
It grants the bus by asserting grant lines GNT0 – GNTN and GNT(N..0).  This informs both the
INTERCON as to which MASTER can own the bus.

Once the bus is arbitrated, the output signals from the selected MASTER are routed, via multi-
plexors, onto the shared buses.  For example, if MASTER #0 obtains the bus, then the address
lines [ADR_O()] from MASTER #0 are routed to shared bus [ADR()].  The same thing happens
to the data out [DAT_O()], select out [SEL_O()], write enable [WE_O] and strobe [STB_O] sig-
nals.  The shared bus output signals are routed to the inputs on the SLAVE interfaces.

The arbiter grant lines are also used to enable the terminating signals [ACK_I], [RTY_I] and
[ERR_I].  These are enabled at the MASTER that acquired the bus.  For example, if MASTER
#0 is granted the bus by the arbiter, then the [ACK_I], [RTY_I] and [ERR_I] are enabled at
MASTER #0.  Other MASTERs, who may also be requesting the bus, never receive a terminat-
ing signal, and therefore will wait until they are granted the bus.

During this interval the common address bus [ADR()] is driven with the address lines from the
MASTER.  The address lines are decoded by the address comparator, which splits the address
space into ‘N’ sections.  The decoded output from the comparator is used to select the slave by
way of its strobe input [STB_I].  A SLAVE may only respond to a bus cycle when its [STB_I] is
asserted.  This is also a wonderful illustration of the partial address decoding technique used by
WISHBONE, which we’ll discuss in depth below.
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For example, consider a system with an addressing range of sixteen bits.  If the addressing range
were evenly split between all of the SLAVEs, then each SLAVE would be allocated 16 Kbytes
of address space.  This is shown in the address map of Figure A-23.   In this case, the address
comparator would decode bits [ADR(15..14)].  In actual practice the system integrator can alter
the address map at his or her discretion.

Once a SLAVE is selected, it participates in the current bus cycle generated by the MASTER.  In
response to the cycle, the SLAVE must assert either its [ACK_O], [RTY_O] or [ERR_O] output.
These signals are collected with an ‘or’ gate, and routed to the current MASTER.

Also note that during read cycles, the SLAVE places data on its [DAT_O()] bus.  These are
routed from the participating SLAVE to the current MASTER by way of a multiplexor.  In this
case, the multiplexor source is selected by some address lines which have been appropriately se-
lected to switch the multiplexor.

Once the MASTER owning the bus has received an asserted terminating signal, it terminates the
bus cycle by negating its strobe output [STB_O].  If the MASTER is in the middle of a block
transfer cycle, it will generate another phase of the block transfer.  If it’s performing a SINGLE
cycle, or if its at the end of a BLOCK cycle, the MASTER terminates the cycle by negating its
[CYC_O] signal.  This informs the MASTER that it’s done with the bus, and that it can re-
arbitrate it.
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Figure A-22.  WISHBONE shared bus with multiplexor interconnections.
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Figure A-23.  Address map example.

A.9.4 Full vs. Partial Address Decoding

The address comparitor in our INTERCON example is a good way to explain the concept of
WISHBONE partial address decoding.

Many systems, including standard microcomputer buses like PCI and VMEbus, use full address
decoding.  Under that method, each slave module decodes the full address bus.  For example, if a
32-bit address bus is used, then each slave decodes all thirty-two address bits (or at least a large
portion of them).

SoC buses like WISHBONE use partial address decoding on slave modules.  Under this method,
each slave decodes only the range of addresses that it uses.  For example, if the slave has only
four registers, then the WISHBONE interface uses only two address bits.  This technique has the
following advantages:

• It facilitates high speed address decoders.
• It uses less redundant address decoding logic (i.e. fewer gates).
• It supports variable address sizing (between zero and 64-bits).
• It supports the variable interconnection scheme.
• It gives the system integrator a lot of flexibility in defining the address map.

For example, consider the serial I/O port (IP core) with the internal register set shown in Figure
A-24(a).  If full address decoding is used, then the IP core must include an address decoder to
select the module. In this case, the decoder requires: 32 bits – 2 bits = 30 bits.  In addition, the IP
core would also contain logic to decode the lower two bits which are used to determine which
I/O registers are selected.

If partial address decoding is used, then the IP core need only decode the two lower address bits
(22 = 4).  The upper thirty bits are decoded by logic outside of the IP core.  In this case the de-
coder logic is shown in Figure A-24(b).

SLAVE #0
0x0000

0x3FFF
0x4000

0x7FFF
0x8000

0xBFFF
0xC000

0xFFFF

SLAVE #1

SLAVE #2

SLAVE #3
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Standard microcomputer buses always use the full address decoding technique.  That’s because
the interconnection method does not allow the creation of any new signals on the interface.
However, in WISHBONE this limitation does not exist.  WISHBONE allows the system inte-
grator to modify the interconnection logic and signal paths.

One advantage of the partial address decoding technique is that the size of the address decoder
(on the IP core) is minimized.  This speeds up the interface, as decoder logic can be relatively
slow.  For example, a 30-bit full address decoder often requires at least 30 XOR gates, and a 30-
input AND gate.

Another advantage of the partial address decoding technique is that less decoder logic is re-
quired.  In many cases, only one ‘coarse’ address decoder is required.  If full address decoding is
used, then each IP core must include a redundant set of address decoders.

Another advantage of the partial address decoding technique is that it supports variable address
sizing.  For example, on WISHBONE the address path can be any size between zero and 64-bits.
Slave modules are designed to utilize only the block of addresses that are required.  In this case,
the full address decoding technique cannot be used because the IP core designer is unaware of
the size of the system address path.

Another advantage of the partial address decoding technique is that it supports the variable inter-
connection scheme.  There, the type of interconnection logic is unknown to the IP core designer.
The interconnection scheme must adapt to the types of slave IP cores that are used.

The major disadvantage of the partial address decoding technique is that the SoC integrator must
define part of the address decoder logic for each IP core.  This increases the effort to integrate
the IP cores into the final SoC.
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Figure A-24.  WISHBONE partial address decoding technique.
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A.9.5 The System Arbiter

The system arbiter determines which MASTER can use the shared bus.  The WISHBONE speci-
fication allows a variety of arbiters to be used.  However, in this example a four level round-
robin arbiter is used.

Round-robin arbiters give equal priority to all of the MASTERs.  These arbiters grant the bus on
a rotating basis much like the four position rotary switch shown in Figure A-25.  When a MAS-
TER relinquishes the bus (by negating its [CYC_O] signal), the switch is turned to the next posi-
tion, and the bus is granted to the MASTER on that level.  If a request is not pending on a certain
level, the arbiter skips over that level and continues onto the next one.  In this way all of the
MASTERs are granted the bus on an equal basis.

Figure A-25.  Round-robin arbiters grant the bus on a rotating
basis much like a rotary switch.

Round-robin arbiters are popular in data acquisition systems where data is collected and placed
into shared memory.  Often these peripherals must off-load data to memory on an equal basis.
Priority arbiters (where each MASTER is assigned a higher or lower level of priority) do not
work well in these applications because some peripherals would receive more bus bandwidth
than others, thereby causing data ‘gridlock’.

The arbiter used in this example can be found in the WISHBONE Public Domain Library for
VHDL.  ARB0001a is used for the example.

A.9.6 Creating and Benchmarking the System

The final task in our shared bus system example is to create and benchmark the entire system.
The INTERCON in our example system is based on the generic shared bus topology that was
described above.  However, that system is fine tuned to give the exact features that we will need.

The final system supports four DMA0001a MASTERs, four MEM0002a memories (SLAVEs), a
32-bit data bus, a five bit address bus, a single SYC0001a system controller and a ARB0001a

MASTER #0

MASTER #1

MASTER #2

MASTER #3
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four level round-robin arbiter.  The resulting VHDL file can be found under ICN0002a in the
WISHBONE Public Domain Library for VHDL.

In this application, the round-arbiter was chosen because all of the MASTERs are DMA con-
trollers.  That means that all four MASTERs continuously vie for the bus.  If a priority arbiter
were used, then only the one or two highest priority MASTERs would ever get the bus.

As we’ll see shortly, the error and retry signals [ERR_I] and [RTY_I] are not supported on the
MASTER and SLAVE interfaces on our example system.  That’s perfectly okay because these
signals are optional in the WISHBONE specification.  We could have added these signals in
there, but they would have been removed by synthesis and router logic minimization tools.

Since all of the MASTERs and SLAVEs on this system have identical port sizes and granulari-
ties, the select [SEL] interconnection has been omitted.  This could have been added, but it
wasn’t needed.

The INTERCON system includes a partial address decoder for the SLAVEs.  This decoder cre-
ates the system address space shown in Figure A-26.  The final address map is shown in Table
A-6.

Figure A-26.  Address map used by the INTERCON example.

Table A-6.  Address spaces used by INTERCON.
DMA Master: DMA’s To: At Addresses Using Cycles
MASTER #0 SLAVE #0 0x00 – 0x07 BLOCK READ/WRITE
MASTER #1 SLAVE #1 0x08 – 0x0F BLOCK READ/WRITE
MASTER #2 SLAVE #2 0x10 – 0x17 BLOCK READ/WRITE
MASTER #3 SLAVE #3 0x18 – 0x1F SINGLE READ/WRITE

Source code for this example can be found in the WISHBONE Public Domain Library for
VHDL (in the EXAMPLES folder).  The library also has detailed documentation for the library
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modules, including detailed circuit descriptions and timing diagrams.  The reader is encouraged
to review and experiment with all of these files.

This system was synthesized and routed on two styles of Xilinx15 FPGA: the Spartan 2 and the
Virtex 2.  For benchmarking purposes the memories were altered so that they used Xilinx dis-
tributed RAMs instead of the register RAMs in MEM0002a.  A memory interface for the Xilinx
RAMs can be found in MEM0001a, which is substituted for MEM0002a.

It should be noted that the Xilinx distributed RAMs are quite efficient on the WISHBONE inter-
face.  As can be seen in the source code, only a single ‘AND’ gate was needed to interface the
RAM to WISHBONE.

The system for the Xilinx Spartan 2 was synthesized and operated on a Silicore evaluation board.
In order to verify that the system actually does run correctly, an HP54620a logic analyzer was
connected to test pins on the board, and some of the signals were viewed.  Figure A-27 shows the
trace.  Address lines, data write lines and several control signals are shown.

Figure A-27.  Logic analyzer trace on the Spartan 2 evaluation board16.

Table A-7 shows the speed of the system after synthesis and routing.  The Spartan 2 bench-
marked at about 220 Mbyte/sec, and was tested in hardware (HW TEST).  The Virtex 2 part was
only synthesized and routed, and showed a maximum speed of about 404 Mbyte/sec (SW TEST).

                                                          
15 Xilinx is a registered trademark of Xilinx, Inc.
16 The logic analyzer samples at 500 Mhz, so the SoC was slowed down to make the traces look better.  This trace
was taken with a SoC clock speed of 5 MHz.
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Table A-7.  32-bit Shared Bus Interconnection Benchmark Results
MFG

&
Type

Part Number HW
TEST

SW
TEST

Size
Timing

Constraint
(MIN)

Actual
Speed

(MAX)

Data Transfer
Rate

(MAX)
Xilinx

Spartan 2
(FPGA)

XC2S50-5-PQ208C √ 356 SLICE 55 MHz 55MHz 220 Mbyte/sec

Xilinx
Virtex 2
(FPGA)

XC2V250-5-FG256C √ 355 SLICE 99 MHz 101 MHz 404 Mbyte/sec

Notes:
VHDL synthesis tool: Altium Accolade PeakFPGA 5.30a
Router: Xilinx Alliance 3.3.06I_V2_SE2
Hardware evaluation board: Silicore 170101-00 Rev 1.0
Listed size was reported by the router.
Spartan 2 test used ‘-5’ speed grade part (slower than the faster ‘-6’ part).

A.10 References

Di Giacomo, Joseph.  Digital Bus Handbook.  McGraw-Hill 1990.  ISBN 0-07-016923-3.
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logo. See WISHBONE logo
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MASTER, 20
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module, 20
multiplexed bus, 94
multiplexor interconnection, 20
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RST_O signal, 29
RTL design methodology, 22
RTY_I signal, 31, 36
RTY_O signal, 32, 38
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shared bus interconnection, 22, 69
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structured design, 10, 23
SUGGESTION, 13
switched fabric interconnection, 12, 23
synchronous protocol, 12
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system controller. See SYSCON
System-on-Chip (SoC), 23
TAGN_I signal, 29, 38
TAGN_O signal, 29, 30, 38
target device, 23
three-state bus interconnection, 24, 95
timing delay, 37
timing diagrams, 13
timing specification, 24, 62
transition path, 11
variable address path, 11
variable clock generator, 24, 63
variable data path, 11
variable interconnection, 24, 67, 68
variable timing specification, 24, 67
Verilog, 24
VHDL, 24
VMEbus, 24
WE_I signal, 32
WE_O signal, 31
WISHBONE

copyright release, 3
DATASHEET, 25, 26, 28, 38
disclaimer, 3
documentation standard, 26
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revision history, 4
revision level, 26
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steward, 3

WORD(N), 54
wrapper, 25
WSM (wait state MASTER), 15
WSS (wait state SLAVE), 15
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