

 A Powering Unit for an OpenGL Lighting Engine

David_Harris@hmc.edu
Harvey Mudd College

Abstract

The OpenGL geometry pipeline lighting stage

requires raising a number in the range [0, 1] to a power
between [1, 128] to compute specular reflections and
spotlights. The result need only be accurate to a number
of bits related to the color depth of the output device.
This paper describes a hardware implementation of such
a powering unit based on a logarithm lookup table, a
multiplier, and an inverse log table. The log lookup table
is partitioned into subintervals to reduce table size. A
synthesized design uses 84k gates to achieve 10-bit
accuracy with a latency of 9.62 ns in a 180 nm process.
Although the system is tailored for the OpenGL
application, the same principles can be applied to the
design of other powering units.

1: Introduction

OpenGL is a standard for professional 3D graphics
[1,2]. The OpenGL pipeline consists of floating-point
intensive transformation and lighting followed by short
integer computations for rasterization. Hardware
graphics accelerators have traditionally focused on the
rasterization stages, but have become so fast that
transformation and lighting are now a bottleneck.
Therefore, the transformation and lighting calculations
are moving from the host processor to a hardware
transform and lighting (T&L) engine [3].

The T&L Engine accepts vertices and normal
vectors and performs matrix multiplies for coordinate
system transformations. It then calculates ambient,
emissive, diffuse, and specular lighting. Specular
lighting results in highlights when light comes from a
particular direction and reflects off the surface. Lights
may be specified as spotlights that also favor a particular
direction. Both specular lighting and directed spotlight
calculations involve raising the cosine of an angle to a
power to determine the light intensity reaching the
viewer. Specifically, the OpenGL pipeline must raise a
number in the range [0, 1] to a (possibly non-integer)
power in the range [0, 128]. In practice the power is
usually in the range [1,128] and this design is restricted
to that range for ease of hardware implementation. Such
a limit is consistent with the philosophy of accelerating
the common OpenGL modes and trapping to software

for other modes. The inputs and outputs of the pipeline
are commonly represented as single-precision IEEE
floating-point numbers [4].

Accurately computing AB is considered a difficult
floating-point operation [5]. Approximations for
specific cases can be much more efficient. For example,
Tang [6,7] describes an algorithm for exp(B) using range
reduction, a polynomial approximation, and
reconstruction. Lookup tables are used to assist the
reconstruction. Efficient approaches involving table
lookup and interpolation exist when B is a constant
[8,9]. Software math libraries [10] often rely on many
multiplications. If B were an integer, a limited number
of multiplications would suffice. Unfortunately, none of
these approaches are well suited to a low-cost direct
hardware implementation supporting floating-point
values for A and B but requiring only modest accuracy.
Indeed, the author is unaware of any published work on
powering units optimized for such criteria.

This paper describes an algorithm and hardware
implementation for calculating P = AB. A and B are
provided at arbitrarily high precision with A ∈ [0,1], B ∈
[1,2b]. P ∈ [0,1] is expressed as a fixed point number
faithfully rounded to p fractional bits. The algorithm
uses the identity

ABBA 2log2= (1)

where lookup tables are used for the logarithm and
exponential. For OpenGL, b is 7 and p is typically 8 or
10, depending on the number of bits used to represent
each red, green, blue, and alpha color component.

The hardware cost depends on the size of the lookup
tables required to produce a p-bit result. If a single
logarithm lookup table were used, we will find the size
grows as O(2b+p) and is impractically large. A key idea
of this paper is to partition the logarithm table into
multiple tables over subintervals, as done by Coleman et
al. [11]. This leads to O(b) tables that grow as O(2p) for
an area of O(b2p).

This paper presents the algorithm and error analysis.
Based on the error analysis, we determine the size of the
lookup tables. The design was coded in Verilog and
synthesized to produce area and timing results. The same
principles apply to the design of hardware powering
units for other applications.

2: Algorithm

We wish to compute P = AB where A and B are

floating point numbers in the ranges [0,1] and [1,2b],
respectively. The result is faithfully rounded to p
fractional bits. This means that the returned result is
guaranteed to be one of the two fixed point numbers that
surround the exact result. Faithful rounding is more
practical than exact rounding for a powering unit
because it is very expensive to calculate the result to the
high level of precision required to round exactly [5].

We begin with the identity ABBA 2log2= . The
integer portion of log2 A is the exponent field of A
because A is provided as a floating point number. The
fractional portion of the logarithm is looked up from a
table given the significand field of A. A multiplier
computes and the result is expressed in
fixed point format. We finally determine the result 2

ABX 2log=
X

by table lookup on the fractional part of X followed by a
shift by the integer portion of X. For convenience, this
fraction may be expressed as a floating point number for
use later in the pipeline.

To express the algorithm more precisely, we must
define some notation. Let the bit vector x[m:n] represent

. Let ; this is the number of

bits required to represent the integer portion of the
logarithm of the smallest A=2

∑
=

m

ni

iix 2][( 1log2 +=′ pp

[]1:1� nA −−

[]2:� nbB −

)

-p that will not generate a
result of 0. Let be A truncated to n1

fractional bits and be the corresponding fixed
point representation of B with b+1 integer bits and n2
fractional bits. One can readily convert from floating
point inputs into these fixed point representations by
truncation and shift of the signficands. Let be
the final result faithfully rounded to p fractional bits.

[]pP −:0�

Figure 1 shows the powering algorithm. It first
handles special cases of large and small inputs. Note that
only bits of integer part must be maintained in the
log lookup and multiplication because if the integer
portion exceeds this range, the final result will be 0. The
number of bits for each intermediate result required to
achieve a particular accuracy will be explored in the next
section.

p′

3: Error analysis

To guarantee a faithfully rounded result, we must

consider the sources of error introduced by the finite
precision lookup tables and multiplier. Given these
sources, we determine the necessary table sizes.

if 1� =A then 1� =P

else if ()12� +−< pA then 0� =P
else begin

lookup [] ())1(
23

12�log:1 +−+−=−−′ nAnpL

multiply [] BLnpX �:1 4 •=−−′

if 1+≥ pX then 0� =P
else begin

 lookup [] [] ()()144 2:12:1
+−+−−−=−−

nnXpE

right shift []]0:1[:0� −′>>=− pXEpP
end

end
Figure 1: Powering algorithm

The logarithm table should look up the logarithm of

A, but instead looks up the logarithm of 1ε+A =
)1(12� +−+ nA where the truncation error is

()1
1

12 +−≤ nε (2)

Observe the benefit of programming the logarithm
table for entry A� with ())1(

2
12�log +−+− nA : if we had

programmed the table with ()A�log2− , the error ε1
caused by truncation of A could be twice as great.

The logarithm table produces a result rounded to the
nearest fixed point number with n3 fractional bits. This
introduces another error representing the difference
between the exact logarithm and the table contents.

()1
3

32 +−≤ nε (3)

The B input to the multiplier is truncated to
[]2:� nbB − with only n2 fractional bits so

22�
2

nBB −<−=ε (4)

The product is truncated to n4 bits before being used
in the exponent lookup table. As in the logarithm table

()1
4

42 +−≤ nε (5)

Finally, the exponent table produces a result
rounded to the nearest fixed point number with p
fractional bits, introducing a further error.

()1
5 2 +−≤ pε (6)

Considering all these errors, we actually compute

() ()()
5

log 431222� εεεεε += ++++ ABP (7)

For faithful rounding, we must choose tables large
enough that the error is small enough: pPP −<− 2� .

() ()() pABAB −++++ <−+ 222 243122 log
5

log εεεεε (8)

Because the errors are small, we use first-order
Taylor series approximations for log2 x and 2x

()
2ln

loglog 22 x
xx εε +=+ (9) ε

(2ln122 εε +=+ xx) (10) <


− 2ε

Substituting (9) into (8) and eliminating quadratic
error terms, we find

pAB
A

A
AB

−
++






 ++

<−+ 222 2
4223

1
2 log

5

log
2ln

log
ε

εεε
ε

 (11) Ae
<


3 2ε

Then substituting (10) into (11) and simplifying, we
find our error bound

() p
A
BB BAA −<++++ 22ln2ln2lnlog 543221 εεεεε (12)

This bound depends on the input A; for small values
of A, we can place looser constraints on the errors than
when A is close to 1. This suggests that we could benefit
from partitioning the logarithm table into subintervals
with greater precision for inputs close to unity. We will
choose upper bounds on ε1, ε2, ε3, ε4, and ε5 to ensure
that (12) is satisfied. The bounds on the logarithm table
errors ε1 and ε3 will depend on the value of A. The other
bounds will be independent of A and B.

To find bounds on ε1 and ε3 we take a derivative of
their terms with respect to B to find the maximum value
each term can take on for a given value of A. In both
cases, this maximum occurs at

b
eA

eA

AB
b −−

−

>

<








−=

2

1

otherwise
2
ln

1
1

 (13)

Also observe that the weight on the ε2 term takes on
a maximum value at A=1/e, B=1 of

e
AAB 12lnlog2 ≤ (14)

Using (13) and (14) and taking an upper bound of 1
for AB, we reduce (12) to

b
eA

eA

e

AeeAeA

A
e

p

bb

−−

−

−

>

<
<















++++

++
−

++
−

++++

2

1

543
2

1

54
321

543
2

1

otherwise2

2ln2ln22

2ln
ln

2ln
ln

2ln2ln

εεε
ε

ε

εε
εεε

εεε
ε

ε

 (15)

We already bounded ε5 in (6). Reducing the
errors ε1 and ε4 is costly because these determine the
sizes of the logarithm and exponent lookup tables. To
minimize table sizes while obtaining sufficient accuracy,
we will choose n1, n2, n3, and n4 to satisfy (15).

b
eA

eA

AeA
p

b
−−

−

+

>

<







2

1

2)(-

1

1

1

otherwise

2
ln
1

ε

 (16)

)4(2 2 +−< p

e
ε

 (17)

b
eA

eAA
p

b
−−

−

+

>

<






−

2

1

4)(-

3

3

otherwise

2ln2
ln

2ln
2ln

ε

ε

 (18)

)3(
4 22ln +−< pε (19)

Taking 11 2−
<e and , we solve (4) and (17)

for n

022ln <

2 = p + 3 and (5) and (19) for n4 = p + 2. We will
choose n1 and n3 in the next section based on our
logarithm table design.

4: Implementation

This section describes a Verilog implementation of

the powering algorithm. It presents the table designs, a
block diagram of the unit, the verification methodology,
and the synthesis results. The inputs A and B are IEEE
single-precision floating-point numbers. The output P is
calculated as a fixed point number with p bits of fraction
and is converted to floating-point format for later use.
The Verilog model is parameterized by b and p. The
key for an efficient design is a logarithm table
partitioned into multiple subintervals.

4.1: Logarithm table design

If a single logarithm lookup table indexed with n1

bits were used to cover all inputs A across the interval
[0,1], (16) implies it would have to be large enough that
2bε1 < 2-(p+2) or ε1 < 2-(p+b+2). (2) requires n1 = p+b+1,
so the lookup table would have 2p+b+1 entries. This is
costly for b = 7, p = 10.

Notice that the weight on the ε1 error in (16)
increases as A approaches 1. Hence, we use multiple
logarithm lookup tables valid over different subintervals
with greater precision for inputs close to unity.
Specifically, we use b+2 tables: T0�Tb+1. Table Ti
covers the subinterval [1-2-i, 1-2-(i+1)) except table Tb+1
covers the subinterval [1-2-(b+1), 1). Each table is indexed
with only 1

~n bits of A and returns an approximation to

the logarithm where the number of

fractional bits n increases with the table number i.

[inpL 3:1 −−′
i
3

1

 entry
(~(

2 2�log −+− nA
)1

=
~(1++− ni2j

1 ≤ε

(~
2− n

2
1b +

2 •i

)i−

2 •

(ni +− 13

]

We index the table using a fixed point
representation of A. Values of A in T ()bii ≤≤0 are
binary fractions with i leading 1�s. We treat the
subsequent ~n

th
[]

 bits as the index j into the table and
truncate the remaining less significant bits. Therefore,
the of Ti holds

))2
3
i 1:1 ++−−′ inpL for

21� −−= iA + . Hence, ()2~
1ε 12 ++− in≤ . Table

Tb+1 covers the same size subinterval as table Tb, so for
values of A in this table, ()2~

1+− bn2 + . Now we can
find a bound on the error introduced in the result by the
finite sized logarithm lookup tables.

j

Theorem 1: The maximum weighted magnitude of

the ε1 error term in (16) introduced by table Ti is
)2

1
107.1 +•≤iw ε .

Proof: The breakpoint occurs in table T
b

eA
−−= 2

b,
as seen from the Taylor series approximation

()22 221 bb
e −−− −≈

−
. Therefore, we divide the proof

into two parts, one for table Tb+1 and the other for tables
T0�Tb.

For table Tb+1, () ()2~2~
11

11 222 +−++−
+ =•≤ nbnb

bw ε .

For tables T0�Tb, () ())1()1(21ln21
1

+−+− −−
−

< iii e
w .

Evaluating numerically, we find i
iw 207.1 •< , so

() ()2~2~
1

1 207.1207.1 ++− •=•< in
iw ε 1+− n . For large i,

a first order Taylor series approximation shows
i

eiw 22→ , so the bound becomes loose for i > 0.

Theorem 2: The maximum weighted magnitude of

the ε3 error term in (18) introduced by table Ti is
(n

i
i

v +−≤ 1
3

32ε .

Proof: From (3), we know ()1
3

32 +−≤
inε . Again, we

divide the proof into two parts, one for table Tb+1 and the
other for tables T0�Tb.

For table Tb+1,
() ())1(11

31

1
3

1
3 22ln2 +−+−+−

+

++
<≤ bnnb

b

bb
v ε .

For tables T0�Tb, () ())1()1(21ln21
2ln

+−+− −−
−

< iii e
v .

Evaluating numerically, we find i
iv 2< , so

) ()ini
i

i
v −+−=•< 1

3
3222ε .

Given Theorem 1 and (16), we choose pn =1
~ bits

to index the logarithm tables. Note that we violate the
bound in (16) by the factor of 1.07. This is compensated
for by the slack in (19). Similarly, given Theorem 2 and
(18), we choose . 33 ++= pini

Note that T0 contains integer bits and p+3
fractional bits. For i > 0, one can determine numerically
that the integer bits and i-1 most significant fractional
bits in T

p′

+p

i are all 0�s, so the tables contain only p+4
nontrivial bits in each entry. The multiplier may thus be
optimized to accept only bits of L if followed
by a right shift by i to compensate for the leading 0�s. In
general, the total number of bits in the logarithm tables
is

3+′p

()()[]1−42 ′+++ ppbp2 .
In summary, our design with b = 7, p = 10 requires

nine logarithm tables of 1024 entries each. T0 has four
integer bits and thirteen fractional bits. The other tables
have fourteen fractional bits. The total table size is
about 16KB, nontrivial, yet still modest in comparison to
the sea of multipliers used by a geometry engine. The
table size reduces significantly if less accuracy is
necessary; for example, a table for p=8-bit color depth
requires only 3.5KB of storage.

4.2: Exponent table design

 As shown earlier, the exponent table is indexed

with the upper n4 = p + 2 fractional bits of the product
computed by the multiplier and produces an answer
rounded to p fractional bits. Thus, the table requires

 bits of storage. The table for p = 10 has 5 KB of
storage and a table for p = 8 has 1 KB of storage.

22 +pp

4.3: Block diagram

Figure 2 shows a block diagram of the powering

unit. Portions of the significand of A are presented to the
log tables to cover each subinterval of [0,1]. The result
from the appropriate subinterval is selected and
multiplied by B with an ordinary unsigned multiplier.
The product X indexes an exponent table. The result
multiplexer selects 1 in the special cases of A = 1, 0 if A
is tiny or X is too large, or AB otherwise. Not shown are
the small shifters and adders required to convert between
floating point and the short fixed point formats.

B

log
tables * exp

tableA ABlog A X
n1 n3

n2
n4 p

Figure 2: Block diagram of powering unit

4.4: Verification

VCS simulations verified the Verilog

implementation against a C reference model. The C
model determines both the expected Verilog result and
the true value of AB to ensure the algorithm rounds
faithfully.

The test vectors include both directed and random
tests for b = 7 and p = 8 and 10. Six million random
vectors were applied. The maximum error found in
simulation for p = 8 was 0.0029. This is better than our
bound of 2-p = 0.0039 because the worst case errors in
the log and exponent lookups do not occur
simultaneously on any of the cases tested. The
maximum error found for p = 10 was 0.00076 < 2-p =
0.00098.

4.5: Synthesis results

The powering unit was synthesized with Synopsys

tools and mapped to the LSI Logic G12-p 180 nm cell
library [12] using worst-case models. The gate count of
each component is listed in Table 1 with a conversion of
one gate to 24 µm2, i.e. 4 LSI cell units. No ROM
generator was available so lookup tables were
synthesized into gates instead. If a ROM generator were
available, the number of ROM bits required in place of
the table gates is also shown in the table with an
estimated conversion of one bit to about 2 µm2.

p = 8 p = 10 Module

Bits Gates Bits Gates
Log Tables 28416 14867 132096 72734
Exponent Table 8192 1823 40960 6181
Multiplier 2317 3035
Random Logic 1176 1669
Total 36608 20183 173056 83619

Table 1: Powering unit size

Adding a factor of two to account for estimated
interconnect, the overall synthesized areas are 1 mm2 for
p = 8 and 4 mm2 for p = 10. Using ROMs could reduce
the area to 0.6 mm2 for p = 10. The latencies are 7.87
and 9.62 ns, respectively. The powering unit could be
partitioned into a 3-stage pipeline to improve cycle time.

5: Conclusion

This paper described a hardware implementation of

a powering unit suitable for OpenGL lighting
computations or other applications with similar accuracy
requirements. The unit calculates P = AB, where A and B
are IEEE single-precision floating-point numbers in the
range [0,1] and [1,2b], respectively, and P is faithfully
rounded to p fractional bits. The unit uses a logarithm

lookup, a multiplier, and an exponent lookup. Error
analysis shows that the logarithm lookup table accuracy
requirements depend on the value of A, so the unit uses
multiple tables over different ranges of A to minimize
the overall table size. This implementation, good to 10
bits of accuracy, uses nine 1024-entry log lookup tables,
a 2048-entry exponent lookup table, and a multiplier.
Synthesized in a 180 nm process, it has an area of 4 mm2
and a latency of 9.62 ns. Using ROMs for table storage
could reduce the area significantly. Another design with
8-bit accuracy has an area of 1 mm2 and a latency of
7.87 ns. The designs are freely available through the
Harvey Mudd Open Source Floating Point Project [13].

Acknowledgments

The author thanks Alan Scott at Evans and

Sutherland for practical advice on OpenGL applications.
Stuart Oberman has been a consistent source of expert
advice on floating point arithmetic.

References

[1] M. Segal and K. Akeley, The OpenGL 1.2.1 Graphics

System: A Specification (Version 1.2.1), Silicon Graphics,
1999, http://www.opengl.org

 [2] M. Woo et al., OpenGL Programming Guide, 3rd Edition,
Addison Wesley: Reading, MA, 1999.

[3] nVIDIA Technical Brief, Transformation and Lighting,
NVIDIA Corporation, 1999.

[4] 754-1985, IEEE Standard for Binary Floating Point
Arithmetic, IEEE, 1995.

[5] J. Muller, Elementary Functions, Birkhauser: Boston, MA,
1997.

[6] P. Tang, �Table-Driven Implementation of the Exponential
Function in IEEE Floating-Point Arithmetic,� ACM
Transactions on Mathematical Software, Vol. 15, No. 2,
June 1989, pp. 144-157.

[7] P. Tang, �Table-Lookup Algorithms for Elementary
Functions and Their Error Analysis,� Proc. 10th Symp.
Computer. Arithmetic, pp. 232-236, 1991.

[8] N. Takagi, �Powering by a Table Look-up and a
Multiplication with Operand Modification,� IEEE Trans.
Computers, vol. 47, no. 11, pp. 1216-1222, Nov. 1998.

[9] J. Pineiro, J. Bruguera, and J. Muller, �Faithful powering
computation using table look-up and a fused accumulation
tree,� Proc. 15th Symp. Comp. Arithmetic, pp. 40-47, 2001.

 [10] W. Cody and W. Wait, Software Manual for the
Elementary Functions, Prentice-Hall: Englewood Cliffs,
NJ, 1980.

[11] T. Coleman, E. Chester, C. Softley, and J. Kadlec,
�Arithmetic on the European Logarithmic Microprocessor,�
IEEE Trans. Computers, vol. 49, no. 7, pp 702-715, July
2000.

[12] LSI Logic, G12-p Cell-Based ASIC Products, 1999.
[13] Harvey Mudd College Open Source Floating Point

Project, http://www.hmc.edu/chips

	A Powering Unit for an OpenGL Lighting Engine
	
	
	Module
	Table 1: Powering unit size

	Acknowledgments
	References

