
ANSI/NISO Z39.50-1995

Appendix 6

RSC: Resource Report Formats

(Normative)

This standard defines and registers the resource report formats resource-1 and resource-2. The following object
identifier are assigned:

resource-1 {Z39-50-resourceReport 1} (See RSC.1)
resource-2 {Z39-50-resourceReport 2} (See RSC.2)

RSC.1 Resource Report Format Resource-1

ResourceReport-Format-Resource-1
{Z39-50-resourceReport resource-1 (1)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString FROM Z39-50-APDU-1995;
--
ResourceReport ::= SEQUENCE{
estimates [1] IMPLICIT SEQUENCE OF Estimate,
message [2] IMPLICIT InternationalString}
--
Estimate ::= SEQUENCE{
type [1] IMPLICIT EstimateType,
value [2] IMPLICIT INTEGER, -- the actual estimate
currency-code [3] IMPLICIT INTEGER OPTIONAL

-- code for representation of currencies defined in ISO 4217-1990.
-- Applicable only to monetary estimates.

}
EstimateType ::= INTEGER{
currentSearchRecords (1), -- estimated no. records in current (incomplete) result set for search
finalSearchRecords (2), -- estimated no. records that will be in result set if search completes
currentPresentRecords (3), -- estimated number of records in current (incomplete) set of

-- records to be returned on Present
finalPresentRecords (4), -- estimated number of records that will be in the set of records

-- to be returned by Present if Present completes
currentOpTimeProcessing (5), -- processing time (in .001 CPU seconds) used by operation so far
finalOpTimeProcessing (6), -- estimated total processing time (in .001 CPU seconds) that will

-- be used by this operation if it completes
currentAssocTime (7), -- estimated processing time used by association (in .001 CPU sec.)
currentOperationCost (8), -- estimated cost for this operation so far
finalOperationCost (9), -- estimated cost for this operation if it completes
currentAssocCost (10), -- estimated cost for this association so far
finalOpTimeElapsed (11), -- estimated elapsed time for operation if it completes (in .001 sec.)
percentComplete (12), -- estimated percent complete
currentSearchAssocCost (13), -- estimated search cost for association so far
currentPresentAssocCost (14), -- estimated present cost for this association so far
currentConnectAssocCost (15), -- estimated connect time cost for association so far
currentOtherAssocCost (16) -- estimated other cost (not included in 13-15) for association so far

}
END

Page 112

ANSI/NISO Z39.50-1995

RSC.2 Resource Report Format Resource-2

ResourceReport-Format-Resource-2
{Z39-50-resourceReport resource-2 (2)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString, StringOrNumeric, IntUnit FROM Z39-50-APDU-1995;
--
ResourceReport ::= SEQUENCE{
estimates [1] IMPLICIT SEQUENCE OF Estimate OPTIONAL,
message [2] IMPLICIT InternationalString OPTIONAL}
--
Estimate ::= SEQUENCE{
type [1] StringOrNumeric,

-- Numeric values of 1-16 are the same as used in Resource-1.
value [2] IMPLICIT IntUnit

-- When expressing currency:
-- unitSystem (of Unit) is ’z3950’ (case insensitive)
-- unitType is ’iso4217-1990’ (case insensitive)
-- unit is currency code from ISO 4217-1990.

}
END

Page 113

ANSI/NISO Z39.50-1995

Appendix 7

ACC: Access Control Formats

(Normative)

This standard defines and registers the access
control format definitions below, and assigns the
following object identifiers:

prompt-1 {Z39-50-accessControl 1}
des-1 {Z39-50-accessControl 2}
krb-1 {Z39-50-accessControl 3}

Access control formats are defined for use within
the parameters securityChallenge and security-
ChallengeResponse of the AccessControlRequest and
AccessControlResponse APDUs, and idAuthentication
of the InitializeRequest APDU.

AccessControlFormat-prompt-1
{Z39-50-accessControl prompt-1 (1)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString, DiagRec FROM Z39-50-APDU-1995;
--
PromptObject ::= CHOICE{

challenge [1] IMPLICIT Challenge,
response [2] IMPLICIT Response}

Challenge ::= SEQUENCE OF SEQUENCE {
promptId [1] PromptId,

-- Target supplies a number (for an enumerated prompt) or string (for a non
-- -enumerated prompt), for each prompt, and the origin returns it in response, for
-- this prompt, so target may correlate the prompt response with the prompt.

defaultResponse [2] IMPLICIT InternationalString OPTIONAL,
promptInfo [3] CHOICE{

character [1] IMPLICIT InternationalString,
encrypted [2] IMPLICIT Encryption} OPTIONAL,
-- Information corresponding to an enumerated prompt. For example if ’type’, within
-- PromptId, is ’copyright’, then promptInfo may contain a copyright statement.

regExpr [4] IMPLICIT InternationalString OPTIONAL,
-- A regular expression that promptResponse should match. See IEEE 1003.2
-- Volume 1, Section 2.8 "Regular Expression Notation." For example if promptId
-- is "Year of publication," regExpr might be "19[89][0-9]|20[0-9][0-9]".

responseRequired [5] IMPLICIT NULL OPTIONAL,
allowedValues [6] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

-- e.g. promptId="Desired color"; allowed = ’red’, ’blue’,’Green’.
shouldSave [7] IMPLICIT NULL OPTIONAL,

-- Target recommends that origin save the data that it prompts from the
-- user corresponding to this prompt, because it is likely to be requested again (so
-- origin might not have to prompt the user next time).

dataType [8] IMPLICIT INTEGER{
integer (1),
date (2),
float (3),
alphaNumeric (4),
url-urn (5),
boolean (6)} OPTIONAL,

-- Target telling origin type of data it wants. E.g., if "date" is specified,
-- presumably the origin will try to prompt something "date-like" from the user.

Page 114

ANSI/NISO Z39.50-1995

diagnostic [9] IMPLICIT EXTERNAL OPTIONAL
-- Intended for repeat requests when there is an error the origin
-- should report to the user from previous attempt.

}

Response ::= SEQUENCE OF SEQUENCE {
promptId [1] PromptId,

-- Corresponds to a prompt in the challenge, or may be unprompted, for
-- example "newPassword." If unprompted, should be "enumerated."
-- If this responds to a non-enumerated prompt, then nonEnumeratedPrompt
-- should contain the prompt string from the challenge.

promptResponse [2] CHOICE{
string [1] IMPLICIT InternationalString,
accept [2] IMPLICIT BOOLEAN,
acknowledge [3] IMPLICIT NULL,
diagnostic [4] DiagRec,
encrypted [5] IMPLICIT Encryption}}

PromptId ::= CHOICE{
enummeratedPrompt [1] IMPLICIT SEQUENCE{

type [1] IMPLICIT INTEGER{
groupId (0),
userId (1),
password (2),
newPassword (3),
copyright (4),

-- When type on Challenge is ’copyright’, promptInfo has text of
-- copyright message to be displayed verbatim to the user. If
-- promptResponse indicates ’acceptance’, this indicates the user has been
-- shown, and accepted, the terms of the copyright. This is not intended
-- to be legally binding, but provides a good-faith attempt on
-- the part of the target to inform the user of the copyright.

sessionId (5)},
suggestedString [2] IMPLICIT InternationalString OPTIONAL},

nonEnumeratedPrompt [2] IMPLICIT InternationalString}

Encryption ::= SEQUENCE{
cryptType [1] IMPLICIT OCTET STRING OPTIONAL,
credential [2] IMPLICIT OCTET STRING OPTIONAL,

--random number, SALT, or other factor
data [3] IMPLICIT OCTET STRING}

END

Page 115

ANSI/NISO Z39.50-1995

AccessControlFormat-des-1
{Z39-50-accessControlFormat des-1 (2)} DEFINITIONS ::=
BEGIN

DES-RN-Object ::= CHOICE {
challenge [1] IMPLICIT DRNType,
response [2] IMPLICIT DRNType}

DRNType ::= SEQUENCE{
userId [1] IMPLICIT OCTET STRING OPTIONAL,
salt [2] IMPLICIT OCTET STRING OPTIONAL,
randomNumber [3] IMPLICIT OCTET STRING}

END

AccessControlFormat-krb-1
{Z39-50-accessControlFormat krb-1 (3)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString FROM Z39-50-APDU-1995;

KRBObject ::= CHOICE {
challenge [1] IMPLICIT KRBRequest,
response [2] IMPLICIT KRBResponse}

KRBRequest ::= SEQUENCE{
service [1] IMPLICIT InternationalString,
instance [2] IMPLICIT InternationalString OPTIONAL,
realm [3] IMPLICIT InternationalString OPTIONAL}

-- target requests a ticket for the given service, instance, and realm
KRBResponse ::= SEQUENCE{

userid [1] IMPLICIT InternationalString OPTIONAL,
ticket [2] IMPLICIT OCTET STRING}

-- origin responds with a ticket for the requested service
END

Page 116

ANSI/NISO Z39.50-1995

Appendix 8

EXT: Extended Services Defined by this Standard

(Normative)

This standard defines and registers the Extended
Services listed below, and assigns the following
object identifiers:

PersistentResultSet {Z39-50-extendedServices 1}
PersistentQuery {Z39-50-extendedServices 2}
PeriodicQuery

Schedule {Z39-50-extendedServices 3}
ItemOrder {Z39-50-extendedServices 4}
DatabaseUpdate {Z39-50-extendedServices 5}
ExportSpecification {Z39-50-extendedServices 6}
ExportInvocation {Z39-50-extendedServices 7}

EXT.1 provides service descriptions, and EXT.2
provides ASN.1 definitions.

EXT.1 Service Definitions
An Extended Service is carried out by an Extended

Service (ES) task, which is invoked by an ES
operation. The ES Service is described in 3.2.9.1.

Execution of the ES Operation results in the
creation of a task package, represented by a database
record in the ES database. A task package contains
parameters, some of which are common to all task
packages regardless of package type, and others that
are specific to the task type. Among the common
parameters, some are supplied by the origin as
parameters in the ES request, and others are supplied
by the target.

Table A-8-1: Parameters Common to All
Extended Services

Common Task Origin Target
Package Parameter Supplied Supplied
packageType x
packageName x (opt)
userId x (opt)
retentionTime x (opt) x (opt)
permissionsList x (opt) x (opt)
description x (opt)
targetReference x (opt)
creationDateTime x (opt)
taskStatus x
packageDiagnostics x (opt)

The specific parameters are derived from the ES
request parameter Task-specific-parameters. Table A-

8-1 provides a summary of common parameters. Their
descriptions are included in 3.2.9.1. For parameters
listed as both "origin supplied" and "target supplied,"
when both origin and target supply a value, the target
supplied value overrides the origin supplied value.

EXT.1.1 Persistent Result Set Extended
Service

The Persistent Result Set Extended Service allows
an origin to request that the target create a persistent
result from a transient result set belonging to the
current Z-association. The Persistent Result Set task
has no effect on the transient result set; it remains
available for use by the Z-association. The persistent
result set is saved for later use, during the current or
a different Z-association. It may subsequently be
deleted, by deletion of the task package.
Note: the origin may thus cause deletion of the
persistent result set, by deleting the task package, if
the origin user has "delete" permission for that
package.

A Present (using the ResultSetName element
specification), against the Persistent Result Set
Parameter Package returns a Parameter Package that
contains a target-supplied transient result set name,
which may be used during the same Z-association
wherever a result set name may be used (e.g. within
a query, or in Present, Sort, or Delete request).

The parameters of the Persistent Result Set
Extended Service are those shown in Table A-8-1 as
well as those in Table A-8-2.

Table A-8-2: Specific Parameters for
Persistent Result Set

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
originSupplied

ResultSet x (if appl)
replaceOrAppend x (if appl)
targetSupplied

ResultSet x (if appl) x (if appl)
numberOfRecords x (opt) x (opt)

Page 117

ANSI/NISO Z39.50-1995

originSuppliedResultSet -- The origin supplies the
name of a transient result set belonging to the Z-asso-
ciation. If function is ’create’, the target is to create
a persistent result set from this transient result set. If
function is ’modify’ the target is to either replace an
existing persistent result set (corresponding to the spe-
cified package name) with this result set, or append
this result set to an existing persistent result set. This
parameter is mandatory when the value of the request
parameter function is ’create’ or ’modify’, and is not
included when function is ’delete’.

replaceOrAppend -- This parameter occurs when
function is ’modify’ (and is valid only when the
origin user has "modify-contents" permission). Its
value is ’replace’ or ’append’ meaning that the
specified result set is, respectively, to replace, or to be
appended to, the existing persistent result set.

targetSuppliedResultSet-- When the origin retrieves
the task package, the target supplies the name of a
transient result set, which then belongs to the Z-
association. The result set is a copy of the persistent
result set represented by the package. The target
includes this parameter only when the task package is
retrieved (i.e. not on an ES response) and does not
include the parameter if the element set name on the
Present request indicates that the parameter is not to
be included.

numberOfRecords -- The target indicates the total
number of records in the persistent result set.

EXT.1.2 Persistent Query Extended
Service

The Persistent Query Extended Service allows an
origin to request that the target save a Z39.50 Query
for later reference, during the same or a subsequent
Z-association.

The parameters of the Persistent Query Extended
Service are those shown in Table A-8-1 as well as
those in Table A-8-3.

Table A-8-3: Specific Parameters for
Persistent Query

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
querySpec x
actualQuery x x
databaseNames x (opt) x (opt)
additionalSearch

Information x (opt) x (opt)

querySpec and ActualQuery-- The origin supplies
either the query to be saved or the name of another
persistent query to be copied into this package. The
target supplies the actualQuery: if the origin has
supplied a query, the target uses that query; if the
origin supplies a task package name, the target copies
the corresponding query.

databaseNames-- The origin optionally supplies a
list of databases.

additionalSearchInformation -- See 3.2.2.1.12.

EXT.1.3 Periodic Query Schedule
Extended Service

The Periodic Query Schedule Extended Service
allows an origin to request that the target establish a
Periodic Query Schedule. The origin can also request
that the schedule be "activated," either as part of the
initial request to create the schedule, or as part of a
subsequent request to modify the schedule. The
parameters of the Periodic Query Schedule Extended
Service are those shown in Table A-8-1 as well as
those in Table A-8-4.

Table A-8-4: Specific Parameters for
Periodic Query Schedule

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
activeFlag x x
querySpec x
actualQuery x x
databaseNames x (if appl) x (if appl)
period x x (opt) x
expiration x (opt) x (opt) x (opt)
resultSet

PackageName x (opt) x (if appl) x (if appl)
resultSet

Disposition x (if appl) x (if appl)
alertDestination x (opt) x (opt)
exportParameters x (opt) x (opt)
lastQueryTime x x
lastResultNumber x x
numberSinceModify x (opt) x (opt)

activeFlag -- On a Create request, if this flag is set,
the Periodic Query Schedule is to be activated
immediately upon receipt and validation of its
parameters; otherwise the schedule is to be Created

Page 118

ANSI/NISO Z39.50-1995

but not activated. On a Modify request (which may
contain as little as just the ActiveFlag), the origin
may activate or deactivate the schedule. In the
parameter package, this parameter indicates whether
the schedule is active.

querySpec and ActualQuery-- The origin supplies
either a query or the name of a Persistent Query
Package. (If the origin supplies a query, or if the
specified query package does not include a list of
databases, then the databaseNames parameter is
required.) The target supplies the actualQuery: if the
origin has supplied a query, the target uses that query;
if the origin supplies a task package name, the target
copies the corresponding query.

databaseNames-- The origin may supply a list of
databases; the list is required if the origin supplied a
query rather than a query package name for
querySpec, or if the specified query package does not
include a list of databases.

period -- The time period between invocations of the
query. The target may override the period specified
by the origin. Period may be a number of days, a
frequency (e.g. daily, business daily, weekly,
monthly), or ’continuous’, meaning the search is to be
run continuously (or at the target’s discretion).

expiration -- The origin may optionally supply a
time/date for the target to discontinue execution of
this Periodic Query. If the origin does not supply a
value, the origin is proposing "no expiration." The
target may override the origin supplied value. If the
origin supplies a value and the target does not support
expiration, the target should reject the ES request.

resultSetPackageName-- The origin may optionally
supply the name of an existing Persistent Result Set
package. If the origin omits this parameter, the target
is to create a persistent result set, unless the parameter
exportParameters is included.

resultSetDisposition -- This parameter takes on the
value ’createNew’, ’replace’, or ’append’, indicating
respectively whether the target is to create a new
result set each time the query is invoked, replace the
contents of the existing result set, or append any new
results to the end of the result set. The value
’createNew’ should be used only if the origin and
target have an agreement about naming conventions
for the resulting package. If the value of the
parameter Period is ’continuous’ it is recommended

that the value of this parameter be ’append’. The
value ’append’ allows the target to continually extend
the result set by appending new records.

alertDestination -- The origin may optionally supply
a destination address for Alerts triggered by receipt of
new Periodic Query results (e.g, fax number, X.400
address, pager number).

exportParameters -- The origin may optionally
supply the name, or actual contents, of an Export
Parameter Package to be used with this Periodic
Query. It is included only if the origin wants newly
posted results to be exported; if so, new results may
also be posted to ResultSetName if also specified.

lastQueryTime -- The target indicates the last time
this Periodic Query was invoked.

lastResultNumber-- The target indicates the number
of new records obtained last time query was invoked.

numberSinceModify -- The target indicates the total
number of records obtained via invocation of the
Query since the last time this Periodic Query Package
was modified.

EXT 1.4 Item Order Extended Service
The Item Order Extended Service allows an origin

to submit an item order request to the target. T h e
parameters of the Item Order Extended Service are
those shown in Table A-8-1 as well as those in Table
A-8-5.

Table A-8-5: Task-Specific Parameters for
Item Order

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
requestedItem x
itemRequest x (if appl) x (if appl)
supplemental

Description x (opt) x (opt)
contactInformation x (opt) x (opt)
additional

BillingInfo x (opt) x (opt)
statusOrErrorReport x x
auxiliaryStatus x (opt) x (opt)

Page 119

ANSI/NISO Z39.50-1995

requestedItem -- The origin identifies the requested
item, either by:
(a) a request whose format is defined externally,

and which may be an Interlibrary Loan Request
APDU of ISO 10161; or

(b) a result set item (name of a transient result set
belonging to the current Z-association and an
ordinal number of an entry within that result);
or

(c) both.

itemRequest -- If requestedItem is (a) (e.g. an
interlibrary loan request), the target copies it into the
task package (although the target might first modify
the request). If requestedItem is (b), the target may
construct a corresponding item request; if it does not,
then the requested item will not be identified within
the task package.

supplementalDescription -- The origin may supply
additional descriptive information pertaining to the
requested item, as a supplement to requestedItem.

contactInformation -- The origin may optionally
supply a name, phone number, and electronic mail
address of a contact-person.

additionalBillingInfo -- The origin may optionally
indicate payment method, credit card information,
customer reference, and customer purchase order
number.

statusOrErrorReport -- The target supplies a status
or error report. The definition of the report is external
to this standard, and may be based on the
StatusOrErrorReport APDU of the ILL protocol.

auxiliaryStatus -- The target may provide an auxil-
iary status as a supplement to the status information
which might be provided by the statusOrErrorReport.

EXT 1.5 Database Update Extended
Service

The database Update Extended Service allows an
origin to request that the target update a database:
insert new records, replace or delete existing records,
or update elements within records.
Note: this service definition does not address
concurrency; if multiple users try to update the same
record, it may be that only the first request served by
the target will update the intended data, and the
remaining requests may update a record whose
content has changed.

The parameters of the databaseUpdate Extended
Service are those shown in Table A-8-1 as well as
those in Table A-8-6.

Table A-8-6: Task-Specific Parameters for
DatabaseUpdate

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
action x x
databaseName x x
schema x (opt) x (opt)
suppliedRecords x
recordIds x (opt)
supplementalIds x (opt)
correlationInfo x (opt) x (opt)
elementSetName x (opt) x (opt)
updateStatus x (if appl) x (if appl)
globalDiagnostics x (if appl) x (if appl)
taskPackageRecords x (if appl) x (if appl)
recordStatuses x (if appl) x (if appl)

action -- The origin indicates recordInsert,
recordReplace, recordDelete, or elementUpdate.

databaseName-- The origin indicates the database to
which the action pertains.

schema-- The origin indicates the database schema
that applies for this update.
Note: The action, databaseName, and schema are
specified once, and apply to all of the included
records.

suppliedRecords-- The origin supplies one or more
records. (Along with each the origin may also supply
a recordId, supplemental identification, and correlation
information; see following three parameters.) For
recordInsert or recordReplace, the origin supplies
whole records. For recordReplace or recordDelete,
each supplied record (or corresponding supplemental
identification or recordId) must include sufficient
information for the target to identify the database
record. For recordDelete, sufficient identifying
information should be supplied for each record, but
the whole record need not necessarily be supplied.

For elementUpdate, the elements within a supplied
record are to replace the corresponding elements
within the database record, and the remainder of the
database record is unaffected. Records must be
supplied in a manner that allows the corresponding
elements in the database record to be identified (e.g.,

Page 120

ANSI/NISO Z39.50-1995

via tags defined by the schema). For any element
within a supplied record, if there is no corresponding
element within the database record, if there is more
than a single occurrence of the corresponding ele-
ment, or if the element is not sufficiently identified,
the update will not be performed for that record. (For
elementUpdate, supplementalId may be used for ident-
ification of the record, but not for identification of
elements.)

recordIds -- Corresponding to each supplied record
the origin may optionally supply a record Id.

supplementalIds -- Corresponding to each supplied
record the origin may supply supplemental
identification to allow the target to identify the
database record, or to identify the correct version of
the database record. This may be a timestamp, a
version number, or may take some other form, for
example, a previous version of the record.

CorrelationInfo -- Corresponding to each supplied
record, the origin may include one or both of the
following:
• a correlationNote,
• a correlationIdentifier.

The correlationIdentifier may be used to identify
the record only within the context of this update task,
for correlation purposes only (i.e to correlate a task
package record with its corresponding supplied
record). It may be used in the task package in lieu of
a record id, for a record that might not have an
unambiguous record id.

ElementSetName-- The origin indicates an element
set name indicating which elements of the updated
records are to be included in the task package. If
omitted, updated records are not to be included in the
task package.

updateStatus -- This parameter occurs in the task
package only when taskStatus is ’complete’ or
’aborted’. It is one of the following:
Success - Update performed successfully.
Partial - Update failed for one or more

records.
Failure - Target rejected execution of the task

(one or more non-surrogate diagnos-
tics should be supplied in parameter
globalDiagnostics).

globalDiagnostics -- One or more non-surrogate
diagnostics, supplied if updateStatus is Failure.

taskPackageRecords-- When taskStatus is ’com-
plete’: the task package includes a structure for each
supplied record. The structure may include part or all
of the updated record (depending on ’elementSet-
Name’) or a surrogate diagnostic (when recordStatus,
below, is ’failure’), as well as correlationInfo and
record status (see next parameter).

When taskStatus is ’pending’ or ’active’: the task
package includes the above for each record for which
update action is complete. For those records for which
action is not complete, the structure includes the
correlationInfo and status.

recordStatuses-- Corresponding to each task pack-
age record, the task package includes a record status:
success - The record was updated successfully.
queued - The record is queued for update, or

the update is in process (this status
may be used in lieu of inProcess,
when the target does not wish to dist-
inguish between these two statuses).

inProcess - The update for this record is in
process.

failure - The update for this record failed. A
surrogate diagnostic should be sup-
plied in lieu of the record (within the
structure corresponding to the record,
within the parameter taskPackage-
Records).

EXT 1.6 Export Specification
Extended Service

The Export Specification Extended Service allows
an origin to request that the target establish an export
specification. Once established, the export specifica-
tion may be subsequently invoked (repeatedly) by an
Export Invocation Extended Services task; in fact,
multiple invocations may be running simultaneously.

An Export Specification includes a delivery desti-
nation as well as other information that controls the
delivery of a unit of information (one or more result
set records). The destination might be a printer or
some other device. The delivery mechanism could in-
clude fax, electronic mail, file transfer, or a target-
supported print device. The parameters of the Export
Specification Extended Service are those shown in
Table A-8-1 as well as those in Table A-8-7.

Page 121

ANSI/NISO Z39.50-1995

Table A-8-7: Task-Specific Parameters for
Export Specification

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
composition x x
exportDestination x x

composition -- This parameter consists of a record
syntax, element specification, variants, etc. of the
records to be Exported.

exportDestination -- The origin indicates an address
or other destination instruction (e.g. e-mail address,
printer address, fax number).

EXT 1.7 Export Invocation Extended
Service

The Export Invocation Extended Service allows an
origin to invoke an export specification. The origin
may supply an export specification, or the name of an
export specification that has been established by an
Export Specification task as described in EXT 1.6.
The parameters of the Export Invocation Extended
Service are those shown in Table A-8-1 as well as
those in Table A-8-8.

Table A-8-8: Task-Specific Parameters for
Export Invocation

Specific Task
Task Origin Target Package
Parameter Supplied Supplied Parameter
export

Specification x x
resultSetId x
resultSetRecords x
numberOfCopies x x
estimatedQuantity x (opt) x (opt)
quantitySoFar x (opt) x (opt)
estimatedCost x (opt) x (opt)
costSoFar x (opt) x (opt)

exportSpecification -- The origin supplies the
packageName, or actual contents, of an export
specification.

resultSetId -- The origin supplies the name of a
transient result set, from which records are selected
for export.

resultSetRecords-- The origin indicates which rec-
ords are to be exported. This parameter may specify
that all records in the result set are to be exported, or
it may specify a set of ranges of result set records, in
which case the last range may indicate that all records
beginning with a specific record are to be exported.

numberOfCopies -- The origin indicates the number
of copies requested.

estimatedQuantity and quantitySoFar-- The target
optionally indicates the number of pages, message
packets, etc., estimated in the information to be
exported, and the actual amount exported so far.

estimatedCost and costSoFar -- The target
optionally supplies an estimate of the cost to export
this information, and the cost accrued so far.

EXT.2 ASN.1 Definitions of Extended
Services Parameter Package

Each definition below corresponds to an individual
extended service. Each structure occurs within an ES
request or as a task package. Correspondingly, each
is defined as a CHOICE of ’esRequest’ and ’task-
Package’. If the structure occurs within an ES request,
it occurs as the parameter taskSpecificParameters. The
structure may occur as a task package either within an
ES response (the parameter taskPackage), or in a re-
cord retrieved from an ES database, within the para-
meter taskSpecificParameters within the structure
defined by the record syntax ESTaskPackage; see
Appendix 5, REC.6.

’esRequest’ consists of all service parameters
supplied by the origin in the ES request; these are
divided into those that are and those that are not to be
retained in the task package; ’toKeep’ and ’notTo-
Keep’. ’taskPackage’ consists of all specific task
parameters; which are divided into those supplied by
the origin and those supplied by the target, i.e.,
’originPart’ and ’targetPart’. Note that ’toKeep’ (from
’esRequest’) is always the same sub-structure as
’originPart’ (from taskPackage), so that structure is
shared, in OriginPartToKeep.

Each definition may define one or more of
OriginPartToKeep, OriginPartNotToKeep, and Target-
Part. In EXT.1, in the parameter table in the service
definition for a specific ES, for each parameter:
• If the parameter is marked "origin supplied," but is

not marked in the right column (i.e. it does not
occur in the task parameter package) then that
parameter is represented in OriginPartNotToKeep.

Page 122

ANSI/NISO Z39.50-1995

• If the parameter is marked "origin supplied," and
also marked in the right column, then that
parameter is represented in OriginPartToKeep.

• If the parameter is marked "target supplied" (in
which case it will always also be marked in the
right column), and not also marked "origin sup-
plied" then that parameter is represented in
TargetPart.

• If the parameter is marked "origin supplied," and
also marked "target supplied" (in which case it will
be marked in the right column), then it is a para-
meter for which the origin may suggest a value
and the target may override that value. In this case
the origin suggested value is represented in
OriginPartNotToKeep and the target value (which
may be the same) is represented in TargetPart.

ESFormat-PersistentResultSet
{Z39-50-extendedService PersistentResultSet (1)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString FROM Z39-50-APDU-1995;
PersistentResultSet ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] IMPLICIT NULL,
notToKeep [2] OriginPartNotToKeep OPTIONAL},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] IMPLICIT NULL,
targetPart [2] TargetPart OPTIONAL}}

OriginPartNotToKeep ::= SEQUENCE{
originSuppliedResultSet [1] IMPLICIT InternationalString OPTIONAL,

-- name of transient result set, supplied on request, mandatory unless function is ’delete’
replaceOrAppend [2] IMPLICIT INTEGER{ -- only if function is "modify"

replace (1),
append (2)} OPTIONAL}

TargetPart ::= SEQUENCE{
targetSuppliedResultSet [1] IMPLICIT InternationalString OPTIONAL,

-- Name of transient result set, supplied by target, representing the persistent result set to which
-- package pertains. Meaningful only when package is presented. (i.e. not on ES response).

numberOfRecords [2] IMPLICIT INTEGER OPTIONAL}
END

ESFormat-PersistentQuery
{Z39-50-extendedService PersistentQuery (2)} DEFINITIONS ::=
BEGIN
IMPORTS Query, InternationalString, OtherInformation FROM Z39-50-APDU-1995;
PersistentQuery ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep OPTIONAL,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep OPTIONAL,
targetPart [2] TargetPart}}

OriginPartToKeep ::= SEQUENCE{
dbNames [2] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,
additionalSearchInfo [3] OtherInformation OPTIONAL}

OriginPartNotToKeep ::= CHOICE{
package [1] IMPLICIT InternationalString,
query [2] Query}

TargetPart ::= Query
END

Page 123

ANSI/NISO Z39.50-1995

ESFormat-PeriodicQuerySchedule
{Z39-50-extendedService PeriodicQuerySchedule (3)} DEFINITIONS ::=
BEGIN
IMPORTS Query, InternationalString, IntUnit FROM Z39-50-APDU-1995
ExportSpecification, Destination FROM ESFormat-ExportSpecification;
PeriodicQuerySchedule ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep,
targetPart [2] TargetPart}}

OriginPartToKeep ::=SEQUENCE{
activeFlag [1] IMPLICIT BOOLEAN,
databaseNames [2] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,
resultSetDisposition [3] IMPLICIT INTEGER{

replace (1),
append (2),
createNew (3) -- Only if origin and target have agreement about

-- naming convention for the resulting package,
-- and only if no result set is specified.

} OPTIONAL, -- Mandatory on ’create’ if result set is specified, in
-- which case it must be ’replace’ or ’append.

alertDestination [4] Destination OPTIONAL,
exportParameters [5] CHOICE{

packageName [1] IMPLICIT InternationalString,
exportPackage [2] ExportSpecification} OPTIONAL}

OriginPartNotToKeep ::= SEQUENCE{
querySpec [1] CHOICE{

actualQuery [1] Query,
packageName [2] IMPLICIT InternationalString} OPTIONAL,

-- mandatory for ’create’
originSuggestedPeriod [2] Period OPTIONAL, -- mandatory for ’create’
expiration [3] IMPLICIT GeneralizedTime OPTIONAL,
resultSetPackage [4] IMPLICIT InternationalString OPTIONAL}

TargetPart ::= SEQUENCE{
actualQuery [1] Query,
targetStatedPeriod [2] Period,

-- Target supplies the period, which may be same as origin proposed.
expiration [3] IMPLICIT GeneralizedTime OPTIONAL,

-- Target supplies value for task package. It may be the same as origin
-- proposed or different from (and overrides) origin proposal, but if
-- omitted, there is no expiration.

resultSetPackage [4] IMPLICIT InternationalString OPTIONAL,
-- May be omitted only if exportParameters was supplied. Target
-- supplies same name as origin supplied, if origin did supply a name.

lastQueryTime [5] IMPLICIT GeneralizedTime,
lastResultNumber [6] IMPLICIT INTEGER,
numberSinceModify [7] IMPLICIT INTEGER OPTIONAL}

Page 124

ANSI/NISO Z39.50-1995

Period ::= CHOICE{
unit [1] IMPLICIT IntUnit,
businessDaily [2] IMPLICIT NULL,
continuous [3] IMPLICIT NULL,
other [4] IMPLICIT InternationalString}

END

ESFormat-ItemOrder
{Z39-50-extendedService ItemOrder (4)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString FROM Z39-50-APDU-1995;
ItemOrder ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep OPTIONAL,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep OPTIONAL,
targetPart [2] TargetPart}}

OriginPartToKeep ::= SEQUENCE{
supplDescription [1] IMPLICIT EXTERNAL OPTIONAL,
contact [2] IMPLICIT SEQUENCE{

name [1] IMPLICIT InternationalString OPTIONAL,
phone [2] IMPLICIT InternationalString OPTIONAL,
email [3] IMPLICIT InternationalString OPTIONAL} OPTIONAL,

addlBilling [3] IMPLICIT SEQUENCE{
paymentMethod [1] CHOICE{

billInvoice [0] IMPLICIT NULL,
prepay [1] IMPLICIT NULL,
depositAccount [2] IMPLICIT NULL,
creditCard [3] IMPLICIT CreditCardInfo,
cardInfoPreviouslySupplied [4] IMPLICIT NULL,
privateKnown [5] IMPLICIT NULL,
privateNotKnown [6] IMPLICIT EXTERNAL},

customerReference [2] IMPLICIT InternationalString OPTIONAL,
customerPONumber [3] IMPLICIT InternationalString OPTIONAL}

OPTIONAL}
CreditCardInfo ::= SEQUENCE{

nameOnCard [1] IMPLICIT InternationalString,
expirationDate [2] IMPLICIT InternationalString,
cardNumber [3] IMPLICIT InternationalString}

OriginPartNotToKeep ::= SEQUENCE{ -- Corresponds to ’requestedItem’ in service definition.
-- Must supply at least one, and may supply both.

resultSetItem [1] IMPLICIT SEQUENCE{
resultSetId [1] IMPLICIT InternationalString,
item [2] IMPLICIT INTEGER} OPTIONAL,

itemRequest [2] IMPLICIT EXTERNAL OPTIONAL
-- When itemRequest is an ILL-Request APDU,
-- use OID {iso standard 10161 abstract-syntax (2) ill-apdus (1)}

}

Page 125

ANSI/NISO Z39.50-1995

TargetPart ::= SEQUENCE{
itemRequest [1] IMPLICIT EXTERNAL OPTIONAL,

-- When itemRequest is an ILL-Request APDU, use OID 1.0.10161.2.1 (as above)
statusOrErrorReport [2] IMPLICIT EXTERNAL OPTIONAL,

-- When statusOrErrorReport is an ILL Status-Or-Error-Report APDU, use OID 1.0.10161.2.1 (as above)
auxiliaryStatus [3] IMPLICIT INTEGER{

notReceived (1),
loanQueue (2),
forwarded (3),
unfilledCopyright (4),
filledCopyright (5)} OPTIONAL}

END

ESFormat-Update
{Z39-50-extendedService Update (5)} DEFINITIONS ::=
BEGIN
IMPORTS DiagRec, InternationalString FROM Z39-50-APDU-1995;
Update ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep,
targetPart [2] TargetPart}}

OriginPartToKeep ::= SEQUENCE{
action [1] IMPLICIT INTEGER{

recordInsert (1),
recordReplace (2),
recordDelete (3),
elementUpdate (4)},

databaseName [2] IMPLICIT InternationalString,
schema [3] IMPLICIT OBJECT IDENTIFIER OPTIONAL,
elementSetName [4] IMPLICIT InternationalString OPTIONAL}

OriginPartNotToKeep ::= SuppliedRecords

TargetPart ::= SEQUENCE{
updateStatus [1] IMPLICIT INTEGER{

success (1),
partial (2),
failure (3)},

globalDiagnostics [2] IMPLICIT SEQUENCE OF DiagRec OPTIONAL,
-- These are non-surrogate diagnostics relating to the task,
-- not to individual records.

taskPackageRecords [3] IMPLICIT SEQUENCE OF TaskPackageRecordStructure
-- There should be a TaskPackageRecordStructure for every record
-- supplied. The target should create such a structure for every
-- record immediately upon creating the task package to include
-- correlation information and status. The record itself would not
-- be included until processing for that record is complete.

}

Page 126

ANSI/NISO Z39.50-1995

-- Auxiliary definitions for Update
SuppliedRecords ::= SEQUENCE OF SEQUENCE{

recordId [1] CHOICE{
number [1] IMPLICIT INTEGER,
string [2] IMPLICIT InternationalString,
opaque [3] IMPLICIT OCTET STRING} OPTIONAL,

supplementalId [2] CHOICE{
timeStamp [1] IMPLICIT GeneralizedTime,
versionNumber [2] IMPLICIT InternationalString,
previousVersion [3] IMPLICIT EXTERNAL} OPTIONAL,

correlationInfo [3] IMPLICIT CorrelationInfo OPTIONAL,
record [4] IMPLICIT EXTERNAL}

CorrelationInfo ::= SEQUENCE{
-- origin may supply one or both for any record:

note [1] IMPLICIT InternationalString OPTIONAL,
id [2] IMPLICIT INTEGER OPTIONAL}

TaskPackageRecordStructure ::= SEQUENCE{
recordOrSurDiag [1] CHOICE {

record [1] IMPLICIT EXTERNAL,
-- Choose ’record’ if recordStatus is ’success’, and
-- elementSetName was supplied.

diagnostic [2] DiagRec
-- Choose ’diagnostic’, if RecordStatus is failure.

} OPTIONAL,
-- The parameter recordOrSurDiag will thus be omitted only if
-- ’elementSetName’ was omitted and recordStatus is
-- ’success’; or if record status is ’queued’ or in ’process’.

correlationInfo [2] IMPLICIT CorrelationInfo OPTIONAL,
-- This should be included if it was supplied by the origin.

recordStatus [3] IMPLICIT INTEGER{
success (1),
queued (2),
inProcess (3),
failure (4)}}

END

ESFormat-ExportSpecification
{Z39-50-extendedService ExportSpecification (6)} DEFINITIONS ::=
BEGIN
EXPORTS ExportSpecification, Destination; IMPORTS CompSpec, InternationalString FROM Z39-50-APDU-1995;
ExportSpecification ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep,
notToKeep [2] IMPLICIT NULL},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep,
targetPart [2] IMPLICIT NULL}}

OriginPartToKeep ::= SEQUENCE{
composition [1] IMPLICIT CompSpec,
exportDestination [2] Destination}

Page 127

ANSI/NISO Z39.50-1995

Destination ::= CHOICE{
phoneNumber [1] IMPLICIT InternationalString,
faxNumber [2] IMPLICIT InternationalString,
x400address [3] IMPLICIT InternationalString,
emailAddress [4] IMPLICIT InternationalString,
pagerNumber [5] IMPLICIT InternationalString,
ftpAddress [6] IMPLICIT InternationalString,
ftamAddress [7] IMPLICIT InternationalString,
printerAddress [8] IMPLICIT InternationalString,
other [100] IMPLICIT SEQUENCE{

vehicle [1] IMPLICIT InternationalString OPTIONAL,
destination [2] IMPLICIT InternationalString}}

END

ESFormat-ExportInvocation
{Z39-50-extendedService ExportInvocation (7)} DEFINITIONS ::=
BEGIN
IMPORTS InternationalString, IntUnit FROM Z39-50-APDU-1995
ExportSpecification FROM ESFormat-ExportSpecification;
ExportInvocation ::= CHOICE{

esRequest [1] IMPLICIT SEQUENCE{
toKeep [1] OriginPartToKeep,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep,
targetPart [2] TargetPart OPTIONAL}}

OriginPartToKeep ::= SEQUENCE{
exportSpec [1] CHOICE{

packageName [1] IMPLICIT InternationalString,
packageSpec [2] ExportSpecification},

numberOfCopies [2] IMPLICIT INTEGER}

OriginPartNotToKeep ::= SEQUENCE{
resultSetId [1] IMPLICIT InternationalString,
records [2] CHOICE{

all [1] IMPLICIT NULL,
ranges [2] IMPLICIT SEQUENCE OF SEQUENCE{

start [1] IMPLICIT INTEGER,
count [2] IMPLICIT INTEGER OPTIONAL

-- Count may be omitted only on last range, to indicate
-- "all remaining records beginning with ’start’."

}}}

TargetPart ::= SEQUENCE{
estimatedQuantity [1] IMPLICIT IntUnit OPTIONAL,
quantitySoFar [2] IMPLICIT IntUnit OPTIONAL,
estimatedCost [3] IMPLICIT IntUnit OPTIONAL,
costSoFar [4] IMPLICIT IntUnit OPTIONAL}

END

Page 128

ANSI/NISO Z39.50-1995

Appendix 9

USR: User Information Formats

(Normative)

UserInformation formats are defined for the
following: userInformationField in the Init and
InitResponse APDUs, additionalSearchInfo in the
Search and SearchResponse APDUs, and otherInfo in
all APDUs.

This standard defines and registers the
userInformation format SearchResult-1, defined for
use within a SearchResponse APDU. The following
object identifier is assigned:

SearchResult-1
{Z39-50-userInfoFormat 1} (See USR.1)

UserInformation formats may include negotiation
records, defined for the parameters userInformation-
Field and otherInfo in the Init and InitResponse
APDUs. These are described in USR.2.

USR.1 User Information Format
SearchResult-1

SearchResult-1 is for use primarily within the
AdditionalSearchInformation parameter in the Search
Response. The format allows the target to provide
information per query component (the whole query or
a sub-query, possibly restricted to a subset of the
specified databases). The target may also create and
provide access to a result set for each query
component.

This format may also be used as a Resource
Report format, within the ResourceReport parameter
of the resource-control request, to allow the target to
report on the progress of the search. However, when
used in this manner, the target should not create a
result set for a query component unless processing for
that component is complete.

UserInfoFormat-searchResult-1
{Z39-50-userInfoFormat searchResult-1 (1)} DEFINITIONS ::=
BEGIN
IMPORTS DatabaseName, Term, Query, IntUnit, InternationalString FROM Z39-50-APDU-1995;
SearchInfoReport ::= SEQUENCE OF SEQUENCE{

subqueryId [1] IMPLICIT InternationalString OPTIONAL,
-- shorthand identifier of subquery

fullQuery [2] IMPLICIT BOOLEAN, -- ’true’ means this is the full query; ’false’,
-- a sub-query

subqueryExpression [3] QueryExpression OPTIONAL, -- A subquery of the query as
-- submitted. May be whole query;
-- if so, "fullQuery" should be ’true’.

subqueryInterpretation [4] QueryExpression OPTIONAL, -- how target interpreted subquery
subqueryRecommendation [5] QueryExpression OPTIONAL, -- target-recommended alternative
subqueryCount [6] IMPLICIT INTEGER OPTIONAL, -- Number of records for this

-- subQuery, across all of the specified
-- databases. (If during search, via resource
-- control, number of recordsso far).

subqueryWeight [7] IMPLICIT IntUnit OPTIONAL, -- relative weight of this subquery
resultsByDB [8] IMPLICIT ResultsByDB OPTIONAL}

ResultsByDB ::= SEQUENCE OF SEQUENCE{
databases [1] CHOICE{

all [1] IMPLICIT NULL,
-- applies across all of the databases in Search PDU

list [2] IMPLICIT SEQUENCE OF DatabaseName
-- applies across all databases in this list

},

Page 129

ANSI/NISO Z39.50-1995

count [2] IMPLICIT INTEGER OPTIONAL,
-- Number of records for query component (and, as above, if during search,
-- via resource control, number of records so far).

resultSetName [3] IMPLICIT InternationalString OPTIONAL
-- Target-assigned result set by which subQuery is available. Should not
-- be provided unless processing for this query component is concluded (i.e.,
-- when this report comes during search, via resource control, as opposed
-- to after search, via additionalSearchInfo).

}

QueryExpression ::= CHOICE {
term [1] IMPLICIT SEQUENCE{

queryTerm [1] Term,
termComment [2] IMPLICIT InternationalString OPTIONAL},

query [2] Query}
END

USR.2 Negotiation Records
Negotiation records are defined for use within the

parameters otherInfo (version 3 only) and user-
InformationField in the Init and InitResponse APDUs.
No negotiation records are defined by this standard.
Publicly defined negotiation record definitions are
available from the Z39.50 Maintenance Agency.

In general, a negotiation record is defined for use
as follows: the origin includes the negotiation record
within the Init APDU (identified by its OID) to
propose that some condition be in effect for the Z-
association. The target may (but is not obligated to)
respond to the proposal, using the same negotiation
record format, and the target’s response, if any,
indicates whether the proposal is accepted, or may
indicate a counter-proposal, which will then be in
effect for the Z-association. Thus a negotiation record
definition should include the format of both the origin
proposal and the target response.

The following rules and guidelines apply to the
definition and use of negotiation records:
• A negotiation record should be defined for the

purpose of negotiating a single item of
information, except in the following case:
negotiation of related items may be defined for the
same negotiated record, where it is not practical to
separate their negotiation, for example, because of
interdependence among the negotiation of these
items.

• If the origin does not propose negotiation (i.e. does
not submit a negotiation record) for a given item,
then it is considered that "no negotiation takes

place" for that item. If the origin does propose
negotiation for an item, but the target does not
respond (i.e. does not include a corresponding
negotiation record), similarly, no negotiation takes
place for that item.

• A negotiation record definition must not specify
behavior governing the condition where no
negotiation takes place. (If no negotiation takes
place, neither origin nor target can be assumed to
know any rules associated with the negotiation
record definition.)

• If the target does not recognize the oid for a
negotiation record submitted by the origin, it
should ignore it (and not return a negotiation
record of that type).

Note: When the target does not recognize the oid of
a negotiation record, the target cannot be certain that
it is indeed a negotiation record. Therefore, care
should be taken in general in defining user informa-
tion formats, to ensure that if the target does not
recognize an oid it may ignore it with impunity.
• If the origin does not submit a negotiation record

of a particular type in the Init request, then the
target is not to include a negotiation record of that
type in the response.

• If multiple negotiation records are included in an
Init request, there is no significance to their order,
and there is no relationship between them: for
example, if the origin includes two negotiation
records, and the target does not recognize the first
(in which case negotiation fails for the first)
negotiation may still succeed for the second.

Page 130

ANSI/NISO Z39.50-1995

Appendix 10

ESP: Element Specification Formats

(Normative)

This Standard defines and registers the element specification format eSpec-1, and assigns it the following object
identifier:

eSpec-1{Z39-50-elementSpec 1}

ElementSpecificationFormat-eSpec-1

-- For detailed semantics, see Appendix RET.

{Z39-50-elementSpec eSpec-1 (1)} DEFINITIONS ::=
BEGIN
IMPORTS Variant FROM RecordSyntax-generic
StringOrNumeric, InternationalString FROM Z39-50-APDU-1995;
--
Espec-1 ::= SEQUENCE{

elementSetNames [1] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,
-- Origin may include one or more element set names, each
-- specifying a set of elements. Each of the elements is to be
-- treated as an elementRequest in the form of simpleElement,
-- where occurrence is 1.

defaultVariantSetId [2] IMPLICIT OBJECT IDENTIFIER OPTIONAL,
-- If supplied, applies whenever variantRequest
-- does not include variantSetId.

defaultVariantRequest [3] IMPLICIT Variant OPTIONAL,
-- If supplied, then for each simple elementRequest that does not
-- include a variantRequest, the defaultVariantRequest applies.
-- (defaultVariantRequest does not apply to a compositeRequest.)

defaultTagType [4] IMPLICIT INTEGER OPTIONAL,
-- If supplied, applies whenever ’tagType’ (within ’tag’ within TagPath)
-- is omitted.

elements [5] IMPLICIT SEQUENCE OF ElementRequest OPTIONAL}
--

ElementRequest::= CHOICE{
simpleElement [1] IMPLICIT SimpleElement,
compositeElement [2] IMPLICIT SEQUENCE{

elementList [1] CHOICE{
primitives [1] IMPLICIT SEQUENCE OF InternationalString,

-- Origin may specify one or more element
-- set names, each identifying a set of elements,
-- and the composite element is the union.

specs [2] IMPLICIT SEQUENCE OF SimpleElement},
deliveryTag [2] IMPLICIT TagPath,

-- DeliveryTag tagPath for compositeElement may not
-- include wildThing or wildPath.

variantRequest [3] IMPLICIT Variant OPTIONAL}}

Page 131

ANSI/NISO Z39.50-1995

SimpleElement ::= SEQUENCE{
path [1] IMPLICIT TagPath,
variantRequest [2] IMPLICIT Variant OPTIONAL}

TagPath ::= SEQUENCE OF CHOICE{
specificTag [1] IMPLICIT SEQUENCE{

tagType [1] IMPLICIT INTEGER OPTIONAL,
-- If omitted, then ’defaultTagType’ (above) applies, if supplied, and
-- if not supplied, then default listed in schema applies.

tagValue [2] StringOrNumeric,
occurrence [3] Occurrences OPTIONAL

-- default is "first occurrence"
},

wildThing [2] Occurrences,
-- Get Nth "thing" at this level, regardless of tag, for each N specified by
-- "Occurrences" (which may be ’all’ meaning match every element at this level).
-- E.g., if "Occurrences" is 3, get third element regardless of its tag or the tag of
-- the first two elements.

wildPath [3] IMPLICIT NULL
-- Match any tag, at this level or below, that is on a path for which next tag in this
-- TagPath sequence occurs. WildPath may not be last member of the TagPath
-- sequence.

}
--

Occurrences ::= CHOICE{
all [1] IMPLICIT NULL,
last [2] IMPLICIT NULL,
values [3] IMPLICIT SEQUENCE{

start [1] IMPLICIT INTEGER,
-- if ’start’ alone is included, then single occurrence is requested

howMany [2] IMPLICIT INTEGER OPTIONAL
-- For example, if ’start’ is 5 and ’howMany’ is 6, then request is for
-- "occurrences 5 through 10."
}}

END

Page 132

ANSI/NISO Z39.50-1995

Appendix 11

VAR: Variant Sets

(Normative)

This standard defines and registers the variant set
variant-1, and assigns it the following object
identifier:

variant-1 {Z39-50-variantSet 1}

This definition describes the classes, types, and
values, for the variant set Variant-1, that may occur
in a variant specification. A variant specificationis
a sequence of triples; each triple is a variant specifier

(as referenced by the identifier variantSpecifier in
GRS-1 and ES-1). The first component of the triple is
a "Class" (integer), the second is a "Type" (integer)
defined within that class, and the third is a "Value"
defined for that type (its datatype depends on the
type).

The following classes, types, and values are
defined for Variant-1 (For detailed semantics of
variant-1, see Appendix RET).

Class Type Value(s)

1 = variantId
Class 1 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = variantId OCTET STRING

2 = BodyPartType
Class 2 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = ianaType/subType I n t e r n a t i o n a l S t r i n g : " < i a n a T y p e > / < s u b T y p e > " e . g .
"application/postscript", where <ianaType> and <subType> are
registered with IANA (Internet Assigned Numbers Authority)

2 = Z39.50Type[/subType] InternationalString: e.g. "’sgml/’dtdName" (for example "sgml/TEI") or
"sgml"

3 = otherType[/subType] InternationalString; bilaterally agreed upon
Note: subtype is optional for types 2 and 3.

3 = formatting/presentation
Class 3 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = characters per line INTEGER
2 = line length IntUnit
3 = lines per page INTEGER
4 = dots per inch INTEGER
5 = paperType-Size InternationalString; e.g. A-1, B, C.
6 = deliverImages BOOLEAN
7 = PortraitOrientation BOOLEAN (’true’ means "portrait")
8 = textJustification InternationalString; ’left’, ’right’, ’both’, or ’center’
9 = fontStyle InternationalString
10 = fontSize InternationalString
11 = fontMetric InternationalString
12 = lineSpacing INTEGER
13 = numberOfColumns INTEGER
14 = verticalMargins IntUnit
15 = horizontalMargins IntUnit

Page 133

ANSI/NISO Z39.50-1995

Class Type Value(s)

3 = formatting/presentation (continued)
16 = pageOrderingForward BOOLEAN
17 = beginDocsOnNewPage BOOLEAN (’false’ means "concatenate documents")
18 = termHighlighting BOOLEAN
19 = footnoteLocation InternationalString: ’inline’, endOfPage’, ’endEachDoc’, ’endLastDoc’
20 = paginationType InternationalString

4 = Language/CharacterSet
Class 4 may be used within a supportedVariant, variantRequest, or appliedVariant.
1 = language InternationalString (from ANSI/NISO Z39.53-1994)
2 = registered character set INTEGER: registration number from ISO International Register of

Character Sets
3 = character set id OBJECT IDENTIFIER
4 = encoding id OBJECT IDENTIFIER
5 = private string InternationalString

5 = Piece
Class 5 may be used within a variantRequest or appliedVariant.
1 = what fragment wanted INTEGER(variantRequest only)

1 = start
2 = next
3 = previous
4 = current
5 = last

2= what fragment returned INTEGER(appliedVariant only)
1 = start
2 = middle
3 = last
4 = end for now
5 = whole

3 = start IntUnit
4 = end IntUnit
5 = howMuch IntUnit
6 = step INTEGER or IntUnit
7= targetToken OCTET STRING

6 = meta-data requested
Class 6 may be used within a variantRequest only.

1 = cost Unit or NULL
2 = size Unit or NULL
3 = hits, variant-specific NULL
4 = hits, non-variant-specific NULL
5 = variant list NULL
6 = is variant supported? NULL
7 = document descriptor NULL
8 = surrogate information NULL
998 = all meta-data NULL
999 = other meta-data OBJECT IDENTIFIER

Page 134

ANSI/NISO Z39.50-1995

Class Type Value(s)

7 = meta-data returned
Class 7 may be used within a supportedVariant or appliedVariant.
1 = cost IntUnit
2 = size IntUnit
3 = integrity INTEGER
4 = separability INTEGER
5 = variant supported BOOLEAN

8 = Highlighting
Class 8 may be used within a variantRequest or appliedVariant.
1 = prefix OCTET STRING
2 = postfix OCTET STRING
3 = server default NULL(variantRequest only)

9 = miscellaneous
1 = NoData NULL (variantRequest only)
2 = Unit Unit (variantRequest only--origin requests element according to

specific unit)
3 = Version InternationalString

Page 135

ANSI/NISO Z39.50-1995

Appendix 12

TAG: TagSet Definitions and Schemas

(Normative)

A database schema represents a common
understanding shared by the origin and target, of the
information contained in the records of the database
represented by that schema, to allow retrieval of
portions of that information.

The primary component of a database schema is an
abstract record structure, which lists schema elements
in terms of their tagPaths. A tagPath is a
representation of the hierarchical path of an element,
expressed as a sequence of nodes, each represented by
a tag. Each tag in a tagPath consists of a tagType and
tagValue. The tagType is an integer; the tagValue
may be an integer or character string. The tagType
qualifies the tagValue; it might identify a tagSet,
which might be registered (or alternatively, it might
be defined locally within the schema).

Also included in a schema is a definition of how
the various tagTypes are used within the tagPaths for
the schema elements. The definition might simply be
a mapping of tagTypes to tagSets.

For all schemas, tagTypes 1 through 3 are assumed
to have the following meaning:

tagType used to qualify:
1 an element defined in tagSet-M (s e e

TAG.2.1)
2 an element defined in tagSet-G (s e e

TAG.2.2)
3 a tag locally defined by the target

(intended primarily for string tags, but
numeric tags are not precluded)

For a detailed description of the use of schemas,
tagSets, etc. see Appendix RET.

TAG.1 Schema Definitions
This standard registers the following object

identifiers for Schemas:

WAIS {Z39-50-schema 1}
GILS {Z39-50-schema 2}

TAG.2 TagSet Definitions
This standard defines and registers the tag set

definitions tagSet-M and tagSet-G. TagSet-M includes

elements intended for use as meta-data associated
with a database record. TagSet-G includes generic
elements.

The object identifier for these definitions are:
tagSet-M {Z39-50-tagSet 1}
tagSet-G {Z39-50-tagSet 2}

For detailed semantics of the elements defined in
these tagSets, see Appendix RET.

In addition, this standard registers the following
tagSet:

tag-Set-STAS {Z39-50-tagSet 3}

TAG.2.1 Definition of tagSet-M

recommended
Element tag ASN.1 datatype
schemaIdentifier 1 OBJECT IDENTIFIER
elementsOrdered 2 BOOLEAN
elementOrdering 3 INTEGER
defaultTagType 4 INTEGER
defaultVariantSetId 5 OBJECT IDENTIFIER
defaultVariantSpec 6 VariantSpec
processingInstructions 7 InternationalString
recordUsage 8 INTEGER
restriction 9 InternationalString
rank 10 INTEGER
userMessage 11 InternationalString
url 12 InternationalString
record 13 structured
local control number 14 InternationalString
creation date 15 GeneralizedTime
dateOfLastModification 16 GeneralizedTime
dateOfLastReview 17 GeneralizedTime
score 18 INTEGER
wellKnown 19 InternationalString
recordWrapper 20 structured
defaultTagSetId 21 OBJECT IDENTIFIER

schemaIdentifier -- Identifies the schema in use.
This element is available for cases where the origin
does not specify a schema in the request, or where the
target uses a schema different than that requested by
the origin.

Page 136

ANSI/NISO Z39.50-1995

elementsOrdered-- If ’true’, then sibling elements
(i.e. with the same parent) are presented as follows:
tagTypes are ascending; for elements with the same
tagType, integer tag values are ascending, and precede
elements with string tags (which are not necessarily
ordered).

elementOrdering -- How sibling elements with the
same tag are ordered:
1 = "Normal" consumption order (pages, frames).
2 = Chronological, e.g., news articles.
3 = Semantic size, e.g., increasingly comprehensive

abstracts.
4 = Generality, e.g., thesaurus words, increasing

generality, concentric object snapshots,
zoom-out order.

5 = Elements explicitly undistinguished by order.
6 = undefined; may (or not) be ordered by private

agreement.
7 = Singleton; never more than one occurrence.

defaultTagType -- The tagType that applies for any
element for which tagType is not included.

defaultVariantSetId -- The Variant set identifier that
applies when the target returns a variant specification
for an element, but does not include a variant set
identifier.

defaultVariantSpec -- If this element is present, then
the specified variant applies to all subsequent
elements, when applicable, which do not include a
variant specification.

processingInstructions -- Recommendation by the
target on how to display this record to the user.

recordUsage
1 = Redistributable.
2 = Restricted, and the tagSet-M element

’restriction’ (defined below) contains the
restriction.

3 = Restricted, and the restriction, contains a license
pointer.

restriction -- This element, if present, should
immediately follow recordUsage, and is a statement
(if recordUsage is 1 or 2), or a pointer to the license
(if recordUsage is 3).

rank -- The rank of this record within the result set.
If N records are in the result set, each record should
have a unique rank from 1 to N.

userMessage-- A message, pertaining to this record,
that the target asks the origin to display to the user.

url -- Uniform resource locator. This is a URL for the
record.

record -- This element may be used for nested
records, when the database record itself includes
database records (possibly from a different database).
Note that tagSet-M elements that occur subordinate to
this element apply only to that nested record.

localControlNumber -- An identifier of the record,
unique within the database.

creationDate -- Date that the record was created.

dateOfLastModification -- Most recent date that this
record was modified.

dateOfLastReview -- Most recent date that this
record was verified.

score-- A normalized score assigned to the record by
the target. Each record in the result set should have a
score from 1 to N where N is the normalization factor
(more than one record may have the same score). The
normalization factor should be specified in the
schema.

wellKnown -- When an element is defined to be
"structured into locally defined elements," the target
may use this tag in lieu of, or along with, locally
defined tags. For example, an element named ’title’
might be described to be "locally structured." The
target might present the element structured into the
following subelements: ’wellKnown’, "spineTitle,"
and "variantTitle," where the latter two are string tags,
target defined. In this case, ’wellKnown’ is assumed
to mean "title."

recordWrapper -- This element may be used to
represent the root of the record, particularly when the
record otherwise has no root. The origin may request
the record skeleton by reference to this element.

defaultTagSetId -- This element may be used in lieu
of defaultTagType, to identify the default tag set.

Page 137

ANSI/NISO Z39.50-1995

TAG.2.2 Definition of tagSet-G

recommended
Element tag ASN.1 datatype
title 1 InternationalString
author 2 InternationalString
publicationPlace 3 InternationalString
publicationDate 4 InternationalString or

GeneralizedTime
documentId 5 InternationalString
abstract 6 InternationalString
name 7 InternationalString
date 8 GeneralizedTime
bodyOfDisplay 9 InternationalString
organization 10 InternationalString
postalAddress 11 InternationalString
networkAddress 12 InternationalString
eMailAddress 13 InternationalString
phoneNumber 14 InternationalString
faxNumber 15 InternationalString
country 16 InternationalString
description 17 InternationalString
time 18 IntUnit
DocumentContent 19 OCTET STRING

These elements (with the exception of
bodyOfDisplay) are for generic use and their
definitions are not supplied.

BodyOfDisplay -- The target might combine several
elements into this single element, into a display
format, for display.

Page 138

ANSI/NISO Z39.50-1995

Appendix 13

ERS: Extended Result Set Model

(Non-Normative)

Section 3.1.6 (Model of a Result Set) notes that in
the extended result set model for searching, the target
maintains unspecified information associated with
each record, which may be used as a surrogate for the
search that created the result set. Query specifications
may indicate under what condition the extended
model applies and the nature of the unspecified
information. This appendix provides examples of
information that the target might maintain to perform
proximity operations requiring the extended model, or
to evaluate restriction operands.

ERS.1 Extended Result Set Model for
Proximity

In the extended result set model for proximity,
the target maintains information associated with each
record represented by the result set, that may be used
in a proximity operation as a surrogate for the search
that created the result set.
Example:

Let R1 and R2 be result sets produced by Type-1
query searches on the terms ’cat’ and ’hat’. In the
extended result set model for proximity, the target
maintains sufficient information associated with each
entry in R1 and with each entry in R2 so that the
proximity operation "R1 near R2" would be a result
set equivalent to the result set produced by the
proximity operation "cat near hat" ("near" is used
informally to refer to a proximity test).

The manner in which the target maintains this
information is not prescribed by the standard. The
concept of "abstract position vectors" may used to
describe the effect of the proximity test. A target
system may implement the proximity test in any way
that produces the desired results.

An abstract position vector might include a
proximity unit and a sequence of position identifiers.
Example:

Let R1 and R2 be result sets produced by searches
on the terms ’cat’ and ’hat’. Record 1000 contains
’cat’ in paragraphs 10 and 100 and ’hat’ in paragraphs
13 and 200. So record 1000 is represented in both R1
and R2. In R1, it might include the two position
vectors (paragraph, 10) and (paragraph, 100). In R2,
it might include the two position vectors (paragraph,

13) and (paragraph, 200). R3 = "R1 within 10
paragraphs of R2" would identify this record, and a
position vector might be created (paragraph, 10, 13).

Subsequently, suppose R4 represents "rat before
bat" and includes record 1000 with position vectors
(paragraph, 5, 8) and (paragraph, 15, 18). Then:
• R3 ’before and within 2 of’ R4 would

represent: "(cat near hat) before (rat before
bat)" and in the resulting set, record 1000 might
include position vector (paragraph, 10, 18);

• R3 ’following and within 2 of’ R4 might represent:
"(cat near hat) after (rat before bat)" and in the
resulting set, record 1000 might include position
vector (paragraph, 5, 13).

Note: In these two examples, the position vectors
might instead be (paragraph, 10, 13, 15, 18) instead
of (paragraph, 10, 18); and (paragraph, 5, 8, 10, 13)
instead of (paragraph, 5, 13). Different implementa-
tions might interpret extended proximity tests
differently.

Neither the information that the target maintains
(associated with result set entries to be used in the
proximity operations) nor the manner in which the
target maintains this information, is prescribed by the
standard. The above is supplied as an example only.

ERS.2 Extended Result Set Model for
Restriction

The Restriction operand specifies a result-set-id
and a set of attributes. It might represent a set of
database records identified by the specified result set,
restricted by the specified attributes, as in example 1
(below). It might represent a set of records from the
database specified in the Search APDU, indirectly
identified by the specified result set and restricted by
the specified attributes, as in example 2.

Example 1:
Let R be the result set produced by a search on the

term ’cat’.

Page 139

ANSI/NISO Z39.50-1995

Result set position:
1 identifies record 1000, where ’cat’ occurs in the

title.
2 identifies record 2000, where ’cat’ occurs in the

title and as an author.
3 identifies record 3000, where ’cat’ occurs in the

title, and as an author and subject.
Then "R restricted to ’author’" might produce the
result set consisting of the entries 2 and 3 of R.

In the extended result set model for restriction, the
target maintains information that allows this type of
search to be performed. In this example, the target
might maintain the following information with the
entries in result set R:
Result set position:
1 title
2 title, author
3 title, author, subject

Example 2:
In this example, R and C are two databases. R

is a "registry" database containing records about
chemical substances, each of which is identified by
a unique registry number. C is a bibliographic
database, containing bibliographic records for
documents about chemical substances. The registry
number is a searchable field in both databases. A
registry number identifying a record in R may
occur in one or more logical indexes for database
C.

For example, the "preparations" index for database C
contains registry numbers of substances that are cited
in its documents as being used in preparations.

In this example, a search is performed against
database R, creating result set L, which will in
effect contain registry numbers representing
records in database R, each of which uniquely
identifies a chemical substance. A second search is
performed against database C with the operand "L
restricted to ’preparations’." This restriction is
expressed by applying the "preparations" attribute
to result set L. The search is performed by looking
for registry numbers from result set L that occur in
the "preparations" index for database C. The result
set represents the records in C where a registry
number contained in result set L occurs as a
preparation.

In the extended result set model for restriction,
the target maintains information that allows this
type of search to be performed. In this example,
the target might maintain, with each entry in L, a
list of identifiers of records in C for which the
registry number occurs as a preparation.

Neither the information that the target maintains
(associated with result set entries to be used in the
evaluation of a Restriction operand), nor the manner
in which the target maintains this information, is
prescribed by the standard. The above are supplied as
an example only.

Page 140

ANSI/NISO Z39.50-1995

Appendix 14

RET: Z39.50 Retrieval

(Non-normative)

Search and retrieval are the two primary functions
of Z39.50. Searching is the selection of database
records, based on origin-specified criteria, and the
creation by the target of a result-set representing the
selected records.Retrieval, idiomatically speaking, is
the transfer of result set records from the target to the
origin.

This appendix describes retrieval, and thus assumes
the existence of a result set. For simplicity, it is
assumed that the result set has a single record
(although Z39.50 retrieval allows an origin to request
the retrieval of various combinations of result set
records) and this appendix focuses on the capabilities
provided by Z39.50 retrieval for retrieving
information from that record.

RET.1 Overview of Z39.50 Retrieval
Though retrieval is considered informally to be the

transfer ofresult set records, a result set, logically,
does notcontain records. Rather, it contains logical
items(sometimes referred to as "answers"); each item
includes apointer to a database record (the term
"result set record" is an idiomatic expression used to
mean "the database record represented by a result set
item").

Moreover, a database record, as viewed by Z39.50,
is purely a local data structure. In general Z39.50
retrieval does not transfer database records (that is,
the target does not transfer the information according
to its physical representation within the database), nor
does Z39.50 necessarily transferall of the information
represented by a particular database record; it might
transfer a subset of that information.

Thus the "transfer of a result set record" more
accurately means: the transfer of some subset of the
information in a database record (represented by that
result set entry) according to some specified format.
This exportable structure transferred is called a
retrieval record. (Multiple retrieval requests for a
given record may result in significantly different
retrieval records, both in content and structure.)

Z39.50 retrieval supports the following basic
capabilities:
• The origin may request specific logical information

elements from a record (via an element
specification, described below).

• The origin and target may share a name space for
tagging elements (via a schema and tagsets,
described below), so that elements will be properly
identified: by the origin, within an element
specification, and by the target, within a retrieval
record.

• The origin may request an individual element
according to a specific representation or format
(via variants, described below).

• The origin may specify how the elements,
collectively, are to be packaged into a retrieval
record (via a record syntax, described below).
Correspondingly, Z39.50 retrieval has four primary

functions:
-- Elementselection(see note)
-- Elementtagging
-- Elementrepresentation
-- Recordrepresentation

Note: element selection pertains toretrieval, and
should not be confused withrecord selection which
pertains tosearching. Element selection pertains to
selection of information elements from already-
selected database records.

RET.2 Retrieval Object Classes
This section, RET.2, describes object classes used

by these retrieval functions: RET.3 describes in detail
specific object definitions that are defined within this
standard.
• element specifications (elementSpecs), see

RET.2.1;
• tagSets, see RET.2.1;
• schema definitions, see RET.2.2;
• variant specifications (variantSpecs), see RET.2.3;

and
• record syntaxes, see RET.2.4.

RET.3 describes in detail specific object definitions
that are defined within this standard.

Following is a brief overview of the object classes.
An elementSpec occurs within a Z39.50 Present

request, and is used primarily for selection. In its
most basic form, an elementSpec is a request for
specific elements (a set of elementRequests).

A tagSet defines a set of elements, and specifies
names and recommended datatypes for individual
elements within that set. The name of an element is

Page 141

ANSI/NISO Z39.50-1995

called its tag, and may be used alone (in an
elementRequest) or accompanying the element it
names (within a retrieval record).

A schema defines an abstract record structure(see
RET.2.2). The schema definition refers to one or
more tagSets.

Although an elementSpec is used primarily for
selection, it might have representation aspects: each
elementRequest may include a variantRequest, used
primarily for element representation, to specify the
particular form of an element, for example how an
element is to be formatted. (However, a
variantRequest may include limited selection: it might
ask for a specificpieceor fragmentof an element.)

A variantRequest is one of three usages of a
variantSpec:
• A variantRequest is a variantSpec occurring within

an elementRequest.
• An appliedVariantis a variantSpec applied to an

element by the target, when that element is
included in a retrieval record.

• The target might provide a list of the variantSpecs
supported for a given element; each is referred to
as a supportedVariant.
A record syntax is applied by the target to the set

of elements selected by an elementSpec (and possibly
transformed by appliedVariants) resulting in a
retrieval record.

Summarizing:
• An elementSpec is used (primarily) for element

selection;
• A variantRequest is used for element

representation;
• A record syntax is used for record representation;
• A tagSet is used for element tagging, both within

an elementSpec (for element selection) and a
record syntax (for record representation).

• A schema defines an abstract record structure.

RET.2.1 Element Specification Features
and TagSets

An elementSpec may be included in a Present
request to specify the desired elements to comprise a
retrieval record. For example, the origin might request
that the retrieval record consist of the two elements
’author’ and ’title’. The elementSpec may express this
in one of two ways:
• An element set name(a primitive name) might

be defined, for example ’authorTitle’, whose
definition means "present the author and title."

• A dynamic specification may be used, allowing
the origin to select arbitrary elements,
dynamically.

The use of an element set name as an elementSpec
has a significant limitation: one would need to be
defined for every possible combination of elements
that might be requested.

For Z39.50 version 2, only the primitive form is
allowed; the elementSpec must be an element set
name (whose ASN.1 type is VisibleString). Version
3 allows the elementSpec to alternatively assume the
ASN.1 type EXTERNAL (thus referencing an
external definition, which is presumably, though not
necessarily, described in ASN.1). The following
illustrate some of the features that may be provided
by an elementSpec, by progressively complex ASN.1
examples.

RET.2.1.1. Simple numeric tags
A simple elementSpec might specify a list of

elements. The elementSpec definition could be:
ESpec ::= SEQUENCE OF ElementRequest
ElementRequest ::= INTEGER
In this example, each element requested is

represented by an integer. Both origin and target are
assumed to share a common definition, a tagSet,
which assigns integers to elements. The integer is the
name, or tag, of the element. In this example, the
tagSet might assign the integers 1 to ’title’ and 2 to
’author’.

RET.2.1.2 String tags
It is not always desirable to restrict element tags

to integers. String tags are useful for some
applications. So the element request might take the
slightly more complex form:

ElementRequest ::= StringOrNumeric
Note that StringOrNumeric is a type defined

within, and exported by Z39-50-APDU, defined as:
StringOrNumeric ::= CHOICE{

numeric [1] IMPLICIT INTEGER,
string [2] IMPLICIT InternationalString}

In this case, the tagSet might declare that "author
may also referenced by the string tag ’author’, and
title by ’title’."

RET.2.1.3 Tag Types
Often it will be necessary (or useful) to request

elements not all of whose tags are defined by a single
tagSet. This capability presents an important benefit,
allowing multiple name spaces for tags, so that tagSet
definitions may be developed independently.
However, it requires that tags be qualified by
reference to tagSet.

Page 142

ANSI/NISO Z39.50-1995

A schema definition (see RET.2.2) may assign an
integer to identify a tagSet (it identifies the tagSet
only within the context of the schema definition).
This tagSet identifier is called a tagType. Note that a
tagSet definition is a registered object and thus is
persistently identified by an object identifier. The
(integer) tagType is used as a short-hand identifier.

Extending the above example to incorporate
tagTypes, the elementRequest could be defined as:

ElementRequest ::= SEQUENCE{
tagType [1] IMPLICIT INTEGER,
tagValue [2] StringOrNumeric}

RET.2.1.4 Tag Occurrence
A database record often contains recurring

elements. An origin might want the Nth occurrence
of a particular type of element (e.g. "the fourth
image"). To introduce recurrence into the above
example, the elementRequest could be defined as:

ElementRequest ::= SEQUENCE{
tagType [1] IMPLICIT

INTEGER OPTIONAL,
tagValue [2] StringOrNumeric,
tagOccurrence [3] IMPLICIT INTEGER}

RET.2.1.5 Tag Paths
A database record is not necessarily a flat set of

elements, it may be a hierarchical structure, or tree
(where leaf-nodes contain information). An origin
might request, for example "the fourth paragraph of
section 3 of chapter 2 of book 1" (’book’, ’chapter’,
’section’, and ’paragraph’ might be tags). This
example introduces the concept of a tag path, which
is simply a nested sequence of tags (each tag within
the sequence is qualified by a type and occurrence).
A tag path can be incorporated by replacing the first
line of ASN.1 in the previous example, with:

ElementRequest ::= TagPath
TagPath ::= SEQUENCE OF SEQUENCE{

RET.2.1.6 VariantRequests
Finally, the origin may wish to qualify an

elementRequest with a variantRequest, to specify a
particular composition (e.g. PostScript), language,
character set, formatting (e.g. line length), or
fragment.

ESpec ::= SEQUENCE OF ElementRequest
ElementRequest ::= SEQUENCE{

TagPath,
VariantRequest OPTIONAL}

Where TagPath is defined as in the previous example.
Variants are described in RET.2.3.

RET.2.2 Schema and Abstract Record
Structure

A database schema represents a common
understanding shared by the origin and target of the
information contained in the records of the database
represented by schema. The primary component of a
schema is an abstract record structure, ARS. It lists
schema elements in terms of their tagPaths, and
supplies information associated with each element,
including whether it is mandatory, whether it is
repeatable, and a definition of the element. (It also
describes the hierarchy of elements within the record;
see RET.2.2.5.)

An ARS is defined in terms of one or more
tagSets. The schema itself may define a tagSet, and
may also refer to externally defined tagSets. In the
simple example of an ARS that follows, assume that
the following tagSet has been defined:

Tag Element Recommended dataType
1 title InternationalString
7 name InternationalString
16 date GeneralizedTime
18 score INTEGER
14 recordId InternationalString
<locally
defined string
tag> objectElement InternationalString or

OCTET STRING

In the following example ARS, each "schema
element" refers to an element from the above tagSet.

In this example, for objectElement, the schema
would indicate that the target is to assign some
descriptive string tag. For example, if the element is
a fingerprint file, the tag might be ’fingerPrintFile’.
(In that case, the content of element ’name’, tag 7,
might identify the person who is the subject of the
finger prints.) Since it is the only element in the ARS
with a string tag, the origin will recognize it as the
objectElement.

Page 143

ANSI/NISO Z39.50-1995

Abstract Record Structure

Schema Manda- Repeat-
Element tory? able? Definition
title yes no A set of words that

conveys the main idea of
the record.

name no yes One or more individuals
associated with the ob-
ject element; it could,
for example, be an auth-
or or an organization.

date no no A date associated with
the record.

score no no Represents the numerical
score of the record based
on its relevance to the
query.

recordId no no An identifier of the
record unique within the
target system.

object
Element yes no Contains object informa-

tion for the record. It
may be text, image, etc.

RET.2.2.1 Relationship of Schema and
TagSet

In the above example, at first glance it appears
there need not be separate tables for tagSet and ARS,
they could be combined into a single table. When the
tagSet is defined within a schema, then there may be
no need to distinguish between the tagSet and
schema. However, the tagSet might instead be defined
externally and referenced by the schema.

A schema may define a tagSet as in the example
above, and it need not be registered. The schema
could simply assign an integer tagType to identify the
tagSet. The tagSet could then be used only by that
schema. But some of the elements in the above
example might also be included in a different schema.
For example, another schema might also define title
and name, and that schema should be able to use the
same tags. For this purpose, tagSets may be
registered, independent of schema definitions.

It is anticipated that there will be several, but not
a large number of tagsets defined, and that many
schemas will be able to define an ARS referencing
one or more registered tag sets, without the need to
define a new tagSet. (There will be more than one
tagSet defined because it would be difficult to manage
a single tagSet that meets the needs of all schemas.)

RET.2.2.2 TagTypes
As noted in RET.2.1.3, within a Present request or

Present response elements are identified by their tag,
and tags are qualified bytag type. The tag type is an
integer, identifying the tagSet to which it belongs. A
schema lists each tagSet referenced in its ARS and
designates an integer to be used as the tag type for
that tagSet.

Z39.50 currently defines two tagSets, tagSet-M and
tagSet-G. These are described in RET.3.4. TagSet M
includes elements to be used primarily to convey
meta-information about a record, for example
dateOfCreation; tagSet-G includes primarily generic
elements, for example ’title’, ’author’.

Among the schema elements defined in the
example above, title and name are defined in tagSet-
G; date, score, and recordId are defined in tagSet-M.

The schema might provide the following mapping
of tagType to tagSet:

1 --> tagSet-M
2 --> tagSet-G
3 --> locally defined tags (intended

primarily for string tags, but
numeric tags are not precluded).

In the notation below, where (x,y) is used, ’x’ is
the tagType and ’y’ is the tag. In the ARS above the
following column would be inserted on the left:

TagPath
(2,1)
(2,7)
(1,16)
(1,18)
(1,14)
(3,<locally defined string tag>)

RET.2.2.3 Recurring objectElement
The schema becomes only slightly more complex

if multiple object elements (i.e. multiple occurrences
of the element objectElement) are allowed. The
schema could indicate that each occurrence of
objectElement is to have a different string tag. The
entry in the ’repeatable’ column in the ARS, for
objectElement, would be changed from ’no’ to ’yes’.

For example, suppose a record includes a
fingerprint file, photo, and resume, all describing an
individual (and the element ’name’ might identify the
individual that they describe). The string tags for
these three elements respectively might be
’fingerPrint’, ’photo’, and ’resume’. The origin
would recognize each of these elements as an

Page 144

ANSI/NISO Z39.50-1995

occurrence of objectElement, because the schema
designates that only objectElement may have a string
tag. (This is not to imply that the origin would
recognize the type of information, e.g. fingerprint,
from its string tag; but the origin might display the
string tag to the user, to whom it might be
meaningful.)
The ARS would be as follows (definition column
omitted):
Tag path Element Mandatory? Repeatable?
(2,1) title yes No
(2,7) Name no Yes
(1,16) Date no No
(1,18) Score no No
(1,14) RecordId no No

(3, Object
<stringTag>) Element yes Yes

RET.2.2.5 Structured Elements
In the following example, hierarchy is introduced;

the ARS includes structured elements (i.e. elements
whose tagPath has length greater than 1). In the
examples above the ARSs are flat; all elements are
data- elements, i.e. leaf-nodes. The ARS below is part
of a schema for a database in which each record
describes an information resource. It assumes the
following tagSet:

Tag Element Name Recommended DataType
25 linkage InternationalString
27 recordSource InternationalString
51 purpose InternationalString
52 originator InternationalString
55 orderProcess InternationalString
70 availability (structured)
90 distributor (structured)
94 pointOfContact (structured)
97 crossReference (structured)

The notation (x,y)/(z,w) is used below to mean
element (z,w) is a sub-element of element (x,y). In
the "Schema Element Name" column, indentation is
used to indicate subordination. For example,
distributorName, a data element, is a sub-element of
the structured element distributor, which in turn is a
sub-element of the structured element availability. In
this example, the schema designates that the
tagType for the above defined tagSet is 4.

Several elements in the ARS below are (implicitly)
imported from tagSet-G (those with tagType-2).
These are: title, abstract, name, organization,
postalAddress, and phoneNumber.

Abstract Record Structure:
Schema Element Schema
Tag Path Element Name
(2,1) title
(2,6) abstract
(4,51) purpose
(4,52) originator
(4,70) availability
(4,70)/(4,90) distributor
(4,70)/(4,90)/(2,7) distributorName
(4,70)/(4,90)/(2,10) distributorOrganization
(4,70)/(4,90)/(2,11) distributorAddress
(4,70)/(4,90)/(2,14) distributorTelephone
(4,70)/(4,55) orderProcess
(4,70)/(4,25) linkage
(4,94) pointOfContact
(4,94)/(2,7) contactName
(4,94)/(2,10) contactOrganization
(4,94)/(2,11) contactAddress
(4,97) crossReference
(4,97)/(2,1) crossReferenceTitle
(4,97)/(4,25) crossReferenceLinkage
(4,27) recordSource

The ARS describes an abstract database record
consisting of title, abstract, purpose, originator,
availability, point of contact, crossReference, and
recordSource. These are the "top-level" elements,
among which, Availability, pointOfContact, and
CrossReference are structured elements, and the
others are data elements. Availability consists of
distributor, orderProcess, and Linkage; among these,
distributor is a structured element.

RET.2.3 Variants
An element might be available for retrieval in

various forms, orvariants. The concept of an element
variant applies in three cases:
• the origin may request an element (in a Present

request) according to a specific variant;
• the target may present an element (in a Present

response) according to a specific variant;
• the target may indicate what variants of a

particular element are available.
Correspondingly, and more formally, a variant

specification (variantSpec) takes the form of a
variantRequest, appliedVariant, or supportedVariant.
In all cases, a variantSpec is a sequence of
variantComponents, each of which is a triple (class,
type, value). ’class’ is an integer. ’type’ is also an
integer and a set of types are defined for each class.
Values are defined for each type.

Page 145

ANSI/NISO Z39.50-1995

A variantSet definition is a registered object
(whose object identifier is called a variantSetId)
which defines a set of classes, types, and values that
may be used in a variantComponent. A variantSpec is
always qualified by its variantSetId, to provide
context for the values that occur within the
variantComponents (in the same manner that an RPN
Query includes an attribute set id, to provide context
for the attribute values within the attribute lists).

The variant set definition variant-1is defined in
Appendix VAR, and is described in detail, in
RET.3.3.

RET.2.4 Record Syntax
The target applies a record syntax to an abstract

database record, forming a retrieval record. Record
syntaxes fall into two categories: content-specific and
generic. Content-specific record syntaxes include:
• those of the MARC family (listed at the beginning

of Appendix REC);
• Explain (REC.1);
• OPAC and Summary (REC.3 and REC.4); and
• Extended Services (REC.6).

Generic record syntaxes are further categorized:
they arestructuredor unstructured. Structured record
syntaxes are able to identify TagSet elements. GRS-1,
a generic, structured syntax, is defined in REC.5, and
is described in detail in RET.3.2. SUTRS (Simple
Unstructured Text Record Syntax) is a generic,
unstructured syntax, defined in REC.2.

RET.3 Retrieval Objects Defined in this
Standard

In the remainder of this Appendix, detailed
descriptions are provided below for the following
retrieval objects defined in this standard: element
specification format eSpec-1, record syntax GRS-1,
variant set variant-1, and tagSets tagSet-M and tagSet-
G. Within these descriptions it is assumed that these
objects are used together; for example, in the
description of eSpec-1 it is assumed that GRS-1 is to
be used as the record syntax. In general, however, no
such restriction applies; eSpec-1 may be used as an
element specification in conjunction with SUTRS for
example.

RET.3.1 Element Specification Format
eSpec-1

The element specification format eSpec-1 is
defined in Appendix ESP. An element specification
taking this form is basically a set of elementRequests,
as seen in the last member of the main structure:

elements [4] IMPLICIT SEQUENCE OF
ElementRequest

Each elementRequest may be a "simple element"
or a "composite element," as distinguished by the
ElementRequest definition:

ElementRequest::= CHOICE{
simpleElement [1] ...
compositeElement [2] ...

Simple elements are described in RET.3.1.1. A
composite element is constructed from one or more
simple elements, described in RET.3.1.2. Note
however an elementRequest which takes the form of
simpleElement might actually result in a request for
multiple elements. See RET.3.1.1.3.

The element specification may include additional
elementRequests, resulting from ’elementSetNames’
in the first member of the main sequence. All
elementRequests resulting from ’elementSetNames’
are simple elements.

Also included in the main structure are a default
variantSetId and a default variantRequest. These are
described in RET.3.1.1.5.

RET.3.1.1 Simple Element
A request for a simple element consists of the

tagPath for the element, together (optionally) with a
variantRequest. The tagPath identifies a node of the
logical tree (or possibly several trees) representing the
hierarchical structure of the abstract database record
to which the element specification is applied.

A tagPath is a sequence of nodes from the root of
a tree to the node that the tagPath represents, where
each node is represented by a tag. The end-node of a
tagPath might be a leaf-node containing data, or a
non-leaf node; in the latter case, the request pertains
to the entire subtree whose root is that node, and
GRS-1 will present the subtree recursively (see
RET.3.2.1.1).

RET.3.1.1.1 Tag
Each tag is qualified by a tagType. Thus a tag

consists of a tagType and a tagValue. (A tag is
further qualified by its "occurrence"; see
RET.3.1.1.2.) Each tagType is an integer, and each
tagValue may be either an integer or string.

Every tag along a tagPath is assumed to have a
tagType, either explicit or implicit; it may be supplied

Page 146

ANSI/NISO Z39.50-1995

explicitly within the specification, and if it is omitted,
a default applies (the default should be listed within
the schema in use). Tags along a tagPath may have
different tagTypes.

RET.3.1.1.2 Occurrence
Each node along a tagPath is distinguished not

only by its tag, but also by its occurrence among
siblings with the same tag. A record might contain
recurring elements, and the origin might wish to
request the Nth occurrence of a particular element
(e.g. "the fourth image"). The specification of the
"occurrence" of a node may be omitted, in which case
it defaults to 1. Occurrence may explicitly be
specified as "last" (this capability is provided for the
case where the origin does not know how many
occurrences there are, but however many, it wants the
last).

RET.3.1.1.3 Multiple Simple Elements
In some cases a ’simpleElement’ request (within

the ElementRequest structure) results in multiple sim-

ple elements. This may occur in the following cases:-
If a tagPath identifies a non-leaf node, the request
represents the entire subtree (it is logically
equivalent to individual simple requests for each
subordinate leaf-node).

• ’occurrence’ may be specified as ’all, meaning "all
nodes with a given tag."

• ’occurrence’ may be specified in the form of a
range (e.g. 1 through 10).

• The tagPath may include a wild card (see
RET.3.1.5) in lieu of a specific tag.

RET.3.1.1.4 Wild-cards
A tagPath may be viewed as an expression

containing tags and wild cards. There are two types of
wild cards, wildThing and wildPath, described in
RET.3.1.1.4.1 and RET.3.1.1.4.2.

For this discussion of wild-cards, consider the
sample record whose hierarchical structure is shown
in the diagram below.

1 (root)

1/2 1/3

1/2/8 (occurrence 1) 1/2/8 (occurrence 2) 1/2/9

1/2/8/5
(occurrence 1)

1/2/8/5
(occurrence 2)

1/2/8/13

1/3/6 1/3/7

1/3/6/8 1/3/6/9 1/3/7/10 1/3/7/11

1/3/6/8/5

1/3/7/11/5 1/3/7/11/12

Page 147

ANSI/NISO Z39.50-1995

Each cell in the diagram represents an element
whose tagPath is indicated within the cell. The
numbers within the tagPath are tagValues; for
simplicity, tagTypes are omitted, and assumed all to
be the same. Leaf-nodes are highlighted by double-
lined cells.

For example, the tagPath 1/3/7 represents the (non-
leaf-node) element with tag 7 subordinate to the
element with tag 3 subordinate to the element with
tag 1. 1/3/7/11/12 represents the element whose (leaf-)
node has tag 12.

RET.3.1.1.4.1 WildThing
A tagPath expression may include the wild card

’wildThing’ in lieu of a tag. WildThing takes the
form of an occurrence specification. For example, the
tagPath expression ’1/2/wildThing (occurrence 3)’
would represent the node 1/2/9, because it is the third
child of the node 1/2.

The expression ’1/wildThing (occurrence 2)’ would
be equivalent to the path 1/3 (it refers to the entire
subtree whose node has tag 3).

RET.3.1.1.4.2 WildPath
A tagPath expression may include the wild card

’wildPath’ in lieu of a tag. WildPath matches any
sequence of tags, along any path such that the tag
following wildPath in the expression follows that
sequence in the matched path. For example, either of
the expressions ’wildpath/5’ or ’1/wildPath/5’ would
result in all paths ending in 5. It would match:

1/2/8 (occurrence 1)/5 (occurrence 1)
1/2/8 (occurrence 1)/5 (occurrence 2)
1/3/6/8/5, and
1/3/7/11/5
The expression ’1/2/wildPath/5’ would match the

first two listed above, and the expression
’1/3/wildPath/5’ would match the last two.

RET.3.1.1.5 Variant Request
Each request for a simple element may optionally

include a variantRequest. Note that the main structure
o f e S p e c - 1 o p t i o n a l l y i n c l u d e s
’defaultVariantRequest’. If the element request does
n o t i n c l u d e a v a r i a n t R e q u e s t t h e n
’defaultVariantRequest’ applies if it occurs in the
main structure. If the element request does not include
a variantRequest and ’defaultVariantRequest’ does not
occur in the main structure, there is no variant request
associated with the element request.

The main structure also optionally includes
’defaultVariantSetId’. A variant specification may or
may not include a variantSetId. If the element request

includes a variantRequest which does not include a
variantSetId, then ’defaultVariantSet’ applies. (If the
element request includes a variantRequest which does
not include a variantSetId, and if ’defaultVariantSet’
does not occur in the main structure then the
variantRequest is in error.)

RET.3.1.2 Composite Elements
An elementRequest for a compositeElement takes

the form of a list of simple elements (as described in
RET.3.1; alternatively, the simple elements may be
specified by one or more element set names), a
delivery tag, and an optional variantRequest. The
simple elements are to be combined by the target to
form a single (logical) element, to which the
(optional) composite variant is to be applied, and the
target is to present the element using the supplied
delivery tag.

RET.3.2 Generic Record Syntax GRS-1
A GRS-1 structure is a retrieval record

representing a database record. Its logical content is
a tree representing the hierarchical structure of the
abstract database record, or a sequence of trees if the
abstract record itself does not have a root.

RET.3.2.1 General Tree Structure
The top level "SEQUENCE OF TaggedElement"

might be a single instance of TaggedElement,
representing the root of a single tree representing the
record (in the degenerate case, the record consists of
a single element). Alternatively, the top-level
SEQUENCE OF might contain multiple instances of
TaggedElement, in which case there is no single root
for the record; the record is represented by multiple
trees, any or each of which might be a single element
(thus the GRS-1 structure may represent a flat
sequence of elements).

Any leaf-node within the GRS-1 structure might
correspond to an individual elementRequest that was
included in the corresponding eSpec-1 element
specification. A non-leaf node may correspond to an
elementRequest; if an eSpec-1 elementRequest
tagPath ends at a non-leaf node, then the request is
for the entire subtree represented by that node.

RET.3.2.1.1 Recursion and SubTrees
Each instance of TaggedElement may, via

recursion, contain a subtree. Beginning at the root of
the tree (or at one of the top level nodes)

Page 148

ANSI/NISO Z39.50-1995

TaggedElement identifies an immediately subordinate
node, via tag and occurrence. If the CHOICE for
’content’ is ’subtree’, then the identified node is a
non-leaf node: ’subtree’ is itself defined as
SEQUENCE OF TaggedElement, so the next level of
nodes is thus defined. Recursion may be thus used to
describe arbitrarily complex trees.

RET.3.2.1.2 Leaf-nodes
Along any path described by the GRS-1 record,

eventually a leaf-node is encountered (’content’ other
than ’subtree’). The content of the leaf-node is one of
the following:
• Data; see RET.3.2.2.
• Empty, for one of the following reasons:

-- The requested element does not exist.
-- It exists, but there is no data.
-- The elementRequest specified (via a variant-1

variantRequest) that no data was to be returned.
(This is probably because only meta-data was
desired. So it is likely that the variantRequest
also requested meta-data, and that meta-data
accompanies this node; see RET.3.2.3.)

• A diagnostic.

RET.3.2.2 Data
When a leaf-node contains data, then ’content’ is

one of the following ASN.1 types: OCTET STRING,
INTEGER, GeneralizedTime, EXTERNAL,
InternationalString, BOOLEAN, OBJECT
IDENTIFIER, or IntUnit. That is, the CHOICE for
ElementData is one of these, and the actual data must
assume the chosen type. An appliedVariant may also
be indicated, by including appliedVariant from the
main structure.

RET.3.2.3 Meta-data
When a leaf-node contains data or is empty,

’metaData’ may be included, containing meta-data for
the element. The meta-data may be included along
with the data, or in lieu of the data if the
elementRequest asked that no data be returned (i.e.
’content’ is ’noDataRequested’). Meta-data would not
be included when ’content’ is ’elementNotThere’,
’elementEmpty’, or ’diagnostic’.

MetaData for a leaf-node may be any or all of the
following:
• usageRight: the target may declare that the element

is freely distributable, or that restrictions apply. In
the latter case, the target supplies either a
restriction in the form of a text message, or a
license pointer.

• hits; see RET.3.2.3.1.
• displayName: A name for the element, suggested

by the target, for the origin to display.
• supportedVariants; see RET.3.2.
• message: A message for the origin to display to

the user, associated with this element.
There is also one case where meta-data may be

included for a non-leaf node:
• seriesOrder; see RET.3.2.3.2.

RET.3.2.3.1 Hits
Associated with an element may be one or more

hit vectors. Each points to a fragment within the
element. Each such fragment bears some relationship
to the search which caused the record (to which the
element belongs) to be included in the result set (from
which the record is being presented). Note that the
association of a hit vector to an element is meaningful
only within the context of that search.

A hit vector may optionally include a ’satisfier’:
for example, a term from the query, which occurs
within that fragment of the element (to which the hit
vector points).

The target might return hit vectors along with an
element, so that the origin may be able to quickly
locate the satisfying portions of the element, and
perhaps even highlight the satisfier(s) for display to
the user.

The target might return part of an element and
include hit vectors, some of which point within the
retrieved portion, and others which point to fragments
not included, to indicate to the origin what fragment
to request to retrieve other relevant parts of the
element.

A hit vector may include location information:
offset (location within the element where the fragment
begins) and length. Both are expressed in terms of
IntUnit, so for example, the location information
might indicate an offset of "page 10" and length of
"one page," meaning that the satisfier occurs on page
10 (or that the fragment is page 10).
Note: if there are multiple hit vectors with the same
satisfier, occurring on the same page, and if the target
wishes to indicate ’rank’ (see below), it will need to
use a unit with finer-granularity than ’page’.

The hit vector may also include ’rank’, relative to
the other hits occurring within this set of hitVectors.
Rank is a positive integer with a value less than or
equal to the number of hit vectors. More than one hit
may share the same rank.

Finally, the target may assign a token to the hit
vector, which points to the fragment associated with
the hit. The origin may use the token, subsequently

Page 149

ANSI/NISO Z39.50-1995

but within the same Z-association, within a
variantRequest (in an elementRequest) to retrieve (or
to refer to) the fragment.

The target might provide location information, or
a token, which may be used subsequently to retrieve
the specific fragment. The target might provide both
location information and a token: for example, the
location information might indicate "page 10"; the
origin may subsequently retrieve the pages before and
after, inclusive (i.e pages 9-11). If the target also
supplies a token, the origin might retrieve the
"previous fragment" or "following fragment."

Location information is always variant-specific. A
token, however, may be variant-specific or variant-
independent. The origin might request "hits: non-
variant-specific" for an element (via variant-1), and
specify ’noData’. The hit vectors returned would be
variant-independent (thus only a token, and no
location information, would be included in each hit
vector). The origin could subsequently use a token in
an elementRequest to retrieve the corresponding
fragment, independent of what variantRequest was
included in the elementRequest.

The origin might request ’hits: variant-specific’ for
an element, for a particular variant. The target might
return location information or tokens, or both, but in
any case, the hit vectors would apply only for that
variant. The origin could subsequently use either the
location information or token in an elementRequest to
retrieve the corresponding fragment, but only when
specifying that variant.

As an alternative to hit vectors, see "Highlighting,"
RET.3.3.1.8.

RET.3.2.3.2 Series Order
The target might include the meta-data

’seriesOrder’ (for a non-leaf node only). It indicates
how immediately-subordinate elements with the same
tag are ordered. Values are listed in TAG.2.1, but
may be overridden by the schema.

The values are the same as those for
elementOrdering (see RET.3.4.1.2.3) which applies at
the record level (i.e. it applies throughout the record,
and pertains wherever sibling elements with the same
tag occur).

RET.3.3 Variant Set Variant-1
This section describes the variant set variant-1.

RET.3.3.1 variant-1 Classes
This section describes the classes, types, and values
defined for the variant set variant-1.

RET.3.3.1.1 VariantId
Variant-1 class 1, ’variantId’, may be used to

supply an identifier for a variant specification. (There
is only one type within class 1, so the variantId is
always class 1, type 1). It is atransient identifier; it
may be used to identify a particular variant
specification during a single Z-association. (A
variantId should not be confused withvariant set id,
which identifies avariant set definition.)

A variantId may be included within a
supportedVariant, variantRequest, or appliedVariant.
The variantList for an element may be supplied by the
target (see 3.3.2). It consists of a list of
supportedVariants for the element. Each may include
a variantId, which may be used subsequently by the
origin within a variantRequest (within an
elementRequest), to identify that supportedVariant
(i.e. that variant form of the element), in lieu of
explicitly constructing a variant. A variantId may be
used within an appliedVariant, supplied by the target
in case the origin wishes to use it in a subsequent
request, possibly overriding some of the variant
parameters.

RET.3.3.1.2 BodyPartType
Variant-1 class 2, ’BodyPartType’, allows

representation of the structure, or "body part type," of
an element. It may be used within a supportedVariant,
variantRequest, or appliedVariant.

There are three types: type 1 is ianaType/subType,
for content types registered with IANA (Internet
Assigned Numbers Authority). Type 2 is for body
part types registered by the Z39.50 Maintenance
Agency (type 2 is used generally for formats that
have not yet been otherwise officially registered).
Type 3 is for bilaterally agreed upon body part types.

Fol lowing are some of the IANA
contentType/Subtypes registered.

Type Subtype
text plain

richtext
tab-separated-values

application octet-stream
postscript
oda

dx wordperfect5.1
pdf
zip
macwriteii
msword

Page 150

ANSI/NISO Z39.50-1995

IANA contentType/Subtypes (continued)
Type Subtype
image jpeg

gif
ief
tiff

audio basic
video mpeg

PostScript, for example, would be indicated by the
triple (2,1, ’application/postscript’). SGML is not
registered yet by IANA, so it is registered as a
Z39.50 body part type. It may be indicated by (2,2,
’sgml/<dtd>’) where <dtd> is the name of the SGML
dtd.

A Z39.50 body part type will be registered only if
it is not registered as an IANA type. If it is
subsequently adopted by IANA, it is recommended
that it be referenced as such.

RET.3.3.1.3 Formatting/Presentation
Variant-1 class 3, ’formatting’, may be included

within a variantRequest, appliedVariant, or
supportedVariant. It indicates additional formatting
parameters such as line length, lines per page, font
style, and margins.

RET.3.3.1.4 Language/CharacterSet
Variant-1 class 4, ’language/characterSet’, may be

included within a variantRequest, appliedVariant, or
supportedVariant. It indicates language and/or
character set.

RET.3.3.1.5 Piece
Variant-1 class 5, ’piece’ may be included within

a variantRequest (type 1) or appliedVariant (type 2),
to refer to a specificpieceor fragmentof an element.

The origin may use type 1 to request:
• A fragment beginning at the beginning of the

element (’start’);
• The ’next’ fragment (relative to the fragment

indicated by targetToken, see type 7);
• the ’previous’ fragment;
• the ’current’ fragment (the fragment indicated by

targetToken);
• the ’last’ fragment (within the element).

The target may use type 2 to indicate that the
presented fragment:
• begins at the beginning of, but is not the whole

element (’start’);
• neither starts at the beginning of, nor ends at the

end of the element (’middle’);

• does not begin at the beginning of, but ends at the
end of the element (’end’);

• ends at the end of the element, but the element
may grow in the future (’endForNow’); or

• is the ’whole’ element.
The target may use types 3, 4 (or 5), and 6 in lieu

of type 2, to indicate the ’start’ and ’end’ (e.g. starts
at page 1 and ends at page 100) or ’start’ and
’howMuch’ (e.g. starts at page 1, 100 pages) of the
fragment and optionally, a ’step’ size. For example,
the target could indicate that the fragment starts at
byte 10,000 and ends at byte 20,000 (in this case a
step of 1 would be indicated, or implied if ’step’ is
omitted); or it starts on page 100, ends on page 200,
and includes every 5th page.

Similar, the origin may use types 3, 4 (or 5), and
6 to request a fragment. In a variantRequest these
types may be used to further qualify a fragment
indicated by types 2 and 7. For example, the request
might specify a targetToken, previous fragment
(5,1,3), as well as a start and end, in which case the
start and end are relative to the indicated fragment,
i.e., relative to the fragment immediately prior to that
indicated by the target token.

The target may use type 7 in an appliedVariant to
supply a token as an identifier of the supplied
fragment, and the origin may subsequently use the
token in a variantRequest to identify that fragment.

RET.3.3.1.6 MetaData Requested
Variant-1 class 6, ’meta-data requested’ may be

included within a variantRequest, to request meta-data
associated with an element.

The origin might want to know, for example, the
cost to retrieve a particular element in PostScript, as
well as the page count (of the PostScript form of the
element). The following variant specifiers would be
included within the variantRequest for that element:

(2,1, ’application/postscript’) -- PostScript
(6,1, NULL) -- cost, please
(6,2, Unit:pages) -- size in pages, please
(9,1, NULL) -- no data (just the

-- above metaData)
Alternatively, a variantId might be used in place of

a set of explicit specifiers (i.e. in place of the
postScript specifier, in this example) if the origin
knows the variantId of a variant for which it wants
cost or size information. (Although if the origin
knows the variantId, it may already have cost or size
information because it may have obtained that id
within a variantList, and if so, the target may have
included the cost and page information within the
supportedVariant.)

Page 151

ANSI/NISO Z39.50-1995

The origin might also ask for the location of hits
within the element (see RET.3.2.3.1). An element
might have hits which are specific to a variant, and
may also have non-variant-specific hits. The request
above might also ask for hits specific to the particular
variant (i.e. postScript), using (6,3, NULL) or non-
variant-specific hits, using (6,4, NULL). In either
case, the request is for the target to return hit vectors
within the retrieved GRS record.

The origin may request that the target supply the
variant list for an element via the specifier (6,5,
NULL). The target would supply the variant list
(consisting of a list of supportedVariants) within the
GRS structure (not within the appliedVariant). See
RET.3.3.2.

The origin may use (6,6, NULL) to inquire
whether a particular variant is supported. An example
is provided in RET.3.3.2.

RET.3.3.1.7 Meta-data Returned
Variant-1 class 7, ’meta-data returned’ may be

included within an appliedVariant or supported-
Variant. There are several categories of element
MetaData. Those of class 7: cost, size, integrity, and
separability, are singled out for representation within
variant-1, because the target may include those within
a supportedVariant. Other metaData, including hits
and variantList, are included within the GRS-1
structure. Hits are described in RET.3.2.3.1.

RET.3.3.1.8 Highlighting
Variant-1 class 8, ’highlighting’, may be included

within a variantRequest or an appliedVariant.
Highlighting may be used as an alternative, or in
addition, to hit vectors, described in RET.3.2.3.1.

The origin may include ’prefix’ and ’postfix’ in a
variantRequest to request that the target insert the
specified strings into the actual data, surrounding hits,
so that the origin, upon retrieving the data, may
simply locate the strings, for fast access to the hits.
The origin may use ’server default’ in lieu of ’prefix’
and ’postfix’ to indicate that it the target should select
the strings for highlighting.

The target may include ’prefix’ and ’postfix’ in an
appliedVariant to indicate the strings used within the
element for highlighting hits.

RET.3.3.2 VariantList
The thoroughness of the variantList supplied by the

target may depend on the implementation. For
example, for an element (representing a document)
which the target provides in PostScript, consider the
following cases:

• The document might already exist in print format,
and the target might support only that single
postScript variant.

• The target might support a few variants forms,
varying by language.

• The target might support many variant forms;
varying by language.

• The target might support many variant forms,
varying by language, and also varying by
formatting/presentation parameters, including lines
per page, font style, etc.
The target might list a single supportedVariant in

the variant list for the element, indicating that the
element is available in postScript. In that case the
origin cannot necessarily conclude which of the above
cases applies. The target might instead list three
supportedVariants, each indicating postScript and a
language. In that case, it may be reasonable for the
origin to surmise that the element is available in those
three languages only, but the origin probably cannot
deduce which formatting parameters apply. The target
might further indicate one or more formatting
parameters within each supportedVariant. Again, the
extent to which the origin may deduce what other
variations are supported will depend on the
implementation.

The origin may explicitly inquire whether a
particular variant is supported, by constructing the
desired variant (including all of the desired formatting
parameters, etc.) and indicating "is variant
supported?," using the triple (6,6, NULL). The
variantRequest might also request that the target
provide cost (6,1, NULL) and size (6,2, NULL)
information if the variant does exist. The target would
respond that the requested variant is or is not
supported by supplying an appliedVariant (with the
element) with the same parameters, and including the
triple (7,5, TRUE or FALSE). If the target indicates
TRUE (that the variant is supported) it may also
supply a variantId that the origin may then use to
request the variant.

The origin may construct a variantRequest that
includes a variantId along with additional variant
specifiers. Suppose the target lists the following
supportedVariant:
(1,1, <variantId>) -- identifies this variant
(2,1, ’application/postscript’) -- in postScript
(4,1, ’por’) -- language: Portuguese

The element is thus available in PostScript, in
Portuguese. The origin may submit a variantRequest
consisting of only:

(1,1, <variantId>)
to request the element in postScript, in Portuguese.

Page 152

ANSI/NISO Z39.50-1995

Suppose, instead, the target lists the following
supportedVariant:
(1,1, <variantId>) -- identifies this variant
(2,1, ’application/postscript’) -- in postScript

Thus the target indicates that the element is
available in PostScript, but no other variant
information is provided.

The origin may submit a variantRequest consisting
of only:

(1,1, <variantId>
(4,1 ’por’)

Again, this is to request the element in postScript,
in Portuguese.

Or, the origin may submit the following
variantRequest:

(1,1, <variantId>)
(4,1, ’por’)
(4,2, 84) -- Portuguese character set
(5,3, page 1) -- begin on page 1
(5,4, page 100) -- end on page 100
to request the element in postScript, in Portuguese,

Portuguese character set, pages 1-100.

RET.3.4 TagSets Defined in the Standard
Appendix Tag defines two tagSets, tagSet-M (for

elements which convey meta- and related information
about a record) and tagSet-G (primarily for generic
elements). These two tagSets are described in
RET.3.4.1 and RET.3.4.2.

RET.3.4.1 TagSet-M
TagSet-M defines a set of elements that the target

might choose to return within a retrieval record, even
though the element was not requested and in fact is
not actually information contained within the database
record. Rather, it is informationabout the database
record, retrieval record, or result set record. Within a
GRS-1 record, the target returns tagSet-M elements in
exactly the same manner that it returns elements from
any other tagSet.

TagSet-M elements fall into three categories.
• Meta-information about the database record:

-- processingInstructions
-- recordUsage
-- restriction
-- userMessage
-- url
-- local control number
-- creation date
-- dateOfLastModification
-- dateOfLastReview

• Elements defined to facilitate the construction and
processing of the retrieval record:
-- schemaIdentifier
-- elementsOrdered
-- elementOrdering
-- defaultTagType
-- defaultVariantSetId
-- defaultVariantSpec
-- record
-- wellKnown
-- recordWrapper

• Elements pertaining to the record’s entry in the
result Set:
-- rank
-- score

RET.3.4.1.1 Meta-Information
The definitions for these elements are provided in

TAG.2.1. Any of these elements may or may not ac-
tually occur within the database record. However, it
is emphasized that these elementsdescribe the data-
base record; they do not pertain to elements within
the database record which may in fact be meta-infor-
mation about some object other than the record itself.

For example, tagSet-M element ’url’ refers to a
URL for the database record. The database record it-
self may contain URLs for resources that the record
describes; tagSet-M element ’url’ does not pertain to
those.

RET.3.4.1.2 Information about the
Retrieval Record

RET.3.4.1.2.1 schemaIdentifier
A retrieval record is meaningful only within the

context of a schema definition. In many (perhaps
most) cases the target may reasonably expect that the
origin knows which schema definition applies to a
particular retrieval record. In those cases the target
need not explicitly identify the schema. This element
is provided for cases where there is a possibility of
uncertainty about which schema applies.

This element is also useful for retrieval records
that include subordinate or nested records which are
defined in terms of different schemas. See
RET.3.4.1.2.5.

This element, if provided, should normally occur
as the first element within the retrieval record (or
within a subordinate or nested record) and for that
reason is assigned tag 1, in case the target wishes to
present elements in numerical order (see
RET.3.4.1.2.2).

Page 153

ANSI/NISO Z39.50-1995

RET.3.4.1.2.2 elementsOrdered
This is a BOOLEAN flag indicating whether the

elements of the retrieval record are presented in order
by tag. The ordering is described in TAG.2.1. This
element is defined because it may be useful for an
origin to know whether elements are presented in
order, when trying to locate a particular element
within the retrieval record.

This element, if provided, should normally be
occur as the first element within the retrieval record,
or the second if schemaIdentifier is provided, and for
that reason is assigned tag 2.

RET.3.4.1.2.3 elementOrdering
For a retrieval record containing recurring

elements, i.e. sibling elements with the same tag, the
target might present these elements according to some
logical order, for example, chronological, increasing
generality, concentric object snapshots, or normal
consumption (i.e. pages, frames). This element
indicates the order; values are listed in TAG.2.1. Note
that the values are the same as those for seriesOrder
(see RET.3.2.3.2) which applies at the element level,
i.e. it pertains to sub-elements of an element. This
element, elementOrdering, applies at the record level,
i.e. it applies throughout the record, and pertains
wherever sibling elements with the same tag occur.

RET.3.4.1.2.4 Defaults
(tagType, variantSetId, and variantSpec)

defaultTagType, if provided, is the assumed tag-
Type for presented elements where the tagType is
omitted. It is defined solely to allow simplification of
the retrieval record. If there is a predominant tagType
within the retrieval record, this meta-element allows
the target to omit the tagType for those element with
that tagType.

Note that the schema may also list a default
tagType. If so, then defaultTagType, if it occurs,
overrides the schema-listed default. If the schema
does not list a default tagType, and if this element
does not occur, then every tag within the retrieval
record must include a tagType.

defaultVariantSetId is the assumed variantSetId for
appliedVariants within the retrieval record that omit
the variantSetId. defaultVariantSpec, if provided, is
the assumed appliedVariant for all elements within the
retrieval for which an appliedVariant is not provided.
The schema may also list a default variantSetId and/or
appliedVariant. If so, then these elements if they
occur, override the schema-listed default. If the sche-
ma does not list a default variantSetId and default-
VariantSetId is not provided, then every applied-

Variant within the retrieval record must include a
variantId. If the schema does not list a default
appliedVariant and defaultVariantSpec is not
provided, then for elements within the retrieval record
for which an appliedVariant is not supplied, no
appliedVariant is assumed to apply.

RET.3.4.1.2.5 Record
The tagSet-M element ’record’ may be used to

present nested or subordinate records.
A retrieval record represents a single database

record, but that database record may contain elements
which in turn represent database records (possibly
replicated from a different database). For example, a
database may contain records representing queued
database updates. Each such record might contain a
set of database records to be contributed to some
other database. As another example, an OPAC
database might have records defined to each include
a bibliographic record and a corresponding holdings
record, and the holdings record in turn might include
a series of circulation records.

It is important to note that although a single
retrieval record may include an arbitrary number of
subordinate records, or arbitrarily nested records, the
retrieval record nevertheless represents a single result
set record.

A subordinate (or nested) record defined in this
manner may be presented according to a schema
different from the schema applying to the retrieval
record. The tagSet-M element schemaIdentifer may be
included within the element representing a record, and
if so, it applies only within that element.

RET.3.4.1.2.6 wellKnown
Some schema developers anticipate that for certain

elements, different targets will want to provide several
alternative forms of the element. The element ’well-
Known’ is defined in order to support this flexibility.

Suppose a schema defines the element ’title’. The
intent may be that the target simply return a single
value, what the target considers to be the title. In that
case, ’title’ should be a leaf-node defined from
tagSet-G, and ’wellKnown’ does not apply.

But suppose the target wishes to return the element
’title’ encompassing several forms of the title,
including one which the origin will recognize to be
the default in case it does not understand any of the
others (in which case it may ignore all except the
default, or may still display them to the end-user, who
might understand them even if the origin does not).
The origin returns the single element ’title’, which is
structured into the following sub-elements:

Page 154

ANSI/NISO Z39.50-1995

• the default title
• ’abbreviatedKeyTitle’
• ’formerTitle’,
• ’augmentedTitle’,
• ’romanizedTitle’,
• ’shortenedTitle’.

The additional forms of title (i.e. those other than
the default title) might use the above string tags,
locally defined, or they may be known tags defined in
other tag sets. However, the default title has a
distinguished integer tag, that assigned to the tagSet-
M element wellKnown, to distinguish it.

The element wellKnown is thus always subordinate
to a parent element whose semantics are known (e.g.
’title’, ’address’, ’name’), and the parent element is
structured into one or more forms of that element, one
of which is a default form, distinguished by the tag
for the element wellKnown. The context of the
element wellKnown is known from its parent.

RET.3.4.1.2.7 recordWrapper
This element is defined for use in presenting a

record with no root (e.g. a flat record, or a record
whose hierarchical structure is that of multiple trees).

When the origin requests this element, the request
is interpreted as a request for the entire record to be
presented subordinate to this element. It is defined
primarily to be used in conjunction with a
variantRequest specifying ’noData’, for the purpose of
retrieving a skeleton record (i.e. tags only, no data).
If a record does have a root, then if this element
occurs, the record’s real root is presented subordinate
to this element.

RET.3.4.1.3 Information about Result Set
Record

TagSet-M elements rank and score provide infor-
mation pertaining to a record’s entry in the result Set.
A record may have both arank and ascore. The rank
of a result set record is an integer from 1 to N, where
there are N entries in the result set (each record
should have a unique rank). The score of a result set
record is an integer from 1 to M where M is the
normalization factor, which may be independent of
the size of the result set, and more than one record
may have the same score. The normalization factor
should be specified in the schema.

RET.3.4.2 TagSet-G
TagSet-G includes generic elements which may be

of general use for schema definitions. They are all
self-explanatory, except perhaps the element
bodyOfDisplay.

RET.3.4.2.1 bodyOfDisplay
The target might combine several elements of a

record into this single element, into a display format,
for the origin to display to the user.

For a given schema, perhaps for a particular appli-
cation, some origins may need the target to distin-
guish all elements in a retrieval record, perhaps be-
cause the origin is going to replicate the record. In
other cases, the origin is satisfied for the target to
package all elements into display format for direct
display to the end-user. In either of these cases, body-
OfDisplay is not applicable (in the latter case the tar-
get may use the SUTRS record syntax instead of
GRS-1).

In some cases though, the origin may need some
of the elements distinguished, but is satisfied to have
the target package the remaining elements into a
single retrieval element for display. In these cases
bodyOfDisplay may be useful.

Suppose the target wishes to present 20 elements
of a record, but only the first three elements are
intended for origin use, and the remaining elements
are intended to be transparently passed to the user.
Rather than packaging all 20 elements, the target
instead may send 4 elements, where the 4th delivery
element packages the latter 17 original elements, in a
display format.

The bodyOfDisplay element is similar to a
composite element (as described in RET.3.1.2) in the
fact that a single retrieval element packages multiple
logical element. But bodyOfDisplay differs from a
composite element in three respects:
• The target, not the origin, selects the subset of

elements for packaging.
• In a composite element there may be semantics

conveyed by the tag that the origin or user might
understand. For example a request for a composite
element may ask for the b subfield of the 245 field
concatenated with c subfield of 246 sent back as
deliveryElement called ’title’ (there may be some
recognizable semantics associated with the tag
’title’). The bodyOfDisplay element has no
semantics other than telling the origin "here is a
composite element for display."

• The resultant element should always be in display
format. A composite element may assume display
format, but it may also assume other formats, as
determined by the variant.

Page 155

ANSI/NISO Z39.50-1995

Appendix 15

PRO: Z39.50 Profiles

(Non-normative)

This appendix lists Z39.50 profiles approved by the Open Systems Environment Implementors Workshop (OIW)
Special Interest Group on Library Applications (SIG/LA).

At the time of publication of this standard, the following profiles have been approved by the OIW SIG/LA:

1. GILS
Application Profile for the Government Information Locator Service. GILS specification for ANSI/NISO Z39.50
as well as other aspects of a GILS conformant server that are outside the scope of Z39.50. The GILS Profile
provides the specification for the overall GILS application including the GILS core, which is a subset of all GILS
locator records, and completely specifies the use of Z39.50 in this application.

2. WAIS
WAIS Profile of Z39.50 Version 2 (Version 1.4): Application Profile for WAIS (Wide Area Information Servers)
network publishing systems. Based on Z39.50 Version 2 as specified in ANSI/NISO Z39.50-1995.

3. ATS-1
Specifies the use of the attribute set bib-1 within a Z39.50 type-1 query for searching by author, title, or subject,
to provide basic search access to bibliographic databases. Its purpose is to ensure that complying origins and
targets can provide basic search access to bibliographic databases, similar to the common online catalog systems
used in many libraries.

4. Using Z39.50-1992 Directly over TCP
Based on an Internet RFC "Using the Z39.50 Information Retrieval Protocol in the Internet Environment", this

profile addresses (and its scope is limited to):
• Z39.50 layered directly over TCP (without the use of the OSI ACSE, Presentation, or Session protocols).
• Z39.50-1992 (extensions for Z39.50-1995 to be developed). The profile doesnot address Z39.50-1988.
• Communication over the Internet.

For information on how to obtain these documents, refer to:http://lcweb.loc.gov/z3950/agency

Page 156

