
Version 1.1
Metadata Interchange Specification

(MDIS)

August 1, 1997

 WORK IN PROGRESS DRAFT

Page 2 MDIS 1.1

Version 1.1
Metadata Interchange Specification

(MDIS)

 Table of Contents

1. Goals and Charter of the Meta Data Interchange Specification (MDIS)
Initiative

2. Organization, Process, and Procedures
2.1 Membership
2.2 Organizational Structure
2.3 Electronic Methods for Communicating
2.4 Establishing and Maintaining the MDIS
2.5 Financial Management

3. Terminology and Basic Assumptions
3.1 Terminology
3.2 Basic Assumptions

4. Meta Data Interchange Framework
4.1 The MDIS

5. MDIS Metamodel

6. MDIS MetaObject Definitions
6.1 Header
6.2 Definition of common properties
6.3 Database
6.4 Subschema
6.5 Record
6.6 Element
6.7 Relationship
6.8 Dimension
6.9 Level

7. Tool Profile

8. Configuration Profile

9. Import Function

10. Export Function

11. MDIS System Variables

Appendix A: Summary of MDIS Definition

Appendix B: Using MDIS to Represent Different Data Models
B.1 Representing relational databases
B.2 Representing hierarchical databases
B.3 Representing files

 WORK IN PROGRESS DRAFT

Page 3 MDIS 1.1

B.4 Representing network databases
B.5 Representing object-oriented databases
B.6 Representing multi-dimensional databases
B.7 Representing inter-database relationships

 WORK IN PROGRESS DRAFT

Page 4 MDIS 1.1

1.0 Goals and Charter

Goals of the Metadata Interchange Specification Initiative

 Situation Analysis
The rapid change in the global economy and an increasingly competitive business climate
are driving companies to leverage their information resources in new ways. Enterprise data,
once viewed as merely operational or tactical in nature, is now being used for strategic
business decision making.

As the rate of business and technological change continues to accelerate, managing this
strategic asset and providing timely, accurate, and manageable access to enterprise data
becomes increasingly critical. The need to find faster, more comprehensive and efficient
ways to access and manage enterprise data has given rise to a variety of new architectures
and approaches, including data warehouses, distributed client/server computing, and
integrated enterprise-wide applications.

In these environments, metadata, or information about enterprise data, is emerging as a
critical element in effective information resource management. Vendors and users alike
recognize the value of metadata, however, the rapid proliferation of data manipulation and
management tools has resulted in information technology (IT) products that process
metadata differently, and without much consideration for sharing of metadata.

 Challenge
To enable full-scale enterprise data management, different IT tools must be able to freely
and easily access, update, and share metadata. The only viable mechanism to enable
disparate tools from different vendors to exchange metadata is a common metadata
interchange specification with guidelines to which the different vendorsÕ tools can comply.

In choosing the interchange-compliant tools, purchasers can be assured of the accurate and
efficient exchange of metadata essential to meeting their usersÕ business information needs.
This will allow IS managers to build on investments in data management tools and
infrastructure with each additional product purchase.

The Metadata Interchange Specification Initiative brings industry vendors and users
together to address a variety of problems and issues regarding the exchange, sharing, and
management of metadata. This is a voluntary coalition of interested parties with a common
focus and shared goals, not a traditional standards body or regulatory group.

 Group Charter
To develop a standard for a Metadata Interchange Specification (MDIS) and its support
mechanism in such way that it can be implemented within a two- to four-person effort by
the average vendor.

This is not intended as a typical standards specification effort, where the goal is to create a
standard definition of all the possible information pertinent to the domain and the format for
representing it. The assumption here is that for some period of time, at least, the contents of
what is considered metadata will be in flux. The most important goal of the MDIS is to
define an extensible mechanism that will allow vendors to exchange common metadata as
well as carry along "proprietary" metadata.

 WORK IN PROGRESS DRAFT

Page 5 MDIS 1.1

Group Short-Term Goals

The founding members agreed upon initial goals, including:

¥ Creating a vendor-independent, industry-defined and -maintained standard access
mechanism and standard application programming interface (API) for metadata;

¥ Enabling users to control and manage the access and manipulation of metadata in their
unique environments through the use of interchange specification-compliant tools;

¥ Allowing users to build tool configurations that meet their needs and to incrementally
adjust those configurations as necessary to add or subtract tools without impact on the
interchange specification environment;

¥ Enabling individual tools to satisfy their specific metadata access requirements freely and
easily within the context of an interchange model;

¥ Defining a clean, simple interchange implementation infrastructure that will facilitate
compliance and speed adoption by minimizing the amount of modification required to
existing tools to achieve and maintain MDIS compliance; and

¥ Creating a process and procedure not only for establishing and maintaining the MDIS but
for extending and updating it over time as required by evolving industry and user needs.

2.0 Organization, Process, and Procedures

Organizational Structure

To achieve the goals of this initiative, vendors and end users are joining forces to drive
forward the definition, implementation, and ongoing evolution of an interchange
specification. This group of vendors and end users allied with common purpose is known
as the Metadata Coalition.

2.1 Membership

 The Metadata Coalition
The Metadata Coalition is an open, non-profit organization with functions and processes
for business & marketing, and for technical issues surrounding metadata initiatives.
Coalition membership is voluntary and open to any company that shares the goals and
initiatives of the Coalition and pays the annual dues. The annual dues for membership are
$2,500 for software vendor companies and $500 for end-user companies. Dues are the
sole source of income to the Coalition and are used to cover Coalition expenses, i.e.,
meetings, conferences, materials and distribution, and the MDC web page.

Any vendor company whose products create, access, or are dependent on metadata is
encouraged to participate in Coalition activities. End users are encouraged to participate to
provide the information consumerÕs perspective, which will help shape a well-rounded and
usage-based interchange specification. Coalition member companies may designate any

 WORK IN PROGRESS DRAFT

Page 6 MDIS 1.1

number of participants for discussions, subcommittees, reviews, etc., but each member
company represents only one vote.

All extensions and changes to the MDIS, implementation model, or API will be reviewed,
discussed, and voted on by Coalition members. The goal of the review and discussion
process is to foster consensus by allowing all points of view to be heard and evaluated by
Coalition membership. A voting procedure will signify closure of the review and
discussion cycle; a simple majority is necessary for a binding vote.

2.2 Organizational Structure

 The Metadata Coalition
The Metadata Coalition was established as a not-for-profit corporation. A copy of the
Articles of Incorporation and Bylaws are available upon request from the MDC
Administrator.

 The Metadata Council
Leadership and process administration for the Coalition is provided by the Metadata
Council. Council responsibilities include establishing the administrative processes and
procedures, setting Coalition goals and objectives, determining deliverables and time
frames, setting membership dues, resolving tied votes and deadlocks, creating special-
purpose subcommittees as needed, and advising and providing guidance to the general
membership, maintaining means for electronic communication between the Coalition
membership, and maintaining membership records. The Council will appoint an
Administrator who is responsible for managing the overall process.

The Council will consist of a fixed number of companies that represent each of the relevant
types or classes of tools and one representative company from the end user community.
Any number of people from each Council member company may be designated to
participate in meetings, conference calls, "tiger teams," review processes, and so forth.
However, there will be only one Council vote recognized per member company .

To preserve the objectivity of the Council, it must always represent the heterogeneity of the
marketplace. The objective is to have a mix of vendor members representing a variety of
different types of tools. This restriction is important to ensure impartiality of the MDIS and
eliminate the risk that Council votes and decisions will be weighted toward the needs or
agendas of one type of tool over others. As protection against voting deadlocks, the
Council will always comprise an uneven number of members; a binding vote of approval
by the Council requires a voting majority.

All of the founding members served on the Council for a term of one year. One of the first
tasks addressed by the Council was the election of the end user representative from among
a pool of nominations made by Council members. After one year, three of the founding
vendor members stepped down while the other three vendor members stayed on for one
more year to ensure continuity of process. Council members are now elected annually from
among Coalition members to a term of one year for the end user member and two years for
the vendor members, promoting a regular rotation of at least half of the vendor members
each year.

The Council is co-chaired by two vendor members elected by the Council. Co-chairs serve
for a one-year term, unless re-elected.

 WORK IN PROGRESS DRAFT

Page 7 MDIS 1.1

 Subcommittees
Subcommittees are formed as needed for long-term special focus efforts or on a short-term
project-specific basis as deemed necessary by the Council. Three ongoing subcommittees
have been established: Business/Marketing, Technical, and Finance.

The Business/Marketing Subcommittee is responsible for public relations, communications
with the press, the analyst community, and the industry at large, as well as for the
preparation and production of marketing and educational materials, progress
announcements, group publications, etc. This committee has also created and maintains a
Web Page site to facilitate information dissemination, open discussions, and Coalition
interaction, including review/comments processes and voting.

The Technical Subcommittee is responsible for the definition, creation, and maintenance of
the MDIS language and related technical specifications.

The Finance Subcommittee is staffed by representatives from the accounting and/or finance
organizations of two of the Council members. This subcommittee is responsible for
developing a high-level budget for the Coalition efforts, approving and reimbursing
expenses, keeping the accounting records, and providing biannual financials to the
membership.

2.3 Electronic Methods for Communicating

The Metadata Coalition maintains both a Web Page site and an e-mail address to allow
members or potential members to communicate electronically. The current Web Page
address is:

http://www.he.net/~metadata
which is available through the World Wide Web. The Council also maintains the e-mail
address:

coalition@evtech.com
which includes the e-mail addresses of coalition members, and

mdc-spec@evtech.com
for sending comments regarding the MDIS proposal.

Responsibility for the contents of the Web Page is shared jointly by the Business/Marketing
Subcommittee and the Technical Subcommittee. The Coalition Administrator is
responsible for managing the process.

2.4 Establishing and Maintaining the Specification

The Technical Subcommittee is the keeper ("owner") of the interchange specification
(MDIS) for the metadata model and related logical model implementation components and
mechanisms.

Any Coalition member may propose an extension or change to the MDIS by sending an e-
mail message to:

 mdc-spec@evtech.com
These proposals will be reviewed by the Technical Subcommittee and posted, along with
the subcommitteeÕs recommendations, on the Web Page. Using these proposals for
enhancements as input, the Technical Subcommittee will submit an updated version of the
MDIS on an annual basis for review and ratification by the general membership. In this

 WORK IN PROGRESS DRAFT

Page 8 MDIS 1.1

way, the MDIS can evolve to meet new needs as the types of metadata required by various
tools evolve.

The Technical Subcommittee will use the following criteria for determining which proposed
extensions should be recommended for inclusion as part of the explicit (i.e., "public")
portion of the interchange format:

a. must be genericÑvendor and product-independent
b. must be tool-type independent
c. must contribute to data value audit trail/tracking
d. must have relevance across multiple architectures and applications

(e.g., not just DSS warehouse-specific)
e. must be employed by multiple types of tools

The Council is the only body authorized to call for and coordinate Coalition membership
votes and is responsible for tallying and reporting results back to the general membership.

The heart of the MDIS is the core set of components that represents the minimum common
denominator of metadata elements and the minimum points of integration that must be
incorporated into tool products for compliance. Compliance with the MDIS requires
support for all relevant core set components and integration points in accordance with the
approved specifications.

The MDIS also provides for an approved set of optional/extension components that are
relevant only to a particular type or class of tool or a specific application or architecture.
Because these are used by more than one tool or application, they can and should conform
to the specification definition and set of access parameters, but because they are not generic
across all tools, architectures, or applications they would not be eligible for the core set,
nor required for compliance.

2.5 Financial Management

 Accounting Functions for Metadata Council
The Finance Subcommittee perform the record-keeping and financial functions.

 Bank Account
The Finance Subcommittee maintains a bank account at Texas Commerce Bank in the name
of Metadata Coalition with signature authority for any one of the following individuals:
Linda Hoops, Ken Bartley, Katherine Hammer (all from ETI). This account serves as the
operating account for collection of dues and payment of expenses as described in the
following procedures. Bank statements are mailed directly to and reconciled by Steve
DePasquale (Platinum).

 Invoicing/Dues
Applications for new members should be forwarded to the Coalition Administrator and
must be accompanied by a check or purchase order for dues amount. Dues covers
membership for the calendar year. For dues on mid-year sign-ups, prorata dues will be
charged by quarters. For example, new members signing up in the first quarter pay full
dues, sign-ups in the second quarter pay 75% of full annual dues, etc. Dues for existing
members will be invoiced annually on December 1st to be paid by December 31st.

 WORK IN PROGRESS DRAFT

Page 9 MDIS 1.1

If dues remain unpaid for 30 days, Council will be notified so that appropriate action can be
taken with regard to membership.

 Receipts
Checks should be made payable to the Metadata Coalition and mailed to ETI's offices. All
checks will be deposited in full into the Metadata Coalition bank account and under no
circumstances will cash be received from any part of any deposit. Invoices that have not
been paid within 30 days will be reported to the Council for action on membership status.

 Disbursements
Invoices or other requests for payment will be submitted to the Coalition Administrator.
After approval for payment has been received from the Council, disbursement will be
made. All checks will be made payable to the individual or vendor requesting the payment
for the approved expenses and under no circumstances will checks be drawn to "Cash."

 Budget
The Marketing Subcommittee creates a budget for expenses based on anticipated receipts.
Requests for payment of expenses outside the budgeted categories or over budgeted limits
will not be paid without Council approval.

 Financial Reports/Records
Detailed financial records will be maintained by Linda Hoops in accordance with usual
accounting practices.

Financial reports will be prepared by Steve DePasquale on a cash basis and distributed to
the Council at least twice annually for the Council's formal meetings.

Annual information or other reports required by the IRS would be prepared by Linda
Hoops and/or Steve DePasquale for signature of a Co-chair of the Council.

 Tax-exempt Status
The organization has tax exempt status, which affects certain financial and reporting
requirements.

3.0 Terminology and Basic Assumptions

3.1 Terminology

The Metadata Interchange Specification draws a distinction between:

á The Application Metamodel Ñ the tables, etc., used to "hold" the metadata for
schemas, etc., for a particular application; for example, the set of tables used to
store metadata in Composer may differ significantly from those used by the
Bachman Data Analyst.

á The Metadata MetamodelÑthe set of objects that the MDIS can be used to
describe. These represent the information that is common (i.e., represented) by
one or more classes of tools, such as data discovery tools, data extraction tools,
replication tools, user query tools, database servers, etc. The metadata
metamodel should be:

á Independent of any application metamodel
á Character-based so as to be hardware/platform-independent

 WORK IN PROGRESS DRAFT

Page 10 MDIS 1.1

á Fully qualified so that the definition of each object is uniquely identified1

3.2 Basic Assumptions

The Metadata Coalition has made the following assumptions:

á Because usersÕ information needs are growing more complex, corporate IS
organizations would ideally like the interchange specification to support (to the
greatest extent possible) the bidirectional interchange of metadata so that updates
can be made in the most natural place. For example, a user might initially
specify the source-to-target mapping between a legacy database and a RDBMS
target in a CASE tool but, after using a data extraction tool to generate and
execute programs to actually move the data, discover that the mapping was
somehow incorrect. The most natural place to test out the "fix" to this problem
is in the context of the data extraction tool. Once the correction is verified, one
updates the metamodel in the CASE tool, rather than having to go to the CASE
tool, change the mapping, and trigger the metadata interchange between the
CASE tool and the data extraction tool before being able to test the new
mapping.

á Vendors would like to support the MDIS with a minimum amount of additional
development.

In light of these assumptions, the metadata model must be sufficiently extensible to allow a
vendor to store the entire metamodel for any application. In other words, MDIS should
provide mechanisms for extending the metadata model so that additional (and possibly
encrypted) information can be passed. An example of when a vendor might want
encryption is in the case of a tool that generates parameters for invoking some internal
routine. Because these parameters might provide other vendors with information regarding
what is considered a proprietary part of their tool, the vendor may wish to encrypt these
parameters.

If one assumed that all updates to the model occurred in the context of a single tool, e.g.,
the CASE tool in the example above, the MDIS would not benefit from "carrying along"
any of the tool-specific metadata. However, as the above example indicates, this
assumption is not the "natural" metadata interchange flow. Consequently, some type of
mechanism for providing extensions to the type of information exchanged by the
interchange specification is necessary if one hopes to achieve bidirectional interchange
between vendor applications.

4.0 Metadata Interchange Framework

Overview of Potential Approaches

Implementation of the MDIS metadata model must assume that the metadata itself may be
stored in any type of storage facility or formatÑrelational tables, ASCII files, fixed format

1 Otherwise, something like position in the file would have to determine the "ownership" of certain objects,
i.e., that a particular data element identified as "name" is a part of record Y, while another data element
identified as "name" is a part of record Z. This requirement will tend to make the standard verbose, but
relatively speaking, metadata is not data-intensive; a large company may have hundreds (or thousands) of
schemas in use rather than millions.

 WORK IN PROGRESS DRAFT

Page 11 MDIS 1.1

or customized format repositories, etc. Therefore, the MDIS metadata access methodology
must include a framework that will translate an access request into MDIS syntax and format
for the metamodel of choice, i.e., the application programming interfaceÕs (API)
specification parameters.

There are several approaches to consider in accomplishing this:

 Procedural Approach
A procedural approach is predicated on each individual toolÕs interaction with the defined
API. It requires that the intelligence to communicate with the API in the specification be
built into the tool wherever the tool may need to create, update, access, or otherwise
interact with the metadata in the metamodel.

This approach enables the highest degree of flexibility in terms of evolving the standard
metadata implementation, as it requires that only the API be modified to accommodate any
changes and additions to the MDIS metamodel schema and/or access parameters. However,
this approach requires a great deal of up-front effort on the part of the tools vendors to
retrofit this logic into the tools to achieve compliance.

Because the tools themselves have to be modified to specifically interact with each given
element of the metamodel API, any change in the API must be reflected in an update to the
tool. This could put an inordinate and expensive support and maintenance burden on the
tools vendors in maintaining compliance as the MDIS inevitably evolves over time.

An example of this approach is the X-Windows user interface standard, which requires all
compliant applications to be coded to the X-Windows-specific syntax and argument
sequences for calling screen painting and user interaction functions that constitute the X-
Windows API. Every time the X-Windows system is changed, every compliant application
has to be upgraded to incorporate the new call syntax and arguments in order to maintain
compliance.

 ASCII Batch Approach
An ASCII Batch approach relies instead on the ASCII file format that contains the
description of the common metadata components and standardized access requirements that
make up the interchange specification metadata model. In this approach, the entire ASCII
file containing the MDIS schema and access parameters is reloaded whenever a tool
accesses the metadata through the specification API.

This approach requires only the addition of a simple import/export function to the tools and
would not require updating the tool in the event of metadata model changes, because the
most up-to-date schema will always be available through the access framework. This
eliminates the amount of retrofitting required to enable tools to remain compliant with the
MDIS, because the burden for update stays primarily within the framework itself.

However, this approach is resource and process cycle intensive and would likely be
prohibitively inefficient, especially in heavy usage scenarios such as decision support data
warehouse implementations. It could also have a tangible performance impact and may
introduce issues around update coordination in multiple tool access situations. For
example, Tool A exports metadata for some external process such as audit reporting;
concurrently, Tool B accesses and updates some of those same metadata elements. When
Tool A reloads the schema, the updates made by Tool B would be written over and lost.

 Hybrid Approach

 WORK IN PROGRESS DRAFT

Page 12 MDIS 1.1

A hybrid approach that would alleviate these problems to a great degree would follow a
data-driven model. By implementing a table-driven API that would support only fully
qualified references for each metadata element, a tool could interact with the API through
the specification access framework and directly access just the specific metadata object
needed. The tables would transparently direct the access path to the required object, so that
only that specific object is touched. This also obviates the need for reading in the entire
schema. Any changes made would be reflected in the tables, so that tools would not have to
be modified to maintain compliance as long as the specification access framework and
requirements are not modified.

 CDIF Approach
A fourth approach would be to develop the MDIS format in the context of the Electronics
Industries AssociationÕs CASE Data Interchange Format (CDIF) standard. The CDIF
Family of Standards "is primarily a description of a mechanism for transferring information
between CASE tools" and supports multiple semantic layers and transfer formats. The
current version of the CDIF standards represents a multi-year effort, which expects over
time to be adopted as an ISO and ANSI standard. To this end, the goal of the CDIF
standard is to be as semantically complete as possible. However, because what constitutes
metadata evolves as various types of software technology are developed, the EIA has
established an extensible standard and encourages the development of working groups to
address new areas of interest. Adopting this approach carries with it two obligations: the
Metadata Coalition must appoint one or more members to track the CDIF standards, and
every vendor supporting the MDIS format must subscribe to the CDIF publications in order
to avoid violating the EIAÕs copyright on that standard.

 Approach recommended
The Metadata Council has recommended the ASCII-based batch approach so that vendors
can implement support for the specification with minimum overhead and short time to
market. This benefits both vendors and end users by reducing product costs and bringing
benefit quickly.

 4.1 The Metadata Interchange Specification

There are two basic aspects of the proposed specification:
á Those that pertain to the semantics and syntax used to represent the metadata to

be exchanged. These items are those that are typically found in a specifications
document.

á Those that pertain to some framework in which the specification will be used.
This second set of items is two file-based semaphores that are used by the
specificationÕs import and export functions to help the user of the specification
control consistency.

Components defining the semantics and syntax that define the
specification

 The Metamodel
The Metadata Interchange Specification Metamodel describes the entities and relationships
that are used to directly represent metadata in the MDIS. The goal in designing this
metamodel is twofold:

á To choose the set of entities and relationships that represents the objects that the
majority of tools require.

 WORK IN PROGRESS DRAFT

Page 13 MDIS 1.1

á To provide some mechanism for extensibility in the case that some tool requires
the representation of some other type of object. Section 5 describes the
metamodel for Version 1.1of the Metadata Interchange Specification. In the rest
of this document the entities that are directly represented by the specification are
referred to as objects in the "public view," while any other metadata stored in
the interchange file is referred to as "private metadata" (i.e., tool-specific
metadata).

 The mechanism for extending the metamodel
The mechanism chosen to provide extensibility to the specification is analogous to the
"properties" object found in LISP environments: a character field of arbitrary length that
consists of a set of identifiers and a value, where the identifiers are used by the import
function of the specification to locate and identify the private metadata in question and the
value is the actual metadata itself. Note: because some tools may consider their private
metadata proprietary, the actual value for this metadata may be encrypted.

This approach requires that the import function developed for each tool to support metadata
interchange be able to store this proprietary metadata in such a way that for all imported
objects that are later exported, the proprietary metadata is associated with any of the
imported objects that remain from the original description. This statement assumes that an
object may be edited in the context of either tool, resulting in either the creation of new
objects or the deletion of imported objects. In the case of new objects, any proprietary
metadata required by the original exporting tool will not exist; or, in the case of the deletion
of objects, it will no longer be valid. Note that such an approach requires that the
importing product be capable of loading an incomplete or not fully
consistent object definition. This requirement seems reasonable as most tools that
support interactive editors must be able to save partially specified entities (say, when the
user logs off to go to lunch) and therefore already supports in some capacity the ability to
save and retrieve partially specified objects.

 The Interchange Specification Access Framework
Version 1.1 of the Metadata Interchange Specification includes information which will
support a bidirectional flow of metadata while maintaining metadata consistency. Three
types of information are required:

á Versioning information in the header of the file containing the metadata;
á A Tool Profile which describes what type of data elements a tool directly

represents and/or updates; and
á A Configuration Profile which describes the "legal flow of metadata." For

example, although source-to-target mapping may be specified in the context of
some analysis tool, once that metadata has been exported to ETI¥EXTRACT
and the mapping is changed because of errors found in expected data, one may
want to require that all future changes to mapping originate in ETI¥EXTRACT.
If the configuration profile is set properly, the import function for
ETI¥EXTRACT would err off if asked to import a conversion specification
from the analysis tool with a version number greater than the version number of
the one originally imported from the mapping tool.

5.0 The Metadata Interchange Specification Metamodel

Figure 1 illustrates the implied hierarchical structure of the MDIS file. These hierarchies
are built embedding each object definition within its parent prior to ending the parent
definition. The Figure illustrates the valid objects that can be imbedded within another

 WORK IN PROGRESS DRAFT

Page 14 MDIS 1.1

object. For example, a database can directly have imbedded within it a Dimension, View,
Record or Subschema object, but cannot have a direct imbed of an Element or a Level
object.

 WORK IN PROGRESS DRAFT

Page 15 MDIS 1.1

 Figure 1:
Hierarchical Model based on "Contains/Contained By" relationships; shows the cardinality
of the relationships.

DATABASE

DIMENSION

ELEMENT LEVEL

VIEW RECORD SUBSCHEMA

ELEMENT

1:1

0:N 0:N 0:N

1:1

0:N

1:1

0:N

1:1 1:1

0:N 0:N

Figure 2 illustrates how to use the relationship object to model certain relationships between
objects outside of a hierarchical model. This illustration is not inclusive of all relationship
types between objects but is used as the guideline to model the following special
circumstances:

To build a logical grouping of record definitions that may map to the same chunk of
data. Within the data itself, a key determines what record definition to use. The
Subschema is used to group these different record layouts together.

To process the COBOL REDEFINES clause at a structure level, you should use the
Redefines relationship type to indicate that one record is redefining another.

To process the COBOL REDEFINES clause at an element level, you should use the
Redefines relationship type to indicate that one element is redefining another.

To process COBOL groups use the GroupEquivalent relationship to indicate that a
record describes a group element.

 Figure 2:
Special Model to handle special cases such as COBOL redefines.

CONTAINS REDEFINES REDEFINES GROUP
 EQUIVALENT

SUBSCHEMA RECORD ELEMENT RECORD

RECORD RECORD ELEMENT ELEMENT

 WORK IN PROGRESS DRAFT

Page 16 MDIS 1.1

Figure 3 represents the relationships (and cardinality of those relationships) between MDIS
object types. Relationships can be between any two supported objects, however, the Meta
Data Coalition recommends the following relationship types between objects in addition to
those specified in Figure 2. Please note that this is the recommended set of relationships,
but other cases may occur where other relationships between objects are necessary.

 Figure 3:

OBJECT RELATIONSHIP TYPE OBJECT

Database Equivalent Database
Subschema Equivalent Subschema
Subschema Equivalent Record
Subschema Equivalent Dimension
Subschema Equivalent Element
Record Equivalent Record
Record Equivalent Dimension
Record Equivalent View
Record Equivalent Element
Dimension Equivalent Dimension
Dimension Equivalent Record
Dimension Equivalent Element
Element Equivalent Element
Element Equivalent Record
View Equivalent View
View Equivalent Record
View Equivalent Dimension

Database Derived Database
Database Derived Subschema
Subschema Derived Database
Subschema Derived Record
Subschema Derived Dimension
Subschema Derived View
Record Derived Record
Record Derived View
Record Derived Dimension
Record Derived Element
Record Derived Subschema
Dimension Derived Dimension
Dimension Derived Record
Dimension Derived Element
Dimension Derived View
Dimension Derived Subschema
Element Derived Element
Element Derived Record
Element Derived Dimension

 WORK IN PROGRESS DRAFT

Page 17 MDIS 1.1

OBJECT RELATIONSHIP TYPE OBJECT
View Derived View
View Derived Record
View Derived Dimension

Database Inherits-from Database
Subschema Inherits-from Database
Subschema Inherits-from Record
Subschema Inherits-from Dimension
Subschema Inherits-from View
Record Inherits-from Record
Record Inherits-from View
Record Inherits-from Dimension
Record Inherits-from Subschema
Dimension Inherits-from Dimension
Dimension Inherits-from Record
Dimension Inherits-from View
Dimension Inherits-from Subschema
Element Inherits-from Element
Element Inherits-from Record
Element Inherits-from View
Element Inherits-from Dimension
View Inherits-from View
View Inherits-from Record
View Inherits-from Dimension

Database Contains Record
Database Contains Subschema
Database Contains Dimension
Subschema Contains Subschema
Subschema Contains Record
Subschema Contains Dimension
Subschema Contains View
Subschema Contains Element
Record Contains Record
Record Contains Element
Dimension Contains Dimension
Dimension Contains Element
Element Contains Element
View Contains View
View Contains Record
View Contains Dimension
View Contains Element

Database Includes Record
Database Includes Subschema
Database Includes Dimension
Subschema Includes Subschema
Subschema Includes Record

 WORK IN PROGRESS DRAFT

Page 18 MDIS 1.1

OBJECT RELATIONSHIP TYPE OBJECT
Subschema Includes Dimension
Subschema Includes View
Subschema Includes Element
Record Includes Record
Record Includes Element
Dimension Includes Dimension
Dimension Includes Element
Element Includes Element
View Includes View
View Includes Record
View Includes Dimension
View Includes Element

Record Redefines Record
Element Redefines Element

Record Group-equivilant Element

Any Object User-defined Any object

6.0 Metadata Interchange Specification (MDIS) MetaObjects

 General syntax of interchange statements
MDIS uses a tag language where each MDIS statement begins with a line "BEGIN
<statement type>" and ends with a line "END <statement type>." Nesting of different
statement types indicates a physical relationship between objects of different types. For
example, ELEMENT definitions can be contained within a RECORD definition and
RECORD definitions can be contained within a DATABASE definition. Instances of the
Relationship Object (see Section 6.7) are used to represent both logical relationships
between objects (e.g., a subschema and the record types used by that subschema) and
relationships between objects of the same type (e.g., set definitions in a network DBMS or
class hierarchies within an OODBMS). For examples of how to represent the different
types of objects and relationships used by different data models, see Appendix B.

Please note the following conventions:

· When the angled brackets are used, it means that the text that appears within the
brackets should be a value for the type of object referenced. For example, if
Arbor were creating the export file and the description of a field value contains
<ExportingToolName>, then the value that appears would be ESSBASE.

· When there is a fixed range of values, they are described with the text
"VALUE:" followed by the list of legal values separated by commas. For
example, VALUE: "PRODUCTION", "DEVELOPMENT".

· The symbols YYYY-MM-DD (using dashes) and HH.MM.SS (using dots) are
used to represent the ISO formats for date and time respectively.

· All dates and times should be represented in Greenwich Mean Time (GMT).

 WORK IN PROGRESS DRAFT

Page 19 MDIS 1.1

· Keywords denoting properties consist of a valid sequence of characters and
begin the line on which their value is specified. All keywords must be in
English and enumerated values are not translated.

· Many of the values stored in the MDIS file do not have a fixed length. In these
cases, the specification declares them of type varchar. However, the default
maximum text length for a record is 132 bytes, unless specified in the header.

· Long text can be exported from a tool and keep its formatting using the
following rules:
1) Formatting characters:

a) New lines are specified with the \\n character sequence.
b) Tabs are specified with the \\t character sequence.

This is a change from the MDIS 1.0 (which used :CR, :NL, :TAB) to be more
in line with current coding specifications.
2) Long text is enclosed in double quotes and broken into 132 byte records. The
record ends with a carriage return/line feed in bytes 131 and 132 if you need to
continue the long text across multiple records. A double quote at the end of the
text will terminate the long text. Please note that the exporting tool must
replace the new lines and tabs in the long text with the \\n and \\t character
strings as described in #1 prior.

· Comments can be inserted at any point in an MDIS file by starting each line
with "COMMENT". The end of a line ends the COMMENT.

· In listing the object names, a "*" can be used as a wildcard; for example,
"NEWTON.DSG..*.*" would mean that the tool could import any metadata
associated with the host "NEWTON" and the owner "DSG".

· The BriefDescription field is used to assign descriptive text about the object
being defined.

 NOTE: Although certain conventions are followed with respect to letter
 case in this document, key words are not letter case-sensitive.

 Granularity of export
Since this interchange mechanism will be executed in batch mode, the following decision
was made with respect to the granularity of export. For any object requested in the call to
the export function, the function will export all the object instances contained by the object
referenced in the function call (i.e., the entire hierarchy under the requested object), as well
as all the objects referenced in relationships that are one level across (for the peer
relationships).

 New Identifier as a means of reducing verbosity
Version 1.1 of MDIS changes the Identifier field from a character string of concatenated
fields to a long integer unique within the export file. There are several reasons for this.
The previous identifier was not guaranteed to be unique, for example, element names are
not necessarily unique within a record. The new integer identifier reduces the verbosity
inherent in the old concatenated identifier, which resulted in a string of unbounded length.
In addition, the new identifier allows more flexibility in the way that objects relate to each
other. For instance, it is now possible to relate two relationships.

6.1 Header

Description: The purpose of the header information in the interchange file is to identify
which version of what tool exported the metadata and which version of the MDIS it used
in generating the interchange file, as well as the date and time of the export. This

 WORK IN PROGRESS DRAFT

Page 20 MDIS 1.1

information is used by the importing tool, along with the Configuration Profile, to
determine whether the import request is legal or should be rejected.

The following describes the fields that constitute the interchange file header:

Name Value Required?
CharacterSet VALUE: "ENGLISH" (for

US English), "INTLENG"
(for international English,
i.e., Canada, UK, Ireland),
"GERMAN",
"FRENCH","SPANISH"
(for Spain and Latin
America), "JAPANESE",
"SWISS" (for Swiss,
German Swiss and French
Swiss), "PORTUG" (for
Portugal and Brazilian
Portuguese), "ITALIAN",
"NORDIC" (for Danish,
Swedish and Norwegian)

Required

ExportingTool "<name of tool which
created the MDIS file>"

Required

ToolVersion "<release number of the
exporting tool>"

Required

ToolInstanceID "<integer>" Required

MDISVersion "<version number of the
MDIS being employed>"

Required

Date "YYYY-MM-DD" Required

Time "HH.MM.SS" Required

MaxRecLength "<integer>" Optional

CharacterSet - Defines the character set used to specify metadata values in the MDIS file.

ExportingTool - A string defining the name of the tool exporting the metadata.

ToolVersion - The release number of the exporting tool.

ToolInstanceID - An identifier used in both the header information and the configuration
profile to identify a particular installation of the exporting tool on the server in the case that
there are different installations with different privileges, etc.

MDISVersion - Version of MDIS used by the exporting tool.

 WORK IN PROGRESS DRAFT

Page 21 MDIS 1.1

Date - The date on which the MDIS file was created/written.

Time - The time (in Greenwich Mean Time) at which the MDIS file was created/written.

MaxRecLength - Maximum length of a line in the MDIS file. Default is 132.

Example:
BEGIN HEADER
 CharacterSet "FRENCH"
 ExportingTool "IEF Composer"
 ToolVersion "3.1"
 ToolInstanceID "5"
 MDISVersion "1.1"
 Date "1996-03-15"
 Time "14.32.18"
END HEADER

6.2 Definition of common properties

Certain properties are common to all object types represented in the MDIS; for example,
Identifier, DateCreated, BriefDescription, etc. This section describes the purpose of each of
these common properties and the conventions for representing this information.

 Identifier
An identifier uniquely identifies an object and is represented as a long integer unique to the
MDIS file. This value is required.

 DateCreated
The DateCreated property refers to the date that the metadata defining the object was first
created in the context of some tool. This value is optional on both import and export. The
format for this value is a quoted string of the form "YYYY-MM-DD."

 DateUpdated
The DateUpdated property refers to the date that the metadata defining this object was last
updated in the context of some tool. This value is optional on both import and export. The
format for this value is a quoted string of the form "YYYY-MM-DD."

 TimeCreated
The TimeCreated property defines the time at which the metadata for defining the object
was created by some tool. This value is optional on both import and export. The format
for this value is a quoted string of the form "HH.MM.SS."

 TimeUpdated
The TimeUpdated property defines the time at which the metadata for defining the object
was last updated by some tool. This value is optional on both import and export. The
format for this value is a quoted string of the form "HH.MM.SS."

 BriefDescription
The BriefDescription property is used to assign descriptive text about the object being
defined. It is used to store the source of the database or file name containing the data
definition. The value of this tag can be used in the presentation to end users. This value is

 WORK IN PROGRESS DRAFT

Page 22 MDIS 1.1

optional for both import and export. The value for this field is a varchar, represented in the
MDIS file by the varchar text enclosed in quotation marks.

 LongDescription
The LongDescription property is used to assign descriptive text about the object being
defined. The value of this tag can be used in the presentation to end users. This value is
optional for both import and export. The value for this field is a varchar, represented in the
MDIS file by the varchar text enclosed in quotation marks.

 ApplicationData
The ApplicationData property allows tools to store an arbitrary amount of tool-specific
metadata required for its processing of the object to which it is assigned. This property can
be used to associate proprietary (but necessary to some tool) metadata with a particular
object; upon agreement/convention between vendors this property can also be used to
exchange metadata that falls out of the current MDIS definition. The value for this property
is optional for both import and export. The value for each entry in the ApplicationData
property is a varchar, represented in the MDIS file by the varchar text enclosed in quotation
marks. Each toolÕs ApplicationData metadata is encapsulated between angle brackets and
takes the form:

BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
 Tool "tool 2"
 BEGIN ToolAppData
 kw val
 kw val
 END ToolAppData
END ApplicationData

 ContactName
The ContactName property refers to the name of a person or department to contact for more
information about this object (metadata or data). This property is used to indicate a person
or department responsible for the object. It can be used in the presentation to end users.
This property value is optional for both import and export. The value for this field is a
varchar, represented in the MDIS by the varchar text enclosed in quotation marks.

 ServerName
The ServerName property refers to the name of the server or host system where the object
resides. This property value is required. The value for this field is a varchar, represented in
the MDIS file by the varchar text enclosed in quotation marks.

 DatabaseExtendedType
The DatabaseExtendedType property refers to the vendor database name and database
version.. This property value is required. The value for this field is a varchar, represented
in the MDIS file by the varchar text enclosed in quotation marks.

 OwnerName
The OwnerName property refers to the name assigned as the owner of the object being
defined. It may contain the user id of an object owner. For example, the owner of the

 WORK IN PROGRESS DRAFT

Page 23 MDIS 1.1

relational table HRADMIN.EMPLOYEE would be HRADMIN. This property value is
required but may be null. The value for this field is a varchar, represented in the MDIS file
by the varchar text enclosed in quotation marks.

ObjectTypes

6.3 Database

Description: A database object can be used to represent:
á a group of files
á a relational database
á a network database
á a hierarchical database
á a multi-dimensional database
á an object database

Usage: The database object can contain the record, dimension, view and subschema
objects.

The objects can be either physically (e.g., tables within a relational database) or logically
(e.g., BDAM files that have customer information stored within them) related together. The
Metadata Coalition does not impose physical or logical rules on the tools.

Database

KEYWORD VALUE REQUIRED?
Identifier "<long int>" Required

ServerName "<name of server or host on
which database resides >"

Required

DatabaseExtendedType "vendor database name and
database version>"

Required

OwnerName "<owner of the database>" Required

DateCreated "YYYY-MM-DD" Optional

DateUpdated "YYYY-MM-DD" Optional

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text in quotes>" Optional

LongDescription "<text in quotes>" Optional

 WORK IN PROGRESS DRAFT

Page 24 MDIS 1.1

KEYWORD VALUE REQUIRED?
ApplicationData BEGIN ApplicationData

 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to
contact>"

Optional

DatabaseName "<name of database>" Required

DatabaseLongName "<text representing the
business term for this
object>"

Optional

DatabaseStatus VALUE: "PRODUCTION",
"DEVELOPMENT",
"TEST"

Optional

DatabaseType VALUE: "RELATIONAL",
"MULTIDIMENSIONAL",
"HIERARCHICAL",
"FILE", "OBJECT",
"NETWORK"

 Required

Description of object-specific fields:

 DatabaseLongName - The business term used to define this database to end users

This property is used to assign a logical name to the database that is meaningful to
end users.

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 DatabaseName - Name of local or remote database

This property is used to assign the name of the physical database on the server. It
contains the system name of the database.

Property value is required.

 WORK IN PROGRESS DRAFT

Page 25 MDIS 1.1

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 DatabaseStatus - Current availability status of database

This property is used to assign the status of the database. The status is used by the
importing tool to understand the current status of the database and can be used in
the presentation to end users.

Property value is optional for both import and export.

Format: "quoted text string". Values:

"PRODUCTION" database is in production mode
"DEVELOPMENT" database is in development mode
"TEST" database is in test mode

 DatabaseType - Type of database

This property is used to assign the type of database being defined. The property is
used to help the tools understand how the data in the database is physically
represented/stored in the source system.

Property value is required.

Format: "quoted text string". Values:

"RELATIONAL" for a relational database
"MULTIDIMENSIONAL" for a multidimensional database
"HIERARCHICAL" for a hierarchical database
"FILE" for a file based database
"OBJECT" for a object based database
"NETWORK" for a network based database

Example:

BEGIN DATABASE
 Identifier "001"
 ServerName "NEWTON"
 DatabaseExtendedType "AIX1.0"
 OwnerName "HRADMIN"
 DatabaseName "PAYROLL"
 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 DateUpdated "1996-03-10"
 TimeUpdated "08.00.00"
 BriefDescription "DB2/MVS payroll database at Newton site"

BEGIN ApplicationData
Tool "DXT"
BEGIN ToolAppData

 WORK IN PROGRESS DRAFT

Page 26 MDIS 1.1

CREATE DXT FILENAME=PAYROLL, DESC="DB2/MVS payroll
database at Newton site"ACCESS =GDI,GDIEXIT=GDIDB2S,
GDIXTYPE=SELECT
END ToolAppData
END ApplicationData

 DatabaseStatus "PRODUCTION"
 DatabaseType "RELATIONAL"

 BEGIN RECORD. . . .
END DATABASE

6.4 Subschema

Description: The Subschema object is used to provide a logical grouping of record objects
that describes a meaningful subset of a database. Instances of the Relationship object (of
type "CONTAINS") are used to represent the record types that belong in a particular
subschema.

Usage: The Subschema object can be used to represent a logical sub-grouping of
components within a database

á logical groupings of relational tables
á logical groupings of files
á logical groupings of objects within an object database
á logical groupings of segments within a hierarchical database
á logical groupings of records within a network database

These objects can represent only logical relationships (e.g., records layouts of a QSAM file
that change based upon a key in the data) between objects.

Subschema
KEYWORD VALUE REQUIRED?

Identifier "<long int>" Required

ServerName "<name of server or host on which
database resides>"

Required

OwnerName "<group with rights to subschema>" Required

DatabaseName "<database name to which the
subschema belongs>"

Required

DateCreated "YYYY-MM-DD" Optional

 WORK IN PROGRESS DRAFT

Page 27 MDIS 1.1

KEYWORD VALUE REQUIRED?
DateUpdated "YYYY-MM-DD" Optional

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text>" Optional

LongDescription "<text>" Optional

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to contact>" Optional

SubschemaLongName "<text representing the business
term for this metadata>"

Optional

SubschemaName "<subschema name>" Required

Description of object-specific fields:

 SubschemaLongName - The business term used to define this subschema to end users.

This property is used to assign a logical name to the subschema which is
meaningful to end users.

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 SubschemaName - Name of subschema

This property is used to assign the name for the subschema that is a logical
grouping of other objects.

Property value is required.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 WORK IN PROGRESS DRAFT

Page 28 MDIS 1.1

Example:

BEGIN SUBSCHEMA
 Identifier "002"
 ServerName "NEWTON"
 OwnerName "PUBLIC"
 DatabaseName "PAYROLL"DateCreated "1992-12-02"
 DateUpdated "1996-03-10"
 TimeUpdated "08.00.00"
 TimeCreated "23.12.15"
 BriefDescription "Grouping of employment data"
 BEGIN ApplicationData
Tool "IEFComposerV1.2"
BEGIN ToolAppData
HOST_TYPEX1243
END ToolAppData
Tool "ESSbaseV3.1"
BEGIN ToolAppData
MAX-NUM-DIM6TIMEOUT30
END ToolAppData
END ApplicationData

 SubschemaName "EMPLOYMENT"
 SubschemaLongName "Employment Info"
 END SUBSCHEMA

The usage and representation of subschemas are not inclusive, but simply examples.

6.5 Record

Description: The purpose of the record is to provide a physical grouping of element objects
that describe a unit of data.

Usage: The record object is used to represent:
á record layouts of a file (e.g., a COBOL copybook)
á relational database table structures (DDL)
á segment within a hierarchical database
á record within a network database
á object or class definition in an object-oriented database
á group elements in a COBOL file
á multiple layouts of a record (redefines clause)

The record object can contain objects representing:
á columns within a relational table
á properties or objects within an object database
á fields within a record type

Record
KEYWORD VALUE REQUIRED?

Identifier "<long int>" Required

 WORK IN PROGRESS DRAFT

Page 29 MDIS 1.1

KEYWORD VALUE REQUIRED?
ServerName "<name of server or host on which

database resides>"
Required

OwnerName "<name of owner>" Required

DatabaseName "<name of database>" Required

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text in quotes>" Optional

LongDescription "<text in quotes>" Optional

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to contact>" Optional

RecordLongName "<text representing the business term
for this object to end users >"

Optional

RecordName "<record name>" Required

RecordLastRefreshDate "YYYY-MM-DD-HH.MM.SS" Optional

RecordUpdateFrequency "<text>" Optional

RecordType VALUE: "TABLE", "SEGMENT",
"FILE", "CLASS", "RECORD",
"GROUP"

Required

Description of object-specific fields:

 RecordLongName - The business term used to define this record to end users.

This property is used to assign a logical name to the record that is meaningful to end
users.

 WORK IN PROGRESS DRAFT

Page 30 MDIS 1.1

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 RecordName - Name of table, file, segment, or record where data is stored.

This property is used to assign the name of the physical record. This name may be
the table, file, segment, or record name. It contains the system name of the record.

Property value is required.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 RecordLastRefreshDate - The date that the data was last updated.

The value of this keyword is used to identify the date that the data was last updated
in the actual database. This value is the date of the last update of the data values for
one or more instances of this record type and does not reflect the date that the
metadata defining this record was last updated.

Property value is optional for both import and export.

Format: quoted string of format "YYYY-MM-DD-HH.MM.SS".

 RecordUpdateFrequency - Frequency of updates to record data

This property is used to identify how frequently the source data is updated. It can
be used for presentation to the end users and is a free form text field (e.g.,
"NIGHTLY", "HOURLY", "WEEKLY", "EVERY FRIDAY", etc.).

Property value is optional for both import and export.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 RecordType - Type of record

This property is used to identify the type of record being described.

Property value is required.

Format: "quoted text string". Values:

"TABLE" definition is for a relational table
"SEGMENT" definition is for a hierarchical segment
"FILE" definition is for a file record
"CLASS" definition is for a class in an OODB
"RECORD" definition is for a record in a network database

 WORK IN PROGRESS DRAFT

Page 31 MDIS 1.1

"GROUP" definition for a group item (i.e., a group of
contiguous elements within a record which can be
referenced/manipulated as a unit)

Example:

BEGIN RECORD
 Identifier "003"
 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 DateUpdated "1996-03-10"
 TimeUpdated "08.00.00"
 BriefDescription "Employee personal information"

BEGIN ApplicationData
Tool "DXT"
BEGIN ToolAppData
DXTFILE=PAYROLL
END ToolAppData
END ApplicationData
 ServerName "NEWTON"
 OwnerName "HRADMIN"
 DatabaseName "PAYROLL"
 RecordName "EMPLOYEE"
 RecordLongName "Employee Table"
 RecordLastRefreshDate "1996-02-01-12.00.00 "
 RecordType "TABLE"
 BEGIN ELEMENT...
END RECORD

6.6 Element

Description: The purpose of the element object is to provide a physical description of the
smallest piece of data that should be described. The element represents a data value that is
logically or physically represented in the database. Element objects cannot contain any other
objects in the object model. They are considered the lowest definable unit of data.

Usage: The element object is used to represent:
á members within a multidimensional database dimension
á columns within a relational table
á attributes or methods in a class
á fields within a file record
á fields within a hierarchical segment or node

Element
KEYWORD VALUE REQUIRED?

 WORK IN PROGRESS DRAFT

Page 32 MDIS 1.1

KEYWORD VALUE REQUIRED?
Identifier "<long int>" Required

DateCreated "YYYY-MM-DD" Optional

DateUpdated "YYYY-MM-DD" Optional

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text>" Optional

LongDescription "<text>" Optional

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to contact>" Optional

ElementLongName "<text representing the business term
for this object to end users>"

Optional

ServerName "<name of server or host on which
database resides>"

Required

DatabaseName "<database name>" Required

DimensionName "<dimension name>" Required if not a
Record

OwnerName "<name of owner>" Required

RecordName "<record name>" Required if not a
Dimension

ElementName "<element name>" Required

 WORK IN PROGRESS DRAFT

Page 33 MDIS 1.1

KEYWORD VALUE REQUIRED?
ElementDataType VALUE: "CHAR", "VARCHAR",

"STRING", "TEXT", "BINARY",
"SIGNED-INTEGER",
ÒUNSIGNED-INTEGERÓ,
"DECIMAL",
"FLOAT", "DATE", "TIME",
"TIMESTAMP", "RECORD",
"PROGRAM"

Required

ElementPrecision "<integer>" Required for
decimal

ElementKeyPosition "<integer, where 0 means not a
key>"

Required

ElementLastRefreshDate "YYYY-MM-DD-HH.MM.SS" Optional

ElementLength "<integer representing maximum
length of value database2>" (includes
precision)

Optional

ElementNulls "T" or "F", representing Boolean Optional

ElementPosition "integer representing byte position in
record" (zero based)

Optional

ElementOrdinality VALUE: "1", "N", "<integer>" Required

Description of object-specific fields:

 ElementLongName - The business term used to define this element to end users.

This property is used to assign a logical name to the element that is meaningful to
end users.

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 ElementName - Name of field, column, or member

This property is used to assign the name of the physical element. This may be the
field, column, or member name based upon the type of element. It contains the
system name of the element.

2 The length expressed here should be the length used in the DDL (if any)

 WORK IN PROGRESS DRAFT

Page 34 MDIS 1.1

Property value is required.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 DimensionName - Name of dimension

This property is used to assign the name of the dimension in which the element is
found.

Property value is required (if not a record).

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 ElementDataType - Datatype of field, column, or member

This property indicates the data type of the element being defined. This is a free
format textual field that is populated from the source tool dictionary.

Property value is required.

Format: "quoted text string". Values:

 "CHAR" for fixed character data
 "VARCHAR" for varying character data
 "STRING" for string data
 "TEXT" for text data
 "BINARY" for BLOB data
 "SIGNED-INTEGER" for signed integer data
 ÒUNSIGNED-INTEGERÓ for unsigned integer data
 "DECIMAL" for decimal data
 "FLOAT" for floating point data
 "DATE" for date data
 "TIME" for time data
 "TIMESTAMP" for timestamp data
 "RECORD" Element refers to a group element,

defined as a Record elsewhere in the
MDIS file

 "PROGRAM" for text representing program code

 "POINTER" Properties of a Record of RecordType
"CLASS" can refer to the value of one or
more object identifiers. These are

represented in the Element object by declaring an
ElementDataType of "Pointer."

 Element Precision - Measure of accuracy.

This property indicates number of digits that occur to the right of decimal.

Property value is required for decimal values (only).

 WORK IN PROGRESS DRAFT

Page 35 MDIS 1.1

Format: "<integer>"

 ElementKeyPosition - If element is used in key, position of element in the key (1-based).

This property indicates whether the element being described is part of a key for the
record. If so, it indicates the order position within the key (1-based).

Property value is optional for both import and export.

Format: "<integer>"

 ElementLastRefreshDate - The date that some data value in this type of field was last
updated

This value of this keyword is used to identify the date that the data was last updated
in the actual database. This represents the data update date, and does not reflect the
date that the metadata was last updated.

Property value is optional for both import and export.

Format: quoted string of format "YYYY-MM-DD- HH.MM.SS".

 ElementLength - Maximum length of the field, column, or member

This property indicates the fixed or maximum length of the element being defined.
This is a numerical field that is populated from the source tool dictionary. The value
of this field depends on the datatype of the element being described. The length
expressed here should be the length used in the DDL (if any)

Property value is optional.

Format: "quoted numeric string".

 ElementNulls - Indicates whether the element can contain null data

This property indicates whether the element being defined can contain null data or
not.

 Property value is optional for both import and export

Format: "quoted text string" representing Boolean. Values:
"T" element can have null data
"F" element cannot have null data

 ElementPosition - Position of element within containing object

This property indicates the byte position (zero based) of the element within the
containing record or dimension.

Property value is optional for both import and export.

 WORK IN PROGRESS DRAFT

Page 36 MDIS 1.1

Format: "quoted numeric string".

 ElementOrdinality - Number of instances of this element that can occur within a single
record instance (e.g., occurs statement in COBOL).

Format: "1" -one instance per record instance.
 "<integer>" -exactly <integer> instances per record instance.
 "N" -an arbitrary number of instances per record instance.

Property Value is optional (default is 1)

Example:
BEGIN ELEMENT
 Identifier "004"
 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 DateUpdated "1996-03-10"
 TimeUpdated "08.00.00"
 BriefDescription "Employee Identification Number"

BEGIN ApplicationData
Tool "DXT"

BEGIN ToolAppData
DXTFILE=PAYROLL
END ToolAppData
END ApplicationData
 ServerName "NEWTON"
 OwnerName "HRADMIN" DatabaseName "PAYROLL"
 RecordName "EMPLOYEE"
 ElementName "EMPL_ID"
 ElementLongName "Employee Id"
 ElementDataType "SIGNED-INTEGER"
 ElementKeyPosition "000001"
 ElementLastRefreshDate "1996-02-01-12.00.00"
 ElementLength "000002"
 ElementNulls "F"
 ElementOrdinality "1"
END ELEMENT

6.7 Relationship

Description: The Relationship object defines a relationship between objects. In many
ways, the Relationship object is the most semantically rich and flexible object in the MDIS
meta-model. There are nine types of relationships: EQUIVALENT, DERIVED,
INHERITS-FROM, CONTAINS, INCLUDES, LINK-TO, REDEFINES, GROUP-
EQUIVALENT, and USER-DEFINED. Conventions for using this object to represent the
semantics of different data models are illustrated in Appendix B.

Relationship

 WORK IN PROGRESS DRAFT

Page 37 MDIS 1.1

KEYWORD VALUE REQUIRED?
Identifier "<long int>" Required

DateCreated "YYYY-MM-DD" Optional

DateUpdated "YYYY-MM-DD" Optional

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text>" Optional

LongDescription "<text>" Optional

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to contact>" Optional

RelationshipLongName "<text representing the business term
for this object to end users>"

Optional

RelationshipName "<relationship name>" Optional

OwnerName "<name of owner>" Required

ServerName "<name of server or host on which
database resides>"

Required

SourceObjectIdentifier "<long int>" Required

TargetObjectIdentifier "<long int>" Required

SourceSequenceOrder "<integer:integer>" indicating
sequence order (if any) out of the
maximum number of possible
elements in a relationship in the case
that more than one source element is
used to compute a target value3>"

Optional

RelationshipExpression "<text representing computation>" Optional

3 In this case, there will be multiple instances of the Relationship object used.

 WORK IN PROGRESS DRAFT

Page 38 MDIS 1.1

KEYWORD VALUE REQUIRED?
RelationshipType VALUE: ÒEQUIVALENTÓ,

"DERIVED", "INHERITS-FROM",
"CONTAINS", "INCLUDES",
"LINK-TO", "REDEFINES",
GROUP-EQUIVALENT", "USER-
DEFINED"

Required

RelationshipOrdinality VALUE: "1:1Ó ,Ò1:N", "N:N",
"1:<integer>", "<integer>:1"

Required

RelationshipBidirectional "T" or "F" Required

Description of object-specific fields:

 RelationshipLongName - The business term used to define this relationship to end users.

This property is used to assign a logical name to the relationship that is meaningful
to end users.

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 RelationshipName -

This property is used to assign the relationship a name separate from its source
object type-target object type.

This property is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 SourceObjectIdentifier - The MDIS identifier that uniquely defines the source data object.

This property is used to identify the source object identifier.

Property value is required.

Format: The value for this field is represented as a long integer.

 TargetObjectIdentifier - The MDIS identifier which uniquely defines the target data object.

This property is used to identify the target object identifier.

Property value is required.

Format: The value for this field is represented as a long integer.

 WORK IN PROGRESS DRAFT

Page 39 MDIS 1.1

 SourceSequenceOrder - Integer indicating position of element value amongst the number
of source elements used to compute the target value.

Integer indicating sequence order (if any) in the case that more than one source
element is used to compute a target value followed by a colon and an integer
indicating the total number of source values used to compute the target value.

Property is optional.

Format: "<integer:integer>"

 RelationshipExpression - Represents expression (functional logic) used to compute value
of target element from values of related source elements.

This property is used to pass the expression used to compute the value of the target
element in a relationship of type "DERIVED".

Property value is required if the RelationshipType is "DERIVED".

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 RelationshipType - There are nine types of relationships:

EQUIVALENT, used to indicate that the data values stored in two data elements are
equivalent.

DERIVED, used to indicate that the data value stored in the source element has been
used to compute the data value stored in the target . (If more than one source value
is used, more than one relationship instance is required, and the source sequence
position attribute is used to show any ordering that might be required between these
source values.)

INHERITS-FROM, used to indicate the relationship between a superclass and a
class that inherits attributes from that superclass.

CONTAINS, used to represent ownership between the source object and the target
object. Used to represent logical relationships or physical relationships when a
target instance has more than one owner.

INCLUDES, used to logically define at what level in hierarchy members can
participate in a detail or aggregate.

REDEFINES, used to represent a relationship which maps the same memory
address with a different format. (The same physical location is represented two
different ways.) For example, COBOL supports the redefinition of record layouts
or field definitions. Use the REDEFINES relationship to reflect this type of
redefinition in MDIS.

 WORK IN PROGRESS DRAFT

Page 40 MDIS 1.1

GROUP-EQUIVALENT, used to represent a relationship where an element in a
record is actually a group of elements, represented by a record of type "GROUP".

LINK-TO, used to represent a relationship between records in the case that it is not
one of ownership.

USER-DEFINED, allows vendor to specify additional relationship types.

Property value is required.

Format: "quoted text string". Values:

ÒEQUIVALENTÓ
"DERIVED"
"INHERITS-FROM"
"CONTAINS"
"INCLUDES"
"LINK-TO"
"REDEFINES"
"GROUP-EQUIVALENT"
"USER-DEFINED"

 RelationshipOrdinality - Indicates number of target object instances that occur for every
instance of a source object.

Property: Property value is required.

Format: "1:1" one instance of target object for each instance of
source object

"1:N" many instances of target object for each instance of
source object

"1:<integer>" exactly <integer> instances of target object for
each instance of source object
"N:N" many target objects for each source object and many

source objects for each target object
"<integer>:1" exactly <integer> instances of source object

for each instance of target object

 RelationshipBidirectional - Indication of whether or not the relationship is bidirectional.

Property value is required.

Format: "T" or "F"

Example of Relationship of RelationshipType ÒEQUIVALENTÓ:

Relationship example - EQUIVALENT - an element that is directly
 generated from a single IMS field.

BEGIN RELATIONSHIP
 Identifier "006"

 WORK IN PROGRESS DRAFT

Page 41 MDIS 1.1

 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 BriefDescription "DB2/MVS DEPT_BUDGET column from IDMS"

BEGIN ApplicationData
Tool "IDMS"
BEGIN ToolAppData
 Select department_budget from salary_budget
 where division='SWS"and department='FFH'"
END ToolAppData
END ApplicationData
 OwnerName "HRADMIN"
 ServerName "NEWTON"
 SourceObjectIdentifier "0006"
 TargetObjectIdentifier "0007"
 RelationshipExpression "Select department_budget from salary_budget where
division='SWS' and department='FFH'"
 RelationshipType ÒEQUIVALENTÓ
 RelationshipOrdinality "1:1"
 RelationshipBidirectional "T"
END RELATIONSHIP

Example of Relationship of RelationshipType "DERIVED"
Derived columns - an element that is derived from 3 IMS fields.

BEGIN RELATIONSHIP
 Identifier "009"
 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 BriefDescription "DB2/MVS EMPL_NAME column derived from IMS"

BEGIN ApplicationData
Tool"DXT"
BEGIN ToolAppData
Extract into EMP_NAME
Select EMP_FIRST,EMP_MI,EMP_LAST from IMSPSB2
END ToolAppData
END ApplicationData
 SourceObjectIdentifier "1000"
 TargetObjectIdentifier "2000"
 RelationshipExpression "Select EMP_FIRST,EMP_MI,EMP_LAST"
 RelationshipType "DERIVED"
 RelationshipOrdinality "1:1"
 RelationshipBidirectional "T"
END RELATIONSHIP

6.8 Dimension

Description: A dimension is made up of a hierarchy of members, where members are data
elements that are referenced by a set of coordinates that uniquely define their position in a
hypercube. Each member can belong to more than one hierarchy; in this case the member

 WORK IN PROGRESS DRAFT

Page 42 MDIS 1.1

is said to be shared between hierarchies. Each dimension has one or more levels that can
be referenced by name and numbered either from the top of the dimension (in which case it
is called the Ògeneration numberÓ) or the bottom of the dimension (in which case it is called
the Òlevel numberÓ), or for levels that can be named as containers, "name-level."

The Element object is used to represent members in the dimension and the Relationship
object to define the hierarchies to which members belong.

Usage: A dimension is the collection of members that, from the userÕs point of view, all
have the same type, e.g., sales by store by region by month, expenses by department by
month.

 Dimension

KEYWORD VALUE /REQUIRED?
Identifier "<long int>" Required

DateCreated "YYYY-MM-DD" Optional

DateUpdated "YYYY-MM-DD" Optional

TimeCreated "HH.MM.SS" Optional

TimeUpdated "HH.MM.SS" Optional

BriefDescription "<text in quotes>" Optional

LongDescription "<text in quotes>" Optional

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

ContactName "<name of person to contact>" Optional

DimensionLongName "<business terms used to identify this
object to end users>"

Optional

ServerName "<name of server or host on which
database owning dimension
resides>"

Required

DatabaseName "<database name>" Required

OwnerName "<name of owner>" Required

SubschemaName "<subschema name>" Optional

 WORK IN PROGRESS DRAFT

Page 43 MDIS 1.1

DimensionName "<dimension name>" Required

DimensionType "<name of dimension type>" Required

DimensionCount "<integer>" Required

DimensionLevelCount "<integer>" Required

Description of object-specific fields:

 DimensionLongName - The business term used to define this dimension to end users.

This property is used to assign a logical name to the dimension that is meaningful to
end users.

Property value is optional.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 DimensionName - Name of dimension

This property is used to assign the name of the dimension definition to the database
in question.

Property value is required.

Format: The value for this field is a varchar, represented in the MDIS file by the
varchar text enclosed in quotation marks.

 DimensionType - The type of the dimension, e.g., currency, account, etc.

This property is used to assign the type of the dimension definition to the
dimension.

Property value is required.

Format: The value for this field is a varchar.

 DimensionCount - Number of members in the dimension

This property is used to specify the number of members to be found in the
dimension. "N" is used to define a potentially unlimited number of members.

Property value is optional.

Format: "<integer>" or "N"

 WORK IN PROGRESS DRAFT

Page 44 MDIS 1.1

 DimensionLevelCount - Number of levels in the dimension

This property is used to specify the number of levels that have been defined for the
dimension in question.

Property value is required.

Format: "<integer>"

Example:

BEGIN DIMENSION
 Identifier "99999"
 DateCreated "1992-12-02"
 TimeCreated "23.12.15"
 DateUpdated "1996-03-10"
 TimeUpdated "08.00.00"
 BriefDescription "Sales commission by month"
 ServerName "NEWTON"
 OwnerName "HRADMIN"
 DatabaseName "PAYROLL"
 DimensionLongName "Sales Commission"
 DimensionName "COMMISSION"
 DimensionType "CURRENCY"
 DimensionCount "000012"
 DimensionLevelCount "000003"
 BEGIN ELEMENT

. . .
 BEGIN LEVEL
 . . .
END DIMENSION

6.9 Dimension Levels

Description: A dimension is made up of a hierarchy of members, where members are data
elements that are referenced by a set of coordinates that uniquely define their position in a
hypercube. Each member can belong to more than one hierarchy; in this case the member
is said to be shared between hierarchies. Each dimension has one or more levels, that can
be referenced by name and numbered from the top of the dimension (in which case it is
called the Ògeneration numberÓ) or the bottom of the dimension (in which case it is called
the Òlevel numberÓ).

KEYWORD VALUE

Identifier "<long int>"

LevelName "name of level"

LevelNumber "<integer>"

 WORK IN PROGRESS DRAFT

Page 45 MDIS 1.1

LevelType VALUE: "GENERATION NUMBER" (for levels
numbered from the top of the dimension), "LEVEL
NUMBER" (for levels numbered from the bottom of the
dimension), "NAME-LEVEL" (for levels that can be named
as containers)

11. Metadata Interchange Specification System Variables
System variables used in the specification provide the capability to assign critical system
information. this allows for system-wide configuration information for the implementation
of MDIS.

The only current environmental variable is MDIS_PROFILE, which provides the location
of the MDIS tool and configuration profiles. The format is shown below:

SET MDIS_PROFILE =filepathname
where filepathname= the location of the tool and configuration profiles.

This variable is set in each machine's configuration file (such as CONFIG.SYS) where the
tools are run. The pathname should reference a common file system directory. The
directory must contain the tool profile (MDISTOOL.PRO), and the configuration profile
(MDISTOOL.CFG).

7.0 Tool Profile

The Tool Profile and the Configuration Profile are two file-based semaphores that, along
with the Header information in the interchange file, will allow the Application
Programming Interface (API) for the bidirectional MDIS to help the tools maintain metadata
consistency. Three types of information need to be represented:

á Versioning information (characterized as date and time of export) in the header
of the file containing the metadata.

á The tool profile, which describes what type of data elements a tool directly
represents and/or updates.

á The configuration profile, which describes the "legal flow of metadata." For
example, although source-to-target mapping may be specified in the context of
an analysis tool, once that metadata has been exported to a conversion tool and
the mapping is changed because of errors found in expected data, one may want
to require that all future changes to mapping originate in the conversion tool. If
the configuration profile is set properly, the import function for the conversion
tool would err off if asked to import a conversion specification from the
analysis tool with a date and time later than those read in the initial import from
the analysis tool.

The purpose of the Tool Profile is to allow the tool developer to declaratively specify to
what extent the tool supports the objects directly represented by the MDIS (that is, whether
or not the tool represents the objects called out in the Specification). The profile information
is contained in the filename MDISTOOL.PRO (or CFG, as applicable), and is located in the
path as specified in the system variable MDIS_PROFILE. This information includes:

KEYWORD VALUE REQUIRED
?

 WORK IN PROGRESS DRAFT

Page 46 MDIS 1.1

KEYWORD VALUE REQUIRED
?

ToolName "<name of tool>" Required

ToolVersion "<version number of tool>" Required

MDISVersion "<version number of MDIS supported>" Required

Database Boolean: "T" or "F" if represents object Required

Subschema Boolean: "T" or "F" if represents object Required

Dimension Boolean: "T" or "F" if represents object Required

Record Boolean: "T" or "F" if represents object Required

Element Boolean: "T" or "F" if represents object Required

Relationship Boolean: "T" or "F" if represents object Required

ExportedApplicat
ionData

Boolena: "T" or "F' if represents object Required

Level Boolean: "T" or "F" if represents object Required

View Boolean: "T" or "F" if represents object Required

InvokeImport "<string representing how to call import
function>"(See below.)

Required

InvokeExport "<string representing how to call export function>"
(See below.)

Required

ApplicationData BEGIN ApplicationData
 Tool "tool 1"
 BEGIN ToolAppData

 up to each tool
 END ToolAppData
END ApplicationData

Optional

 Format for representing function invocation :
The value for the InvokeImport and InvokeExport properties is a string in which %1,%2
and %3 represent the positions into which the three parameters to each function call should
be substituted. (See Sec. 9.0 and 10.0.) For example, "mi_import(%1,%2,%3)". The
three parameters are:

1. A string containing the name of the identifier of the object being
imported/exported.

2. The unique identifier of the object instance being imported/exported (or Ô*Õ
if there is more than one object represented in the interchange file).

3. The pathname of either 1) the file containing the metadata to be imported, or
2) the pathname of the output file, where pathname refers to the fully

 WORK IN PROGRESS DRAFT

Page 47 MDIS 1.1

specified name used to access the desired file in the context of this
environment.

Example:

BEGIN TOOL
 ToolName "DXT"
 ToolVersion "2.5"
 MDISVersion "1.0"
 Database "T"
 Subschema "T"
 Dimension "F"
 Record "T"
 Element "T"
 Relationship "T"
 Level "T"
 View "T"
 InvokeImport "DIMPORT "%3" TYPE="%1" NAME="%2""
 InvokeExport "DEXPORT "%3" TYPE="%1" NAME="%2""
END TOOL

BEGIN TOOL
 ToolName "Tool X"
 ToolVersion "7.8"
 MDISVersion "1.0"
 Database "T"
 Subschema "F"
 Dimension "T"
 Record "T"
 Element "T"
 Relationship "F"
 Level "T"
 View "T"
 InvokeImport "mi_import (\"%1\", \"%2\", \"%3\")"
 InvokeExport "mi_export (\"%1\", \"%2\", \"%3\")"
END TOOL

BEGIN TOOL
 ToolName "DataGuide"
 ToolVersion "1.1"
 MDISVersion "1.0"
 Database "T"
 Subschema "T"
 Dimension "T"
 Record "T"
 Element "T"
 Relationship "T"
 Level "T"
 View "T"
 InvokeImport "dguide.exe /IMPORT %3 /OBJTYPE %1 /OBJ %2"
 InvokeEmport "dguide.exe /EXPORT %3 /OBJTYPE %1 /OBJ %2"
END TOOL

 WORK IN PROGRESS DRAFT

Page 48 MDIS 1.1

8.0 Configuration Profile

The purpose of the configuration profile is to allow the customer to control what types of
metadata a particular tool is allowed to import from other tools. Copies of this file can be
stored on every host on which a tool that supports MDIS is installed or a single copy can be
accessed via a file server. This file is consulted by the IMPORT function of that tool prior
to loading metadata from an input file to verify that the user wants the tool in question to
import metadata from the tool listed as the exporter of the metadata in the header
information of that MDIS file. The profile information is contained in the filename
MDISTOOL.PRO (or CFG, as applicable), and is located in the path as specified in the
system variable MDIS_PROFILE.

In this way, the user IS organization controls the flow of metadata between the tools they
have chosen to integrate. This decision may be based on: 1) the different types of metadata
supported by the tools in question, 2) whether one of the tools has to read the source DDL,
or 3) simply the customerÕs chosen methodology in deploying the tools.

KEYWORD VALUE REQUIRED
?

TargetToolName "<name of tool importing metadata>" Required

"<version of importing tool>" Required

"<particular installation of importing tool>" Required

SourceToolName "<name of tool exporting metadata>" Required

SourceToolVersion "<version of exporting tool>" Required

SourceToolInstance "<particular installation of exporting tool>" Required

MDISVersion "<version of MDIS>" Required

Objects "<list of meta-object names which can be imported
separated by commas>" or "*" if all supported by
the MDIS

Required

AllowOverride "T" or "F", used to indicate whether or not the
importing tool can import multiple versions of the
same object (i.e., an object with the same identifier)
from the same exporting tool

Required

Note: In listing the object names, a "*" can be used as a wildcard; for example,
"NEWTON.DSG..*.*" would mean that the tool could import any metadata associated
with the host "NEWTON" and the owner "DSG".

Example:

BEGIN CONFIGURATION
 TargetToolName "ABC"
 TargetToolVersion "1.0"
 TargetToolInstance "3"

 WORK IN PROGRESS DRAFT

Page 49 MDIS 1.1

 SourceToolName "DXT"
 SourceToolVersion "2.5"
 SourceToolInstance "7"
 MDISVersion "1.1"
 Objects "NEWTON.DSG..*.*"
 AllowOverride "T"
END CONFIGURATION

BEGIN CONFIGURATION
 TargetToolName "XYZ"
 TargetToolVersion "1.0"
 TargetToolInstance "2"
 SourceToolName "DataGuide"
 SourceToolVersion "1.1"
 SourceToolInstance "2"
 MDISVersion "1.1"
 Objects "*"
 AllowOverride "T"
END CONFIGURATION

BEGIN CONFIGURATION
 TargetToolName "NBC"
 TargetToolVersion "2.4.1"
 TargetToolInstance "6"
 SourceToolName "Tool X"
 SourceToolVersion "7.8"
 SourceToolInstance "3"
 MDISVersion "1.1"
 Objects "*"
 AllowOverride "T"
END CONFIGURATION

9.0 Import Function

The Version 1.1 IMPORT program takes the following three parameters:

á A string containing the name of the object type being imported.
á The unique identifier of the object instance being imported (or Ô*Õ if there is more

than one object represented in the interchange file).
á The pathname of the file containing the metadata to be imported, where pathname

refers to the fully specified name used to access the desired file in the context of this
environment.

The IMPORT function should do the following:

1. Tool processes command.
2. Tool checks the header information in conjunction with the configuration profile to

determine the following:
á Whether the importing tool is authorized to import data which has been

written by the exporting tool.

 WORK IN PROGRESS DRAFT

Page 50 MDIS 1.1

á Whether the version of the objects being loaded is later than the one
currently stored in the importing tool (if any); if not, return error 212. (See
below.)

If either of the above conditions fail, an error message (100 or 213 respectively) is
returned and processing stops.

3. Tool optionally processes object type definition.
4. Tool locates object(s) in tag file.
5. Tool maps object(s) to local definition, storing any "private" metadata associated

with an object in such a way that it can be reattached to the object upon export (if
the object still exists).

6. Tool returns processing code when complete.

· 0 - All OK
· 100 - Illegal metadata source-not allowed to import metadata from tool

defined in header information
· 200 - Object type not supported by tool
· 201 - Tag file not found
· 202 - Object(s) specified not found in tag
· 203 - File contains invalid tags
· 204 - Invalid object type definition
· 205 - Invalid object instance
· 206 - Invalid relationship - source object type not found
· 207 - Invalid relationship - target object type not found
· 208 - Invalid relationship - source instance not found
· 209 - Invalid relationship - target instance not found
· 210 - Code page not supported
· 211 - Security level not supported
· 212 - Importing tool does not support this version of the MDIS
· 213 - Time and date of metadata identified in the header is earlier than

time & date previously loaded. (A more current version of the data in
MDIS exchange file already exists in the context of the importing tool.)

· 1000 - Severe error

Note: The IMPORT function should use the date and time stored in the Header information
in the MDIS file to determine whether it has a later "version" of the metadata than that
contained in the file and NOT the "LastUpdated" fields associated with various meta-
objects, since these fields are optional and may not be updated by exporting tools. Note
also that because edits to metadata can take place in the context of various tools, it is
possible that some of the private metadata that an importing tool has previously associated
with various common metadata objects may now be inconsistent. It is incumbent upon the
importing tools to check for such inconsistencies.

Examples:

Example imports from an interchange file on the h: drive and importing
 all the DATABASE objects in the interchange file that match
 the specified qualifier.

 WORK IN PROGRESS DRAFT

Page 51 MDIS 1.1

MI_IMPORT.exe (Database, NEWTON.DSG.*, h:\metadata\newton.tag)
DGUIDE.EXE /IMPORT :h\metadata\newton.tag /OBJTYPE Database /OBJ
newton.dsg.*
DIMPORT 'h:\metadata\newton.tag' TYPE='DATABASE'
NAME='newton.dsg.*'

main {
 Parse input into interchange_file, object_type, object_instance
 Read configuration profile (using environmental variable)

 If object_type or object_instance is not supported
 exit (200)

 Read interchange file header
 If file not found
 exit (201)

 Case:
 Invalid or unknown tags
 exit (203)
 Invalid source tool generated file
 exit (100)
 Invalid or not supported character set
 exit (210)
 Invalid or not supported MDIS version
 exit (212)
 EndCase

 Read private tool metadata dictionary
 If date of source later than interchange file
 exit (213)

 Verify MDIS object definitions
 If definitions do not match
 exit (204)

 Scan file for object_instance(s)
 If object not found
 exit (202)

 Process object_instance(s) requested
 If error processing or parsing
 exit (205)

 Map MDIS tag to private metadata dictionary
 If error mapping
 exit (205)

 Update private metadata dictionary

 /* tool should use ApplicationData that it can parse (its own or */
 /* another tools) or prompt the user for more information if needed */

 WORK IN PROGRESS DRAFT

Page 52 MDIS 1.1

Save off interchange ApplicationData (into dictionary or side file)

 If relationship supported

 Scan file for relationships where object_instance is source
 Process relationships
 If target object type not found
 exit (207) - commit if ok, otherwise rollback changes
 If target instance not found
 exit (209) - commit if ok, otherwise rollback changes

 Close interchange file
 exit (0)
 }

10. Export Function

The EXPORT function takes the following four parameters:
á A string containing the name of the object type identifier of object being exported.
á The unique identifier of the object instance being exported (or Ô*Õ if there is more

than one object represented in the interchange file).
á The pathname of the output file.
á ToolInstanceID is the id specified by the user in the configuration profile, which

identified the particular installation of a tool that is exporting the metadata.

The EXPORT function should do the following:

1. Tool processes command.
2. Tool writes the header information (i.e., the MDIS system variables) to tagfile,

indicating that version A of tool B is writing version C of object D at time E.
3. Tool writes object definition(s) to tagfile.
4. Tool writes object instance(s) to tagfile. During this phase of the API, the tool

is responsible for reattaching any "private" metadata associated with any object
that it got from importing the object definition.

5. Tool returns processing code when complete.
· 0 - All OK
· 1 - Object instance not found
· 100 - Object type not supported by tool
· 101 - Unable to write to output tag file
· 102 - Target tool does not have appropriate security level
· 1000 - Severe error

Examples:

Example exports of all RECORD objects using the qualifier into an
 interchange file on the c: drive.

MI.EXPORT.exe (Records, NEWTON.DSG..*SEG*.*, c:\records.tag)
DGUIDE.EXE /EXPORT c:\records.tag OBJTYPE Records /OBJ newton.dsg..*SEG*.*
DEXPORT 'c:\records.tag' TYPE='ELEMENT NAME='newton.dsg..*SEG.*'

 WORK IN PROGRESS DRAFT

Page 53 MDIS 1.1

main {
 Parse input into interchange_file, object_type, object_instance
 Read configuration profile (using environmental variable)

 If object_type is not supported
 exit (100)

 Read private metadata dictionary for request object_instance(s)
 If object_instance not found
 exit (1)

 Open MDIS file
 If error opening
 exit (101)

 Format and write MDIS header information
 If error writing
 exit (101)

 Format and write MDIS object definitions
 If error writing
 exit (101)

 If this is a previously imported object
 Read stored ApplicationData from dictionary/side file
 Append private data to ApplicationData
 Format and write object_instance(s) as requested
 If error writing
 exit (101)
 Else
 Add private data to ApplicationData
 Format and write object_instance(s) as requested
 If error writing
 exit (101)

 Format and write related (contained) objects to requested object(s)
 If error writing
 exit (101)

 Format and write relationship objects for all Relationship object types
 If error writing
 exit (101)

 Close interchange file
 exit (0)
 }

 WORK IN PROGRESS DRAFT

Page 54 MDIS 1.1

Appendix A
Summary of MDIS Object Definitions

 KEYWORD VALUE REQUIRED? (YES or NO)

BEGIN DATABASE

Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)
LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
DatabaseExtendedType VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
DatabaseName VARCHAR REQUIRED(Y)
DatabaseLongName VARCHAR REQUIRED(N)
DatabaseStatus VARCHAR REQUIRED(N)
DatabaseType VARCHAR REQUIRED(Y)

END DATABASE

BEGIN SUBSCHEMA
Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)
LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
DatabaseName VARCHAR REQUIRED(Y)
SubschemaName VARCHAR REQUIRED(Y)
SubschemaLongName VARCHAR REQUIRED(N)

END SUBSCHEMA

BEGIN DIMENSION
Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)

 WORK IN PROGRESS DRAFT

Page 55 MDIS 1.1

LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
DatabaseName VARCHAR REQUIRED(Y)
DimensionName VARCHAR REQUIRED(Y)
DimensionLongName VARCHAR REQUIRED(N)
DimensionType VARCHAR REQUIRED(Y)
DimensionCount INTEGER REQUIRED(Y)
DimensionLevelCount INTEGER REQUIRED(Y)

END DIMENSION

BEGIN RECORD
Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)
LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
DatabaseName VARCHAR REQUIRED(Y)
RecordName VARCHAR REQUIRED(Y)
RecordLongName VARCHAR REQUIRED(N)
RecordLastRefreshDate TIMESTAMP REQUIRED(N)
RecordUpdateFrequency VARCHAR REQUIRED(N)
RecordType VARCHAR REQUIRED(Y)
END RECORD

BEGIN ELEMENT
Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)
LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
DatabaseName VARCHAR REQUIRED(Y)
DimensionName VARCHAR REQUIRED(Y) if not

RECORD
RecordName VARCHAR REQUIRED(Y) if not

DIMENSION
ElementName VARCHAR REQUIRED(Y)
ElementLongName VARCHAR REQUIRED(N)
ElementDataType VARCHAR REQUIRED(Y)

 WORK IN PROGRESS DRAFT

Page 56 MDIS 1.1

ElementKeyPosition INTEGER REQUIRED(Y)
ElementLastRefreshDate TIMESTAMP REQUIRED(N)
ElementLength INTEGER REQUIRED(N)
ElementNulls VARCHAR REQUIRED(N)
ElementPosition INTEGER REQUIRED(N)
ElementPrecision INTEGER REQUIRED (Y-for decimal)
ElementOrdinality INTEGER REQUIRED (Y)
END ELEMENT

BEGIN RELATIONSHIP
Identifier LONG INT REQUIRED(Y)
DateCreated DATE REQUIRED(N)
DateUpdated DATE REQUIRED(N)
TimeCreated TIME REQUIRED(N)
TimeUpdated TIME REQUIRED(N)
BriefDescription VARCHAR REQUIRED(N)
LongDescription VARCHAR REQUIRED(N)
ApplicationData VARCHAR REQUIRED(N)
ContactName VARCHAR REQUIRED(N)
ServerName VARCHAR REQUIRED(Y)
OwnerName VARCHAR REQUIRED(Y)
RelationshipName VARCHAR REQUIRED(Y)
RelationshipLongName VARCHAR REQUIRED(N)
TargetObjectIdentifier LONG INT REQUIRED(Y)
RelationshipType VARCHAR REQUIRED(Y)
SourceObjectIdentifier LONG INT REQUIRED(Y)
SourceSequenceOrder INTEGER REQUIRED(N)
RelationshipExpression VARCHAR REQUIRED(N)(Y, if

derived)
RelationshipOrdinality INTEGER REQUIRED(Y)
RelationshipBidirectional VARCHAR REQUIRED(Y)
END RELATIONSHIP

 WORK IN PROGRESS DRAFT

Page 57 MDIS 1.1

Appendix B

USING MDIS TO REPRESENT
DIFFERENT DATA MODELS

B.1 Representing relational databases

In relational systems, all inter-record relationships are achieved via value-based joins,
which are expressed by instances of the MDIS Relationship object of RelationshipType
ÒEQUIVALENT.Ó There are two types of key relationships that one finds in relational
schemas:

á Foreign keys, where a primary key from one table is used to associate a
particular tuple in that table with one or more related tuples in the other table

á Compound keys, where a tuple can only be uniquely identified by means of a
sequence of foreign keys.

The following MDIS example describes both 1) the tables that comprise a database called
COURSE_CATALOG, which illustrates the two types of keys described above, and 2) the
MDIS representation of this schema

COMMENT /Contains id, name and id of chair for each department
COMMENT CREATE TABLE DEPT
COMMENT (
COMMENT DEPT_ID VARCHAR NOT NULL,
COMMENT DEPT_NAME VARCHAR,
COMMENT DEPT_CHAIR SMALLINT
COMMENT);
COMMENT
COMMENT Contains id, name and description of each course offered by the university,
COMMENT where DEPT_ID and COURSE_NO serve as a compound key
COMMENT CREATE TABLE COURSE
COMMENT (
COMMENT DEPT_ID VARCHAR NOT NULL,
COMMENT COURSE_NO SMALLINT NOT NULL,
COMMENT COURSE_NAME VARCHAR ,
COMMENT COURSE_DESC VARCHAR
COMMENT);
COMMENT
COMMENT
COMMENT Contains a listing of course offerings, where DEPT_ID, COURSE_NO and
COMMENT SECTION_NO serve as a compound key
COMMENT CREATE TABLE OFFERINGS
COMMENT (
COMMENT DEPT_ID VARCHAR NOT NULL,
COMMENT COURSE_NO SMALLINT NOT NULL,
COMMENT SECTION_NO SMALLINT NOT NULL,
COMMENT TIME VARCHAR,
COMMENT LOCATION VARCHAR,
COMMENT FACULTY_SSN VARCHAR
COMMENT);
COMMENT

 WORK IN PROGRESS DRAFT

Page 58 MDIS 1.1

COMMENT Contains faculty info including correspondence between the ID COMMENT
found in the IMS database and the faculty memberÕs SSN

COMMENT CREATE TABLE FACULTY
COMMENT (
COMMENT FACULTY_OLD_ID VARCHAR NOT NULL,
COMMENT FACULTY_SSN SMALLINT NOT NULL,
COMMENT NAME VARCHAR,
COMMENT ADDRESS VARCHAR,
COMMENT RANK VARCHAR
COMMENT);

BEGIN DEFINITION

COMMENT Definition of MDIS model goes here....

END DEFINITION

BEGIN DATABASE
Identifier "001"
DateCreated Ò1995-04-12Ó
TimeCreated Ò02.00.00Ó
DateUpdated Ò1996-03-10Ó

 TimeUpdated Ò08.00.00Ó
 BriefDescription ÒDB2 database containing department scheduling & faculty infoÓ

ServerName ÒEINSTEINÓ
DatabaseExtendedType "AIX1.0"
OwnerName ÒSYSADMINÓ
DatabaseName ÒCOURSE_CATALOGÓ
DatabaseStatus ÒDEVELOPMENTÓ
DatabaseType ÒRELATIONALÓ

COMMENT MDIS description of tables
BEGIN RECORD

Identifier "002"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing University departmentÓ
RecordName ÒDEPTÓ
RecordLongName ÒGeneral department dataÓ
RecordLastRefreshDate Ò1996-02-01-12.00.00.00Ó
RecordType ÒTABLEÓ
BEGIN ELEMENT

Identifier "003"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4-char key identifying departmentÓ
ElementName ÒDEPT_IDÓ
ElementLongName ÒDepartment IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT

 WORK IN PROGRESS DRAFT

Page 59 MDIS 1.1

 BEGIN ELEMENT
Identifier "004"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of departmentÓ
ElementName ÒDEPT_NAMEÓ
ElementLongName ÒDepartment nameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "005"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒSSN of individual currently serving as department chairÓ
ElementName ÒCHAIRÓ
ElementLongName ÒChairman IDÓ
ElementDataType ÒINTEGERÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò9Ó
ElementNulls ÒTÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "006"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing university courseÓ
RecordName ÒCOURSEÓ
RecordLongName ÒGeneral course dataÓ
RecordLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
RecordType ÒTABLEÓ
BEGIN ELEMENT

Identifier "007"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4 char key identifying departmentÓ
ElementName ÒDEPT_IDÓ
ElementLongName ÒDepartment IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

END ELEMENT
BEGIN ELEMENT

Identifier
"008"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó

 WORK IN PROGRESS DRAFT

Page 60 MDIS 1.1

BriefDescription ÒInteger identifying courseÓ
ElementName ÒCOURSE_NOÓ
ElementLongName ÒCourse NumberÓ
ElementDataType ÒINTEGERÓ
ElementKeyPosition Ò2Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "009"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of courseÓ
ElementName ÒCOURSE_NAMEÓ
ElementLongName ÒCourse nameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "010"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒDescription of courseÓ
ElementName ÒDESC_NAMEÓ
ElementLongName ÒCourse Description"
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò60Ó
ElementNulls ÒTÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "011"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing course offering informationÓ
RecordName ÒOFFERINGSÓ
RecordLongName ÒCourse offering dataÓ
RecordLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
RecordType ÒTABLEÓ
BEGIN ELEMENT

Identifier
"012"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4-char key identifying departmentÓ
ElementName ÒDEPT_IDÓ
ElementLongName ÒDepartment IDÓ
ElementDataType ÒVARCHARÓ

 WORK IN PROGRESS DRAFT

Page 61 MDIS 1.1

ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

END ELEMENT
BEGIN ELEMENT

Identifier
"013"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique integer key identifying courseÓ
ElementName ÒCOURSE_NOÓ
ElementLongName ÒCourse NumberÓ
ElementDataType ÒINTEGERÓ
ElementKeyPosition Ò2Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
BEGIN ELEMENT

Identifier "014"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒInteger identifying OFFERINGSÓ
ElementName ÒSECTION_NOÓ
ElementLongName ÒSection NumberÓ
ElementDataType ÒINTEGERÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier
"015"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒTime and date section meetsÓ
ElementName ÒTimeÓ
ElementLongName ÒSemester OFFERINGS offeredÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò9Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier
"016"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒBuilding and room where section meetsÓ
ElementName ÒLOCATIONÓ
ElementLongName ÒLocationÓ

 WORK IN PROGRESS DRAFT

Page 62 MDIS 1.1

ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLength Ò7Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "017"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒFaculty member assigned to teach the section in questionÓ
ElementName ÒFACULTY_SSSÓ
ElementLongName ÒProfessorÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLength Ò9Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "018"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing faculty memberÓ
RecordDept_Name ÒFACULTYÓ
RecordLongName ÒFaculty infoÓ
RecordLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
RecordType ÒTABLEÓ
BEGIN ELEMENT

Identifier
"019"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription
 ÒUnique 4-char key identifying faculty member used in IMS databaseÓ
ElementName ÒFACULTY_OLD_IDÓ
ElementLongName ÒFaculty IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
BEGIN ELEMENT

Identifier "020"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription
 ÒUnique 4-char key identifying faculty member used in IMS databaseÓ
ElementName ÒFACULTY_SSNÓ
ElementLongName ÒSocial Security NumberÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò9Ó

 WORK IN PROGRESS DRAFT

Page 63 MDIS 1.1

ElementNulls ÒFÓ
 END ELEMENT
 BEGIN ELEMENT

Identifier "021"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of faculty memberÓ
ElementName ÒNAMEÓ
ElementLongName ÒNameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "022"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒAddress of faculty memberÓ
ElementName ÒADDRESSÓ
ElementLongName ÒAddressÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò30Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier
 "023"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRank of faculty member in questionÓ
ElementName ÒRANKÓ
ElementLongName ÒRankÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01-12.00.00.000000Ó
ElementLength Ò7Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD

END DATABASE

COMMENT Relationships defining join relationship between tables
BEGIN RELATIONSHIP

Identifier
"024"
RelationshipName ÒDept-CourseÒ
SourceObjectIdentifier "003"
TargetObjectIdentifier "007"
RelationshipType ÒEQUIVALENTÓ

 WORK IN PROGRESS DRAFT

Page 64 MDIS 1.1

RelationshipOrdinality Ò1:NÓ 4

RelationshipBidirectional ÒTÓ
END RELATIONSHIP
BEGIN RELATIONSHIP

Identifier
"025"
RelationshipName ÒDept-Section Ò
SourceObjectIdentifier "007"
TargetObjectIdentifier "011"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:NÓ
RelationshipBidirectional ÒTÓ

END RELATIONSHIP
BEGIN RELATIONSHIP

Identifier
"026"
RelationshipName ÒCourse-SectionÒ
SourceObjectIdentifier "008"
TargetObjectIdentifier "013"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:NÓ
RelationshipBidirectional ÒTÓ

END RELATIONSHIP
BEGIN RELATIONSHIP

Identifier
"027"
DateCreated 1995-04-12
TimeCreated 02.00.00
RelationshipName "Faculty-Section"
SourceObjectIdentifier "020"
TargetObjectIdentifier "017"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒFÓ

END RELATIONSHIP
BEGIN RELATIONSHIP

Identifier
"028"
DateCreated 1995-04-12
TimeCreated 02.00.00
RelationshipName "Faculty-Section"
SourceObjectIdentifier "020"
TargetObjectIdentifier "005"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒFÓ

END RELATIONSHIP

B.2 Representing hierarchical databases

4 Note that the ordinality of this relationship is declared Ò1:NÓ since in the OFFERINGS table which lists
the sections of each course taught there will be multiple instances of the COURSE_ID for every unique
instance of the COURSE_ID in the COURSES table.

 WORK IN PROGRESS DRAFT

Page 65 MDIS 1.1

By definition, in a hierarchical data model, a record instance can have at most one physical
owner. Each owning record, however, can have multiple instances of multiple types of
children. The ÒrootÓ of a hierarchical schema has no owner. The following IMS example is
used to illustrate how to represent the parent-child relationship in a hierarchical schema. It
is also used later in conjunction with the relational schema outlined below to illustrate the
types of source-to-target relationships used to describe data interface programs (e.g., the
program used to move data from operational systems to a data warehouse or to interface
applications).

Instances of the Relationship object of RelationshipType ÒCONTAINSÓ are used to
represent the parent-child relationships found in hierarchical databases. Instances of the
Relationship object of RelationshipType ÒEQUIVALENTÓ are used to represent the
equivalence in data values at different levels in a hierarchy.

The schema represented below is one thatmight be used to support a university scheduling
system, where department is the root record type and there are two main branches of the
hierarchy: course (with the children of type section and faculty). Assuming that this
database resides on a host called ÒNEWTONÓ and has the owner ÒUADMIN,Ó the
following is the MDIS specification:

COMMENT 1 DBD NAME=USCHEDULE
COMMENT 2 SEGM NAME=DEPT,BYTES=28
COMMENT 3 FIELD NAME=(DNO,SEQ,BYTES=4,START=1
COMMENT 4 FIELD NAME=DNAME,BYTES=20,START=5
COMMENT 5 FIELD NAME=CHAIR,BYTE-4,START=26
COMMENT 6 SEGM NAME=COURSE,PARENT=DEPT,BYTES=24
COMMENT 7 FIELD NAME=CNO,BYTES=4,START=31
COMMENT 8 FIELD NAME=CNAME,BYTES=20,START=36
COMMENT 9 SEGM NAME=SECTION,PARENT=COURSE,BYTES=24
COMMENT 10 FIELD NAME=SNO,BYTES=4,START=57
COMMENT 11 FIELD NAME=SEMESTER,BYTE=1,START=63
COMMENT 12 FIELD NAME=SDAY,BYTE=3,START=65
COMMENT 13 FIELD NAME=STIME,BYTE=5,START=69
COMMENT 14 FIELD NAME=SLOC,BYTE=7,START=75
COMMENT 15 FIELD NAME=SFNO,BYTE=4,START=83
COMMENT 16 SEGM NAME=FACULTY,PARENT=DEPT,BYTES=31
COMMENT 17 FIELD NAME=FNO,BYTES=4,START=87
COMMENT 18 FIELD NAME=FNAME, BYTES=20,START=92
COMMENT 19 FIELD NAME=FTITLE,BYTES=7,START=112

BEGIN DEFINITION

COMMENT Definition of MDIS model goes here....

END DEFINITION

BEGIN DATABASE
Identifier "029"
DateCreated Ò1992-12-02Ó
TimeCreated Ò23.12.15Ó

 WORK IN PROGRESS DRAFT

Page 66 MDIS 1.1

DateUpdated Ò1996-03-10Ó
 TimeUpdated Ò08.00.00Ó
 BriefDescription ÒIMS database containing department scheduling & faculty infoÓ

BEGIN ApplicationData
Tool "TOOL XYZ
BEGIN ToolAppData

 ACCESS-TYPE HDAM
END ToolAppData
END ApplicationData

ServerName ÒNEWTONÓ
DatabaseExtendedType "AIX1.0"
OwnerName ÒUADMINÓ
DatabaseName ÒUSCHEDULEÓ
DatabaseStatus ÒPRODUCTIONÓ
DatabaseType ÒHIERARCHYÓ

COMMENT MDIS description of segments
BEGIN RECORD

Identifier "030"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing University departmentÓ
RecordName ÒDEPTÓ
RecordLongName ÒGeneral department dataÓ
RecordLastRefreshDate Ò1996-02-01Ó
RecordType ÒSEGMENTÓ
BEGIN ELEMENT

Identifier "031"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4-char key identifying departmentÓ
ElementName ÒDNOÓ
ElementLongName ÒDepartment IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "032"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of departmentÓ
ElementName ÒDNAMEÓ
ElementLongName ÒDepartment nameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "033"

 WORK IN PROGRESS DRAFT

Page 67 MDIS 1.1

DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒFaculty ID of individual currently serving as department

chairÓ
ElementName ÒCHAIRÓ
ElementLongName ÒChairman IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "034"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing university courseÓ
RecordName ÒCOURSEÓ
RecordLongName ÒGeneral course dataÓ
RecordLastRefreshDate Ò1996-02-01Ó
RecordType ÒSEGMENTÓ
BEGIN ELEMENT

Identifier "035"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4-char key identifying courseÓ
ElementName ÒCOURSE_NOÓ
ElementLongName ÒCourse NOÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "036"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of courseÓ
ElementName ÒCOURSE_NAMEÓ
ElementLongName ÒCourse nameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "037"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing section informationÓ

 WORK IN PROGRESS DRAFT

Page 68 MDIS 1.1

RecordName ÒSECTIONÓ
RecordLongName ÒGeneral section dataÓ
RecordLastRefreshDate Ò1996-02-01Ó
RecordType ÒSEGMENTÓ
BEGIN ELEMENT

Identifier "038"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription Ò4-char id identifying sectionÓ
ElementName ÒSNOÓ
ElementLongName ÒSection IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "039"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒSemester section is offeredÓ
ElementName ÒSEMESTERÓ
ElementLongName ÒSemester section offeredÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò1Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "040"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒDays section is offered; values of TTH or MWFÓ
ElementName ÒSDAYÓ
ElementLongName ÒDaysÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò3Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "041"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒTime section meets; military using colonÓ
ElementName ÒSTIMEÓ
ElementLongName ÒTimeÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò5Ó

 WORK IN PROGRESS DRAFT

Page 69 MDIS 1.1

ElementNulls ÒFÓ
 END ELEMENT
 BEGIN ELEMENT

Identifier "042"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒBuilding and room no where section meetsÓ
ElementName ÒSLOCÓ
ElementLongName ÒLocationÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLength Ò7Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "043"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒFaculty member assigned to teach sectionÓ
ElementName ÒSFNOÓ
ElementLongName ÒProfessorÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD
BEGIN RECORD

Identifier "044"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRecord describing faculty member assigned to departmentÓ
RecordName ÒFACULTYÓ
RecordLongName ÒFaculty infoÓ
RecordLastRefreshDate Ò1996-02-01Ó
RecordType ÒSEGMENTÓ
BEGIN ELEMENT

Identifier "045"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒUnique 4-char key identifying faculty memberÓ
ElementName ÒFNOÓ
ElementLongName ÒFaculty IDÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò1Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò4Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "046"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒName of faculty memberÓ

 WORK IN PROGRESS DRAFT

Page 70 MDIS 1.1

ElementName ÒFNAMEÓ
ElementLongName ÒNameÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò20Ó
ElementNulls ÒFÓ

 END ELEMENT
 BEGIN ELEMENT

Identifier "047"
DateUpdated Ò1996-03-10Ó
TimeUpdated Ò08.00.00Ó
BriefDescription ÒRank of faculty member in questionÓ
ElementName ÒFTITLEÓ
ElementLongName ÒRankÓ
ElementDataType ÒVARCHARÓ
ElementKeyPosition Ò0Ó
ElementLastRefreshDate Ò1996-02-01Ó
ElementLength Ò7Ó
ElementNulls ÒFÓ

 END ELEMENT
END RECORD

END DATABASE

COMMENT Relationships defining parent-child relationships
BEGIN RELATIONSHIP

Identifier
"048"
DateCreated 1992-12-02
TimeCreated 23.12.15
BriefDescription ÒDefines relationship between department and course recordsÓ
RelationshipName ÒDept-CourseÒ
SourceObjectIdentifier "034"
TargetObjectIdentifier "037"
RelationshipType ÒCONTAINSÓ
RelationshipOrdinality Ò1:NÓ
RelationshipBidirectional ÒFÓ

END RELATIONSHIP

BEGIN RELATIONSHIP
Identifier
"049"
DateCreated 1992-12-02
TimeCreated 23.12.15
BriefDescription ÒDefines relationship between department course and section

recordsÓ
RelationshipName ÒCourse-SectionÒ
SourceObjectIdentifier "030"
TargetObjectIdentifier "040"
RelationshipType ÒCONTAINSÓ
RelationshipOrdinality Ò1:NÓ
RelationshipBidirectional ÒFÓ

END RELATIONSHIP

 WORK IN PROGRESS DRAFT

Page 71 MDIS 1.1

BEGIN RELATIONSHIP
Identifier
"050"
DateCreated 1992-12-02
TimeCreated 23.12.15
BriefDescription ÒDefines relationship between dept & faculty recordsÓ
RelationshipName ÒDept-facultyÒ
SourceObjectIdentifier "030"
TargetObjectIdentifier "040"
RelationshipType ÒCONTAINSÓ
RelationshipOrdinality Ò1:NÓ
RelationshipBidirectional ÒFÓ

END RELATIONSHIP

COMMENT Relationships defining equivalent data values
BEGIN RELATIONSHIP

Identifier
"051"
DateCreated 1992-12-02
TimeCreated 23.12.15
BriefDescription ÒDefines relationship between data elements dept.chair &

faculty.fnoÓ
RelationshipName ÒChair=Fno Ò
SourceObjectIdentifier ÒNEWTON.UADMIN.USCHEDULE.DEPT.CHAIRÓ
TargetObjectIdentifier ÒNEWTON.UADMIN.USCHEDULE.FACULTY.FNOÓ
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒTÓ

END RELATIONSHIP

BEGIN RELATIONSHIP
Identifier
"052"
DateCreated 1992-12-02
TimeCreated 23.12.15
BriefDescription ÒDefines relationship between data elements faculty.fno &

section.snoÓ
RelationshipName ÒChair=Fno Ò
SourceObjectIdentifier "033"
TargetObjectIdentifier "043"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒTÓ

END RELATIONSHIP

B.3 Representing files

Th MDIS representation of the following COBOL copybook illustrates three features
commony found in the descriptions of files:

á The repetition of multiple instances of a data element within a single instance of
a record (e.g., COBOL OCCURS clauses). The property ElementOrdinality on

 WORK IN PROGRESS DRAFT

Page 72 MDIS 1.1

the Element object is used to represent the number of legal instances that can
occur.

á A group of contiguous data elements within a record which can be referred to
by a single logical name (e.g., GROUPs in COBOL). This type of structue is
handed by specifying an element within the 01 record definition with an
ElementName of the <GROUP name> and an ElementDataType of type
ÒRECORDÓ (to indicate that it refers to a set of two or more continguous data
elements). A Record definition is then specified in the MDIS file with a
RecordName of < GROUP name>.

á The ability to repartition a previously specified set of contiguous data elements
(e.g., REDEFINES in COBOL). In this case, a data element for the original
data element appears in the record definition in the appropriate place, a second
record definition is specified using the REDEFINE name as RecordName and
defining the subcomponents of the RDEFINE as Elements within that record
definition. An instance of the MDIS Relationship object is created with
RelationshipType ÒREDEFINESÓ to specify the relationship between the two.

· The way Cobol Groups are modelled in the MDIS specification is through
Elements with the dataype of "RECORD" and a corresponding Record of type
"GROUP"; and a Relationship of type "CONTAINS" between the parent record
and its group. For version 1.0, this relationship was specified between the two
records and the type of relationship was of type "CONTAINS". In order to
overcome the problem if nested groups have the samm e name, for Version 1.1
this relationship iis modelled betgween the Element of type "RECORD" and the
Record of type "GROUP". The type of relationship is "GROUP-
EQUIVALENT".

COMMENT FD CUSTOMER-ORDER-RECORD
COMMENT LABEL RECORDS ARE OMITTED.
COMMENT 01 CUSTOMER-RECORD.
COMMENT 03 SOCIAL-SECURITY-NUMB PIC X(11).
COMMENT 03 CUSTOMER-NAME PIC X(40).
COMMENT 03 CUSTOMER-ADDRESS.
COMMENT 05 STREET-ADDRESS-1 PIC X(30).
COMMENT 05 STREET-ADDRESS-2 PIC X(30).
COMMENT 05 CITY PIC X(28).
COMMENT 05 STATE PIC XX.
COMMENT 05 ZIP-CODE PIC X(10).
COMMENT 03 CUSTOMER-PHONE PIC X(12) OCCURS 2 TIMES.
COMMENT
COMMENT 01 ORDERS-RECORD.
COMMENT 03 ORDER-NUMBER PIC 9(8) COMP.
COMMENT 03 STOCK-NUMBER PIC 9(8) COMP.
COMMENT 03 FABRIC-CHARGE PIC S9(13)V99 COMP-3.
COMMENT 03 FABRIC-CHARGE-2 REDEFINES FABRIC-CHARGE.
COMMENT 05 FABRIC-DOLLARS PIC S9(13).
COMMENT 05 FABRIC-CENTS PIC 99.
COMMENT

BEGIN HEADER
 CharacterSet "ENGLISH"

 WORK IN PROGRESS DRAFT

Page 73 MDIS 1.1

 ExportingTool "XYZ"
 ToolVersion "V3.1"
 MDISVerson "1.0"
 Date "1996-05-08"
 Time "22.46.14"
END HEADER

BEGIN DEFINITION

COMMENT Definition of MDIS model goes here....

END DEFINITION

BEGIN DATABASE
 Identifer "053"
 ServerName "SERVER1"
 OwnerName "MDC"
 DatabaseName "CUSTOMER-ORDER-RECORD"
 DatabaseType ÒFILEÓ
 DateCreated "1996-05-08"
 BriefDecsription ÒCOPYBOOK defining format of file CSP101Ó

 BEGIN RECORD
 Identifier "054"
 RecordName "CUSTOMER-RECORD"
 RecordLongName "Customer"
 RecordType ÒRECORDÓ

 BEGIN ELEMENT
 Identifier "055"
 ElementName "SOCIAL-SECURITY-NUMB"
 ElementLongName "Customer Social Security Number"
 ElementDataType "CHAR"
 ElementKeyPosition Ò0Ó
 ElementLength Ò11Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "056"
 ElementName "CUSTOMER-NAME"
 ElementLongName "Customer Name"
 ElementDataType "CHAR"
 ElementKeyPosition Ò0Ó
 ElementLength Ò40Ó
 ElementNulls "T"
 END ELEMENT

BEGIN ELEMENT
 Identifier "057"
 ElementName "CUSTOMER-ADDRESS"
 ElementLongName "Customer Address"
 ElementDataType "RECORDÓ
 ElementKeyPosition Ò0Ó

 WORK IN PROGRESS DRAFT

Page 74 MDIS 1.1

 ElementLength Ò100Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "058"
 ElementName "CUSTOMER-PHONE"
 ElementLongName "Customer Phone"
 ElementDataType "CHAR"
 ElementLength Ò12Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 ElementOrdinality Ò2Ó
 END ELEMENT
 END RECORD

BEGIN RECORD
 Identifier "059"
 RecordName "CUSTOMER-ADDRESS"
 RecordLongName "Customer Address"
 RecordType "GROUP"

 BEGIN ELEMENT
 Identifier "060"
 ElementName "STREET-ADDRESS-1"
 ElementLongName "Street Address 1"
 ElementDataType "CHAR"
 ElementLength Ò30Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "061"
 ElementName "STREET-ADDRESS-2"
 ElementLongName "Street Address 2"
 ElementDataType "CHAR"
 ElementLength Ò30Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "062"
 ElementName "CITY"
 ElementLongName "City"
 ElementDataType "CHAR"
 ElementLength Ò28Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT

 WORK IN PROGRESS DRAFT

Page 75 MDIS 1.1

 Identifier "063"
 ElementName "STATE"
 ElementLongName "State"
 ElementDataType "CHAR"
 ElementLength Ò2Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "064"
 ElementName "ZIP-CODE"
 ElementLongName "Zip-Code"
 ElementDataType "CHAR"
 ElementLength Ò10Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 END RECORD

 BEGIN RECORD
 Identifier "065"
 RecordName "ORDER-RECORD"
 RecordLongName "Order"
 RecordType ÒFILEÓ

 BEGIN ELEMENT
 Identifier "066"
 ElementName "ORDER-NUMBER"
 ElementLongName "Order Number"
 ElementDataType "INTEGER"
 ElementLength Ò8Ó
 ElementKeyPosition Ò1Ó
 ElementNulls "F"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "067"
 ElementName "STOCK-NUMBER"
 ElementLongName "Stock Number"
 ElementDataType "INTEGER"
 ElementLength Ò8Ó
 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "068"
 ElementName "FABRIC-CHARGE"
 ElementLongName "Fabric Charge"
 ElementDataType "DECIMAL"
 ElementLength Ò13Ó
 ElementPrecision "2"

 WORK IN PROGRESS DRAFT

Page 76 MDIS 1.1

 ElementKeyPosition Ò0Ó
 ElementNulls "T"
 END ELEMENT

 END RECORD

COMMENT
COMMENT REDEFINES statement.
COMMENT
 BEGIN RECORD
 Identifier "069"
 RecordName "FABRIC-CHARGE-2"
 RecordLongName "Fabric Charge Redefined"
 RecordType "GROUP"

 BEGIN ELEMENT
 Identifier "070"
 ElementName "FABRIC-DOLLARS"
 ElementLongName "Fabric Charge Dollars"
 ElementDataType "INTEGER"
 ElementLength Ò13Ó
 END ELEMENT

 BEGIN ELEMENT
 Identifier "071"
 ElementName "FABRIC-CENTS"
 ElementLongName "Fabric Chg Cents"
 ElementDataType "INTEGER"
 ElementLength Ò2Ó
 END ELEMENT

 END RECORD

BEGIN RELATIONSHIP
 Identifier "072"

SourceObjectIdentifier "069"
 TargetObjectIdentifier "068"
 RelationshipType "REDEFINES"
 RelationshipOrdinality "1:1"
 RelationshipBiDirectional "T"
 END RELATIONSHIP

 BEGIN RELATIONSHIP
 Identifier "073"
 TargetObjectIdentifier "057"
 SourceObjectIdentifier "059"
 RelationshipType "GROUP-EQUIVALENT"
 RelationshipOrdinality "1:1"
 RelationshipBiDirectional "F"
 END RELATIONSHIP

END DATABASE

 WORK IN PROGRESS DRAFT

Page 77 MDIS 1.1

B.4 Representing network databases

The network data model allows multiple paths to the same record type. Instances of the
Relationship object of RelationshipType ÒLINK-TOÓ are used to define the set relationships
supported by network databases.

COMMENT
COMMENT Here is a network schema example...
COMMENT
COMMENT
COMMENT SCHEMA NAME IS EMPLOYEES-AND-DEPTS
COMMENT
COMMENT RECORD NAME IS EMPLOYEE;
COMMENT DUPLICATES ARE NOT ALLOWED
COMMENT FOR EMPID IN EMPLOYEE.
COMMENT EMPID ; TYPE IS CHARACTER.
COMMENT ENAME ; TYPE IS CHARACTER.
COMMENT STATUS ; TYPE IS FIXED DECIMAL.
COMMENT
COMMENT RECORD NAME IS DEPT;
COMMENT DUPLICATES ARE NOT ALLOWED
COMMENT FOR DEPTNO IN DEPT.
COMMENT DEPTNO ; TYPE IS CHARACTER.
COMMENT DNAME ; TYPE IS CHARACTER.
COMMENT
COMMENT SET NAME IS DEPT-EMP;
COMMENT OWNER IS DEPT;
COMMENT ORDER IS SORTED BY DEFINED KEYS
COMMENT DUPLICATES ARE NOT ALLOWED.
COMMENT MEMBER IS EMPLOYEE;
COMMENT INSERTION IS AUTOMATIC
COMMENT RETENTION IS MANDATORY;
COMMENT KEY IS ASCENDING EMPID IN EMPLOYEE;
COMMENT SET SELECTION IS BY VALUE OF DEPTNO IN DEPT.
COMMENT

BEGIN HEADER
 CharacterSet "ENGLISH"
 ExportingTool "XYZ"
 ToolVersion "V3.1"
 MDISVerson "1.0"
 Date "1996-05-08"
 Time "22.46.14"
END HEADER

BEGIN DEFINITION

COMMENT Definition of MDIS model goes here....

END DEFINITION

 WORK IN PROGRESS DRAFT

Page 78 MDIS 1.1

BEGIN DATABASE
 Identifier "074"
 ServerName "SERVER1"
 OwnerName "MDC"
 DatabaseName ÒEMPLOYEES-AND-DEPTSÓ
 DatabaseType "NETWORK"
 DateCreated "1996-05-08"
 BriefDecsription ÒIDMS database defining organizational structureÓ

 BEGIN RECORD
 Identifier "075"
 RecordLongName "Employees"
 Recordname "EMPLOYEE"
 RecordType ÒRECORDÓ

 BEGIN ELEMENT
 Identifier "076"
 ElementName "EMPID"
 ElementLongName "Employee ID"
 ElementDataType "CHAR"
 ElementKeyPosition Ò1Ó
 ElementLength Ò5Ó
 ElementNulls "F"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "077"
 ElementName "ENAME"
 ElementLongName "Employee Name"
 ElementDataType "CHAR"
 ElementKeyPosition Ò0Ó
 ElementLength Ò20Ó
 ElementNulls "F"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "078"
 ElementLongName "Employee Status"
 ElementName "Status"
 ElementDataType "INTEGER"
 ElementKeyPosition Ò0Ó
 ElementLength Ò3Ó
 ElementNulls "F"
 END ELEMENT

 END RECORD

 BEGIN RECORD
 Identifier "079"
 RecordLongName "Department"
 RecordType RECORD
 RecordName "DEPT"

 WORK IN PROGRESS DRAFT

Page 79 MDIS 1.1

 BEGIN ELEMENT
 Identifier "080"
 ElementName "DEPTNO"
 ElementLongName "Department Number"
 ElementDataType "CHAR"
 ElementKeyPosition Ò1Ó
 ElementLength Ò6Ó
 ElementNulls "F"
 END ELEMENT

 BEGIN ELEMENT
 Identifier "081"
 ElementName "DNAME"
 ElementLongName "Department Name"
 ElementDataType "CHAR"
 ElementKeyPosition Ò0Ó
 ElementLength Ò20Ó
 ElementNulls "F"
 END ELEMENT

 END RECORD

 BEGIN RELATIONSHIP
 Identifier "082"
 SourceObjectIdentifier "079"
 TargetObjectIdentifier "075"
 RelationshipBidirectional "T"
 RelationshipOrdinality "1:N"
 RelationshipType "LINKTO"
 END RELATIONSHIP

END DATABASE

B.5 Representing object-oriented databases

Object-oriented databases require that one represent the following types of concepts:

á The fact that the properties of a subclass are inherited by any superclass
identified in its definition. An instance of the Relationship object of
RelationshipType ÒINHERITS-FROMÓ is used to define this type of
relationship. In other words, the class hierarchy is not represented by nesting
the definitions of the Record objects representing subclasses within instances of
instances of Record objects representing superclasses since this would violate
the constraint that objects cannot be nested within objects of the same type.
(Otherwise in the case that an object had more than one ancestor, multiple
copies of that object definition would appear within the MDIS file.) Instead, the
Relationship object is used to represent class hierarchies.

á Properties of a Record of RecordType ÒCLASSÓ can refer to the value of one or
more object identifiers. These are represented in the Element object by
declaring an ElementDataType of ÒPOINTER.Ó

 WORK IN PROGRESS DRAFT

Page 80 MDIS 1.1

 WORK IN PROGRESS DRAFT

Page 81 MDIS 1.1

COMMENT
COMMENT THE FOLLOWING MDIS ILLUSTRATION REPRESENTS A
DATABASE
COMMENT WHICH USES THE OBJECT-ORIENTED MODEL
COMMENT class SOFTWARE
COMMENT {
COMMENT public:
COMMENT virtual void DELETE ()
COMMENT {
COMMENT // function code for DELETE
COMMENT }
COMMENT char* GET_NAME();
COMMENT {
COMMENT // function code for GET_NAME
COMMENT }
COMMENT void SET_NAME(char* name);
COMMENT {
COMMENT // function code for SET_NAME
COMMENT }
COMMENT private:
COMMENT char* NAME;
COMMENT
COMMENT } // end SOFTWARE class
COMMENT
COMMENT class PACKAGE : public SOFTWARE
COMMENT {
COMMENT public:
COMMENT void DELETE ()
COMMENT {
COMMENT // overload function code for DELETE
COMMENT }
COMMENT private:
COMMENT void ACCESS ()
COMMENT {
COMMENT // function code for ACCESS
COMMENT }
COMMENT } // end PACKAGE class
COMMENT
COMMENT class CUSTOM : public SOFTWARE
COMMENT {
COMMENT public:
COMMENT
COMMENT } // end CUSTOM class

BEGIN HEADER
 CharacterSet "ENGLISH"
 ExportingTool "OBJECT"
 ToolVersion "V3.1"
 MDISVerson "1.0"
 Date "1996-05-08"
 Time "22.46.14"
END HEADER

 WORK IN PROGRESS DRAFT

Page 82 MDIS 1.1

BEGIN DEFINITION
 Definition of MDIS model
END DEFINITION

BEGIN DATABASE
 Identifier "083.5"
 ServerName ÒSERVERÓ
 DatabaseExtendedType "DATABASE1.0"
 OwnerName ÒMDCÓ
 DatabaseName ÒOBJDBÓ
 BriefDescription ÒC++ database defining softwareÓ
 DatabaseType "OBJECT"

BEGIN RECORD
 Identifier "083"
 BriefDescription "Class of Software Objects"

BEGIN ApplicationData
Tool "ObjectStore"
BEGIN ToolAppData
OMG_CLASS LOAD
END ToolAppData
END ApplicationData

 RecordName "SOFTWARE"
 RecordLongName "Software Class"
 RecordType "CLASS"

BEGIN ELEMENT
 Identifier "084"
 ElementName "NAME"
 ElementLongName "Software Package Name"
 ElementDataType "VARCHAR"
 ElementOrdinality "1"
 ElementLength "30"
 ElementNulls "T"
END ELEMENT

BEGIN ELEMENT
 Identifier "085"
 ElementName "DELETE METHOD"
 ElementLongName "Software Delete Method"
 BEGIN ApplicationData

Tool "Smalltalk"
BEGIN ToolAppData
Declare Delete Function
END ToolAppData
END ApplicationData

 ElementDataType "PROGRAM"
 ElementOrdinality "1"
 ElementLength "25000"
 ElementNulls "T"
END ELEMENT

END RECORD

 WORK IN PROGRESS DRAFT

Page 83 MDIS 1.1

BEGIN RECORD
 Identifier "086"
 BriefDescription "Subclass containing custom software applications"
 BEGIN ApplicationData

Tool "Versant"
BEGIN ToolAppData
Inherit Method Default
END ToolAppData

 END ApplicationData
 RecordName "CUSTOM"
 RecordLongName "Custom Software"
 RecordType "CLASS"
END RECORD

BEGIN RECORD
 Identifier "087"
 BriefDescription "Subclass containing packaged software applications"
 BEGIN ApplicationData

Tool "Versant"
BEGIN ToolAppData
Inherit Method Default
END ToolAppData

 END ApplicationData
 RecordName "PACKAGE"
 RecordLongName "Package Software"
 RecordType "CLASS"

BEGIN ELEMENT
 Identifier "088"
 ElementName "DELETE METHOD"
 ElementLongName "Software Delete Method"

 BEGIN ApplicationData
Tool "Versant"
BEGIN ToolAppData
Inherit Method Default
END ToolAppData

 END ApplicationData
 ElementDataType "PROGRAM"
 ElementOrdinality "1"
 ElementLength "40000"
 ElementNulls "T"
END ELEMENT

BEGIN ELEMENT
 Identifier "089"
 ElementName "ACCESS METHOD"
 ElementLongName "Software Access Method"
 ElementDataType "PROGRAM"
 ElementOrdinality "1"
 ElementLength "40000"
 ElementNulls "T"
END ELEMENT

 WORK IN PROGRESS DRAFT

Page 84 MDIS 1.1

END RECORD
END DATABASE

COMMENT *** Software Class to Package Subclass ***

BEGIN RELATIONSHIP
 Identifier "100"
 SourceObjectIdentifier "087"
 TargetObjectIdentifier "083"
 RelationshipType "INHERITS-FROM"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ
END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "101"
 SourceObjectIdentifier "086"
 TargetObjectIdentifier "083"

 RelationshipType "INHERITS-FROM"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ
END RELATIONSHIP

B.6 Representing multi-dimensional databases

A muti-dimensional database has the following characteristics:

á It consists of one or more dimensions, each of which consists of a hierarchy of
members. Each dimension is represented by an instance of the MDIS
Dimension object (e.g., Product in the example below). Dimension members
(e.g., Colas in the example below) are defined using the Element object.

á Members can belong to more than one hierarchy within a dimension. Instances
of the Relationship object with a RelationshipType of ÒCONTAINSÓ are used to
indicate which members are at a given level of detail or aggregation within the
hierarchy.

COMMENT
COMMENT
COMMENT
COMMENT <Gen 1
COMMENT Product
COMMENT <SPARSE
COMMENT <Gen 2
COMMENT "100"
COMMENT <ALTNAME Colas

 WORK IN PROGRESS DRAFT

Page 85 MDIS 1.1

COMMENT <Gen 3
COMMENT "100-10"
COMMENT <ALTNAME Cola
COMMENT <Gen 3
COMMENT "100-20"
COMMENT <ALTNAME "Diet Cola"
COMMENT <Gen 3
COMMENT "100-30"
COMMENT <ALTNAME "Caffeine Free Cola"
COMMENT <Gen 2
COMMENT "200"
COMMENT <ALTNAME "Root Beer"
COMMENT <Gen 3
COMMENT "200-10"
COMMENT <ALTNAME "Old Fashioned"
COMMENT <Gen 3
COMMENT "200-20"
COMMENT <ALTNAME "Diet Root Beer"
COMMENT <Gen 3
COMMENT "200-30"
COMMENT <ALTNAME Sasparilla
COMMENT <Gen 3
COMMENT "200-40"
COMMENT <ALTNAME "Birch Beer"
COMMENT <Gen 2
COMMENT "300"
COMMENT <ALTNAME "Cream Soda"
COMMENT <Gen 3
COMMENT "300-10"
COMMENT <ALTNAME "Dark Cream"
COMMENT <Gen 3
COMMENT "300-20"
COMMENT <ALTNAME "Vanilla Cream"
COMMENT <Gen 3
COMMENT "300-30"
COMMENT <ALTNAME "Diet Cream"
COMMENT <Gen 2
COMMENT "400"
COMMENT <ALTNAME "Fruit Soda"
COMMENT <Gen 3
COMMENT "400-10"
COMMENT <ALTNAME Grape
COMMENT <Gen 3
COMMENT "400-20"
COMMENT <ALTNAME Orange
COMMENT <Gen 3
COMMENT "400-30"
COMMENT <ALTNAME Strawberry
COMMENT <Gen 2
COMMENT Diet
COMMENT <ALTNAME "Diet Drinks"
COMMENT <UNARY ~
COMMENT <Gen 3
COMMENT "100-20"

 WORK IN PROGRESS DRAFT

Page 86 MDIS 1.1

COMMENT <Gen 3
COMMENT "200-20"
COMMENT <Gen 3
COMMENT "300-30"
COMMENT
COMMENT

BEGIN HEADER
 CharacterSet "ENGLISH"
 ExportingTool "ARB"
 ToolVersion "V3.1"
 MDISVerson "1.0"
 Date "1996-05-07"
 Time "22.46.14"
 END HEADER

BEGIN DEFINITION
 Definition of MDIS model
END DEFINITION

BEGIN DATABASE
 Identifier "102"
 ServerName ÒSERVERÓ
 OwnerName ÒOLAPÓ
 DatabaseName ÒARBORÓ
 BriefDescription ÒOLAP Example of multi-dimensional databaseÓ
 DatabaseType "MULTIDIMENSIONAL"

BEGIN DIMENSION
 Identifier "090"
 BriefDescription "Consumable items which company makes"
 BEGIN ApplicationData

Tool "Essbase V3.1"
BEGIN ToolAppData

MAX-NUM-DIM 5 GENERATION 1-Based
END ToolAppData

 END ApplicationData
LEVEL 0-Based UNARY {~, +, -, *, /, %} >"
 DimensionLongName "Products"
 DimensionName "PRODUCT"
 DimensionType "SPARSE
 DimensionCount Ò18Ó

BEGIN ELEMENT
 Identifier "091"
 ElementName "100"
 ElementLongName "Colas"
 ElementOrdinality "1"
 ElementDataType "VARCHAR"
END ELEMENT

BEGIN ELEMENT
 Identifier "092"
 ElementName "200"

 WORK IN PROGRESS DRAFT

Page 87 MDIS 1.1

 ElementLongName "Root Beer"
 ElementOrdinality "1"
 ElementDataType "VARCHAR"
END ELEMENT

BEGIN ELEMENT
 Identifier "093"
 ElementName "100-20"
 ElementLongName "DietCola"
 ElementOrdinality "1"
 ElementDataType "VARCHAR"
END ELEMENT

BEGIN ELEMENT
 Identifier "094"
 ElementName "200-10"
 ElementLongName "Old Fashioned"
 ElementOrdinality "1"
 ElementDataType "VARCHAR"
END ELEMENT

BEGIN LEVEL
 Identifier "095"
 LevelName ÒBASEÓ
 LevelNumber "0"
 LevelType "NAME-LEVEL"
END LEVEL

BEGIN LEVEL
 Identifier "096"
 LevelName ÒFIRSTÓ
 LevelNumber "1"
 LevelType "NAME-LEVEL"
END LEVEL

BEGIN LEVEL
 Identifier "097"
 LevelName "BEVERAGES"
 LevelType "NAME-LEVEL"
END LEVEL

END DIMENSION

END DATABASE

COMMENT *** HIERARCHY RELATIONSHIPS ***

BEGIN RELATIONSHIP
 Identifier "151"
 SourceObjectIdentifier "090"
 TargetObjectIdentifier "091"
 RelationshipType "CONTAINS"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ

 WORK IN PROGRESS DRAFT

Page 88 MDIS 1.1

END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier"098"
 SourceObjectIdentifier "090"
 TargetObjectIdentifier "092"
 RelationshipType "CONTAINS"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ

END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "099"
 SourceObjectIdentifier"091"
 TargetObjectIdentifier"093"
 RelationshipType "CONTAINS"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ
END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "100"
 SourceObjectIdentifier "092"
 TargetObjectIdentifier "094"
 RelationshipType "CONTAINS"
 RelationshipOrdinality Ò1:NÓ
 RelationshipBidirectional ÒFÓ

END RELATIONSHIP

COMMENT *** BASE LEVEL RELATIONSHIPS ***

BEGIN RELATIONSHIP
 Identifier "101"
 SourceObjectIdentifier "095"
 TargetObjectIdentifier"094"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
 RelationshipBidirectional "F"
END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "102"
 SourceObjectIdentifier "095"
 TargetObjectIdentifier "093"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
 RelationshipBidirectional "F"

END RELATIONSHIP

 WORK IN PROGRESS DRAFT

Page 89 MDIS 1.1

COMMENT *** FIRST LEVEL RELATIONSHIPS ***

BEGIN RELATIONSHIP
 Identifier "103"
 SourceObjectIdentifier "096"
 TargetObjectIdentifier "091"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
 RelationshipBidirectional "F"
END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "104"
 SourceObjectIdentifier "096"
 TargetObjectIdentifier "092"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
 RelationshipBidirectional "F"
END RELATIONSHIP

COMMENT *** NAMED LEVEL RELATIONSHIPS ***

BEGIN RELATIONSHIP
 Identifier
"105"
 SourceIdentifier "097"
 TargetIdentifier "092"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
END RELATIONSHIP

BEGIN RELATIONSHIP
 Identifier "106"
 SourceIdentifier "097"
 TargetIdentifier "091"
 RelationshipType "INCLUDES"
 RelationshipOrdinality "1:N"
END RELATIONSHIP

B.7 Representing inter-database relationships

If one assumed that the data values found in the IMS USCHEDULE database were used to
populate the data values found in the relational COURSE_CATALOG (where possible),
two types of Relationship objects would be used to define the inter-database relationships:

á Instances of RelationshipType ÒEQUIVALENTÓ to indicate the equivalence
between such fields as DNO and DEPT_ID, CNO and COURSE_NO, and

á Instances of RelationshipType ÒDERIVEDÓ to indicate that:

 The TIME field in the OFFERINGS table consists of STIME concatenated
with SDAY with an intervening blank

 WORK IN PROGRESS DRAFT

Page 90 MDIS 1.1

Example of bidirectional inter-database equivalence relationship

BEGIN RELATIONSHIP
Identifier
"107"
RelationshipName ÒIMS Dept-RDB DeptÒ
SourceObjectIdentifier "031"
TargetObjectIdentifier "003"
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒTÓ

END RELATIONSHIP

Example of inter-database equivalence relationship which is not bidirectional

BEGIN RELATIONSHIP
Identifier
"108"
RelationshipName ÒIMS Dept-RDB DeptÒ
SourceObjectIdentifier ????
TargetObjectIdentifier ????
RelationshipType ÒEQUIVALENTÓ
RelationshipOrdinality Ò1:1Ó
RelationshipBidirectional ÒFÓ

END RELATIONSHIP

Example of derived relationship

BEGIN RELATIONSHIP
Identifier
"109"
RelationshipName ÒIMS DAY & TIME -RDB TIMEÒ
SourceObjectIdentifier "041"
TargetObjectIdentifier "015"
SourceSequenceOrder Ò 1:2Ó
RelationshipExpression ÒConcatenate IMS.SECTION.STIME with
IMS.SECTION.SDAYÓ
RelationshipType ÒDERIVEDÓ
RelationshipOrdinality ÒN:NÓ
RelationshipBidirectional ÒFÓ

END RELATIONSHIP
BEGIN RELATIONSHIP

Identifier
"110"
RelationshipName ÒIMS DAY & TIME -RDB TIMEÒ
SourceObjectIdentifier "040"
TargetObjectIdentifier "015"
SourceSequenceOrder Ò 2:2Ó
RelationshipExpression ÒConcatenate IMS.SECTION.STIME
IMS.SECTION.SDAYÓ
RelationshipType ÒDERIVEDÓ
RelationshipOrdinality ÒN:NÓ
RelationshipBidirectional ÒFÓ

 WORK IN PROGRESS DRAFT

Page 91 MDIS 1.1

END RELATIONSHIP

Example of Relationship of RelationshipType "DERIVED":

The following is pseudocode that represents a derived relationship computed from the
source parts cobolfs.s2k.adpinfo.XYZ-CONVERSION-INFO.CLIENT-NUMBER and
cobolfs.s2k.adptape.RECORD-100.HOME-DEPT-NO.

Compute the target value A1ORGANIZATION-1-CODE from the source
parts. If cobolfs.s2k.adpinfo.XYZ-CONVERSION-INFO.CLIENT-NUMBER is
the same as the string value AAE Move a partial field
cobolfs.s2k.adptape.RECORD-100.HOME-DEPT-NO starting in position 1 for a
length of 2 Otherwise If cobolfs.s2k.adpinfo.XYZ-CONVERSION-
INFO.CLIENT-NUMBER is the same as the
string value AAG the target string is the string value 00 . Otherwise If
cobolfs.s2k.adpinfo.XYZ-CONVERSION-INFO.CLIENT-NUMBER is the same
as the
string value AAC the target string is the string value 01 . Otherwise the
target string is SPACES .

This example would require something like the following two relationship instances:

BEGIN RELATIONSHIP
Identifier "010"
DateCreated Ò1992-12-02Ó
TimeCreated Ò23.12.15Ó
BriefDescription ÒDefines means of computing the Organization Code Ó
BEGIN ApplicationData

Tool "XYZ"
BEGIN ToolAppData

ORDINALITY 2:1
END ToolAppData

END ApplicationData
RelationshipName "OrgCode1"
SourceObjectIdentifier "3000"
TargetObjectIdentifier "4000"
SourceSequenceOrder Ò1:2Ó
RelationshipExpression Òif (stringequal %1 ÒAAEÓ) return(substring
(%2,1,3) else if (stringequal %1 ÒAAGÓ) return(Ò00Ó) else if (stringequal
%1 ÒAACÓ) return (Ò01Ó) else return (Ò Ò);Ó
RelationshipType ÒDERIVEDÓ
RelationshipOrdinality "2:1"
RelationshipBidirectional "T"

END RELATIONSHIP

BEGIN RELATIONSHIP
Identifier "011"
DateCreated "1992-12-02"
TimeCreated "23.12.15"
BriefDescription ÒDefines means of computing the Organization Code Ó
BEGIN ApplicationData

Tool "XYZ"
BEGIN ToolAppData

 WORK IN PROGRESS DRAFT

Page 92 MDIS 1.1

ORDINALITY 2:1
END ToolAppData

END ApplicationData
RelationshipName ÒOrgCode2Ò
SourceObjectIdentifier "5000"
SourceSequenceOrder Ò2:2Ó
TargetObjectIdentifier "6000"
RelationshipExpression Òif (stringequal %1 ÒAAEÓ) return(substring
(%2,1,3) else if (stringequal %1 ÒAAGÓ) return(Ò00Ó) else if (stringequal
%1 ÒAACÓ) return (Ò01Ó) else return (Ò Ò);Ó
RelationshipType ÒDERIVEDÓ
RelationshipOrdinality "2:1"
RelationshipBidirectional "T"

END RELATIONSHIP

