
Reuse Methodology and Implementation
Appnote
Abstract
In today's engineering design environment, designers are limited in their ability to maximize reuse by the fact
that there is no efficient way to search for, access, and integrate reusable design objects across multiple
sources; frequently, these potential sources of reusable design data are uncoupled from the design
environment. This paper details an approach for managing reusable design objects in a collaborative
engineering environment that enables Rapid Prototyping of Application-Specific Signal Processors (RASSP)
and the architecture of the RASSP Reuse Data Manager (RRDM), specifically developed to support this
approach.

Key aspects of our approach include:

developing processes and methodologies for design-for-reuse and design-with-reuse
developing a rich RASSP reuse classification hierarchy, or ontology, that rigorously models the
various types of design and data objects in the RASSP domain
developing a RASSP Reuse Data Manger (RRDM) that facilitates integration of legacy design data
into a reuse repository using knowledge-based approaches for resolving inconsistencies and
distinctions among terms, supports implementation of the RASSP reuse classification hierarchy, and
provides mechanisms for searching for design objects across multiple libraries in a virtual enterprise

Purpose
The RASSP reuse processes were developed using the IDEF3 methodology for process modeling. The
models specify the essential activities to be performed when designing for and with reuse. These generic
processes may be adapted by an organization implementing design reuse and customized to their specific
needs.

The RASSP Reuse Classification Hierarchy (RRCH) was initially developed using Rumbaugh's Object
Modeling Technique (OMT). Subsequently, it was reorganized and extended as a set of ontology components
using the Ontolingua toolset developed by the Stanford University Knowledge Systems Laboratory (KSL).
The RRCH defines the terms relevant to the domain and the relationships among them to assist a designer in
searching for and selecting design objects from the reuse repository. The focus of the RRCH development has
been on the electronics design domain. Although, this approach applies to many other engineering and
integrated manufacturing domains.

Sources of reusable designs may include those created within an engineering design organization, CAD tool
libraries, CAD tool-independent libraries, released designs managed by product data management (PDM)
systems across the enterprise, related business and engineering information, and component vendor data,
among others. To query and access these heterogeneous sources of design data, the RRDM provides
designers with a common view of the virtual reuse repository. Syntactic and semantic differences among the
various source file systems, libraries and repositories are resolved through a common vocabulary representing
their union and mapping algorithms that relate the source vocabularies to the common view. An ontology for a
particular source repository defines the relevant terms for that source -- identifying attributes of the terms,
relationships among terms, and constraints that pertain to those terms. We describe in this paper the
architecture and concept of operations of the environment that we are building to support legacy data
integration using knowledge-based representation and standards-based enterprise integration concepts.

Incremental versions of the reuse processes, ontology components and RRDM functions were demonstrated
for the commercial space communications domain (Lockheed Martin Astrospace Company) and for the VHDL
model development and reuse domain. The VHDL model application supports model repositories at Lockheed

Martin ATL, SCRA, and several universities. In this paper we will describe the specific processes applied and
the lessons learned from the exercise.

.

Roadmap
1.0 Introduction

2.0 Architecture of the RASSP Enterprise System

2.1 Planned Enhancements

3.0 Design Reuse Methodology

3.1 Design-for-Reuse
3.2 Design-with-Reuse

4.0 The RASSP Reuse Classification Hierarchy

5.0 The RASSP Reuse Data Manager Architecture

6.0 Application of the RASSP Reuse Approach

6.1 Satellite Communication Reuse Application
6.2 Distributed VHDL Model Repository

7.0 Conclusion

8.0 References

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 2 Architecture of the RASSP Enterprise System Up: Appnotes Index Previous:Appnote Reuse Index

Reuse Methodology and Implementation
Appnote
1.0 Introduction
In today's engineering design environment, designers are limited in their ability to maximize reuse by the fact
that there is no efficient way to search for, access, and integrate reusable design objects across multiple
sources; frequently, these potential sources of reusable design data are uncoupled from the design
environment. Also lacking are mechanisms and processes for organizing reusable design information created
within a design team, and for effectively sharing that design knowledge within the organization as well as with
other cooperating organizations

No two product data management (PDM) system implementations are alike, though up to 90% of the
underlying database schema may be generic, for example. Every local design organization has their own
classification scheme for designs developed internally, even in cases where the use of a single software
product, such as the Metaphase Product Data Management System [SDRC_1997], which provides the
configuration management functionality for the RASSP Enterprise Environment, has been mandated by a
corporate engineering process improvement directive. Integration of multiple instances of the Metaphase
system is possible in cases where the classification scheme is the same for all instances, but not easily
otherwise. Costly, unique point-to-point integration is required in most cases where multiple applications and
databases are involved today.

We describe in this paper an approach for integrating multiple, diverse sources of engineering and business
data to provide a single entry point for searching for reusable design knowledge and to enable collaborative
engineering throughout the enterprise. This approach was developed and prototyped for the DARPA Rapid
Prototyping of Application-Specific Signal Processors (RASSP) program.

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is a Defense Advanced Research
Projects Agency (DARPA)/Tri-Service program aimed at dramatically improving productivity in the design,
manufacture, test, and procurement of digital signal processors. RASSP products include an enterprise
system, which integrates the CAD tools used in the RASSP design process, workflow tools for managing the
design process, and the tools for managing the design data. Reuse data management in the RASSP system
involves the generation, organization, distribution, and use of reusable design knowledge. Sources of
reusable designs in the RASSP environment may include those created within an engineering design
organization, CAD tool libraries, CAD tool-independent libraries, released designs managed by product data
management (PDM) systems across the enterprise, related business and engineering information, and
component vendor data, among others.

Key aspects of our approach for reuse data management include:

developing processes and methodologies for design-for-reuse and design-with-reuse
developing a RASSP reuse classification hierarchy that models the various types of design and data
objects in the RASSP domain
developing a RASSP Reuse Data Manger (RRDM) that facilitates integration of legacy design data
into a reuse repository using knowledge-based approaches for resolving inconsistencies and
distinctions among terms, supports implementation of the RASSP reuse classification hierarchy, and
provides mechanisms for searching for design objects across multiple libraries in a virtual enterprise

This approach was applied to the satellite communications domain, relevant to the Lockheed Martin

Astrospace company in Newtown, PA, and to the integration of multiple VHDL model repositories developed
by several organizations associated with the RASSP program. Two prototype implementations of the RASSP
Reuse Data Manager (RRDM) were created for the satellite communications application, both of which
included a web-based front-end to the reuse repository. The early prototype stored all meta-data as text in
HTML files, while the second uses an object-oriented database engine for persistent storage of both the
common vocabulary and reusable design knowledge. Both demonstrated subsets of the target features of the
RRDM. The VHDL model demonstration extended the original RASSP reuse classification hierarchy (RRCH)
to support many types of VHDL models and related design data. The extended RRCH is compliant with the
RASSP VHDL Modeling Terminology and Taxonomy recently adopted by the VHDL user community. Based
on lessons learned from the prototype implementations we have further refined the architecture and concept of
operations for the RRDM. The underlying technology of the RRDM was developed and is being
commercialized by Sandpiper Software, Inc., with partial funding from the RASSP program.

In the next section we describe the architecture of the RASSP enterprise system, and the role of the RRDM in
that environment. In section 3 we describe the processes and methodology developed on the program that are
specific to integrating new or modified designs with the reuse system and accessing those designs for use in
new applications. In section 4 we present a knowledge-based approach for modeling the RASSP domain as
well as components of the resultant RASSP reuse classification hierarchy. In section 5 the high-level
architecture of the RRDM and its concept of operations is discussed. An application of the RASSP reuse
methodology at an operating company and the RRDM prototype demonstrations is the subject of section 6.
Section 7 details the key benefits and implications of the technology developed, provides some comparisons
with related technologies, and summarizes the significant lessons learned.

Next: 2 Architecture of the RASSP Enterprise System Up: Appnotes Index Previous:Appnote Reuse Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 3 The RASSP Authorization Model Up: Appnotes Index Previous: 1 Introduction

Reuse Methodology and Implementation Appnote
2.0 Architecture of the RASSP Enterprise System
Figure 2 - 1 shows the data flow architecture of the RASSP enterprise system. A design engineer interacts with a workflow
manager to perform various predefined process steps. On execution of a particular process step, the workflow manager may
invoke the appropriate CAD tool for the activity, opening the requisite product data files and making them available in the
designer's workspace. The workflow manager interacts transparently with the product data manager on behalf of the user to open,
close, save and configuration manage the product data files. The user may also interact directly with the desktop manager to invoke
tools outside of the workflow environment, as needed

Figure 2 - 1: Enterprise System Data Flow Architecture

Once a CAD tool has been invoked, the designer interacts with the tool in its native environment to perform a design or analysis

activity. He or she may invoke the RRDM through the CAD tool environment or directly. The RRDM may receive reusable design
knowledge from the CAD tool, or meta-data only in cases where the design is managed in place. Additional meta-data is solicited
from the environment as well as from the designer through the use of domain-specific templates. Both the meta-data and design
knowledge (where applicable) are stored in the local design knowledge repository. The workflow manager for the RASSP
Enterprise System is implemented through Intergraph Corporation's Design Methodology Manager (DMM), and the product data
manager is implemented by the Intergraph Asset information Manager (AIM). Additional information on the RASSP Enterprise
System is provided in Enterprise Application Note

The architecture of the RASSP Reuse Data Manager (RRDM) and its relationship to users and other system resources is detailed in
Figure 2- 2. The RRDM consists of a client browser, a "perspectives" application server (including the search and vocabulary
mapping engines), and multiple source data repositories. A designer looking for reusable design knowledge browses the hierarchy
and identifies a potential source for designs of interest. Then, through a custom view of the common vocabulary, the user may
specify attributes of the candidate design(s) he or she is interested in. Queries may include arithmetic expressions, logical
expressions, attributes of related classes, and constraints on any of the attributes, as appropriate. Mapping algorithms that account
for a variety of data inconsistencies, differences in precision, translation of units of measure, and other distinctions among terms
across repositories are resolved to the user's customized vocabulary and display requirements. The search of available (and
optionally selected) source repositories is performed in parallel, with meta-data for all results displayed through the client browser.
Depending on the number and nature of the results returned, he or she may further refine the search by specifying additional
attributes and/or more restrictive criteria. Objects of interest may be selected and the corresponding designs (e.g ., schematics,
drawings, models) displayed in their native tool environments given that appropriate resources are available to the user.

Figure 2 - 2: RASSP REUSE Data Manager Architecture

A prototype of the RASSP Reuse Data Manager (RRDM) was demonstrated in April 1998, providing access to multiple,
distributed repositories of VHDL models. The key capabilities featured at this RASSP demonstration are summarized below.

Data Modeling - Through the use of the Ontolingua tool, the actual ontology components developed in support of the
RASSP satellite communications and electronics domain were highlighted. These components share basic
information-asset characteristics, such as the date of creation, version, author, and so forth, but are classified uniquely by
fit, form and function on the design object hierarchy, and by the nature of the information (e.g ., VHDL model, script,

test vector, specification) in an engineering data object hierarchy. For the most part, multiple engineering data objects were
collected to define a single design object. The resultant ontology components have been published and made available
through the Stanford Knowledge Systems Laboratory (KSL) Ontolingua server.

Search and Retrieval - The ontology components were implemented and demonstrated in the prototype environment,
showing hierarchy and relationship browsing as well as attribute-based query construction and results retrieval. Physical
design objects related to the meta-data were also displayed in their native environments. Examples of designs used for
demonstration purposes include complex architectural, behavioral, and performance models developed for the RASSP
benchmark program, with the relevant documentation, source code, test environments, and drawings where available.
Also included were a number of VHDL models developed for the program by several universities and South Carolina
Research Authority (SCRA).
Heterogeneous Integration - Integration of heterogeneous sources (i.e., with syntactically and semantically distinct
database schemas) was demonstrated through the use of DBMS vendor tools in addition to the RRDM. A complex query
across multiple sources was initiated from the RRDM, and the results examined. Each individual repository was then
searched using vendor-provided tools to show not only that there were distinctions in the data stored in each repository but
in the terms defined by the repository schemas as well.
Distributed, Object-Oriented Architecture - The demonstration environment included multiple client browsers hosted on
several machines (both PCs and UNIX workstations), multiple back-end repositories hosted on distinct server machines,
and a single perspectives server host. The commercial product will support multiple, distributed application servers in
order to optimize local performance in addition to distributed clients and source repositories. The prototype provided
source repository selection capabilities, which, in contrast with physical examination of individual repositories,
demonstrated distributed repository access capabilities.

Planned Enhancements

A number of additional capabilities are planned for the commercial product and subsequent releases by Sandpiper Software, Inc.
These include:

Function-Based Search and Retrieval
Content-Based Search and Retrieval
Configuration Management for all ontology components and meta-data with optional release management for design
knowledge
Fine-Grained Authorization Control
Enhanced User Authentication
Extensive User Customization Capabilities, including user and role-specific views of the virtual repository as well as
support for custom forms, templates, and reports
Standards-based application integration for third-party tools through CORBA-compliant APIs, including automated data
synchronization where required
Multi-vendor DBMS support (relational, object-relational, and object databases)
Intelligent agent integration for data mining and decision support, subscription, notification, and other extensions to the
baseline technology

Operational support tools and utilities (e.g. , ontology generation and development, data migration, system administration) are
also being developed independently by Sandpiper Software to support the commercial information broker product.

Next: 3 The RASSP Authorization Model Up: Appnotes Index Previous: 1 Introduction

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 4 The RASSP Reuse Classification Hierarchy Up: Appnotes Index Previous:2 Architecture of the RASSP
Enterprise System

Reuse Methodology and Implementation
Appnote
3.0 Design Reuse Methodology
The methodology developed for design reuse in the RASSP environment is composed of two areas:

1. design-for-reuse
2. design-with-reuse

Generic processes were developed and modeled using the IDEF3 methodology for process modeling [AL_1992].
These models provide a foundation which organizations can customize and extend to implement specific reuse
strategies. The process models have been captured in the "Domain Independent Reuse Methodology" document
[Lockheed Martin_1996a]. In this section we provide a summary of the methodology and provide guidance on how
the underlying processes may be adapted to meet a particular organization's needs. Additional information on the
process modeling methodology is provided in the Process Modeling Application Note

3.1 Design-For-Reuse

The Design-For-Reuse methodology supports the identification of reusable design knowledge and related business
and engineering information as well as its integration with the local reuse repository for enterprise-wide access. The
major steps include:

1. Identification of a desgin object for inclusion in the reuse repository based on criteria established by the
organization

2. Submittal and approval of the design object by a peer review board (i.e ., for quality, utility and generality
assessment)

3. Evaluation of the design object by a local reuse administrator for classification and collection of meta-data
4. Integration of the design knowledge with the repository, and release for general access
5. If an appropriate class is not found, process-driven steps are taken to create a new class or modify existing

classes in order to accommodate the new object

3.2 Design-With-Reuse

The RASSP program goal for Design-With-Reuse is to facilitate maximum integration and use of existing design
knowledge where feasible. The steps include:

1. search for and select candidate reusable designs, based on form, fit, and function
2. copy the candidate designs into the designer's local workspace
3. integrate and test the various candidates to select the optimal design for the requirements
4. make any adjustments required to the selected design as needed
5. reintegrate and test the new design

The methodology document provides additional detail for each of the processes highlighted above. Adaptation of
these processes may require integration and use of corporate standard taxonomies and engineering process
improvement guidelines within the common vocabulary, the addition of corporate and domain-specific knowledge to
the templates and methods to reflect cost, reliability, manufacturability, and other process information, for example.
Customization of the generic Design-With-Reuse process may also include performing tradeoffs between designing
from scratch versus modifying the selected design object, the addition of lessons-learned knowledge to the reuse

repository, and so forth.

The default workflow for addition of reusable design objects to the RRDM is shown in figure 3 - 1 and represented
in IDEF3 (Integrated computer aided manufacturing DEFinition) notation. The boxes represent individual activities
in a process, and the links between the activities represent precedence relationships between activities. The links are
annotated with information about the data that flows between two activities -- the state of the data and the type of
data separated by a '*'. A junction box, represented by a box with a vertical line parallel to the left edge and an 'X'
within the box, is used to model alternate paths within a workflow. The arrows coming into the bottom edge of an
activity box indicate the mechanisms that are involved in the activity, usually the job classification of the
individual(s) performing the activity. The workflow is implemented using the workflow manager of the RASSP
enterprise framework and may be further customized by a RASSP administrator for a particular organization.

Figure 3 - 1: The workflow for integration of a new reusable design

Next: 4 The RASSP Reuse Classification Hierarchy Up: Appnotes Index Previous:2 Architecture of the RASSP
Enterprise System

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 5 The RASSP Reuse Data Manager Architecture Up: Appnotes Index Previous:3 Design Reuse
Methodology

Reuse Methodology and Implementation
Appnote
4.0 The RASSP Reuse Classification Hierarchy
The common vocabulary for design reuse used by the RASSP Reuse Data Manager (RRDM) is a
knowledge-based representation of the domain, defining the organization of and relationships among the reuse
elements. The ontology consists of two primary components -- a design object classification hierarchy, which
models the functional, behavioral, structural, and performance characteristics of its constituent elements, and a
data object classification hierarchy, which models the characteristics of individual drawings, source code files,
documents, images, and other information assets.

A design object may be a system, subsystem, or component of a system that performs a real world function.
Examples of design objects from the RASSP environment include analog-to-digital converter, baseband
channelizer, network controller, Fast Fourier Transform (FFT) algorithm, and synthetic aperture radar (SAR)
processor. A data object is essentially a document, either paper or electronic, that describes at least one facet of
one or more design(s), related projects, or research. Examples of data objects include simulation model,
schematic, test vector, and specification. Typically, a design object will be described by a number of data
objects, and may refer to additional information assets that identify sources for algorithms, specific technology
descriptions, and so forth.

The RASSP Reuse Classification Hierarchy (RRCH) was initially developed using Rumbaugh's Object
Modeling Technique (OMT). This preliminary version of the RASSP Reuse Classification Hierarchy (RRCH)
is documented in [Lockheed Martin_1996b]. On review of the integration requirements for the program,
however, it became clear that the computer aided software engineering (CASE) tools available in the
marketplace, including OMT, were inadequate to model the distinctions among the diverse, complex sources
of engineering data in the RASSP environment.

Two key issues led us to move from a traditional CASE-based modeling approach to a knowledge
representation approach:

1. a requirement to capture the semantic and syntactic differences among terms -- to model the
constraints on attributes in a formal way (e.g., numeric precision, translation of units of measure,
handling issues such as global pricing that require input from multiple external systems on demand)

2. the need to resolve communications issues among organizations with distinct cultural heritage (i.e.,
organizations that have been brought together as a result of mergers and acquisitions that have
differing engineering practices and use distinct terminology to refer to the same or similar practices
and data).

Ontolingua [KSL_ 1996a] was selected as the appropriate representation environment from several knowledge
representation approaches due to the level of formality that it provided, accessibility of the tool environment on
the Stanford web site, and the availability of support from key Stanford Knowledge Systems Laboratory
(KSL) researchers.

An important development goal for the RASSP Reuse Classification Hierarchy was that it should be general
enough to be adopted, ultimately, as an industry standard, either in part, or in its entirety. Thus, it should lend
itself to extension without requiring destructive changes. Destructive changes include deletion of classes in the
hierarchy, deletion of attributes, relationships or constraints, or moving classes within the hierarchy. Adding

new classes to the hierarchy and adding attributes, relationships and constraints to existing classes should be
allowed. These restrictions enable upward compatibility with previous releases (i.e., previous integration of
CAD tool libraries with the RRCH will continue to be valid). The International Electrotechnical Commission
Draft International Standard 1360-1 for classifying electric components [IEC_1994] was adopted as a baseline
for quantitative and qualitative attribute definitions as an initial step towards achieving this goal. Other
standards for domain-specific information have been integrated throughout the modeling process.

The salient features of the ontology development methodology for an individual class of design objects are as
follows:

select the type of reuse data to model
source standard taxonomies from the various standards organizations
source data from vendors, government and commercially available libraries, the RASSP Enterprise
team
determine the set of potential attributes based on RASSP requirements, user input, analysis of
products output by the CAD tools, the standards sourced
specify the semantics and legal values for each attribute
review the draft data dictionary and related ontology with local experts in the domain as well as with
Stanford KSL modeling experts
publish the data dictionary for comment within the program
demonstrate the Ontolingua implementation to solicit feedback
iterate through the process until consensus is reached

For all classes defined in the RRCH, a certain number of common attributes are defined. These attributes
include information required to identify an individual information asset that may be distributed in an
enterprise, regardless of where it resides or what its functional characteristics are. The baseline used for this
purpose is the Global Information Locator Service standard, developed by the National Archives and US
Geological Survey based on the ISO 10163 (ANSI Z39.50) standard, which specifies how electronic searches
should be expressed and how results are returned to enable international access to diverse, distributed data
[OIW/SIG-LA_1997].

This standard has been extended for use in the RASSP environment to include information required to launch
CAD tools or access distributed databases, for example. Additional requirements were derived from the latest
release of the Meta-data Interchange Standard developed by the Meta-data Coalition [MDIS, 1997], a
consortium of data warehousing vendors. Other standards for the representation of specific types of
information were incorporated as appropriate. The current version of the ontology that models the Global
Information Locator Service is called Network-Based-Information-Asset, and is available on-line through the
Stanford Knowledge Systems Laboratory (KSL) Ontolingua server at http://www.ksl.stanford.edu.

Figures 4 - 1 and 4 - 2, below, show subsets of the current Space-Systems design object and
Engineering-Data data object hierarchies, respectively. The RRCH models the common vocabulary for the
domain, including descriptive meta-data for the design and data objects that may be created or used within the
RASSP environment. The interior nodes of the hierarchy are abstract classes, and leaf nodes are concrete
classes that may be populated with real objects.

Communications-Function
Communications-Link

Crosslink
Downlink

Downlink-Gateway
Downlink-User

Uplink
Uplink-Gateway
Uplink-User

Communications-Payload
Communications-Signal-Processing-Function

Baseband-Processor
Channelizer
Concentrator
Deinterleaver
Demultiplexer
Encoder-Or-Decoder

Cryptographic-Function
Error-Coding-Function

Interleaver
Modulated-Signal-Processing-Function

Demodulator
Modem
Modulator

Multiplexer
Communications-Subsystem
Controller

Bus-Controller
Equipment-Controller
Intra-Channelizer-Command-and-Control-Interface-Controller
Network-Controller
On-Board-Processor
Resource-Controller
Switch-Redundancy-Manager
Traffic-and-Congestion-Controller

Figure 4 - 1: Communications-Function subset of the RASSP Space-Systems Ontology

Diagram-Or-Drawing
Diagram

Data-Flow-Diagram
Frame-Format-Diagram
Functional-Block-Diagram
Interface-Block-Diagram
Test-Strategy-Diagram
Timing-Diagram
Wiring-Diagram

Backplane-Drawing
Drawing

Assembly-Drawing
Side-Assembly-Drawing
Top-Assembly-Drawing

Component-Drawing
End-Item-Drawing
Manufacturing-Drawing

Manufacturing-Hardware-Drawing
Manufacturing-Tooling-Drawing

Package-Outline-Drawing
Pin-Property-Drawing
Process-Drawing
Source-Control-Drawing
Specification-Drawing
Test-Drawing

Test-Adapter-Drawing
Test-Equipment-Drawing
Test-Flow-Chart
Test-Tooling-Drawing

Geometry
Graph-Or-Primitive
Logic-Symbol
Netlist
Printed-Wiring-Board-Layout
Process-Flow
Schematic

Figure 4 - 2: Diagram-Or-Drawing subset of the RASSP Engineering-Data Ontology

Additionally, individual classes in the Engineering-Data and Space-Systems ontologies include attributes that
are specific to the domain. Examples of these kinds of attributes include size, weight, and power
characteristics, performance characteristics, and so forth, depending on the asset type. An example class
definition, extending the baseline information asset attributes to include those relevant to a Simulation Model is
given in Tables 4 - 1 through 4 - 8. Many of the attributes described in the figure are inherited from the
Network-Based-Information-Asset ontology. Those that are specific to the Engineering-Model class or its
children, including the Simulation-Model class, are marked with an asterisk.

Note that a Data Type may be a primitive type, such as an integer, real-number, pointer (reference) or string,
or may be composed of other definitions. Data types may be defined recursively, and may include semantic as
well as syntactic information. The data types shown in the example are relatively simple, however, as our
intent here is to show both the use of the Global Information Locator Service definitions and to highlight the
Simulation Model class.

Field Name Data Type Description

Abstract structure Specifies information relating to the general nature and scope of
the asset

Asset-Creation-Date Time-Point Date and time of asset creation

Date-of-Latest-Revision Time-Point Date and time of most recent asset revision

Version string Revision or Version number for the asset

Brief-Description-of-Asset string
Brief narrative description providing sufficient detail about the
asset to identify its general nature in summary presentations to
users

Long-Description-of-Asset string

Narrative description of asset relating to its general nature and
scope; description may include a discussion of the content (e.g.,
data coverage, persons, events, and topics), time span, and
geographic coverage if relevant (500 words or less)

Access-Constraints structure References any known accessconstraints for this asset

Legal-Access-Restrictions string Specifies any legal restrictions that may limit the user's right to
examine material, such as proprietary or classified information

Physical-Access-Limitations string Specifies any physical access limitations, such as off-line
archival

Table 4 - 1: Attribute definitions for the Simulation Model class

Field Name Data Type Description

Additional-Documentation list of refs.

Specifies any additional documentation that contributes to the
identification, selection, and manipulation of the information, in
particular for documentation related to the use of an automated
information system

Agency-Program reference References the project or program(s) for which the asset was
originally developed

Availability-Of list of refs. References information regarding the availability of the asset from
a particular distributor

Control-Identifier string Specifies a unique identifying number for each information asset,
consisting of an acronym followed by the control number

Controlled-Vocabulary structure
References specific controlled vocabulary elements (such as
keywords) that can assist in automated searching when a large
number of assets are available

Index-Terms-Controlled list
Specifies a grouping of descriptive terms drawn from a controlled
vocabulary source to aid users in locating entries of potential
interest

Controlled-Term string Identifies multiple topics within a given controlled vocabulary

Thesaurus reference
Provides a reference to a formally registered thesaurus or similar
authoritative source of the controlled index terms (e.g., the
RASSP VHDL Model Taxonomy)

Cross-Reference list of refs. Provides for the description of related information resources, links
to additional Thesauri, etc.

Table 4 - 2: Attribute definitions for the Simulation Model class

Field Name Data Type Description

Date-Of-Last-Modification Calendar-Date Specifies the date that the meta-data entry for a particular
information asset in the knowledge base was last modified

Local-Subject-Index list of strings Augments information provided in thesauri, or can be used in
the absence of an acceptable thesaurus

Methodology list of structs Identifies any specialized tools, techniques, or methodology
used to produce an information asset

Methodology-Description string Identifies a particular methodology used, through a textual
description

Methodology-Documentation list of refs. Reference to one or more documents that pertain to the
methodology used

Model-Abstract* structure
Provides a means to categorize models according to a set of
attributes that are useful in distinguishing models intended for
distinctly different purposes

External-Resolution structure Describes how a model describes the interface of the modeled
device to other devices

Temporal-Resolution string Represents the resolution of events that are modeled in terms
of their time scale

Data-Resolution string Defines the resolution with which the format of values are
specified

Functional-Resolution string Refers to the level of detail with which a model describes the
functionality of a component or system

Structural-Resolution string Refers to the level of detail a model provides about how the
modeled component is constructed out of constituent parts

Table 4 - 3: Attribute definitions for the Simulation Model class

Field Name Data Type Description

Internal-Resolution structure
References how a model describes the timing of events, functions,
values, and structures that are contained within the boundaries of the
modeled device

Temporal-Resolution string Represents the resolution of events that are modeled in terms of their
time scale

Data-Resolution string Defines the resolution with which the format of values are specified

Functional-Resolution string Refers to the level of detail with which a model describes the
functionality of a component or system

Structural-Resolution string Refers to the level of detail a model provides about how the modeled
component is constructed out of constituent parts

Model-Class* string

Describes the class of model as an enumerated string from the
following list: Behavioral Model, Functional Model, Structural Model,
Performance Model, Interface Model, Mixed-Level Model, Virtual
Prototype

Model-Maturity* structure
States the maturity level of the model in terms of the engineering
design information available to work with, test-bench availability, and
so forth

Source-Maturity string

Specifies the level of maturity of the source code for the model as an
enumerated string: "Exists - completely models all capabilities",
"Exists - partially models some capabilities", "Source-code" available /
may be licensed / not-available, "Proposed / needed"

Table 4 - 4: Attribute definitions for the Simulation Model class

Field Name Data Type Description

Documentation-Level string

Specifies the level of maturity of the documentation:
"Complete user documentation available", "Design intent
available", "Diagrams Only", "No documentation
available"

Test-Data-Maturity string
Specifies the test-bench maturity level, as follows: "Full
test-bench exists", "Stimulus (test vectors) exists",
"Expected outcome exists (test results)", "None"

Validation-Level string
Specifies the level to which a model has been validated:
"Compiles", "Runs", "Tested", "Verified", "Validated",
"Mature / In Use"

Reusability-Level string

Specifies the level of generality of the model from a
reusability perspective: "Application-specific, single
purpose", "Somewhat reusable - some functions
generalized", "General-purpose"

Support-Level string Specifies the level of support by the originators:
"Unsupported", "Partially supported", "Fully supported"

Model-Year-Architecture-Support* structure Describes the extent to which the model supports the
RASSP Model- Year Architecture (MYA) methodology

Type-Of-Encapsulation string Specifies the type of MYA encapsulation (i.e., SVI,
simple RNI, complex RNI)

Maturity-Of-Encapsulation string
Provides an indication of the level of maturity of the
encapsulation (i.e., Model Text Exists, Interfaced,
Synthesized, Targeted)

Table 4 - 5: Attribute definitions for the Simulation Model class

Field Name Data Type Description

Original-Control-Identifier string
Provides a means through which users can
determine that while the descriptions of two assets
may differ, one is a derivative of the other

Originator reference References the organization or agency that created
and maintains the information asset

Point-of-Contact-For-Further-Information reference
Identifies an organization or individual where
appropriate responsible for the content of the
information asset

Programming-Characteristics* structure Describes general programming characteristics of a
model

Programming-Level string

Describes the Programming Level for the model as
an enumerated string, including: Object-Code,
Micro- Code, Assembly-Code, High Level
Language (HLL) Statements, DSP Primitive
Block-Oriented, Major Modes

Programming-Language string
Describes the language in which the model is
written (e.g., C, PCL, various graphing
languages)

Is-Synthesizable string Indicates whether or not the model is synthesizable
(yes/no)

Execution-Scripts-Available string Specifies whether or not execution scripts ("run
files") are available for the model (yes/no)

Standards-Compliance string Specifies the modeling language compliance, and
to which standard (e.g., Verilog, VHDL-93)

Test-bench-Available string Specifies whether or not a test bench is available
for the model (yes/no)

Test-Vectors-Available string Specifies whether or not test vectors are available
for the model (yes/no)

Table 4 - 6: Attribute definitions for the Simulation Model class

Next: 6 Application of the RASSP Reuse Approach Up: Appnotes Index Previous:4 Implementation of the RASSP
Configuration and Authorization Management Models

Reuse Methodology and Implementation Appnote
5.0 The RASSP Reuse Data Manager Architecture
As described above, sources of reusable designs may include those created within an engineering design organization, CAD tool
libraries, CAD tool-independent libraries, released designs managed by product data management (PDM) systems across the
enterprise, related business and engineering information, and component vendor data, among others. To query and access these
heterogeneous sources of design data, the RRDM provides designers with a common view of the virtual reuse repository.
Syntactic and semantic differences among the various source file systems, libraries and repositories are resolved through a
common vocabulary representing their union and mapping algorithms that relate the source vocabularies to the common view. The
underlying knowledge engine that manages the common vocabulary, maps that vocabulary to the various distributed sources of
reusable engineering design data in the environment, and provides a common user interface / single entry point from which users
can search for, view and access candidate designs and related information is known as the Sandpiper Software Intelligent
Information Broker (IIB). This section details the high-level architecture and concept of operations of the IIB as applied in the
RASSP environment.

The environment in which the RRDM operates is illustrated in Figure 5 - 1, and consists of the following components:

Figure 5 - 1: RASSP Reuse Data Manager Environment

one or more sites, where users and/or source databases, applications, file systems, or other source information resides,
connected by local and/or wide area networks
multiple client systems and one or more back-end database servers which contain hardware and software from a variety of
vendors
back-end databases of varying content, organizations (i.e., schemas) and underlying DBMS engines (relational,
object-relational, object), related to one another in both tightly-coupled (i.e., with similar schemas) and loosely-coupled
(potentially having little or no similarity among them) federations

End users include, among others, designers who interact with the system directly or through integrated applications such as
product data management (PDM) systems, workflow managers, CAD tools, or other systems in their environment.

The intelligent information broker (IIB) provides the capability for users to search for and retrieve design knowledge (or other
related engineering and business information) stored in their distributed environment through the common vocabulary. This
vocabulary is implemented as a group of internal repositories of descriptive information that describe the terms defined for the
domain, the locations and characteristics of source repositories, characteristics of the mapping from source repositories to the
common vocabulary, user authentication information, and so forth. The IIB provides the capability to search stored meta-data for
design knowledge, regardless of whether the objects themselves are managed by the broker or externally.

The information broker (shown as an "application server") acts as middleware, integrating end users (or "clients") with the various
sources of design knowledge in their virtual environment. IIB functionality has been partitioned between the application server,
Javaª applets integrated with the user's Web Browser, and the source database servers that comprise the cooperating environment.
Integration of external applications is enabled through Common Object Request Broker Architecture (CORBA) application
programming interfaces (APIs).

Figure 5 - 2 highlights the prototype IIB architecture as implemented in the RASSP environment. As mentioned above, users
interact with the system either directly through a Javaª-enabled web browser or through other applications that have been integrated
with the IIB through CORBA-compliant APIs. As stated in the Architecture of the RASSP Enterprise System, section 2, a number
of enhancements are planned over the course of the next 18 to 24 months that include commercialization of the broker and
development of ancillary tools to support its implementation in various environments.

At the heart of the IIB is the Perspectives Server, which provides the intelligent search and information brokering function in
support of user requests. From these user requests, it generates queries to the associated source repositories. The Perspectives
Server maps the user's query from either the common vocabulary or a customized, user-specific vocabulary to the physical
back-end repository implementation notation (e.g., SQL, C++), returning the requested data to the user in a user-specified format.

Figure 5 - 2: Sandpiper Software Intelligent Information Broker Context

The IIB provides native support for sets of tightly-coupled back-end database servers. These tightly-coupled federations have
similar schemas and may be mapped to one another and the common domain vocabulary through a single source vocabulary. For
source repositories that are sufficiently dissimilar, separate (distinct) source vocabularies will be integrated with the IIB. A single
federation of source repositories may be represented by multiple vocabularies, each providing different views (e.g., by a standard,
by taxonomy, by function, by product) of the underlying data. User selection between these views enables access to the data in a

manner most appropriate to the task at hand.

The Perspectives Server also describes the mapping between the users' preferred view and the common vocabulary for a domain.
The user's custom view may include attributes from multiple classes, constraints on display characteristics, such as preferred
currency or units of measure, and so forth. These views are also encoded as ontologies based on Ontolingua and KIF.

Next: 6 Application of the RASSP Reuse Approach Up: Appnotes Index Previous:4 Implementation of the RASSP
Configuration and Authorization Management Models

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Conclusion Up: Appnotes Index Previous:5 The RASSP Reuse Data Manager Architecture

Reuse Methodology and Implementation
Appnote
6.0 Application of the RASSP Reuse Approach
In order to demonstrate and benchmark the process, the RASSP Reuse Data Manager (RRDM) was
implemented for a Satellite Communications Payload application (interim prototype demonstration), and for
distributed access to multiple VHDL model repositories (final prototype demonstration). As a result of
designing these prototypes, the RASSP reuse classification hierarchy was developed for the respective
domains. Extension of the classification hierarchy either in these domains or related areas is planned with
additional applications of the reuse manager.

6.1 Satellite Communication Reuse Application

The Satellite Communication Payload application was associated with an internal project at Lockheed Martin
Astrospace Company at East Windsor, New Jersey. Our goal was to build a design reuse repository from the
legacy data sources at Astrospace, and maintain it over the course of the demonstration period. Two
incremental prototype RRDMs demonstrated some of the basic features of the Information Broker in the
Astrospace environment, including the object-oriented class hierarchy, attribute-based searches, and
web-based access.

The CPC was in a position to provide objects in a wide variety of functional categories which could be used
both to augment the RASSP RDOCH and upon which to implement the demonstrations. The metadata about
these objects promised to be rich in terms of the variety of naming conventions, data values/enumerations,
units, data types, data formats and such. This was considered to be very important from the interoperability
perspective. The data also demonstrated the concept of representing multiple implementation levels (e.g.,
concepts, designs and implementations from components to systems). Use of this diverse data set showcased
important ways of accessing information to solve design problems at multiple levels like satellite beam
coverage analysis down to communications circuit design. In addition, the ability to access information on
concepts, trade studies, rules of thumb and detailed design from distributed sources is extremely useful. This
showed how an organization can enhance the engineering process by encouraging reuse.

The CPC problem was a real world case for an integration of interest to Lockheed Martin, the Government
and aerospace in general. The CPC had developed potentially reusable components in the past and was about
to embark on many more to support the new generation of digital communication satellites. CPC was
developing a "configure-to-order" to replace the traditional "design-to-order" concept for satellites.
"Configure-to-order" required CPC to maximize the use of reusable components, assemblies and even
systems. It required the ability to catalog and easily access information residing in a wide variety of sources
including databases, product data managers, component information systems and document management
systems. The system would have a wide range of users (e.g., systems engineers, designers, procurement
specialists) each requiring a different "view" of the multiple data sources. This demonstration showed the
proof-of-concept for providing these views and highlighted the types of features that would be necessary to
integrate distributed heterogeneous sources for a engineering reuse application.

The process of building the reuse repository consisted of the following steps:

1. Interview design engineers at Astrospace to identify sources of legacy reusable design data.
2. Source the information, which consisted primarily of presentations, drawings, and some

documentation from legacy sources and on-going projects
3. Develop a class hierarchy for the data available in a bottom-up fashion, identifying leaf-level classes

and their attributes first, and abstracting common facets to form abstract superclasses
4. Populate the data in a repository with a web-based front end

The first interim implementation of the RRDM was created with classes and instances stored as static HTML
pages. The documents were obtained either in electronic format or were scanned into GIF and PDF formats
from paper documents. HTML links were provided from the design object class instances to the data objects
(documents) that described the design objects. Documents could be viewed or downloaded as either HTML
files, Adobe PDF files, or in their original format -- typically Microsoft Word or Interleaf format. Security
was provided using the Netscape Secure Socket Layer (SSL) features. Only people accessing the system from
authorized machines (verified by IP addresses), with an authorized user name and password were allowed
access to the system.

This interim implementation of the RRDM lacked scalability, as the only means for searching for data was by
browsing or doing text searches on the HTML pages. Sophisticated searches using attributes of the classes
were not possible. To overcome these limitations, an object-oriented approach was used for the second
RRDM prototype engine. An object-oriented database system was selected over a relational database for the
following reasons:

1. The object-oriented reuse classification hierarchy could be mapped directly to C++ classes for
implementation purposes, rather than simulating each class as several tables in a relational or
object-relational environment (cumbersome and costly).

2. An object-oriented database system uses pointers to represent relationships between objects rather
than object-ids and multiple table joins as in an object-relational DBMS. The RRCH implements
numerous relationships between classes and between instances of classes. An object model seemed to
be most appropriate from a performance perspective.

3. The object-oriented model is more expressive than other modeling methodologies such as relational,
network, or hierarchical. It allows natural modeling of complex data types such as sets, arrays, and
collections, and facilitates the definition of the behavior of the objects using methods derived from the
constraints specified in Ontolingua or defined in source applications and repositories.

The second prototype for the satellite communications RRDM was implemented using ObjectStore, an
object-oriented database management system with a C++ -based API. The class hierarchy was implemented
and maintained through a C++ -based programmatic interface. The database was populated manually through
a graphical user interface and through scripts with load files once the schema became stable. Complex
attribute-based querying was supported in this implementation. Inverse pointers between design objects and
the related data objects were implemented to maintain database integrity. Thus when new design objects were
added or when a design object was deleted from the repository, the back pointers from the related data objects
were automatically updated by the ObjectStore system.

Key lessons learned in the course of this effort are:

Guidance for engineers is needed to clarify the definition of a reuse item and
improve the reuse library population process

A considerable amount of data generated during the course of a design that is not normally
considered reuse data should be, either on its own merit, or becuase it enhances the
usefulness of other reuse items. This includes such things as descriptions of design intent,
trade-offs performed, and candidate design selection criteria. Rejected approaches and the
reasons for rejection are almost as important to a document describing the selected approach
as the selected approach itself. Giving designers access to the thought processes of the reuse
item creators enhances their ability to make good decisions about using the item. Although
this type of data exists, because it is not considered part of a traditional data package, it is
often hidden in reports and presentations, or worse, in somebody's notebook. Designers
must be constantly aware of the reuse process and what types of data objects are of interest
from a reuse point-of-view so that appropriate data is collected, described and stored over the

course of the design cycle.

The process for collecting and documenting reuse data must occur in parallel with
the design process

Collecting data at the end of a project is a time-consuming and slow task. Once a project is
over and people are assigned to new tasks, it is very difficult to recreate quality reuse data. A
significant amount of data will be lost if the engineers are not consciously and continuously
collecting what is needed to create a robust reuse object. Each organization must define what
documents are important to the reuse community, basing their decisions on both the type of
information normally generated during the course of a design, and the type of additional
information that must be collected to support a reuse library.

Domain experts must spend some time learning the classification process in order to
be effective in their role in defining the class hierarchy and class attributes

For example, hardware engineers tend to classify objects on the basis of a physical hierarchy,
instead of a functional hierarchy. Thus, a typical hardware hierarchy might be: System =>
Box => Board => Chip. However, from a functional point of view, "System" , "Box",
"Board", and "Chip" have similar attributes: function, throughput, latency, power, etc. From
a structural point of view, they also have similar attributes: size, weight, number of I/O, etc.
As such, they would not belong in separate classes. Rather, "System", "Board", etc. would
be a value for an "Implemented-as" attribute of the Design Object class. Familiarity with the
classification concepts, along with examples, will assist the domain expert in defining a
quality class hierarchy.

6.2 Distributed VHDL Model Repository

The final reuse prototype demonstration featured the integration of two distributed VHDL model repositories.
It demonstrated support for uniform user access to source repositories with diverse implementation schema via
the information broker.

The focus of the final demonstration was two-fold:

to highlight the productivity gains realizable with the Sandpiper information broker as compared to
conventional approaches or current best practices for queries against multiple heterogeneous
databases, and
to show the generality of the solution and its relevance to other government and commercial
applications.

Two databases on separate machines were used to represent a distributed database. Both databases were
searched with a single query from the Sandpiper information broker. Corresponding searches were performed
on the individual databases using native search methods to verify the correctness of the results.

The first database was developed from Lockheed Martin Advanced Technology Laboratories-developed
VHDL models primarily associated with the RASSP benchmark program and other internal libraries. These
model libraries include performance and detailed behavior models for the UYS - 2 and SAR benchmark
programs, and register transfer level (RTL) models from the RASSP Model Year Architecture effort. Metadata
about these models is accessible through a keyword search engine developed by ATL. (The vocabulary for the
keyword search engine was significantly enhanced as a side benefit of this effort.)

The second database was developed using VHDL models associated with the RASSP legacy information
project managed by SCRA. These models are available through an HTML-link-based search engine developed
by SCRA.

The class and attribute definitions for the VHDL data and design objects were developed based on the GILS
ontology, the RASSP VHDL Modeling Terminology and Taxonomy document, and the bus attributes table
developed under the Model Year Architecture effort. Additional attributes were derived from common

datasheet usage.

Productivity gains with the Sandpiper information broker as compared to conventional approaches or current
best practices for queries against multiple heterogeneous databases were realized in two areas.

Resolution of ambiguities in terms

Search results improved for searches using attributes that had the same name, but different meanings.
This is an area where it was expected that the Information Broker would excel: a direct result of the
more rigorous modeling provided by the RASSP Reuse Classification Hierarchy.

Improved query quality for reduced search time

A significant improvement was realized in the quality of the search that could be specified and the
accessibility of the information.

An example of the problem with searching in a heterogeneous environment where a word can have multiple
meanings clarifies the issue. The SCRA website has models of FPGAs. These are models of the FPGA
themselves as opposed to the logic implemented in the FPGA. ATL uses the term FPGA to refer to the logic
that is to be modeled and/or implemented in an FPGA. Using the native search engines of each database, one
would find both models of FPGAs (on the SCRA site) and things implemented in FPGAs (on the ATL site).
Because of a lack of semantics on "FPGA", there is no convenient way to distinguish the FPGA models from
the FPGA implementations. Through the common vocabulary, the Information Broker allows the semantics of
FPGA to be captured through mapping to the "function" class. The semantics of "FPGA" for ATL are mapped
to the "implemented as" attribute. This difference enables Sandpiper to differentiate the two and provide
accurate search results.

The quality and accessibility of the design objects found by the Information Broker is enhanced in two ways.
First, when the recommended design-for-reuse approach is used, the information is complete and meta-data
about the information significantly more detailed than is traditionally supplied. Being able to search and
compare on the meta data and understanding the semantics of meta-data from multiple sources is the value
added by the information broker. Second, a special "Info" file and the use of viewers allows the designer to
do a quick preview of the model before downloading it. The designer spends less time downloading,
unzipping and untarring unwanted models and more time searching for an appropriate model. Although this
second aspect was not demonstrated, the information was captured to enable demonstration at a later time.

As previously mentioned, the RRCH is compliant with the RASSP VHDL Modeling Terminology and
Taxonomy. The Virtual Socket Interface Alliance (VSIA) is adopting the RASSP VHDL Modeling
Terminology and Taxonomy as the basis for its own taxonomy to describe intellectual property available from
multiple vendors, and to act as a clearing house for that information via the Internet. They have also
incorporated portions of the bus attributes table in their bus attributes document. The detailed ontology
definition and corresponding meta-data templates developed for this prototype are relevant not only to VSIA
but to numerous collaborative, concurrent engineering applications.

One lesson from the Satellite communications reuse application was reinforced and several new lessons were
learned in the course of developing this demonstration.

The importance of collecting the information as the models are developed was
reinforced

 This reduces the risk that portions of models will be missing or modified due to
uncontrolled reuse. It also increases the retained design knowledge should a designer leave
the organization. The quality of the information will be significantly higher if it is developed
while it is fresh, and not recreated by someone else after the fact.

Clearly defined organization of data during the data mining/collection process is
critical.

 Designate a reuse area and define its structure. The following suggestions
may help:

Figure out how you are going to organize the models; By program, By
function/abstraction, By developer or By group. Draw a diagram of the hierarchy. At
the bottom of the hierarchy you will have a directory for each model and its
associated data objects.
Avoid the proliferation of nearly identical packages with the same name.

We developed the following naming convention for packages. Put all the widely
used packages at the top of the hierarchy. Any packages derived from these (copied
and modified) should be renamed in some standard way and reside in the same
directory as the model that they are used with. If a package is at the top of the
hierarchy, no other package in the hierarchy should have that name. The names of
packages specific to models which reside in a particular model directory should
include the name and the source of the model. Since models are copied flat into the
user's local space, this will reduce the chances of packages being overwritten.

 Run all "extract" and "compile" scripts to verify proper execution.
"Extract" scripts copy all of the files required (including packages) for model
execution to a user directory. "Compile" scripts compile the files in the proper order.
Ensuring that these are correct will simplify incorporation into the database, later.
Do not use hard paths in the "extract" or "compile" scripts.

 References in the VHDL code to designer-created libraries need to be
handled appropriately.

In this environment, packages are copied into the user area and compiled into the
WORK directory. Where necessary, references in the VHDL code to these packages
were modified to reference the library WORK.

 Provide the developers with templates defining the type of data that needs
to be collected.

Review the collection and documentation process periodically.

B. Database schema

 Clearly, if the models are already in a database, the schema is defined. However, if the
legacy data is not in a database, this is a good opportunity to do a good job creating the
schema. In particular, staying close to the common vocabulary will reduce the time it takes to
integrate to the Information Broker.

C. Functional and domain specific schema

 Finally, when creating a functional schema, create it in the context of the world of
engineering functions. That is, separate out general functionality such as arithmetic functions,
filters and multiplexers, from the domain specific functionality. Look at the common
vocabulary: chances are, the more general functionality has already been classified. The
careful development of the domain specific schema will ensure good search results while
minimizing the effort required to define the schema.

Next: Conclusion Up: Appnotes Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 8 References Up: Appnotes Index Previous:6 Application of the RASSP Reuse Approach

Reuse Methodology and Implementation
Appnote
7.0 Conclusion
An application such as the RASSP Reuse Data Manager and its underlying Sandpiper Intelligent Information
Broker (IIB) can save organizations large sums of money by simplifying and enabling knowledge integration
tasks. The number and variety of potential applications for this technology is broad. Due to the level of
complexity, a significant applied research investment will have been made prior to productization of the IIB,
however. This kind of application also requires large amounts of test data and a number of test domains in
order to validate the approach and functionality of the solution. We have successfully proven, though, that the
broker technology is capable of resolving conflicts among terms, enabling integration across multiple, diverse
sources of information, and supporting collaborative engineering and design reuse on the RASSP program.

The technology prototyped as a part of this effort has far reaching implications for the development of
enterprise systems in the future, for the meaning of the terms open system and interoperability, and for any
situation requiring integration of multiple applications, sources of business and technical knowledge, or a
combination of the two. The application of knowledge representation concepts to problems of concurrent
engineering, collaborative work, and integrated manufacturing is relatively new to the commercial community,
though work has been funded in this and related cognitive science areas for a number of years. The problems
related to information access and more importantly, decision support, in a collaborative engineering
environment are difficult to solve due to the diversity and potential nature of the data and applications present
in the environment. Issues involving information access across databases and applications in general are
extremely complex, in part because each database instance or application is in all likelihood distinct, frequently
poorly documented, and the individuals who developed them may no longer be available.

A significant portion of the work involved in establishing requirements for a system capable of
enterprise-wide collaborative engineering and design reuse support, in soliciting feedback from the user
community, in defining the ontologies and processes and in preparing the demonstrations described herein
was accomplished essentially as an applied research and consulting task. This task required resources well
beyond what was originally anticipated by the program, as is frequently the case with data warehouse and
other database applications development. As the requirements became clearer and the task more and more
well-defined, the work required to fulfill those requirements and our collective vision increased as well. The
knowledge gained through this process, however, was also significant and will be applied to many other
programs and opportunities in the future.

Next: 8 References Up: Appnotes Index Previous:6 Application of the RASSP Reuse Approach

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Up: Appnotes Index Previous:7 Conclusion

Reuse Methodology and Implementation
Appnote
8 References
Armstrong Laboratory, "IDEF3 Process Description Capture Method Report", AL-TR-1992-0057, Wright
Patterson Air Force Base, Ohio, 1992. [AL_92] (reference is not available)

American National Standards Institute, ANSI/NISO Z39.50-1995, Information Retrieval (Z39.50):
Application Service Definition and Protocol Specification, 1995. [ANSI_95]

International Electrotechnical Commission, "Standard Data Element Types with Associated Classification
Scheme for Electric Components -- Part I: Definitions, Principles and Methods," Draft International Standard
1360-1, Netherlands, September 1994. [IEC_1994] (reference is not available)

A. Farquhar, R. Fikes, J. Rice. "The Ontolingua Server: a Tool for Collaborative Ontology Construction".
Proceedings of the 1996 Knowledge Acquisition Workshop (KAW96), KSL-TR-96-26, November 1996.
[KSL_96a]

R. Fikes, A. Farquhar, W. Pratt. "Information Brokers for Gathering Information from Heterogeneous
Information Sources", Proceedings of the Ninth Florida Artificial Intelligence Research Symposium (FLAIRS
'96), John H. Stewman [ed], pp.192-197, Key West Florida, May 1996. [KSL_96b]

Lockheed Martin Advanced Technology Labs., "Domain Independent Reuse Methodology Development",
Camden, New Jersey, 1996. [Lockheed Martin_96a]

Lockheed Martin Advanced Technology Labs., "The OMT Model of the RASSP Design Object Class
Hierarchy", Camden, New Jersey, 1996. [Lockheed Martin_96b] (reference is not available)

Meta-data Coalition, Version 1.1 Meta-data Interchange Specification, August, 1997. Available on the Internet
at http://www.he.net/~metadata/standards/toc.html [MDIS-11]

Open Systems Environment Implementors Workshop / Special Interest Group on GILS, "Application Profile
for the Government Information Locator Service (GILS)", November, 1997. Available on the Internet at
http://www.usgs.gov/gils/prof_v2.html. [OIW_SOG-LA_97]

"REUSE Methodology and Implementation Requirements Version 1.0 ", Lockheed Martin ATL, November
1995. [REUSE_RQTS_95]

SDRC, "Metaphase 2 -- Object Management Framework User's Manual", Milford, Ohio, 1997. [SDRC_97]

Sandpiper Software, Inc. and Stanford University Knowledge Systems Laboratory, "Application of
Ontology-Based Knowledge Representation to Design Reuse", Saratoga, California, 1997. [SSI_97]

Appnotes

Enterprise Application Note
Process Modeling Application Note

VHDL Modeling Terminology and Taxonomy Specification

Next: Up: Appnotes Index Previous:7 Conclusion

Approved for Public Release; Distribution Unlimited Dennis Basara

