
RASSP Token-based Performance Modeling
Appnote
Abstract
Efficient design of complex systems requires modeling at multiple abstraction levels. This RASSP application
note describes token-based performance modeling at an abstract level and how to use it within a
rapid-prototyping environment. It describes rapid-prototyping methods developed and demonstrated on the
RASSP project that improve simulation speed by several orders of magnitude.

Purpose
This application note should be read by system architects, software designers who are responsible for
deciding how to partition software among multiple computer nodes, and hardware designers who are
responsible for selecting appropriate network configurations and components. The basic concepts can be
applied to other systems and other levels of abstraction.

Roadmap
1.0 Introduction to Token-based Performance Modeling

1.1 What is it
1.2 Why and when is it needed
1.3 How it fits into overall design process

2.0 Purposes

2.1 Starting Information
2.2 Result Information

3.0 Metrics

3.1 Throughput
3.2 Latency
3.3 Utilization
3.4 Time-Lines

4.0 Performance Modeling Environments

4.1 Language and Tool Requirements
4.2 Proprietary Languages/Tools
4.3 Open-Standard Languages
4.4 Open-Standard Language-based Environments

5.0 Method

5.1 Descriptive Paradigm
5.2 HW/SW-Codesign process
5.3 Steps for Token-Based Performance Modeling

5.3.1 Hardware Description
5.3.2 Software Description
5.3.3 Simulation

5.3.4 Postprocessing/Analysis
5.3.5 Recursion
5.3.6 Model Validation/Maintenance

6.0 Example - SAR System

7.0 References

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 2 Introduction Up: Appnotes Index Previous:Appnote TOKEN Index

RASSP Token-based Performance Modeling
Application Note
1.0 Introduction
RASSP application notes augment course modules and case studies about digital system design. The material
is applicable to the design of complex systems such as digital signal processing (DSP) or control systems and
other multiprocessor systems. The application notes serve to document the design methods that were
developed on the RASSP program. This application note describes the purposes and methods for token-based
performance modeling. Additional details regarding processor types, model hierarchy and abstractions,
common language and vocabulary can be found in the VHDL Terminology and Taxonomy document.

1.1 What is Token-based Performance Modeling

Computational Performance is a collection of measures relating to the timeliness of a system design in reacting
to stimuli. Measures associated with performance include response time, throughput, and utilization. The
generic term performance model refers to a model of any abstraction level that describes the timing
relationships without resolving non-time-related aspects, i.e. values, formats or functions.

A highly abstract performance model could resolve the time consumed by cluster of processors to perform
major system functions like search, FFT or FIR. A less abstract performance model could describe the time
required to perform detailed tasks such as a single CPU memory access. In the context of Lockheed Martin
Advanced Technology Laboratories (ATL) RASSP system design, the typical abstraction level of a
token-based performance model is at the multiprocessor network level; sometimes called a network
architecture performance model.

Token-based performance modeling is defined in the RASSP Taxonomy as a performance model of a
system's architecture that represents data transfers abstractly as a set of simple symbols called tokens. Neither
the actual application data nor the transforms on it are described other than that required to control the
sequence of events in time. The application-data is not modeled, while only the control-information is
modeled. For example: answer = 5 is not modeled, but control node = search is modeled.

Typically, the token-based performance model resolves the time for a multiprocessor networked system to
perform major system functions. It keeps track of the usage of resources such as: memory buffer space,
communication linkages, and processor units. The structure of the network is described down to the network
node level. The network nodes include processor elements, network switches, shared memories, and I/O
units. The internal structure of the network nodes is not described in a Token Based Performance Model.

1.2 Why and when is Token-based Performance Modeling needed

The growing reliance on commercial-off-the-shelf (COTS) processing components and state-of-the-art
comprehensive simulations of the internal logic of individual integrated circuits (ICs) have reduced the number
of design errors to the point where the majority of design faults now occur in the component requirements
specification. It is now becoming expedient to focus on the system verification process, where the IC
requirements are developed.

Digital systems are growing ever more complex with improving technology and integration densities. In
particular, multiple processor elements are harnessed to extend a system's processing power beyond that of

single processor technology. Conventional design methods such as physical prototyping or gate level
simulation, become prohibitively costly and time consuming for such systems.

Unlike the testing of an individual IC design which typically requires on the order of thousands of
clock-cycles or a fraction of a second of simulated time, digital system simulation typically requires the
simulation of significant portions of an application algorithm spanning several seconds or minutes of
simulated time. The simulation of multiple cooperating Processing Elements (PEs), each executing many
millions of instruction cycles per second (MIPS), over such time spans represents the execution of an
extraordinarily large number of events. Therefore, simulation of a multi-processor system at or below a
chip-behavior level becomes impractical due to the large memory and simulation run-time that would be
needed.

However, full-system simulations are required to validate the overall system concept; to jointly optimize the
hardware and software; and to investigate the interactions between cooperating subsystems prior to embarking
on time-consuming and detailed designs that could unknowingly be misguided. Fortunately, the number of
events can be reduced by adroitly using abstractions without jeopardizing the accuracy or validity of the
model. Therefore, selecting an appropriate modeling abstraction level is crucial for timely design.

Simulations must execute and return results from simulation runs in roughly an hour or less to permit
designers to rapidly explore, optimize, and verify system design solutions. Such a turn-around time allows
several design iterations per day and ensures convergence on a valid system design in a matter of days instead
of months. Therefore, more abstract prototyping methods are needed for verifying all functional aspects of a
complete integrated system early in the design process.

Token-based performance modeling is an abstract form of system modeling that addresses these challenges.
The simulations help identify bottlenecks, validate early system expectations or coarse timing requirements,
and highlight initial design options.

1.3 How it fits into overall design process

Token-based performance modeling supports Lockheed Martin ATL's System Design and Architecture Design
process as shown in Figure 1 - 1.

As the overall system requirements are established by the System Design process, the architecture design
process decomposes the overall requirements into a set of requirements for the constituent building-blocks that
together satisfy the overall system requirements. Figure 1 - 1 shows the relationship of performance modeling
to the overall design process.. The architectural building-blocks consist of software tasks, processing
elements, memories, I/O units, and a network that connects them together.

Figure 1 - 1: The RASSP design process consists of system definition, architecture definition, and detailed
design. The shaded area indicates where token-based performance modeling occurs.

The architecture design process proposes candidate solutions that consist of combinations of specified
processor elements, linkages, memories, network configurations, and application-software mappings. The
components are specified in terms of their relevant performance ratings. The token-based performance model
is used to test how well various candidate solution combinations meet the overall requirements.

Feed-back from the token-based performance model is used to optimize the architectural selections and
eventually to select the best architecture for meeting the given requirements. As a result of the performance

modeling, the selected architecture is specified in terms of performance requirements for each of its constituent
building-blocks.

The requirements for each building-block from the architectural specification are passed down to the detailed
hardware/software design processes as shown in figure 1 - 2. As the component designs are realized or
acquired for testing during the detailed design process, the actual parameters of the component's specification
become known to a higher degree of confidence and accuracy. In some cases, the proposed requirements for a
component cannot be met. In other cases, the requirement can be met or exceeded more easily than expected.
In either case, the resolved specifications from the detailed design process are periodically injected back up to
the architecture design process's token-based performance model to investigate component requirement
reallocations and to ensure that the emerging design still meets the overall requirements.

Figure 1 - 2: Levels of the Design Process.

Next: 2 Introduction Up: Appnotes Index Previous:Appnote TOKEN Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 3 Metrics Up: Appnotes Index Previous:1 Introduction

RASSP Token-based Performance Modeling
Application Note
2.0 Purposes
The primary purposes of a token-based performance model are to determine the sizes, architecture,
software-to-hardware mapping, and performance requirements for each of the major components of the
system. Specifically, it determines the sufficiency of the following selections in meeting the system processing
throughput and latency requirements:

number and type of processor elements,
the size of memories and buffers,
network topology (bus, ring, mesh, cube, tree, or custom configuration),
network bandwidths and protocols,
application partitioning,
mapping, and scheduling of tasks onto processor elements,
flow control schemes.

The total processing latency, throughput, and physical constraints on the processing system drive the
optimization of the processing architecture in terms of the number and type of processing elements, and the
memory and buffer requirements.

The network architecture specifies the topology of the network, as well as the bandwidth and protocol
requirements for the individual network links. Typical network topology families for digital processing
systems include: bus, ring, mesh, cube, tree, and custom configurations. Topologies are selected to match the
particular data transfer patterns of the specific application. Performance simulations provide information
concerning link and processor utilization measurements for specific topology, processor element (PE) type
and software mapping combinations.

The software-to-hardware mapping divides the application algorithm into separate tasks, which are allocated to
the individual PEs. The tasks are then scheduled according to their relative data dependencies and the overall
processing latency constraints. Various combinations of mapping and scheduling methods can be tested and
selected. For example, depending on the application, the mapping and scheduling can be assigned at
design-time (i.e. statically) or at run-time (i.e. dynamically).

There is no efficient, general, closed-form, optimum solution to the partitioning, mapping, and scheduling
problem. It is an not-polynomial-(NP)-complete problem. Consequently, many iterative, heuristic, and
manual techniques are currently applied. The performance models facilitate these methods, as shown in figure
2 - 1.

Figure 2 - 1: The Hardware/Software Co-Design Process

2.1 Starting Information

Upon initiating performance modeling activities within the architecture design process, the designer bases
selections on the following requirement information that is derived from the system design process:

Mathematical application algorithm to implement.
Minimum allowable processing throughput (rate).
Maximum allowable processing latency (delay from input to output).
Maximum allowable power consumption.
Maximum allowable volume (or maximum HxWxL dimensions).
Maximum allowable weight.
Input/Output/Control interface specifications.

Subject to the following goals:

Minimize development risk, cost, and time.
Minimize life-cycle costs. (Includes consideration of maintainability, repairability, reliability,
expandability, supportability, and etc..)

The information above is the information that the performance modeling design activity is based upon and
uses as input to the process.

2.2 Results Information

Token-based Performance Modeling is conducted to support the Architecture Design process. The goal of the
Architecture Design process is to select an architecture that best satisfies the criteria of section 2.1 above. In
this role, the performance model is used to evaluate architecture candidates to determine the :

Overall processing throughput
Overall processing latency
Resource Utilization (processor, memory, link)

An architecture is the combination of processing element types as distinguished by their unique processing
rates, memory sizes and locations, and network configuration, bandwidth, and protocol types. There are
many potential architectural combinations, and there are many permutations for mapping the application
algorithm onto each architecture. The performance model helps the designer understand the impact of
architectural/mapping decisions and helps develop strategies for quickly arriving at an optimal solution. The
following output from performance models guides the development process:

Time-line graphs of processing, idleness, and communication activities.

Utilization statistics for links, processors, and memories.
Load balancing statistics.
Identification of bottlenecks and critical paths of processing.

When the designer selects the final architecture and mapping, the performance model will have validated the
solution in terms of its overall processing throughput and latency.

Next: 3 Metrics Up: Appnotes Index Previous:1 Introduction

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 4 Performance Modeling Environments Up: Appnotes Index Previous:2 Purposes

RASSP Token-based Performance Modeling
Application Note
3.0 Metrics
The primary measurements associated with token-based performance modeling are throughput, latency, and
utilization. Time-line activity graphs display the concurrency of events as a function of time. Related
measurements include efficiency which can be derived from the primary measurements as a ratio compared to
their theoretical maximum values.

3.1 Throughput

Throughput is the rate at which data is processed by the system. It is usually specified in terms of the number
of data-elements or operations that can be processed per unit time. Throughput may be specified as an
instantaneous peak or a sustainable average over time. The latter is often more meaningful in determining
system size requirements if there is sufficient memory to spread the processing load over time.

3.2 Latency

Latency is the time delay between when an activity starts and when it completes or reaches an equivalent
point. Latencies typically apply to processing or data-transfer activities. For instance, a processing latency is
the time between when a piece of data is applied to a processing system and when the result due to that piece
of data becomes available at the output of the processing system. Or for a communication latency, the latency
for a packet transfer is the time delay between when the first word of data transfers from the source device
until that first word arrives at the destination device. Note that this definition does not consider the time to
transfer the entire packet, as that would be a function of the packet length and the transfer rate (throughput).
By defining the metrics in this way, the delays and rates are orthogonal; so latency and throughput are
specified separately.

3.3 Utilization

Utilization is the percentage of time that a resource is actively performing an application activity. The opposite
of utilization is idleness. Utilization percentages are typically calculated for critical system resources such as
processor elements and network linkages or buses.

The instantaneous utilization of a memory element may also be recorded or plotted. Such a measurement is not
time-based, but rather expresses the percentage of memory-space consumed or allocated to application data at
a given instant in time. The peak value is typically most relevant, and the instantaneous value can be plotted as
a function of time.

To calculate a time-based utilization, the total time that a resource is in-use must be accumulated over some
time interval. The interval is often assumed from time-zero until several iterations of the algorithm processing
have completed to achieve a good steady-state value. Such a time-interval may include some dead-time, as
systems can take a while for the data to get distributed to the devices and to reach steady-state processing. If
only a few sets of data are applied to the system and the simulation is run until all the data has been processed,
then on the trailing-end, many of the devices have long-finished by the time the last device finishes. These
effects produce lower utilization percentages than might be expected intuitively.

Alternatively, some designers specify the interval from the first time a given device was used until the last time
it was used. However, even this definition can yield misleading results. For instance, when a device is used
only once, for only for a very small portion of the total simulation duration, this method would report 100% -
utilization even though the device was hardly used.

Therefore, it is recommended that the method for defining the utilization interval be stated and understood
while analyzing time-based utilization numbers.

3.4 Time-lines

An activity time-line graph displays the concurrent activity of a set of system resources as a function of time.
Typically, the times when a processor is actively computing an application task are shown as a dark or colored
bar. Colors often identify the particular software tasks being executed. The intervening times, when a
processor is idle while waiting for input data to arrive or while waiting for output data to be sent away, are
shown as white-space. Such a plot is specifically called a processing time-line. Processing time-lines provide
graphic visualization that shows the designer the patterns of processing concurrency in the design. It also
helps reveal bottle-necks and the critical processing paths.

In a similar way, the data transfer activity across the network linkages and buses can be displayed on a
time-line graph. Such a plot is specifically called a communications time-line. Communication time-lines help
the designer visualize the traffic flow through the system as a function of time. They also help to identify
hot-spots or bottlenecks in the architecture or mapping. Such visualization assists in evaluating architectures
and guides the designer in balancing the processing load and transfer patterns to achieve the best processing
yield from a given architecture.

Although primarily used to display hardware activity, time-lines can also display the activity of software tasks
as a function of time. Such a graph is called a software time-line. Colors can be used to identify the particular
processor a task is executing on.

Next: 4 Performance Modeling Environments Up: Appnotes Index Previous:2 Purposes

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 5 Performance Modeling Method Up: Appnotes Index Previous:3 Metrics

RASSP Token-based Performance Modeling
Application Note
4.0 Performance Modeling Environments
A modeling environment is characterized by the language(s) used to describe the system under design as well
as the tools used to work with the models.

4.1 Requirements for a Performance Modeling Environment

The modeling language must possess convenient methods for expressing the structure, functionality, and
temporal concurrency aspects of a complex systems. Ideally, the descriptive constructs should be standard to
support model interoperability and re-use.

The modeling environment must provide a means to conveniently explore hardware/ software interaction. To
facilitate such interaction, the hardware must be described independently from the software, such that a given
hardware architecture can be directed to execute a variety of distinct application programs without modification
to the hardware model. Conversely, a given software application program should be executable on a variety of
candidate hardware configurations.

The network topology must be specified independently from the behavioral models of the network hardware
components. Additionally, the component models must be modular so that network components, such as
processor elements, can be interchanged without redesigning the network or the component behavior models.

An important feature for the simulation models at the performance level is extensibility to greater levels of
detail to support the subsequent design stages. For instance, there must be a means to add functionality to
produce abstract behavioral model based virtual prototypes, and synthesizable components.

Another important aspect is the model's efficiency, such that it offers quick simulations that permit the rapid
exploration of many design alternatives. The modeling environment must inject minimal overhead such that a
significant duration of arbitrarily complex systems and functionality can be simulated.

4.2 Proprietary Language Based Environments

Several excellent performance modeling tools exist on the open market. For example, BONES is a Block
Oriented Network Simulation environment produced by the Alta Group Of Cadence Design Systems.
Workbench is a system simulation environment produced by Scientific and Engineering Software (SES).
Foresight is a system design environment produced by Nu Thena Systems. Each of these tools provide
libraries and convenient environments for abstract network architecture simulations.

In BONES, the primary method for describing functionality and structure is through the interconnection of
blocks in a graphical paradigm. SES Workbench and Nuthena Foresight promote C and Pascal-like language
based methods for describing functionality while providing graphical means for describing topological
information.

Each of these companies is the sole definer of language features and provider of tools for their respective
environment and language variant. These products tend to focus on the system design issues and do not
emphasize linkage to the detailed hardware and software design layers.

4.3 Open-Standard Languages

Standard languages such as (VHSIC Hardware Description Language) VHDL, Verilog, C, C++, or Java offer
great potential for integration with other design models that are already based on these languages. However,
conventions for their usage in performance modeling have not been previously developed.

The most general purpose languages, such as C or C++, do not contain standard notational constructs for
topological structure or concurrent time delays. Although such concepts can be implemented with some added
complexity and awkwardness in these languages, the lack of standard methods still leaves each implementor
applying incompatible solutions. Additionally, the general purpose languages provide no inherent means to
transfer design information to the lower, more detailed, design layers such as RTL.

In contrast, VHDL contains standard constructs for describing topological structure, concurrent time delays,
and arbitrarily abstract functionality IEEE Standard VHDL Language Reference Manual. The description of
structure and functionality is inherently independent in VHDL.

Verilog is a competing hardware language with VHDL. Although Verilog contains standard methods for
describing topological structure and concurrent time-delays, it is specifically aimed at the detailed (Gate Level)
hardware design task. Verilog does not possess as powerful mechanisms for spanning the higher abstraction
levels such as arbitrary compound data types or custom signal resolution functions that are needed when not
modeling pure electrical values.

Of the standard languages, VHDL is uniquely capable of spanning the necessary abstraction layers: from
mathematical algorithms down to RTL and logic. It can provide a direct coupling and transfer of design
information between the levels.

VHDL is a stable IEEE and ANSI standard language for which a diversified array of vendors offer compilers,
simulators, and model libraries. For the above reasons, VHDL became the language of choice for
implementing performance models on the RASSP program.

4.4 Open-Standard Language Based Environments

Several approaches to standard language-based performance modeling have been developed under the RASSP
program.

The Performance Modeling Library (PML), and the PML-Library based COSMOS (formerly
Performance Modeling Workbench - PMW) were developed by the Honeywell Technology Center
(HTC) and Omniview respectively.
Advanced Design Environment Prototype Tool (ADEPT), was developed at the University of Virginia
(UVa).
The Lockheed Martin Advanced Technology Laboratories Library (ATL-Lib).

All three approaches establish a computer assisted environment for analyzing and designing complex systems
comprising large numbers of hardware and software components. All are composed of model-based
representations of system building blocks. All three support an ordered architecture development process
targeted at rationalizing architectural feature selection against measurable performance goals. This process
combines traditional system decomposition techniques with simulation-based performance experimentation
and analysis to support rapid system prototyping in a virtual environment.

The ADEPT environment describes systems in a very abstract way in terms of servers and queues. It forms a
well-matched tool for queuing system investigations. ADEPT's primitive library is very versatile and can be
used in a variety of ways to describe the performance related aspects of a digital processing system or any of
its computational devices.

In the ADEPT environment, a system model is constructed by interconnecting a collection of ADEPT

modules. The modules model the information flow, both data and control, through a system. Each ADEPT
module is implemented in VHDL and has a corresponding colored Petri net (CPN) representation, which is
based on Jensen's CPN model. The modules communicate by exchanging tokens, which represent the
presence of information, using a uniform, well defined handshaking protocol. Higher level modules can be
constructed from the basic set of ADEPT modules. In addition, custom modules can be incorporated into a
system model as long as the handshaking protocol is adhered to. The entire set of ADEPT modules is divided
into six categories. A more detailed description of the entire ADEPT module set can be found in the following:

The codesign of Embedded Systems: A United Hardware/Software Representation
A Generalized Timed Petrinet for Perfomance Analysis
Modeling a Real-Time Multitasking System in a Timed PQ Net

The PML and ATL libraries operate on a different paradigm level than ADEPT. They can be considered to be
specific to the task of network architecture design. In comparison to ADEPT, their main primitives consist of
elements representing complete network components, such as processor elements, network switches, and
buffer-memories.

Honeywell has developed the PML in VHDL using standard commercial VHDL capabilities. See the
following papers for a more thorough discussion: VHDL Performance Models, Evaluating Distributed
Multiprocessor Designs, Advanced Multiprocessor System Modeling. The library consists of high-level
building blocks such as configurable input/output devices, memories, communication elements, and
processors. The processor model is the key element to the performance modeling methodology as it facilitates
hardware/software codesign and co-analysis. These building blocks can be rapidly assembled and configured
to many degrees of fidelity with minimal effort. Standard output routines tabulate and graph performance
statistics such as utilization and latency. These statistics can be used for performance verification studies.

The differences between the Honeywell PML and the UVa ADEPT can be traced to two factors. First, the
Honeywell PML is intended to develop performance models of systems that include more functional
information than performance models developed in ADEPT. This inclusion of more functional information has
the potential to ease the token-to-value translation process in mixed-level or abstract-behavioral modeling. This
difference can be attributed to the different requirements to which the libraries were designed. The ADEPT
library elements have a direct mapping to Petri net components which allows more formal analysis techniques.
The PML elements do not have that requirement.

Second, the actual implementation of tokens and token flow in the PML and ADEPT is different. For
example, in PML, the tokens include routing information that is used to direct the flow of tokens over buses
with multiple sources and/or sinks. In ADEPT, each signal has only one source and one sink, so routing
information is not required. Some of the differences in implementation can be traced to the different levels of
detail that are intended to be expressed in each tool as described above.

The performance model library developed by ATL and described in a paper, VHDL-based Performance
Modeling and Virtual Prototyping is similar to the PML. The ATL models use the Processor-Memory-Switch
(PMS) paradigm to describe the architecture of digital systems. As in the PML, separate representations for
hardware and software models are used. However in the ATL system, changing software models does not
require re-compilation of the hardware processor model. The ATL library consists of a processor element,
switch element and a shared memory element model. The processor element is conceptually divided into two
concurrent processes: the computation agent and the communications agent. The computation agent has four
basic instructions: compute, send, receive, and loop.

In general, the differences between the ATL and PML models are that the PML was designed to be more
general purpose and configurable. The trade-off is that the PML models allow rapid model construction at
some performance expense. The ATL models are more custom in nature but are somewhat faster. This is a
classic trade-off in modeling systems.

Next: 5 Performance Modeling Method Up: Appnotes Index Previous:3 Metrics

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 6 Example: SAR System Application Up: Appnotes Index Previous:4 Performance Modeling
Environments

RASSP Token-based Performance Modeling
Application Note
5.0 Performance Modeling Method

5.1 Descriptive paradigm

The Processor-Memory-Switch (PMS) paradigm [9] describes the hardware architecture of a processing
system as the structural interconnection of PEs, network switch elements (SEs), and shared memory elements
(MEs). The interconnecting links are considered as monolithic data conduits that may represent, for example,
fiber, coax, twisted pair, or bundles of conductors. The links are characterized by their data transfer rate, fixed
transfer latency, and protocol relative to its performance as a function of demanded load. The PEs, SEs, and
MEs are described behaviorally, and therefore possess no further decomposition of internal structure as is
consistent with network performance modeling.

5.2 HW/SW-Codesign process

The hardware/software co-design process is characterized by making design decisions and trade-offs between
hardware and software in a cooperative and iterative fashion. This concept is in contrast to traditional
approaches where the hardware architecture is selected and set prior to designing the software, or vice versa.
Approaches without co-design preclude potentially superior solutions because decisions are
made in the absence of total design information.

In ATL's RASSP concept, co-design begins immediately after the requirements for the signal processing
subsystem have been established and continues throughout the remainder of the process. It begins with
trade-offs in the initial decisions and occurs at an abstract level. The co-design continues with joint trade-offs
occurring down to the very detailed levels of hardware and software, where applicable.

Figure 5 - 1 below illustrates the co-design concept as applied to Lockheed Martin ATL's performance
modeling environment. The shaded block on the left indicates the description of the candidate hardware
system, while the shaded block on the right indicates the description of the system's application software. The
hardware is described as the topological interconnection of the building-block element models. The software is
described at several levels beginning with the data-flow-graph (DFG) of the application and resolved to
sequences of abstract software tasks for each target processor element. The target software programs are the
result of a partitioning, mapping, and scheduling process. The proposed hardware and software design are
brought together during simulation. The system is simulated as the software executing on the hardware. The
abstract target software programs are interpreted by the abstract hardware models. The results of simulation
consist of time-lines and utilization statistics that are then analyzed for improvements to the hardware, the
software, or combinations of both.

Figure 5 - 1: Hardware/Software Co-Design Process facilitated by performance simulation.

The following sections summarize the steps to be used for conducting performance modeling. This discussion
is particularly appropriate to the ATL performance model library. However, similar methods apply for the
Adept, Cosmos, or other modeling environments. The outlined methods can be adapted accordingly..

5.3 Steps for Token-Based Performance Modeling

The following sections summarize the steps to be used for conducting performance modeling. This discussion
is particularly appropriate to the ATL performance model library. However, similar methods apply for the
Adept, Cosmos, or other modeling environments. The outlined methods can be adapted accordingly.

5.3.1 Hardware Description

The following are guidelines for selecting the appropriate model abstraction level for network modeling. These
are especially useful for multiple-instruction, multiple-data (MIMD) architectures with large granularity
mappings.

Resolved events should be on the order of thousands of clock-cycles. For example, the begin and end events
could be resolved for a data transfer as shown in figure 5 - 2, or for a PE computing a vector arithmetic
operation, such as Fast-Fourier-Transform (FFT), as opposed to a single clock-cycle scalar operation.

Figure 5 - 2: Resolution of time-events.

Contention for memory, communication, and computation resources should be resolved to accurately account
for competing interactions. This can be done by allocating specific resources for the period of use and
blocking competing operations while needed resources are not available.

Major system events of interest should be modeled for visibility into the processing. For instance, the
transition between major sections of an algorithm can be identified.

In general, smaller sequential events whose time-delay and sequence can be accurately predicted should be
aggregated into a single pair of begin-end events representing the start and conclusion of the group. The
largest groups, for which accurate time delays can be predicted, should be formed. For example, the
uni-processor tasks between inter-PE communication events of a partitioned algorithm can usually be
aggregated.

Inter-device communication events should be resolved to account for network traffic. Communications should
be resolved only down to the packet or message level as opposed to word transfer level. For instance, only the
beginning and ending of a packet transfer need be resolved, assuming that the time for the packet transfer to
complete (once started) is determined by the packet length, the transfer rate, and a fixed overhead.

Processor Element

The PE for a Multiple-Instruction-Multiple- Data (MIMD) system is conceptually divided into two concurrent
processes: the computation agent, and the communications agent. The PE contains local memory for storage
of the software program and working data as shown in figure 5 - 3. The performance model of the PE does
not store any actual data. Rather, it keeps track of how much data would be stored in various logical queues
by the application algorithm.

Figure 5 - 3: Processor Element Model

The communications agent handles the reliable transfer of data between the other PEs and the local PE's
memory queues. It implements whatever link layer protocols, packetization, and retry or blocked message
resumption that are needed to transfer and receive arbitrary length data messages over the network. Upon
reception of data, the communications agent increments the data amount of the destination queue by the
received amount. If the computation agent was blocked waiting for the received data, the communications
agent would allow the computation agent to resume. Likewise, upon sending data, the communications agent
decrements the data amount of the local source queue by the transmitted amount.

The computation agent represents the hardware side of the interface between the hardware and software
because it interprets the software application program instructions into specific hardware actions. The
computation agent executes a partitioned flow graph. A simple example of a computation agent for a statically
scheduled, single-thread-per-PE system is described here. Extensions to other cases can be made as
appropriate. Within the scope of the network performance level, the abstract instruction set of the computation
agent may consist of four basic instructions: compute, send, receive, and loop. Although these instructions are
abstract, their interpretation by the PE performance model is perfectly analogous to assembly code execution
by an ISA model. The computation agent maintains a program counter to keep track of the software
application program instruction it is executing.

The compute instruction represents the execution of a portion of the application algorithm within the PE's local
memory. It is modeled in the performance model as a simple time delay. The compute instruction contains one
operand specifying an algorithm step or corresponding computation time. The length of the time delay is equal
to the time required for the target PE to perform the respective algorithm step. The time-delay value depends
both on the type of PE and on the operations contained in that step of the algorithm. The time values can be
obtained a variety of ways depending on the case. For COTS PEs, reliable time measurements for common
processing functions, such as FFT, or vector multiply can often be obtained from data books and other
published sources. Benchmark measurements of actual or typical algorithm segments can also be taken from
an ISA simulation model or physical PE for a COTS processor when reliable measurements for the required
operations cannot otherwise be obtained. For custom PE's that have not been constructed, either quick
estimates based on intrinsic operation counts and the projected PE operation rate can be made or benchmarks
can be taken from ISA simulation models. Upon completion of a computation delay interval, the computation
agent interprets the next sequential instruction in the software application program. Because this is a
performance model, no application computations are actually performed in the model.

The send instruction represents an inter-PE data transfer. It contains three operands: the local and destination
queue numbers, and the data amount. Other operands, such as priority may be modeled. When the
computation agent encounters a send instruction, the computation agent directs the local communication agent
to transfer data from a local memory queue to a queue in another PE. If the communication agent can accept
the command immediately, the computation agent continues sequencing to the next instruction in the software
application program. Otherwise, the computation agent blocks execution until the communication agent
resumes. Many systems feature a command queue for the communication agent that can be modeled to
minimize such blocking. No data is actually transferred in a performance model. The model describes only the
effects of transferring data, such as port allocation for the amount of time required to send the specified data
amount and memory allocation amount for storing the equivalent data.

The receive instruction represents the consumption of transferred data. It has two operands: queue number and
data amount. If the sufficient amount of data had arrived in the specified queue prior to encountering a receive
command, then the computation agent decrements the specified queue by the specified receive amount. Then it
continues to sequence to the next instruction in the software application program. Otherwise, the computation
agent blocks until sufficient data in the specified queue arrives.

Switch Element (SE)

The SEs are multiple port entities that route data packets or messages from one port to another port. When
connected to other SEs via links to form a network, the SEs provide a means to transfer data from one PE to
any other PE or ME within the processing system. For a network-performance model, no data is actually
transferred over the links. However, a link's bandwidth is allocated for the appropriate duration of a data
transfer to account for the movement of data over the given link. Various switching schemes may be modeled,
such as common-bus, circuit-switched, packet-switched, or store-and-forward. Each scheme exhibits unique
behavior under contention for common network links by competing PE nodes. The effects of such contentions
are especially critical to the successful design of real-time, high-throughput, signal processors for many
applications. An SE can be modeled as a set of processes handling the activity at each of the ports, as shown
in figure 5 - 4.

Figure 5 - 4: Switch Element Model for Crossbar

Shared Memory Element (ME)

The shared ME represents a common data storage resource accessible by PEs over the network. Its model and
role are similar to that of the local memory of a PE.

Modeling Issues and Techniques

The PMS paradigm described above can be implemented with VHDL in various ways. We advocate a direct
approach where the network topology is described directly in terms of a VHDL structural description. Because
the physical structure of digital systems typically consists of a hierarchy of modules, boards, chassis, and
racks, we pattern the structural hierarchy after the physical hierarchy. The PEs, SEs, and MEs become the
leaf-level components of the structural description. The signal links of the structural models interconnect the
leaf-level components to each other.

Because the abstract network-level paradigm transfers only symbolic tokens representing data messages
instead of actual data values, a token composite type must be defined. The signals and component ports are
declared to be of type token.

The use of a common token definition is critical for the re-use and interoperability of abstract models from
diverse sources such as libraries and other project groups. Honeywell Technology Center has proposed a
token type convention for performance modeling [10], as shown below.

 TYPE utoken IS
 RECORD
 destination : name_type;
 source : name_type;
 t_type : token_type;
 size : data_size;
 value : INTEGER;
 id : uGIDType;
 start_time : TIME;
 priority : INTEGER;
 state : State_type;
 protocol : Protocol_Type;
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;
 param_int : INTEGER;
 END_RECORD

The behaviors of the network components (PE, ME and SE) are modeled in procedural VHDL in accordance
with the paradigm described in section 5.1, 5.3.1 and 5.3.2. Because the duration of modeled events in on the
order of thousands of clock cycles, the models should be asynchronous, event-driven models, as opposed to
synchronous clock-driven models. This minimizes the number of events to be executed by the VHDL
simulator and avoids the inefficiency of evaluating many clock events for which no meaningful system event
occurs.

5.3.2 Software Description

In the ATL approach, the signal processing application algorithm is first represented as a data flow graph
(DFG). The DFG is a directed graph that describes an application algorithm in terms of the inherent data
dependencies of its mathematical operations. The graph nodes represent mathematical operations, and the arcs
that interconnect the nodes represent the data dependencies and form the logical data queues. The DFG
conveys the potential concurrencies within an algorithm, which facilitates parallelization and mapping to
arbitrary architectures. The DFG nodes usually correspond to DSP primitives, such as FFT, vector multiply,
convolve, or correlate.

For a given network architecture, the application flow graph is partitioned for allocation to PEs in the system.

Shared Memory Element (ME)

The shared ME represents a common data storage resource accessible by PEs over the network. Its model and
role are similar to that of the local memory of a PE.

Modeling Issues and Techniques

The PMS paradigm described above can be implemented with VHDL in various ways. We advocate a direct
approach where the network topology is described directly in terms of a VHDL structural description. Because
the physical structure of digital systems typically consists of a hierarchy of modules, boards, chassis, and
racks, we pattern the structural hierarchy after the physical hierarchy. The PEs, SEs, and MEs become the
leaf-level components of the structural description. The signal links of the structural models interconnect the
leaf-level components to each other.

Because the abstract network-level paradigm transfers only symbolic tokens representing data messages
instead of actual data values, a token composite type must be defined. The signals and component ports are
declared to be of type token.

The use of a common token definition is critical for the re-use and interoperability of abstract models from
diverse sources such as libraries and other project groups. Honeywell Technology Center has proposed a
token type convention for performance modeling [10], as shown below.

 TYPE utoken IS
 RECORD
 destination : name_type;
 source : name_type;
 t_type : token_type;
 size : data_size;
 value : INTEGER;
 id : uGIDType;
 start_time : TIME;
 priority : INTEGER;
 state : State_type;
 protocol : Protocol_Type;
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;
 param_int : INTEGER;
 END_RECORD

The behaviors of the network components (PE, ME and SE) are modeled in procedural VHDL in accordance
with the paradigm described in section 5.1, 5.3.1 and 5.3.2. Because the duration of modeled events in on the
order of thousands of clock cycles, the models should be asynchronous, event-driven models, as opposed to
synchronous clock-driven models. This minimizes the number of events to be executed by the VHDL
simulator and avoids the inefficiency of evaluating many clock events for which no meaningful system event
occurs.

5.3.2 Software Description

In the ATL approach, the signal processing application algorithm is first represented as a data flow graph
(DFG). The DFG is a directed graph that describes an application algorithm in terms of the inherent data
dependencies of its mathematical operations. The graph nodes represent mathematical operations, and the arcs
that interconnect the nodes represent the data dependencies and form the logical data queues. The DFG
conveys the potential concurrencies within an algorithm, which facilitates parallelization and mapping to
arbitrary architectures. The DFG nodes usually correspond to DSP primitives, such as FFT, vector multiply,
convolve, or correlate.

For a given network architecture, the application flow graph is partitioned for allocation to PEs in the system.

The partitioned flow graph nodes may be allocated statically at design-time or dynamically at run-time. In
either case, the tasks may be scheduled for execution statically or dynamically. The subject of
partitioning/mapping/scheduling remains an open research topic that is beyond the scope of this discussion
[11,12,13]. However, the paradigm described here allows either of the cases to be modeled. Dynamic
allocation and scheduling requires modeling the dynamic mapper and scheduler. Static allocation and
scheduling requires the mapping and scheduling to be done prior to simulation. The regularity of many DSP
applications allows static scheduling, as described in this paper.

The static partitioning/mapping/scheduling process produces a set of pseudo-code software application
programs for each of the PEs. The scheduling determines only the order of tasks executed by a given PE. The
actual time when execution begins for each task is determined by the task sequence and the inherent data flow
control of the send/receive paradigm. The PE programs are expressed as a sequence of pseudo-code
instructions from the simple instruction set described in section 5.3.1 under Processor Element. New
mappings and schedules can be tested by rearranging the instructions accordingly.

Once simulations show a suitable software mapping and hardware architecture combination to satisfy the
system performance requirements, the pseudo-code software routines are expanded into high-level-language
subroutine calls, which are compiled for down-loading to the target hardware or more detailed ISA models for
verification of the constituent performance factors. The send/receive calls are substituted with the appropriate
communication routines for the target system. The compute instructions are substituted by calls to the
appropriate DSP library routines or functions.

5.3.3 Simulation

At the start of simulation, the hardware models read their respective application software programs and begin
to interpret them. The interpretation of the software programs causes the processor elements to send and
receive messages over the network, and to delay for specific computation events. The designer can set
break-points for specific times to examine the simulated system's status. VHDL simulators provide extensive
capabilities for viewing the values of each model's internal states. This is very helpful while debugging.
During simulation, event-history information is recorded into files for post-processing analysis.

5.3.4 Postprocessing/Analysis

To visualize the result of a simulation, the event-history file can be translated into an xy-graph format for
plotting the time-line information. A useful event format is as follows:

 device @ time: event-string

Where device is the name of the entity on which the event occurred. Time is the time at which the event
occurred. and the event-string is a meaningful description or name of the event. For example:

 /board1/PE_03 @ 1923.084: Began FFT_1024
 /board4/xbar7 @ 1925.921: Transferred packet

5.3.5 Recursion

To determine the sensitivity of a design parameter, it is often useful to execute a simulation iteratively: each
time changing the parameter slightly. It is usually convenient to set up the simulation recursion information in
a script file so that the recursions are run automatically. The information can be collected and displayed
automatically as well.

5.3.6 Model Validation/Maintenance

As the design process progresses, a performance model's accuracy should be continually checked against
more detailed models as they become available or to measurements from the actual components. Any
mismatch should be corrected to maintain the performance model's accuracy, to test for continued compliance
with requirements, and to support subsequent re-use and model-year upgrades. This activity departs from
traditional processes which do not maintain -and therefore effectively discard- the performance model once the
architecture design has completed.

Examples of model aspects that can be incrementally refined include the network loading behavior and the task
primitive execution times which may have been initially based on estimates.

For instance, accurate timing values can be obtained from an application code segment running on an
Instruction Set Architecture (ISA) model of a target processor element (PE). The new values update the task
execution time lookup-table for the given PE type. For example, on the RASSP Benchmark - II Synthetic
Aperture Radar (SAR) design project [14], the values of the performance model's task execution time table
were updated with measurements from a physical development system.

Initially, the SAR task partitioning was determined and validated by performance simulations based on
estimates from a summation of the published execution times of the individual vector functions that comprised
the various application tasks. Then each of the aggregate tasks was executed on a single target PE that was
available on a development board. The actual execution times were compared against the estimates to check for
consistency and then the actual time values were used in re-simulating the full system running the complete
application to assure that the appropriate design margins were retained or to re-partition if needed.

Another instance of model refinement from the SAR design project involved the resolution of network
protocol. The initial models resolved the transfer of data between PE's down only to the message level.
However, intercommunication benchmarks showed that under moderate to heavy traffic loads the performance
predicted by the modeled system deviated substantially from that observed on a small physical development
system. The inconsistency was traced to the effects of contention and the packetization of messages into finite
length packets on the target system. It was found that by resolving the message packetization process, the
model's behavior was brought into consistency with the observed performance. The model was validated as a
result of this process.

Next: 6 Example: SAR System Application Up: Appnotes Index Previous:4 Performance Modeling
Environments

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 7 References Up: Appnotes Index Previous:5 Performance Modeling Method

RASSP Token-based Performance Modeling
Application Note
6.0 Example: SAR System Application
The Digital Signal Processing (DSP) subsystem of a Synthetic Aperture Radar (SAR) system was modeled
under the RASSP Benchmark - 2 project. The performance modeling was conducted by Lockheed Martin's
Advanced Technology Laboratories (ATL) in VHDL for relatively seamless transition to the down-stream
detailed design processes. The initial design risk assessment indicated the significant challenges involved
integrating and coordinating the various hardware and software elements into a system of multiple cooperating
PE's. In particular, the application's real-time operation presented the highest risk. Because the hardware and
firmware elements were selected from COTS products, they effectively became validated by default.
Therefore, the design team considered the simulation of the complete hardware-software multi-processor
system to be more important than simulating the operation of an individual sub-section of the architecture.

Software Description

The data flow graph (DFG) of the SAR application is pictured in figure 6- 1 below.

Figure 6 - 1: SAR Application Data Flow Graph.

The application DFG contains about 11,000 task nodes. The task nodes were assigned to processor elements
(PEs) by partitioning the DFG into tightly-connected groups of nodes.

Hardware Description

The processing system consisted of 24 Processor Elements (PEs) and multiple crossbar elements. Two
candidate architectures were evaluated with the token-based performance models. The first was the
Mercury-Raceway(TM) based network, figure 6- 2.

Figure 6 - 2: ATL SAR Architecture Candidate 1: Mercury Computer Raceway based network

The second candidate architecture was a Scalable Coherent Interface (SCI) based network pictured in figure 6-
3. The Raceway network belongs to the multi-stage switch network architecture class, while the SCI is a ring
network type.

Figure 6 - 3: ATL SAR Architecture Candidate 2: Scalable Coherent Interface (SCI) based network.

Rapidly simulating a significant portion (5 - seconds) of the real-time application executing on the full
multi-processor system required a much higher efficiency and modeling abstraction than that of the typical
ISA-level model. To be abstract, yet accurate, only the necessary details were resolved in the model. These
included significant protocol events such as initiation and completion of data transfers as well as significant
computational events such as the beginnings and endings of bounded computational tasks. The resolved
events focus around contention for computation and communication resources whose usage time, once
allocated for a task or transfer, was highly deterministic. The simulation is valuable because the contention for
the multiple resources is not conveniently predictable.

The nature of the SAR application implied a relatively large computational event granularity; on the order of
thousands of clock-cycles. Similarly the RASSP design group found that resolving the communication events
to the packet level accurately characterized the communication network performance.

The design the models of the Raceway communication network, began with a description of the
communication protocol in a way that was as abstract as possible while still providing an accurate depiction of
its resultant performance. The protocol was described by its significant events, which were the beginning and
ending of packets.

To implement the protocols in VHDL, the abstract protocols were expressed as state transition diagrams. The
state transition diagrams are conveniently converted to VHDL by means of a case statement on the state.

For more specific information on the VHDL code details, with excerpts of actual VHDL code, see VHDL
detailed excerpts.

Results

The design group produced time-line graphs from the simulation results which showed the history of task
executions on the PE's. The graphs were useful in helping to visualize and understand the impact of mapping
options that led the design group to modify, optimize, and ultimately verify the partitioning, allocation, and
scheduling of the software tasks onto the hardware elements. The time-line graphs showed the times when
PE's were idle due to data starvation or buffer saturation that helped isolate other resource contentions and
bottle-necks.

The processing time-line graph in figure 6 - 4 is an example of the kind of visual output obtained from
token-based performance modeling.

Figure 6 - 4: Example Time-Line Graph (sub-optimal).

To illustrate the usefulness of token-based performance modeling, the first graph shows a sub-optimal
mapping of tasks to processors. Notice that there is much idleness of the processors on the left half of the
graph. This mapping resulted in poor performance, as the processing deadlines were not met. Visualizing that
initial time-line led to an alternative mapping strategy that allocated processing tasks in a finer-grain
round-robin style. The resulting processing time-line graph is shown in figure 6 - 5 below.

Figure 6 - 6: Example Memory Allocation Graph.

Efficiency

The VHDL performance simulation consumed 28 Sparc - 10 CPU minutes. This implies an equivalent
instruction execution rate of about 2.9 - million per second when considering the number of PEs and their
individual instruction rates. The corresponding abstract-behavioral model consumed 14 CPU-hours and
exhibited an effective execution rate of 23,810 instructions per second.

By comparison, a much more concrete model, such as an ISA-level VHDL model of the i860 PE, exhibited
about 5.5 to 7.5 instructions-per-second on a Sparc - 10 CPU [6]. Such ISA models are more useful for
understanding the behavior of software segments that dwell within a given PE.

Table 6 - 1: Comparison of simulation efficiencies for types of models in the design process.

Down-Stream Process

The resultant software task partitioning and schedules from the performance model led directly to the

production of the target source code through a straight-forward translation into sub-routine calls.

Accuracy

When the physical SAR DSP system was built and loaded with the generated application software developed
in the modeling process, the design group found that their simulations accurately predicted the system's actual
run-time performance to within a few percent. The DSP system's processing throughput requirements were
satisfied without further modification.

The time required to develop the VHDL Token-based performance model of the system was about 5 - weeks
with two engineers. The total time consumed in the development activity was 371 - hours. About 1378
Source-Lines-Of-Code (SLOC) were generated for the models. Additionally, about 1657-SLOC were
generated for the test-benches for verifying the correctness of the models and to assist in their development.

Future efforts should require much less time, as the original effort included significant learning-curve time for
developing methods for describing performance models in VHDL as well as the time to develop all models
from scratch. Subsequent projects are reusing the previously developed models with greatly reduced design
time.

Model Library

The full versions of the actual VHDL models are obtainable from the following repository: ATL Performance
Model Library.

Next: 7 References Up: Appnotes Index Previous:5 Performance Modeling Method

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Up: Appnotes Index Previous:6 Example: SAR System Application

RASSP Token-based Performance Modeling
Application Note
References
IEEE Standard VHDL Language Reference Manual, IEEE Std 1076 - 1993, IEEE Customer Service, 445
Hoes Lane, PO Box 1331, Piscataway, New Jersey 08855 - 1331.[Purchase at the above address]

Kumar, S.,J. H. Aylor, B. W. Johnson, W. A. Wulf, The Codesign of Embedded Systems: A Unified
Hardware/Software Representation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[Purchase from Kluwer Academic Publishers]

Holliday, M. A., M. K. Vernon, "A Generalized Timed Petri Net for Performance Analysis," IEEE
Transactions on Software Engineering, Vol. SE - 13, No. 12, December 1987.[Reference Not Available]

Chang, C. K., Y. Chang, L. Yang, C. Chou, J. Chen, "Modeling a Real - Time Multitasking System in a
Timed PQ Net," IEEE Software, March 1989, pp. 46 - 51. Ferrari, D., Computer Systems Performance
Evaluation, Prentice-Hall, Englewood Cliffs, NJ, 1978. [Reference Not Available]

Rose, F., T. Steeves, and T. Carpenter, "VHDL Performance Models," Proceedings 1st Annual RASSP
Conference, pp 60 - 70, Arlington, VA, August, 1994. [ROSE_94]

Steeves, T., et al, "Evaluating Distributed Multiprocessor Designs," Proceedings 2nd Annual RASSP
Conference, pp 95 - 102, Arlington, VA, July, 1995. [STEEVES_95]

Shackleton, J., T.Steeves, "Advanced Multiprocessor System Modeling," Proceedings Fall 1995 VIUF, pp
8.21 - 8.28, Boston, MA, October, 1995 [SHACKLETON_95]

Hein, C., and D. Nasoff, "VHDL - based Performance Modeling and Virtual Prototyping", Proceedings 2nd
Annual RASSP Conference, pp 87 - 94, Arlington, VA, July, 1995. [HEIN_95]

Siewwork, Newell, and Bell, "Computer Structures Principles and Examples", MCGraw-Hill, 1982.
[Purchase from McGraw-Hill publishers]

Honeywell Technology Center, "VHDL Performance Modeling Interoperability Guideline", available on-line
at: PMIG and related docs. [HONEYWELL]

Jain, R., Werth, J., "A General Model for Scheduling of Parallel Computations and its Application to Parallel
I/O Operations", Proceedings of the 1991 International Conference on Parallel Processing, April, 1991.
[Reference Not Available]

Yang, J., Bic, L., "A Mapping Strategy for MIMD Computers", Proceedings of the 1991 International
Conference on Parallel Processing, April, 1991. [Reference Not Available]

Agrawal, D., Shukla, S., "Allocation and Communication in Distributed Memory Multiprocessors for
Periodic Real-Time Applications", Proceedings of the 1991 International Conference on Parallel Processing,
April, 1991. [Reference Not Available]

Zuerndorfer, B., Shaw, G., "SAR Processing for RASSP Application", Proceedings of the RASSP

Conference, August, 1994. [ZUERNDORFER_94]

7.1 Application Notes

Hardware/Software Codesign
System Process
VHDL Taxonomy
Virtual Prototyping

Next: Up: Appnotes Index Previous:6 Example: SAR System Application

Approved for Public Release; Distribution Unlimited Dennis Basara

