

Embedded System Design vii

Preface

Purpose

Embedded computing systems have grown tremendously in recent years, not only in their

popularity, but also in their complexity. This complexity demands a new type of designer, one

who can easily cross the traditional border between hardware design and software design.

After investigating the availability of courses and textbooks, we felt a new course and

accompanying textbook were necessary to introduce embedded computing system design

using a unified view of software and hardware. This textbook portrays hardware and software

not as different domains, but rather as two implementation options along a continuum of

options varying in their design metrics, like cost, performance, power, size, and flexibility.

Three important trends have made such a unified view possible. First, integrated circuit

(IC) capacities have increased to the point that both software processors and custom hardware

processors now commonly coexist on a single IC. Second, quality compilers and program size

increases have led to the common use of processor-independent C, C++, and Java compilers

and integrated design environments (IDEs) in embedded system design, significantly

decreasing the importance of the focus on microprocessor internals and assembly language

programming that dominate most existing embedded system courses and textbooks. Third,

synthesis technology has advanced to the point that synthesis tools have become

commonplace in the design of digital hardware. Synthesis tools achieve nearly the same for

hardware design as compilers achieve in software design: They allow the designer to describe

desired functionality in a high-level programming language, and they then automatically

generate an efficient custom-hardware processor implementation. The first trend makes the

past separation of software and hardware design nearly impossible. Fortunately, the second

and third trends enable their unified design, by turning embedded system design, at its highest

level, into the problem of selecting and programming (for software), designing (for hardware),

and integrating “processors.”

Coverage

The first four chapters of this book strive to achieve the goal of presenting hardware and

software in a unified way. These chapters stress that computations are carried out by

processors. Many types of processors are available, including general-purpose processors

Preface

viii Embedded System Design

(software), custom single-purpose processors (hardware), standard single-purpose processors

(peripherals), and so on. But nevertheless, they are all just processors, differing in their cost,

power, performance, design time, flexibility, and so on, but essentially doing the same thing.

Chapter 1 provides an overview of embedded systems and their design challenges. We

introduce custom single-purpose processors in Chapter 2, emphasizing a top-down technique

to digital design amenable to synthesis, picking up where many textbooks on digital design

leave off. We introduce general-purpose processors and their use in Chapter 3, expecting this

chapter to be mostly review for many readers, and ending by showing how to design a

general-purpose processor using the techniques of Chapter 2. Chapter 4 describes numerous

standard single-purpose processors (peripherals) common in embedded systems. Chapters 5

and 6 introduce memories and interfacing concepts, respectively, to complete the fundamental

knowledge necessary to build basic embedded systems. Chapter 7 provides a digital camera

example, showing how we can trade off among hardware, software, and peripherals to

achieve implementations that vary in their power, performance, and size. These seven

chapters form the core of this book.

Freed from the necessity of covering the nitty-gritty details of a particular

microprocessor’s internals and assembly language programming, this book includes coverage

of some additional embedded systems topics. Chapter 8 describes advanced state machine

computation models that are becoming popular when describing complex embedded system

behavior. It also introduces the concurrent process model and real-time systems. Chapter 9

gives a basic introduction to control systems, enough to make students aware that a rich

theory exists for control systems, and to enable students to determine when an embedded

system is an example of a control system. Chapter 10 introduces a variety of popular IC

technologies, from which a designer may choose for system implementation. Finally, Chapter

11 highlights various design technologies for building embedded systems, including

discussion of hardware/software codesign, a user's introduction to synthesis (from behavioral

down to logic levels), and the major trend toward design based on intellectual property (IP).

How to Use This Book

We use this book at the University of California, Riverside, in a one-quarter course called

Introduction to Embedded Systems, which follows our introductory course on logic design,

and which is taken by all computer science, computer engineering, and electrical engineering

students at roughly the sophomore level. This early placement of the course in our curriculum

represents our belief that an early unified view of hardware and software can be very

beneficial to a student’s mindset when later taking more specialized courses. The suggested

placement of the course in an undergraduate curriculum is shown in Figure P.1. Our one-

quarter course covers Chapters 1–7. We have a second quarter course on embedded systems

that covers Chapters 8–12, supplemented with a textbook on real-time systems. A

one-semester course might cover Chapters 1–7 plus two or three additional chapters of the

instructor’s choice.

We anticipate that in most electrical and computer engineering/science curricula, this

textbook could be used in place of a processor-specific textbook in an existing course on

microprocessor-based system design or microprocessor interfacing, as the lab components of

 Preface

Embedded System Design ix

those courses shift away from assembly-level programming to the use of more modern tools

and to the integration of microprocessors and custom hardware (e.g., FPGAs). In other

curricula, a new course on embedded systems may be necessary; we observe that numerous

universities are introducing such courses, often converting a second course in digital design to

a course on embedded systems (as we did at UCR). The book could also be used in a capstone

senior design course as a text that brings together and organizes much of what students may

have been exposed to already – such courses often do not even have a textbook. The book

should also be useful at the graduate level for an introductory embedded systems course.

Laboratory

Ideally, a course using this book should have an accompanying laboratory. The ideal lab setup

would include both software development on an embedded microprocessor or microcontroller

platform and hardware development on an FPGA platform (or even in a simulation

environment).

We intentionally created this book to be independent from any particular microprocessor.

One reason is because embedded system tools and products are evolving rapidly, and thus we

consider the ability to change lab environments without having to change textbooks an

important one. A second reason is because the embedded system field has evolved sufficiently

to warrant a book based on principles. However, a course with a hands-on lab may

supplement this book with a processor-specific databook, which is typically low cost or even

free, or with one of many commonly available “extended databook” processor-specific

textbooks in wide use today.

Likewise, the book is independent of any particular hardware description language,

synthesis tool, simulator, or FPGA. Supplements that describe the particular hardware

environment, again usually available for free or at low cost, may be useful.

Figure P.1: Embedded systems design placement in a curriculum to create a unified view of hardware and software
early.

Introduction to

Programming

Logic/Digital

Design

Introduction to

Embedded

Systems

Embedded &

Real-Time

Systems

Advanced

Digital Design

(Synthesis)

VLSI/ASIC

Design

Control

Systems

Computer

Systems

Organization

Digital Signal

Processing

Preface

x Embedded System Design

At UCR, our labs are based on the 8051 microcontroller and Xilinx FPGAs. We use the

Keil C compiler for the microcontroller, Xilinx Foundation Express synthesis software for the

FPGA, and a development board from Xess Corporation for prototyping –– the board contains

both an 8051 and an FPGA. We also use an 8051 emulator and stand-alone 8051 chips from

Philips.

We have provided extensive information on our lab setup and assignments on the book’s

Web page. Thus, while the book’s microprocessor independence enables instructors to choose

any lab environment, we have still provided instructors the option of obtaining extensive

online assistance in developing an accompanying laboratory.

Additional Materials

A Web page has been established to be used in conjunction with the book:

http://www.cs.ucr.edu/esd. This Web page contains supplementary material and links for

each chapter. It also contains a set of lecture slides in Microsoft PowerPoint format; because

the book itself was done entirely in Microsoft Word, the figures in the PowerPoint slides are

PowerPoint drawings (rather than imported graphics), and thus can be modified as desired by

instructors.

Furthermore, the Web page contains an extensive lab curriculum to accompany this

textbook. Over 30 lab exercises, including detailed descriptions, schematics, and complete or

partial solutions, can be found there. The exercises are organized by chapter, starting with

very simple exercises and leading to progressively more complex ones. For example, Chapter

2’s exercises start with a simple blinking light, and end with a soda machine controller and a

calculator. Appendix A provides further information on our Web page.

Acknowledgments

We are grateful to numerous individuals for their assistance in developing this book. Sharon

Hu of Notre Dame, Nikil Dutt of UC Irvine, and Smita Bakshi of UC Davis and Synplicity

provided excellent reviewer feedback. Sharon Hu, Jan Madsen of the Technical University of

Denmark, and Enoch Hwang of UC Riverside used early drafts of this book in their embedded

systems courses. Susan Cotterell provided numerous contributions to the book, including

several examples, much of the accompanying lab materials, and the Web site setup. Jason

Villarreal and Kris Miller helped with proofreading at various stages. Jay Farrell of UC

Riverside contributed much of the chapter on control systems. Karen Schechter converted our

cover design idea into the initial 3-D scene. The generous donations of 8051 equipment from

Philips Semiconductors and of FPGA equipment from Xilinx were a big assistance.

Likewise, a National Science Foundation CAREER award supported some of this book’s

development. We thank Caroline Sieg at Wiley for overseeing the book’s production and

Madelyn Lesure for overseeing the cover design. Finally, we are deeply grateful to Bill

Zobrist of Wiley, for believing in this project from its onset, for arranging the reviews of the

book, and for overseeing various aspects of its production.

 Preface

Embedded System Design xi

About the Authors

Frank Vahid is an Associate Professor in the Department of Computer Science and

Engineering at the University of California, Riverside, which he joined in 1994. He is also a

faculty member of the Center for Embedded Computer Systems at the University of

California, Irvine. He received his B.S. in Computer Engineering from the University of

Illinois, Urbana/Champaign, and his M.S. and Ph.D. degrees in Computer Science from the

University of California, Irvine, where he was recipient of the Semiconductor Research

Corporation Graduate Fellowship. He was an engineer at Hewlett Packard and has consulted

for numerous companies, including NEC and Motorola. He is co-author of the graduate-level

textbook Specification and Design of Embedded Systems (Prentice-Hall, 1994). He has been

program chair and general chair for both the International Symposium on System Synthesis

and for the International Symposium on Hardware/Software Codesign. He has been an active

researcher in embedded system design since 1988, with more than 50 publications and several

best paper awards, including an IEEE Transactions on VLSI best paper award in 2000. His

research interests are in embedded system architectures, low-power design, and design

methods for system-on-a-chip.

Tony Givargis is an Assistant Professor in the Department of Information and Computer

Science and a member of the Center for Embedded Computer Systems at the University of

California, Irvine. He received his B.S. and Ph.D. degrees from the University of California,

Riverside, where he received the Department of Computer Science Best Thesis award and the

UCR College of Engineering Outstanding Student award, and where he was recipient of the

GAANN Graduate Fellowship, a MICRO fellowship, and a Design Automation Conference

scholarship. As a consultant, he has developed numerous embedded systems for several

companies, ranging from an irrigation management system to a GPS-guided, self-navigating

automobile. He has published more than 20 research papers in the embedded systems field.

His research interests include embedded and real-time system design, low power design, and

processor/system-on-a-chip architectures.

