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The Accelerated Graphics Port (AGP or A.G.P.) is a high performance, component level interconnect targeted at 3D
graphical display applications.  A.G.P. is based on a set of performance extensions or enhancements to the PCI bus.
This document specifies the A.G.P. interface, and provides some design suggestions for effectively using it in high
performance 3D graphics display applications.

1.1 Motivation
In general, 3D rendering has a voracious appetite for memory bandwidth, and continues to put upward pressure on
memory footprint as well.  As 3D hardware and software become more pervasive, these two trends are likely to
accelerate, requiring high speed access to ever larger amounts of memory, thus raising the bill of material costs for
3D enabled platforms.  Containing these costs while enabling performance improvements is the primary motivation
for the A.G.P.  By providing up to an order of magnitude bandwidth improvement between the graphics accelerator
and system memory, some of the 3D rendering data structures may be effectively shifted into main memory, relieving
the pressure to increase the cost of the local graphics memory.

Texture data are the first structures targeted for shifting to system memory for four reasons:

1. Textures are generally read only, and, therefore, do not have special access ordering or coherency problems.

2. Shifting textures balances the bandwidth load between system memory and local graphics memory, since a well
cached host processor has much lower memory bandwidth requirements than does a 3D rendering engine.
Texture access comprises perhaps the largest single component of rendering memory bandwidth (compared with
rendering, display and Z buffers): so avoiding loading or caching textures in graphics local memory saves not
only this component of local memory bandwidth, but also the bandwidth necessary to load the texture store in
the first place.  Furthermore, this data must pass through main memory anyway as it is loaded from a mass store
device.

3. Texture size is dependent upon application quality rather than on display resolution, and, therefore, subject to
the greatest pressure for growth.

4. Texture data is not persistent; it resides in memory only for the duration of the application, so any system
memory spent on texture storage can be returned to the free memory heap when the application concludes
(unlike display buffers which remain in persistent use).

Other data structures may be moved to main memory but texture data is the biggest win.

Reducing costs by moving graphics data to main memory is the primary motivation for the A.G.P., which is designed
to provide a smooth,  incremental transition for today’s PCI based graphics vendors as they develop higher
performance components in the future.

1. Introduction
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1.2 Relationship to PCI
The A.G.P. interface specification uses the 66 MHz PCI (PCI Local Bus Specification) specification as an
operational baseline, and provides four significant performance extensions or enhancements to the PCI specification
which are intended to optimize the A.G.P. for high performance 3D graphics applications.  These A.G.P. extensions
are not described in, or required by, the PCI Local Bus Specification.  These extensions are:

• Deeply pipelined memory read and write operations, fully hiding memory access latency.

• Demultiplexing of address and data on the bus, allowing almost 100% bus efficiency.

• New AC timing in the 3.3 V electrical specification that provides for one or two data transfers per 66-MHz
clock cycle, allowing for real data throughput in excess of 500 MB/s.

• A new low voltage electrical specification that allows four data transfers per 66-MHz clock cycle, providing real
data throughput of up to 1 GB/s.

These enhancements are realized through the use of “sideband” signals.  The PCI specification has not been
modified in any way, and the A.G.P. interface specification has specifically avoided the use of any of the “reserved”
fields, encodings, pins, etc., in the PCI specification.  The intent is to utilize the PCI design base while providing a
range of graphics-oriented performance enhancements with varying complexity/performance tradeoffs available to
the component provider.

A.G.P. neither replaces nor diminishes the necessity of PCI in the system.  This high speed port (A.G.P.) is
physically, logically, and electrically independent of the PCI bus.  It is an additional connection point in the system,
as shown in Figure 1-1.  It is intended for the exclusive use of visual display devices; all other I/O devices will
remain on the PCI bus.  The add-in slot defined for A.G.P. uses a new connector body (for electrical signaling
reasons) which is not compatible with the PCI connector; PCI and A.G.P. boards are not mechanically
interchangeable.

The A.G.P. interface specification was developed by Intel, independent of the PCI Special Interest Group, and has
been neither reviewed nor endorsed by that group.  It is intended to encourage innovation in personal computer
graphics technology and products.

Processor

LFB

Gfx
Accel

Chipset Sys
Mem

I/O I/O I/O

AGP

PCI

Figure 1-1:  System Block Diagram: A.G.P. and PCI Relationship
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1.3 Terminology
This revision of the A.G.P. interface specification refers to various devices that are compatible with the A.G.P.
interface (for example, masters and targets).  The A.G.P. Interface Specification, Revision 1.0  refers to such devices
as A.G.P.-compliant devices or A.G.P.-enabled devices (for example, A.G.P.-compliant masters, A.G.P.-compliant
targets, and A.G.P.-enabled masters).  This revision of the interface specification simplifies this terminology by using
terms such as A.G.P. device, A.G.P. master, and A.G.P. target to refer to devices that are compatible with the A.G.P.
interface specification.
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This chapter provides an architectural context for the actual specification of the Accelerated Graphics Port (A.G.P.
or AGP) interface, hopefully motivating the design and making details easier to understand.  It also is intended to set
the technical scope of the interface specification in some areas by providing examples of issues beyond the purview
of the formal interface specification.

2.1 Two Usage Models:  “Execute” and “DMA”
There are two primary A.G.P. usage models for 3D rendering that have to do with how data are partitioned and
accessed, and the resultant interface data flow characteristics.  In the “DMA” model, the primary graphics memory is
the local memory associated with the accelerator, referred to as “local frame buffer”.  3D structures are stored in
system memory, but are not used (or “executed”) directly from this memory; rather they are copied to primary (local)
memory (the “DMA” operation) to which the rendering engine’s address generator makes its references.  This
implies that the traffic on the A.G.P. tends to be long, sequential transfers, serving the purpose of bulk data transport
from system memory to primary graphics (local) memory.  This sort of access model is amenable to a linked list of
physical addresses provided by software (similar to operation of a disk or network I/O device), and is generally not
sensitive to a non-contiguous view of the memory space.

In the “execute” model, the accelerator uses both the local memory and the system memory as primary graphics
memory.  From the accelerator’s perspective, the two memory systems are logically equivalent; any data structure
may be allocated in either memory, with performance optimization as the only criteria for selection.  In general,
structures in system memory space are not copied into the local memory prior to use by the accelerator, but are
“executed” in place.  This implies that the traffic on the A.G.P. tends to be short, random accesses, which are not
amenable to an access model based on software resolved lists of physical addresses.  Because the accelerator
generates direct references into system memory, a contiguous view of that space is essential; however, since system
memory is dynamically allocated in random 4K pages, it is necessary in the “execute” model to provide an address
mapping mechanism that maps random 4K pages into a single contiguous, physical address space.

The A.G.P. supports both the “DMA” and “execute” models.  However, since a primary motivation of the A.G.P. is
to reduce growth pressure on local memory, the “execute” model is the design center.  Consistent with that emphasis,
this interface specification requires a physical-to-physical address remapping mechanism which insures the graphics
accelerator (an A.G.P. master) will have a contiguous view of graphics data structures dynamically allocated in
system memory.

2. Architectural Context and Scope
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Figure 2-1:  Graphics Address Remapping Function

This address remapping applies only to a single, programmable range of the system physical address space, as shown
in Figure 2-1.  The 32-bit physical address space shown is common to all system agents.  Addresses falling in this
range are remapped to non-contiguous pages of physical system memory.  All addresses not in this range are passed
through without modification.  From the processor’s point of view, this means that requests are mapped directly to
main system memory or to device specific ranges, such as the graphics local frame buffer memory shown here.  From
the A.G.P. master’s point of view, this means the request is only mapped to system memory.  Note that the corelogic
may optionally trap (not pass) requests out of the GART range and report an error.  If the mode of reporting the error
is implemented, the corelogic is required to default to the mode of not reporting an error after reset.  How software
enables the corelogic to report an access out of the GART range as an error (if supported) is implementation specific.

Remapping is accomplished via a memory-based1 table called the Graphics Address Remapping Table (GART) and
used (“walked”) by the corelogic to perform the remapping.  In order to avoid compatibility issues and allow future
implementation flexibility, this mechanism is specified at a software (API) level.  In other words, the actual GART
table format is not specified; rather it is abstracted to the API by a HAL or miniport driver that must be provided
with the corelogic.  While this API does not constrain the future partitioning of remapping hardware, the remapping
function will initially be implemented in the chipset or corelogic.  Note:  this remapping function should not be
confused in any way with the system address translation table mechanism.  While some of the concepts are similar,
these are completely separate mechanisms which operate independently, under control of the operating system.

2.2 Queuing Models
Both A.G.P. bus transactions and PCI bus transactions may be run over the A.G.P. interface.  An A.G.P. master
(graphics) device may transfer data to system memory using either A.G.P. transactions or PCI transactions.  The
corelogic can access the A.G.P. master device only with PCI transactions.  Traffic on the A.G.P. interface may
consist of a mixture of interleaved A.G.P. and PCI transactions. The access request and data queue structures are
illustrated in Figure 2-2.

                                                          

1 The physical location of the table is chipset specific and may reside in main memory or in GART specific memory.
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Figure 2-2:  A.G.P. Access Queuing Model

A.G.P. transactions are run in a split transaction fashion where the request for data transfer is “disconnected”  from
the data transfer itself.  The A.G.P. master initiates an A.G.P. transaction with an access request.  The corelogic
responds to the access request by directing the corresponding data transfer at a later time.  The fact that the access
requests are separated from the data transfers allows the A.G.P. master to issue several access requests in a pipelined
fashion while waiting for the data transfers to occur.  Pipelining access requests results in having several read and/or
write requests outstanding in the corelogic’s request queue at any point in time.  The request queue is divided into
high priority and low priority sub-queues, each of which deal with respective accesses according to separate priority
and ordering rules.  The A.G.P. master tracks the state of the request queue in order to limit the number of
outstanding requests and identify data transactions.

The corelogic processes the access requests present in its request queue.  Read data will be obtained from system
memory and returned at the corelogic’s initiative via the read data return queue.  Write data will be provided by the
A.G.P. device at the corelogic’s direction when space is available in the corelogic’s write data queue.  Therefore,
A.G.P. transaction traffic will generally consist of interleaved access requests and data transfers.

All PCI transactions on the A.G.P. have their own queues, separate from the A.G.P. transaction queues.  Each queue
has its own access and ordering rules.  Not shown in Figure 2-2 is the corelogic queue which handles processor
accesses directly to the PCI target interface of the A.G.P. master, all of which are executed as non-pipelined PCI bus
transactions.
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2.3 Performance Considerations
Deep pipelining capability allows the A.G.P. to achieve a total memory READ throughput equal to that which is
possible for memory WRITE

2
 transactions.  This capability, coupled with optional higher transfer rates and address

de-multiplexing, allows a full order of magnitude increase in memory read throughput over today’s PCI
implementations.  However, many typical desktop platforms will not have sufficient total memory performance to
allow full utilization of the A.G.P. capabilities, and ultimately platform issues are likely to predominate in the upper
performance limit deliverable through the A.G.P.  This makes it very difficult to provide as part of this interface
specification a single set of performance guarantees or targets the graphics designers can depend upon.  It is clear
that in order to optimize a graphics design for the most effective use of the A.G.P., it will need to be targeted at a
specific subset of platforms and/or corelogic devices.

In an attempt to provide the best possible information for such an optimization, this interface specification defines a
few common performance parameters that may be of general interest, and recommends that corelogic vendors and/or
OEMs provide these parameters for their systems to respective graphics IHVs.

The following are the basic parameters that each corelogic set and/or system implementation should provide as a
performance baseline for IHVs targeting that platform:

• Guaranteed Latency:  a useable worst case A.G.P. memory access latency via the high priority queue, as
measured from the clock on which the request (REQ#) signal is asserted until the first clock of data transfer.
Assumptions:  no outstanding A.G.P. Requests (pipeline empty) and no waitstates or control flow asserted by the
graphics master - master is ready to transfer data on any clock (inserting n clocks of control flow may delay
response by more than n clocks).

• Typical Latency:  the typical A.G.P. memory access latency via the low priority queue, as measured from the
clock on which the request (REQ#) signal is asserted until the first clock of data transfer.
Assumptions:  no outstanding A.G.P. Requests (pipeline empty) and no waitstates or control flow asserted by the
graphics master - master is ready to transfer data on any clock (inserting n clocks of control flow may delay
response by more than n clocks).

• Mean bandwidth:  deliverable A.G.P. memory bandwidth via the low priority queue, averaged across ~10 ms
(one frame display time).
Assumptions:  no accesses to the high priority queue; graphics master maintains optimal pipeline depth of   x  ;
average access length of   y  ; no waitstates or control flow asserted by the graphics master.

                                                          

2 Memory read throughput on PCI is about half of memory write throughput, since memory read access time is
visible as wait states on this unpipelined bus.
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2.4 Platform Dependencies
Due to the close coupling of the A.G.P. and main memory subsystem, there are several behaviors of the A.G.P. that
will likely end up being platform dependent.  While the objective of any specification is to minimize such
differences, it is apparent that several are probable among A.G.P. corelogic and platform implementations.  This
should not, however, have as much impact as it would in other buses for two reasons:

• The A.G.P. is a point-to-point3 connection, intended for use by a 3D graphics accelerator only, and,

• Due to performance issues (Section 2.3), an A.G.P. graphics master will likely need to be optimized to a specific
subset of platform or corelogic implementations anyway.

The purpose of this section is to identify by example some of the areas where behavioral differences are likely, and
accordingly establish the scope of this interface specification.

As one example of potential variation, consider the two corelogic architectures shown in Figure 2-3.  An integrated
approach, typical of desktop and volume systems, is shown on the left, and a symmetric multiprocessor partitioning,
typical of MP servers, is shown on the right.

Proc.
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Figure 2-3:  Different Corelogic Architectures

The following items are examples of areas where behavioral differences between these or other implementations
could well occur:

GART Implementation
For various reasons, different systems may opt for different GART table implementations and layouts.
This, however, is not visible since the actual table implementation is abstracted to a common API by the
HAL or miniport driver supplied with the corelogic.

Coherency with Processor Cache
Due to the high potential access rate on the A.G.P., it is not advisable from a performance perspective to
snoop all accesses.  Selective snooping in an integrated corelogic architecture presents serious queue

                                                          

3 This means that active communication can only occur between two A.G.P. agents that reside on the interface,
where one agent is referred to as the A.G.P. target and the other the A.G.P. master.  The simplest implementation is
to only have two devices attached to the bus.  Attaching more than two devices to the interface is not precluded as
long as there is only one active master and one active target.  Any other device must not respond to or interfere with
the interface operation.  When more than two devices are attached to the interface, the system designer is responsible
to ensure that all requirements of this interface specification are met, since the component and/or add-in card
designer has no control how the devices are used.
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management problems, while the MP bus in an MP corelogic architecture could well deal with selective
snoops very easily.  As a result, processor cache snooping on A.G.P. accesses is chipset dependent, and may
not be counted upon in general.  The exact coherency requirements for this interface specification are as
follows:

• Processor cache coherency must be guaranteed by the corelogic for all PCI transactions
(transactions initiated with the FRAME# signal) regardless of which bus segment (A.G.P. or PCI)
they originate on.  This is consistent with normal PCI operation.  Coherency means that at the
moment a PCI/A.G.P. memory request is serviced (completed), the subject data are fully consistent
with any valid contents of the processor caching mechanism (excluding processor write combining
buffers) for any of the target locations in the access.

• For A.G.P. transactions (transactions initiated with the PIPE# signal or on the de-multiplexed
address bus, SBA port), there are no specific coherency requirements, and behavior is chipset
dependent.  It is entirely possible that some implementations will return stale read data, or allow
write data to be overwritten, e.g., by a processor cache write back.  Other implementations may
provide full coherency support.  For this reason, any device driver managing an A.G.P. device is
required to insure that A.G.P. transactions targeted at cacheable memory are safe.  In practice, this
caution applies mostly to A.G.P. transactions outside the GART address range, since memory
allocated inside the GART address range by the normal A.G.P. memory allocation procedure will
be of a cache type (e.g., WC) consistent with the hardware’s native ability to provide coherent
access.  In general, an A.G.P. device driver may determine the level of chipset coherency support
via the chipset ID available in the Microsoft* Windows* 95/Windows NT* registry.

Note:  Options for supporting A.G.P. coherent access to cacheable memory (i.e., snooping
required) are under consideration.  Specific requirements on this topic are subject to
change/elaboration.

Bus-to-Bus Traffic Capability
Bus masters on either the A.G.P. or the PCI bus will routinely access system memory.  However, it is
possible to also address (PCI) targets on the other bus or port, which effectively requires a PCI-to-PCI
bridge in the integrated chipset.  Pushing WRITES through this bridge is fairly simple, whereas pushing
READS through requires a complete bridge implementation, and it is not clear this would ever be utilized.
Therefore, this interface specification only requires support for memory WRITES between a PCI master on
the PCI bus and a (PCI) target on the A.G.P.4 bus.  Support of any other transaction between the two
interfaces is optional and in general, should not be assumed to work.

Address Re-Mapping Support for PCI Bus Master Accesses to Memory
GART range address remapping support is provided by the chipset for graphics devices attached to the
A.G.P. interface.  Remapping support is, in general, not provided for devices attached to standard PCI
bus(es).  However, to provide a consistent addressing model across the system, this interface specification
requires the following processor dependent5, address remapping support for accesses presented at a PCI
port:  1) Chipsets that allow the processor to generate physical addresses in the GART range (i.e., GART
address remapping is supported for processor accesses as well as for A.G.P. accesses) must support an
identical remapping service for the PCI port.  2) Chipsets that do not support remapping for processor

                                                          

4 By way of example, this allows for a video stream generator (e.g., capture, decode, etc.) on PCI to write to the
graphics frame buffer on the A.G.P. interface.

5 The chipset implementation of GART remapping is related to the memory management implementation of the
attached processor, including, for example, the behavior of MTRRs.  However, this reference to processor
implementation is made as an example for clarification purposes only.  This specification does not place any
requirements on processor behavior, nor stipulate any particular processor behavior.
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accesses (i.e., the processor resolves its own GART range addresses to valid physical memory ranges) must
NOT do any remapping of addresses presented at the PCI port.

In the case where GART remapping is not provided at the PCI port, any address in the GART address range
that is presented at the PCI port must be deemed an access error, and dealt with consistent with the error
handling policies of that platform.  In general, out of bounds or otherwise erroneous PCI requests do not
receive any response and result in a master abort.  In no case may an address falling in the GART range be
propagated through the corelogic without remapping.

Device drivers managing PCI bus master devices should always use the standard system call to de-reference
addresses being passed to the hardware.  This will guarantee that the correct address is used for the current
platform and level of chipset support.  Conversely, device drivers managing A.G.P. bus master devices
should always de-reference virtual addresses via the new or alternate system call associated with the new
A.G.P. VMM services described in the Windows  DDK.  This will guarantee that the linear GART address
is always used on the A.G.P. port, independent of platform differences described here.  PCI bus master
device drivers should never use this new de-referencing call.

Monochrome Device Adapter Support
Existing PCI platforms typically support coexistence of a VGA device with a second monochrome device
adapter (MDA), for debug and software development.  A.G.P. corelogic implementations may elect to
support this capability depending on their specific market needs.  Possible implementations include static
detection of MDA adapters present off the PCI bus, and rerouting of MDA accesses to the PCI bus under
BIOS control; or snooping of A.G.P. directed accesses to dynamically detect disabling of MDA resources
on the A.G.P. device and subsequent re-routing to the PCI bus.  To ensure interoperation with possible
corelogic implementations, additional requirements for A.G.P. graphics controllers with respect to MDA
resources are specified in this document (see Section 6.2).

Performance
As already discussed in Section 2.3, a variety of performance parameters will likely have chipset and/or
platform dependencies.

These are examples of platform dependencies that fall outside the scope of this interface specification.  In general,
the scope of this interface specification is limited to the electrical and logical behavior of the actual A.G.P. interface
signals, the mechanical definition of an A.G.P. add-in board, and the A.G.P. configuration registers which control the
graphics address remapping function.
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3.1 Pin Description
A.G.P. protocol defines 20 new signals beyond what PCI uses.  Which of these signals are implemented depends on
which features of the bus are supported and whether the device is an A.G.P. master or target.  The corelogic is
required to support all signals required to:

1. Allow the A.G.P. master to enqueue requests and

2. Transfer data at 1x or 2x.

The corelogic may optionally support:

1. Data transfers at 4x or

2. Fast Write (FW) transactions to the A.G.P. master.

The A.G.P. master may optionally choose:

1. How it enqueues requests or

2. The rate at which it transfers data or

3. If it supports FW transactions.

The A.G.P. signals follow the signal type definitions and naming convention used in the PCI Local Bus
Specification.  The following signal type definitions are from the view point of the A.G.P. target:

in Input is an input-only signal.

out Totem Pole Output is an active driver.

t/s Tri-State is a bidirectional, tri-state input/output pin.

s/t/s Sustained Tri-State is an active low tri-state signal owned and driven by one
and only one agent at a time.  The agent that drives an s/t/s pin low must drive
it high for at least one clock before letting it float.  A new agent cannot start
driving an s/t/s signal any sooner than one clock after the previous agent tri-
states it.  A pull-up is required to sustain the inactive state until another agent
drives it, and must be provided by the central resource (A.G.P. target or
motherboard).

The following tables list the signal names in the first column, signal types in the second column, and the signal
descriptions in the third column.  In the second column, the direction of a t/s or s/t/s signal is from the view point of
the corelogic and is represented in the parentheses.  For example, PIPE# is a sustained tri-state signal (s/t/s) that is
always an input for the corelogic.  The following tables describe the operation and use of each signal and are
organized in four groups:  A.G.P. Requests, A.G.P. Flow Control, A.G.P. Status, and A.G.P. Clocking.

3. Signals and Protocol Specification
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Table 3-1:  A.G.P. Requests

Name Type Description

PIPE# s/t/s
(in)

Pipelined request is asserted by the current master to indicate a full width
request is to be enqueued by the target.  The master enqueues one request
each rising edge of CLK while PIPE# is asserted.  When PIPE# is
deasserted, no new requests are enqueued across the AD bus.

PIPE# is a sustained tri-state signal from a master (graphics controller) and
is an input to the target (the corelogic).

SBA[7::0] in SideBand Address port  provides an additional bus to pass requests
(address and command) to the target from the master.  SBA[7::0] are
outputs from the master and an input to the target.  This port is ignored by
the target until enabled (see Section 6.1.10).

Table 3-1 contains two mechanisms to enqueue requests by the A.G.P. master.  The master chooses one mechanism
at design time or during the initialization process and is not allowed to change during runtime.  When PIPE# is used
to enqueue requests, the master is not allowed to enqueue requests using the SBA port.  When the SBA port is used
to enqueue requests, PIPE# cannot be used to enqueue requests.

Table 3-2:  A.G.P. Flow Control

Name Type Description

RBF# in Read Buffer Full indicates if the master is ready to accept previously
requested low priority read data or not.  When RBF# is asserted, the arbiter
is not allowed to initiate the return of low priority read data to the master.
This signal must be pulled up by the central resource (A.G.P. target or
motherboard).

WBF# in Write Buffer Full indicates if the master is ready to accept FW6 data from the
corelogic or not.  When WBF# is asserted, the corelogic arbiter is not
allowed to initiate a transaction to provide FW data.  This signal must be
pulled up by the central resource (A.G.P. target or motherboard).

Table 3-2 contains the A.G.P. flow control beyond normal PCI flow control already required.  When the master is
always ready to accept the return of LP (Low Priority) Read data, the A.G.P. master is not required to implement
RBF# and the corresponding pin on the target is tied (pulled up) in the deasserted state by the central resource.
When the master is always ready to accept the first block of FW data, the A.G.P. master is not required to implement
WBF# and the corresponding pin on the target is tied (pulled up) in the deasserted state by the central resource.

                                                          

6 Fast Write data is typically data generated by the CPU and pushed to the A.G.P. master.  Refer to Section 3.5.3.5
for details.
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Table 3-3:  A.G.P. Status Signals

Name Type Description

ST[2::0] out Status bus provides information from the arbiter to the master on what it may
do.  ST[2::0] only have meaning to the master when its GNT# is asserted.
When GNT# is deasserted, these signals have no meaning and must be
ignored.

000   Indicates that previously requested low priority read or flush data is
being returned to the master.

001   Indicates that previously requested high priority read data is being
returned to the master.

010   Indicates that the master is to provide low priority write data for a
previous enqueued write command.

011   Indicates that the master is to provide high priority write data for a
previous enqueued write command.

100   Reserved (Arbiter must not issue.  May be defined in the future by
Intel.)

101   Reserved (Arbiter must not issue.  May be defined in the future by
Intel.)

110   Reserved (Arbiter must not issue.  May be defined in the future by
Intel.)

111   Indicates that the master has been given permission to start a bus
transaction.  The master may enqueue A.G.P. Requests by asserting
PIPE# or start a PCI transaction by asserting FRAME#.  ST[2::0] are
always an output from the corelogic and an input to the master.

Table 3-3 describes the status signals, which  indicate how the AD bus will be used for subsequent transactions.  The
AD bus can be used to enqueue new requests, return previously requested read data, or send previously enqueued
write data.  The ST[2::0] signals are qualified by the assertion of GNT#.
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Table 3-4:  A.G.P. Clock List

Name Type Description

AD_STB0 s/t/s
(in/out)

AD Bus Strobe 0 provides timing for 2x data transfer mode on AD[15::00].
The agent that is providing data drives this signal.

AD_STB0# s/t/s
(in/out)

AD Bus Strobe 0 compliment and AD_STB0 provide timing for 4x data
transfer mode on AD[15::00].  The agent that is providing data drives this
signal.

AD_STB1 s/t/s
(in/out)

AD Bus Strobe 1 provides timing for 2x data transfer mode on AD[31::16].
The agent that is providing data drives this signal.

AD_STB1# s/t/s
(in/out)

AD Bus Strobe 1 compliment and AD_STB1 provide timing for 4x data
transfer mode on AD[31::16].  The agent that is providing data drives this
signal.

SB_STB s/t/s
(in)

SideBand Strobe provides timing for SBA[7::0] (when supported) and is
always driven by the A.G.P. master.  When the SideBand Strobes have been
idle, a synch cycle needs to be performed before a request can be
enqueued.  (See Section 4.1.2.10 for details).

SB_STB# s/t/s
(in)

SideBand Strobe compliment and SB_STB# provide timing for SBA[7::0]
(when supported) when 4x timing is supported and is always driven by the
A.G.P. master.

CLK t/s
(out)

Clock provides timing for A.G.P. and PCI control signals.

Table 3-4 describes the clock signals used on the A.G.P. interface and when they are used.  The basic CLK signal is
used to time all control signals on the interface and is also used to transfer data in the 1x mode.  The other two
strobes are used to transfer data on the AD bus or the SBA port.  Since the AD bus is 32 bits wide, two copies of the
AD_STB are required.  When the 4x mode is used, the compliments of the strobes are also required.

The strobes basically follow the s/t/s definition, where the agent that asserts the signal is required to deassert it before
tri-stating it.  However, when ownership of the strobe changes, which occurs during a turn-around cycle, there is a
period of time when both agents actively drive the strobe in the deasserted state.  This condition occurs when one
agent is returning the strobe to the deasserted state (finishing a transaction) while the other is preparing to actively
assert the signal (starting a transaction).  No contention occurs because the subsequent agent is not allowed to
actively assert the strobe until after the time in which the first agent is required to have tri-stated the strobe.  Refer to
Section 4.2.2.2 (2x) and Section 4.2.2.3 (4x) for timing details.
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Table 3-5:  USB Signals

Name Type Description

USB+ t/s USB Positive Differential Data Line, used to send USB data and control
packets to external peripheral devices (typically a USB capable video monitor
in this application).  For complete details on the USB signaling characteristics
and requirements, see the Universal Serial Bus Specification.

USB- t/s USB Negative Differential Data Line.  See above reference.

OVRCNT# Note 1 USB Overcurrent Indicator is low when too much current has been taken
from the 5 volt power supply (Vbus) line on the monitor connector.
Otherwise, the line is between 2.4 volts and Vddq.

Notes

1. Overcurrent indication can be provided either by an active sense circuit or by a passive sensing of the USB
power out (Vbus) after a fuse.  An example of such a passive sensing circuit is a resistor divider of 10 KΩ ±5%
from Vbus to OVRCNT# and 15 KΩ ±5% from OVRCNT# to ground.  Implementations may vary.  Boards
which do not provide power to the monitor cable must pull this line to Vddq through a pull-up resistor.

Table 3-5 is included in this specification to point out the USB signals that might be need by the graphics add-in
card.

Table 3-6:  Power Management on A.G.P.

Name Description

PME# Power Management Event is not used by the A.G.P protocol, but is used by
the PCI target interface when being power managed by the operating system.
Refer to the PCI Bus Power Management Interface Specification for the
definition of PME# and how a device is power managed by the operating
system.

Table 3-6 is included in this interface specification to point out the PCI Power Management signal which is used to
control the power used by the device.  Since an A.G.P. device is also a PCI target, the device follows the PCI Bus
Power Management Interface Specification  when supporting power management.  Care needs to be taken when
supporting power management to ensure correct operation and compliance with the power management
specification.

Table 3-7:  Special Interface Signals

Name Description

TYPEDET# Type detect indicates whether the interface is 1.5 volt or 3.3 volt.  Refer to
Section 4.3.4 for a description of this signal.
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3.1.1 Semantics of PCI Signals

PCI signals, for the most part, are used in a similar manner when doing an A.G.P. transaction.  FRAME#, IDSEL,
STOP#, and DEVSEL# are not used by the A.G.P. pipelined protocol but are used (except IDSEL) for an FW
transactions.  IDSEL, LOCK#, INTC#, and INTD# are not supported on the A.G.P. connector.  The exact role of all
PCI signals during A.G.P. transactions is described in Table 3-8.

Table 3-8:  PCI Signals in Relation to A.G.P.

PCI Signal Relationship With A.G.P.

FRAME# Not used during an A.G.P. pipelined transaction and is kept in the deasserted state by the
central resource.  FRAME# is used for FW transactions.

IRDY# Indicates the A.G.P. master is ready to provide all write data for the current transaction.  Once
IRDY# is asserted for a write operation, the master is not allowed to insert waitstates.  The
assertion of IRDY# for reads, indicates that the master is ready to accept a subsequent block of
read data.  The master is never allowed to insert a waitstate during the initial block of a read
transaction.  However, it may insert waitstates after each subsequent block transfers.  (There is
no FRAME# -- IRDY# relationship for A.G.P. transactions.)  For FW transactions, IRDY# is
driven by the corelogic to indicate when the write data is valid on the bus.  The corelogic is
allowed to insert waitstates on block boundaries but not on individual data phases.

TRDY# Indicates the A.G.P. target is ready to provide read data for the entire transaction (when
transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block
of data when the transfer requires more than four clocks to complete.  The target is allowed to
insert waitstates after each block transfers on both read and write transactions.  For FW
transactions, the A.G.P. master uses TRDY# to indicate if and when it is willing to transfer a
subsequent block.

STOP# Not used during an A.G.P. transaction and is kept in the deasserted state by the central
resource.  For FW transactions, STOP# is used to signal Disconnect or Target-abort
terminations.  The PCI target termination of Retry is not supported when performing FW
protocol.

DEVSEL# Not used during an A.G.P. transaction and is kept in the deasserted state by the central
resource.  For FW transactions, it is used when the transaction cannot complete during the
block.

IDSEL Not part of the A.G.P. connector and is generated internally by the graphics PCI target interface.
(See Section 3.1.2 for details.)

PERR# Not used during an A.G.P. transaction and is kept in the deasserted state by the central
resource.  (Optional for PCI operation per exceptions granted by the PCI Local Bus
Specification.)

SERR# Same as PCI.  (May be used by an A.G.P. master to report a catastrophic error when the
corelogic supports an SERR#7 pin for the A.G.P. port.)

                                                          

7 An A.G.P. SERR# signal cannot be tied to the PCI SERR# signal because of different clocking domains.  The
assertion of SERR# must meet setup and hold times to CLK.
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Table 3-8:  PCI Signals in Relation to A.G.P. (continued)

PCI Signal Relationship With A.G.P.

REQ# Used to request access to the bus to initiate a PCI or an A.G.P. Request.

GNT# Same meaning as PCI but additional information is provided on ST[2::0].  The additional
information indicates that the master is the recipient of previously requested read data (high or
low priority), it is to provide write data (high or low priority) for a previously enqueued write
command, or it has been given permission to start a bus transaction (A.G.P. or PCI).

RST# Same as PCI.

AD[31::00] Same as PCI.

C/BE[3::0]# Slightly different meaning.  Provides command information (different commands than PCI) from
the master when requests are being enqueued using PIPE#.  Provides valid byte information
during A.G.P. write transactions and is driven by the master.  The target drives to “0000” during
the return of A.G.P. read data (in 1x and 2x modes) and is ignored by the A.G.P. master.  In 4x
mode, the byte enables are asserted for transfers that have valid data and deasserted for
transfers that have meaningless data.

PAR Not valid during an A.G.P. transaction, but must be actively driven by the current owner of the
AD bus.

LOCK# Is not supported on the A.G.P. interface for either A.G.P. or PCI transactions.

INTA#, INTB# Interrupt request signals8 are the same as PCI and follow the same usage.  (Must be level
sensitive and shareable.)  INTA# for a single function device, INTB# for a two function device.
INTC# and INTD# are not supported on the A.G.P. connector.

Each signal can be required, optional, or not applicable, depending on the type of device (graphics or corelogic),
which interface (PCI or A.G.P.) is supported, and the type of agent (master or target).  Table 3-9 is a summary of the
functionality supported by function and agent.  Table 3-10 is a summary of the PCI signals supported by function
and agent.  Table 3-11 is a summary of the A.G.P. signals supported by function and agent.  For example, the second
column represents a graphics agent that supports the PCI interface as a target.  The row labeled Support indicates
whether the interface is required or optional.  For the example, the PCI target interface is required by a graphics
agent.  The gray boxes indicate that the signal is not applicable to the function.

Table 3-9:  Summary of Interfaces Based on Function and Agent

Device Graphics Corelogic

Interface PCI A.G.P. PCI A.G.P.

Agent Target Master Master FWTarget Target Master Target FWMaster

Support R O O O R R R O

Legend:
R Required
O Optional

                                                          

8 These can be tied to the PCI INTx# signals since these are o/d signals and are level sensitive.  However, care must
be taken to ensure electrical interface requirements are met.  Refer to Section 4.3.4 for details.
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Table 3-10:  Summary of PCI Signals Based on Function and Agent

Device Graphics Corelogic

Interface PCI A.G.P. PCI A.G.P.

Agent Target Master Master FWTarget Target Master Target FWMaster

FRAME# R R R R R R

IRDY# R R R R R R R R

TRDY# R R R R R R R R

STOP# R R R R R R

DEVSEL# R R R R R R

IDSEL R1 R3

PERR# R R R R

SERR# O O O O

REQ# R O2 R I I

GNT# R R R I I

RST# R R R R R R R R

AD[31::00] R R R R R R R R

C/BE[3::0]# R R R R R R R R

PAR R R NS NS R R NS NS

LOCK# NS NS NS NS NS NS NS NS

INTA# O O O R O R

INTB# O O O R O R

CLK R R R R R R R R

PME# O O

Legend:

R Required

O Optional

I Internal signal

NS Not supported

  A shaded cell indicates that the signal is not applicable to the function.

Notes:  1 – IDSEL is not a signal on the connector.  See Section 3.1.2 for details of how IDSEL is implemented.

2 – REQ# is required when requests are enqueued on the AD bus.

3 – IDSEL is typically an internal signal for the corelogic.
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Table 3-11:  Summary of A.G.P. Signals Based on Function and Agent

Device Graphics Corelogic

Interface PCI A.G.P. PCI A.G.P.

Agent Target Master Master FWTarget Target Master Target FWMaster

ST[2::0] O5 R R R

PIPE# O1 R

SBA[7::0] O1 R

RBF# O2 R

WBF# O4 R

AD_STB0 2x or 4x R R R

AD_STB0# 4x 4x 4x 4x

AD_STB1 2x or 4x R R R

AD_STB1# 4x 4x 4x 4x

SB_STB O R

SB_STB# O3 4x

Legend:

R Required

O Optional

I Internal signal

NS Not supported

  A shaded cell indicates that the signal is not applicable to the function.

Notes:  1 – Either PIPE# or SBA[7::0] must be supported; not both.

2 – RBF# is not required by the A.G.P. master if it can always accept the return of LP Read data.

3 – SB_STB# is required when using the SBA port and data transfers at 4x.

4 – WBF# is not required by the A.G.P. master if it can always accept the first block of FW data.

5 – ST# signals are only optional to the PCI master if no A.G.P. support is implemented.
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3.1.2 Configuration of an A.G.P. Master

Initialization of an A.G.P. device is done via the configuration mechanism defined by the PCI Local Bus
Specification.  This interface specification does not define a new mechanism.  An A.G.P. master is composed of a
PCI target interface and an A.G.P. master interface.  (Optionally, the device can also include a PCI master interface
when required.)  The PCI target interface follows the PCI Local Bus Specification.  This requires the device to
respond to a PCI configuration transaction when a configuration command (read or write) is decoded and AD01 and
AD00 are both “0” and the device’s IDSEL is asserted.  Since IDSEL is not a signal in the A.G.P. connector, it must
be connected to AD16 at the component.  The designer of the A.G.P. master must be careful as to how this
connection is made.  It must be connected internally for A.G.P. operation while it must be connected externally for
PCI operation.  The next two sections will describe how this connection must be made based on the targeted market
segment of the device.

3.1.2.1 Device for A.G.P. Only Operation

When the device is designed for exclusive operation on the A.G.P. interface, the device does not have an external
IDSEL pin.  In this implementation, the device asserts DEVSEL# when the bus command is configuration (read or
write).  AD16 is a “1” while AD1 and AD0 are “00”.  Under all other conditions, the device’s configuration space
has not been selected and the device does not assert DEVSEL# to claim the access.  System software will scan all
configuration spaces supported by asserting a different AD signal between AD16 and AD31 while performing a PCI
configuration read or write command.  A device located on that segment can only assert DEVSEL# for a single
configuration space which is uniquely identified by having its IDSEL asserted when AD1-0 are “00”.  The exception
is for a multi-function device that has bit 7 of the header type field set.  In this case, the different functions are
selected based on the function number decoded (AD10-AD8).  See the PCI Local Bus Specification for more details.

3.1.2.2 Device for Both PCI and A.G.P. Operation

When a device is designed to be used on both A.G.P. and PCI bus segments, then the device needs to have two
modes of operation.  When in the A.G.P. mode, the device generates DEVSEL# as described in the A.G.P. only
implementation.  When used in a PCI mode of operation, the device must provide an external IDSEL that is
connected to one of the AD signals.  Which AD signal it is connected to is determined by the system designer and
NOT by the component designer.  In this case, the device must be “strapped”9 to indicate which mode it is operating
in.  Note: that besides how DEVSEL# is generated during configuration accesses, the device must also know the
strength in which it drives its output buffers.  Note:  A.G.P. requires only half the strength of a PCI buffer, since
A.G.P. is a point-to-point connection and not a bus environment like PCI.

                                                          

9 Refers to the condition where information is conveyed to the device by sampling a pin to determine how the device
should behave.  For example, if the pin is tied to Vcc the device supports mode X, otherwise it supports mode Y.
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3.2 Operation Overview
Memory access pipelining is one of the major PCI protocol enhancement provided under this interface specification.
A.G.P. pipelined bus transactions share most of the PCI signal set, and are actually interleaved with PCI transactions
on the bus.  Only memory read and write bus operations targeted at main memory can be pipelined; all other bus
operations, including those targeted at device-local memories (e.g., frame buffers), are executed as PCI transactions,
as defined in the PCI Local Bus Specification.  The other enhancement to the PCI protocol is the acceleration of
memory write transactions from the corelogic to the A.G.P. master device acting like a PCI target.  This is called fast
write (FW).  When the FW protocol is enabled, the PCI write data target at the A.G.P. master transfers at the same
rate as the A.G.P. data transfers.  PCI memory write targeted at the corelogic from the A.G.P. master transfers at the
PCI data rate.  FW flow control is more like A.G.P. than PCI.  See Section 3.5.2.2.2 for details.

A.G.P. pipelined operation allows for a single A.G.P. target, which must always be the system memory controller,
referred to in this document as corelogic.  In addition to A.G.P. target functions, the corelogic must also implement a
complete PCI sequencer10, both master and target.  For electrical signaling reasons, the A.G.P. is defined as a point-
to-point connection; therefore, there is also a single A.G.P. master, which, in addition to implementing the A.G.P.
master functions, must also provide full PCI target functionality11.  PCI master functionality is optional.

3.2.1 Pipeline Operation

The A.G.P. interface is comprised of a few newly defined “sideband” control signals which are used in conjunction
with the PCI signal set.  A.G.P.-defined protocols (e.g., pipelining) are overlaid on the PCI bus at a time and in a
manner that a PCI bus agent (non-A.G.P.) would view the bus as idle.  Both pipelined access requests (read or write)
and resultant data transfers are handled in this manner.  The A.G.P. interface uses both PCI bus transactions without
change, as well as A.G.P. pipelined transactions as defined herein.  Both of these classes of transactions are
interleaved on the same physical connection.  The access request portion of an A.G.P. transaction (bus command,
address, and length) is signaled differently than is a PCI address phase.  The information is still transferred on the
AD and C/BE# signals of the bus as is the case with PCI12, but is identified or framed with a new control signal,
PIPE#, in a similar way to which PCI address phases are identified with FRAME#.

The maximum depth of the A.G.P. pipeline is not architecturally constrained but is set to a maximum of 256 by this
interface specification.  However, the maximum A.G.P. pipeline depth may be reduced further by the capabilities of
both master and target.  The target provides an implementation dependent number of pipe slots, which is identified at
configuration time and made known to the bus master (see Section 6.1.10).  The pipeline is then source throttled,
since a master is never allowed to have more outstanding requests than the number of pipe slots it has been allocated.

The notion of intervening in a pipelined transfer enables the bus master to maintain the pipe depth by inserting new
requests between data replies. This notion is similar to the software notion of a subroutine call; one context (data
reply) running on the physical resource (wires in this case) is temporarily suspended while another context (request

                                                          

10 The A.G.P. master is not allowed to use subtractive decoding for FRAME# based transactions.  The A.G.P. target
must behave as a PCI compliant master and target with two exceptions.  The A.G.P. target is not required to adhere
to either the target initial latency requirements or the target subsequent latency requirements as stated in the PCI
Local Bus Specification.

11 The A.G.P. master must function as a PCI compliant PCI target.

12 There are some optional mechanisms that allow address demultiplexing, such as using an alternate (non-AD bus)
mechanism for transferring address, which is described in Section 3.5.1.1.
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queuing) runs, after which the first context is restored and processing continues.  This bus sequencing is illustrated in
Figure 3-1.

A1 A2 A DataA3

Data-2Data-1 Data-3

PCI TransactionPipelined AGP Requests

Bus
Idle

Pipelined
Data
Transfer

Intervene
Cycles

Figure 3-1:  Basic A.G.P. Pipeline Concept

When the bus is in an idle condition, the pipe can be started by inserting one or more A.G.P. access requests
consecutively.  Once the data reply to those accesses starts, that stream can be broken (or intervened) by the bus
master (e.g., graphics controller) to:

• Insert one or more additional A.G.P. access requests.

• Insert a PCI transaction.

This intervene is accomplished with the bus ownership signals, REQ# and GNT#.  Operation of the bus can also be
understood in terms of the four bus states shown in Figure 3-2.  The operation of the PCI bus can be described by the
two states PCI and IDLE, and the transition lines directly connecting them.

AGP
request PCI

pipeline

DATA
transfer

IDLE

Pipelining
continues

PCI
intervene

Standard PCIInitiate
pipeline operation

Figure 3-2:  A.G.P./PCI Operational States

The A.G.P. pipeline is initiated from the IDLE state by arbitrating for the bus, and delivering one or more A.G.P.
access requests (A.G.P. state).  These requests are transmitted much like a PCI address phase except that they are
timed with PIPE# rather than FRAME#.  When one or more addresses has been transmitted, and PIPE# is
deasserted, the bus enters the DATA state, in which the corelogic (the sole A.G.P. target) controls the AD lines and
transfers data.  If a bus master then requests the bus (REQ#), the A.G.P. arbiter (always located in A.G.P.
target/corelogic) suspends pipelined data transfer and, using the GNT# signals, allows the bus master to initiate a bus
transaction, driving the bus to either the A.G.P. or the PCI state depending on whether the master asserts PIPE# or
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FRAME#.  After this transaction is complete, the bus returns to the DATA state and resumes the pipelined transfer.
Pipelined data flow may be suspended only at transaction boundaries, never in the middle of a single transaction.
While the return of data is pending (a request for data has not been completed), the state machine remains in the
DATA state.  If new request needs to be enqueued while data is pending, the machine transitions from DATA to
A.G.P. or PCI state depending on what type of request is initiated.  Only when all previously requested data has been
transferred, does the machine return to the IDLE state.  For mobile designs, the clock is not allowed to be stopped or
changed except when the bus has returned to the IDLE state, which means that there are no outstanding requests
pending.  Flow control issues and protocol for pipelined A.G.P. Requests and data transfer are discussed in
Section 3.5.2.

3.2.2 Addressing Modes and Bus Operations

A.G.P. transactions differ from PCI transactions in several important ways.

1. The data transfer in A.G.P. pipelined transactions (both reads and writes) is “disconnected” from its associated
access request.  That is the request and associated data may be separated by other A.G.P. operations, whereas a
PCI data phase is connected to its associated address phase with no possibility of intervening operations.  This
separation not only allows the pipe depth to be maintained, but also allows the corelogic to insure that a
sufficiently large buffer is available for receiving the write data before tying up the bus on a data transfer that
otherwise could be blocked awaiting buffer space.  All access ordering rules on the A.G.P. interface are based
on the arrival order of the access requests, and not the order of actual data transfer.

2. Transactions use a completely different set of bus commands (see Section 3.3) than do PCI transactions.  A.G.P.
bus commands provide for access ONLY to main system memory.  (PCI bus commands provide for access to
multiple address spaces:  memory, I/O, and configuration.)  The address space used by A.G.P. commands is the
same linear physical space also used by PCI memory space commands13, as well as on the processor bus.

3. Memory addresses used in A.G.P. transactions are always aligned on 8-byte boundaries; 8 bytes is the minimum
access size, and all accesses are integer multiples of 8 bytes in length.14  (Memory accesses for PCI transactions
have 4-byte granularity, aligned on 4-byte boundaries.)  Smaller or odd size reads must be accomplished with a
PCI read transaction.  Smaller or odd size writes may be accomplished via the C/BE# signals, which enable the
actual writing of individual bytes within an eight byte field.

4. Pipelined access requests have an explicitly defined access length or size.  (PCI transfer lengths are defined by
the duration of FRAME#.)

5. Pipelined accesses do not guarantee memory coherency.  That is, A.G.P. accesses are not required to be snooped
in the processor cache.  PCI memory accesses always insure a coherent view of memory and must be used on
accesses where coherency is required.

                                                          

13 This physical memory space may contain a GART range, within which addresses are translated per the description
in Section 2.1.

14 The motivation for increasing the addressing granularity from 4 bytes (PCI) to 8 bytes is tied to the typical
memory organization used with 64-bit processors.  Memories for these systems will generally be 64 bits wide.
Therefore, smaller accesses will not provide any performance savings at the memory, and the motivation of  A.G.P.
is centered around maximizing memory performance for graphics accelerators.
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3.3 Bus Commands
Bus commands indicate to the corelogic the type of pipelined transaction the master is requesting on the A.G.P.
interface.  Bus commands are encoded on C/BE[3::0]# when enqueuing a request on the AD bus or encoded in a
type 2 command when using the SBA port.  (See Section 3.5.1 for details.)  The format of a complete A.G.P. bus
request is shown in Figure 3-3.

<---  address (29 bits)  --->

031 3  2

L L L C C C C

0 3

Figure 3-3:  Layout of an A.G.P. Access Request

The “LLL” field contains the access length in units of Qwords (8 bytes), and displaces the low order 3 bits of
address.  A length field of “000” indicates that a single Qword (8 bytes) of data is being requested, while “111”
indicates eight Qwords (64 bytes) are being requested.  The “CCCC” field contains the bus operation or command as
itemized in Table 3-12.  A brief description of each command follows the table.

Table 3-12:  A.G.P. Bus Commands

CCCC A.G.P. Operation

0000 Read

0001 Read (hi-priority)

0010 reserved

0011 reserved

0100 Write

0101 Write (hi-priority)

0110 reserved

0111 reserved

1000 Long Read

1001 Long Read (hi-priority)

1010 Flush

1011 reserved

1100 Fence

1101 Dual Address Cycle (DAC)

1110 reserved

1111 reserved
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Read:  starting at the specified address, read n sequential Qwords, where n = (length_field + 1).

Read (hi-priority):  same as Read, but the request is queued in the high priority queue.  The reply data may be
returned out of order with respect to other requests.  However, the reply data  will be returned in order with
respect to other HP Read requests, and within the maximum latency window established for high priority
accesses (see Section 2.3).  High priority read accesses only follow A.G.P. ordering rules with respect to other
high priority read accesses.

Write:  starting at the specified address, write n sequential Qwords, as enabled by the C/BE# bits,
where n = (length_field + 1).  Writes obey the bus ordering rules (they may be retired ahead of previously
issued reads).

Write (hi-priority):  same as Write, but indicates that the write data must be transferred from the master within the
maximum latency window established for high priority accesses15 (see Section 2.3).  High priority write
accesses only follow A.G.P. ordering rules with respect to other high write priority accesses.

Long Read:  same as Read except for access size, in this case, n = 4 * (length_field + 1) allowing for up to 256 byte
transfers.

Long Read (hi-priority):  same as Read (hi-priority) except for access size which is the same as for Long Read.

Flush:  similar to a Read.  This command drives all low priority write accesses ahead of it to the point that all the
results are fully visible to all other system agents, and then returns a single Qword of random data as an
indication of its completion (see Section 3.4.3).  The address and length fields are meaningless for this
command.

Fence:  creates a boundary in a single master’s LP access stream around which writes may not pass reads (see
Section 3.4.3).  This command is the only one which does NOT occupy a slot in the A.G.P. pipeline.

Dual Address Cycle:  is used by the master to transfer a 64 bit address to the corelogic when using the AD bus.
When using the SBA16 port to enqueue requests, the DAC command is not valid and must be implemented as a
reserved command.  The master is required to use two clock periods to transfer the entire address using
AD[31::00] and C/BE[3::0]#.  During the first clock, the master provides the lower address bits (A31-A03)
and the length encoding on (A2-A0), just like a 32 bit request, but provides the DAC command (1101)
encoding on C/BE[3::0]# instead of the actual command.  The second clock of the request contains the upper
address bits (A63-A32) on AD[31::00] and the actual command on C/BE[3::0]#.

Reserved:  Must not be issued by a master and may be defined in the future by Intel.

                                                          

15 This implies that if the target write queue is full, some access priority must be raised in order to accommodate this
access within the latency requirement.

16 The SBA port uses the Type 4 command when requesting data above the 4 GB boundary.
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3.4 Access Ordering Rules

3.4.1 Ordering Rules and Implications

The A.G.P. ordering rules are different than the CPU ordering rules and those of PCI.  Since each type of transaction
has different ordering rules, this section will discuss the interaction between A.G.P. streams and other operations.
These interactions can be broken down into three basic categories:

1. Different System Streams (A.G.P., CPU, and PCI)

2. Different A.G.P. streams (high priority (HP) and low priority (LP))

3. Same stream (Read and Write)

These rules only apply to operations that are initiated or completed on the A.G.P. interface.  The interaction between
transactions that are not initiated or completed on the A.G.P. interface is beyond the scope of this interface
specification and will not be discussed.

Different System Streams (A.G.P., CPU, and PCI)

There is no ordering relationship between an A.G.P. master’s operation and any other system operation,
including operations generated by host CPU(s), PCI agents, or expansion bus agents.  This means that an
A.G.P. transaction is only required to follow A.G.P. ordering rules even when the A.G.P. transaction
crosses into other domains.  For example, an A.G.P. master initiates a read to a location in system memory
that is currently locked by the processor.  The corelogic is not required to honor the CPU’s lock.  The
corelogic is allowed to complete the request in the face of the lock and if this causes incorrect operation,
then a programming error has occurred.

The A.G.P. target is not required to ensure consistent data when A.G.P. transactions interact with the rest of
the system.  For a read, this means that an A.G.P. target is allowed to complete the request from system
memory without checking the CPU cache for a more recent copy.  For a write, the A.G.P. target can simply
write the data to system memory without snooping the CPU cache.  If the cache has a modified line at the
same location, it will overwrite the A.G.P. write at some point.  The A.G.P. target is not required to force
A.G.P. data out of the A.G.P. domain into system memory or even into buffers that participate in ordering
rules of system memory.  When an A.G.P. master needs to cause a synchronization event (request an
interrupt or set a flag) to occur, it uses the Flush command.  The Flush command forces previously issued
LP A.G.P. write transactions  to be forced into system memory or into buffers that participate in ordering
rules of the system. This means that LP write data already transferred across the bus or write data that has
been issued but not transferred.

There is no relationship between A.G.P. and PCI transactions on the A.G.P. interface except that they use
the same wires.  This means that the order in which they complete does not matter.

PCI transactions initiated by an A.G.P. master or target must follow the ordering rules specified in the PCI
Local Bus Specification.  This includes the A.G.P. defined FW operations.

When an A.G.P. agent is capable of generating both PCI and A.G.P. transactions, the A.G.P. target is not
required to maintain any ordering between these two streams.  However, the A.G.P. target is required to
maintain order within a given stream based on the ordering rules for that stream.  For example, a master
issues a PCI and an A.G.P. transaction.  The order in which the A.G.P. and PCI transactions complete does
not matter.  These are two different streams of requests and different streams have no ordering relationships.
The same rules are followed when a PCI transaction is generated by a device on the A.G.P. interface or by a
device that resides on a PCI bus segment.  The PCI agent’s transactions will follow the same rules as
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described in the PCI Local Bus Specification even though it was initiated on the A.G.P. interface.  This
agent’s transaction has no ordering with respect to any A.G.P. transactions that occur.

Different A.G.P. Streams (HP and LP)

There is no relationship between different A.G.P. streams.  This means that the order that HP and LP
transactions complete with respect to each other does not matter17.

If Requests are made in the following order:  “HP1, HP2, LP3, LP4, and HP5”,they may
complete as:  “HP1, HP2, HP5, LP3, LP4” or “LP3, LP4, HP1, HP2, HP5” to give two
examples.

Same Stream (Read and Write)

Requests of the same type (LP Read, HP Read, HP write, or LP write) must complete in the same order that
they were requested with respect to themselves.  The A.G.P. target will return a stream of A.G.P. Read data
in the same order as requested.

Reads requested in the order “A, B, C, D” will return data in the same order as requested
– “A, B, C, D”.

Even though the A.G.P. target will return a stream of A.G.P. read data in the same order as requested, this
does not mean that the read transactions actually occur at the destination in the same order as requested.
The A.G.P. target is allowed to re-arrange Read requests to improve performance, but is never allowed to
return data in a different order than requested.

The master requests Read “A, B, C, and then D”.  However, the memory controller is
allowed to obtain the data “C, B, D, and then A”, but is required to return the data in the
same order as requested.

The A.G.P. target will complete a stream of write data to system memory in the same order as requested.
This rule means that A.G.P. write data cannot pass previously written A.G.P. data.

Writes requested in the order “A then B” where A and B overlap will cause B to
overwrite part of A.

For HP Requests, there is no relationship between read and write requests.  An HP Read request can pass
and complete before a previously enqueued HP write request.  An HP write request can pass and complete
before a previously enqueued HP Read request.

HP transactions requested as “Ra and then Wb” to the same address can complete as
either ‘”Ra then Wb”, or “Wb then Ra”.  This means that the read may return old or new
data.

For LP transactions, there is a relationship between read and write requests.  Read data returned will be
coherent with previously issued A.G.P. Write requests.  Write data is allowed to pass previously enqueued
read requests.  Therefore, when the read data is returned, it may be the old or new data.

LP transactions requested in the order “Wa, Wb, Rc, Wd, Re” to the same address.  Read
data returned for Re will be what was written by Wd.  (Read requests push write
requests.)

                                                          

17 The High Priority stream latency guarantee provided by the corelogic may place some constraints on the order in
which the corelogic retires requests.
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LP Read requests will push LP Write data from an A.G.P. master.  An A.G.P. LP Read to a location
previously written by an A.G.P. LP write operation will return the latest copy of the data seen by the A.G.P.
interface.

LP transactions requested in the order “Wa, Wb, Rc, Wd, Re” to the same address.  Read
data returned for Rc may be either what was written by Wb or Wd.  Wd is returned when
Wd passes Rc.

This rule means that an A.G.P. write issued after an A.G.P. read is allowed to pass the read request and may
cause the read to return the new value of the data even though the write request and data transfer occurred
on the bus after the read request occurred.  To ensure that the old value is returned, the A.G.P.  master must
not issue the write transaction until after the read data has returned from the read request or issue a Fence
command (which is discussed in Section 3.4.3) between the read and the write.

A master enqueues LP Read x and then LP Read y.  Before the read data is returned, an LP Write to
location x and then an LP Write to location y occurs.  Because of the ordering rules defined above, it is
possible for the Read to location x to return old or new data and the Read to location y to return old or new
data.  Note that if the Read to location x returns new data, it does not imply that the Read to location y will
also return new data.  If the Read to location x returned old data, it is possible for the Read to location y to
return new data.  The value that is returned is determined by the A.G.P. target after the requests have been
enqueued and before data is returned to the master.  The ordering rules as described above only require that
the data being returned to the master be delivered in the same order as requested.

Implications of Allowing A.G.P. Writes to Pass A.G.P. Reads

A potential problem created by allowing A.G.P. Writes to pass A.G.P. Reads is that an A.G.P. Read may
return “old” data from a previous A.G.P.  Write or “new” data from a following A.G.P. write.  An A.G.P.
Read sandwiched by A.G.P.  Writes may return data for either write — it is indeterminate.  This is shown in
the following example:

A 3D graphics controller master generates the following sequence of pipelined A.G.P. Requests.  In this
example, the reads are from the frame buffer, texture buffer, and depth buffer respectively, while the writes
are to the frame buffer.  This example assumes that all frame buffer accesses are to the same address.

W0c R3cW1cR2zR2tR2c W2cR3zR3t

Request Order: 1 2 9876543

The following diagram shows W1c passing R2t.  In this case, R2c will return “old” data from the W0c
write.

Request Order: 1 2 9876543

W0c R3cW1cR2zR2tR2c W2cR3zR3t
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The following diagram shows W1c passing R2c.  In this case, R2c will return “new” data from the W1c
write.

Request Order: 1 2 9876543

W0c R3cW1cR2zR2tR2c W2cR3zR3t

The following diagram shows both W1c and W2c passing R2c. In this case, R2c will return “new” data
from the W2c write.  (In this graphics controller example, write W2c is dependent on R2c data returning.
So, in reality, the write request W2c will not be generated before the read data for R2c is returned.
However, if the requests were pipelined deeper, it would be possible for several writes to pass a particular
read.)

Request Order: 1 2 9876543

W0c R3cW1cR2zR2tR2c W2cR3zR3t

A.G.P. Master Implications of Allowing Writes to Pass Reads

If an A.G.P. master does not care if it gets “old” or “new” data for a given read operation, no special action
needs to be taken.  If an A.G.P. master is particular about getting “new” or “old” data, it is the A.G.P.
master’s responsibility to ensure that it gets the correct data.  There are various methods to ensure this.
Some of these methods are discussed next.

If an A.G.P. Master Must Get “New” Data, it May:

Detect that a conflict exists between a Read request that has already been generated and an internally
pending Write request, merge (or substitute) the “new” Write data with the “old” Read data when it is
returned; or

Delay the LP Read request behind the LP Write request.  Since LP Reads “push” LP Writes per the
ordering rules, the LP Read will return the “new” data.  Since it is desirable to deeply pipeline the A.G.P.
Requests, actually determining that a conflict exists between an LP Read and a subsequent LP Write, may
be difficult (or impossible).  Once a conflict is detected, delaying the LP Read may stall the pipeline and
impact performance.

If an A.G.P. Master Must Get “Old” Data, it May:

Issue a Fence command between the LP Read and the following LP Write or delay the “new” LP Write data
until the “old” LP Read data has been returned.  The latter method has the potential for deadlock.  A
deadlock occurs when delaying an LP Write causes an A.G.P. master’s data engine to back-up.  If the
A.G.P. master’s LP Read data return buffers are full, the stalled data engine cannot remove LP Read data
from the buffers.  The “old” LP Read data cannot be accepted and the LP Write will continue to be delayed,
creating the deadlock.  For HP transactions, the only way to guarantee old data is to delay the write until the
read completes, since Fence is an LP command and does not apply to HP requests.
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Summary Of Ordering Rules

X Pass Y? HIGH LOW PCI

Read -> Read No No No

Write -> Write No No No

Read -> Write Yes No No

Write -> Read Yes Yes No

3.4.2 Deadlock Avoidance

An A.G.P. master cannot make the data transfer phase of a previously issued request dependent on the completion of
any other A.G.P. or PCI transaction to the device as either a master or target.

3.4.3 Flush and Fence Commands

Because of the ordering rules of the A.G.P. interface, the master cannot guarantee when LP write data has reached its
final destination.  From the A.G.P. master’s standpoint, an LP write transaction appears to have completed but the
LP write data may still be pending in the A.G.P. interface.  The master also needs the ability to ensure that certain
transactions complete on the A.G.P. interface before other transactions are issued.  This can be accomplished by
delaying the issuing of subsequent  requests until previous requests complete, but this defeats the use of pipelining to
improve system performance.  The Flush command causes A.G.P. LP transactions to become visible to the rest of the
system so synchronization events may occur.  The Fence command guarantees what order LP accesses will complete
in, without delaying the issuing of subsequent LP commands.  Each will be discussed in more detail in the following
paragraphs.  The Fence and Flush commands are LP commands and have no affect on high priority requests.

Flush

Under most conditions, the master does not care if its transactions are visible to the system or not.  But in those cases
when it does matter, the Flush command is used by an A.G.P. master.  The Flush command ensures that its LP write
transactions have become visible to the rest of the system.  Because of the A.G.P. ordering rules, the master cannot
cause accesses to become visible to the system by using the memory commands as is possible with PCI commands.
Memory commands can only cause data to be returned in a specific order; they place no requirement on the corelogic
to make accesses visible to the system.  However, the corelogic must cause A.G.P. LP accesses to become visible to
the rest of the system when the Flush command is issued.  The Flush command behaves similar to an LP Read
command except that a single Qword of random data is returned.  The return of the random data is the
acknowledgment to the master that all previous LP write transactions have become visible to the system.  When the
Flush command completes, the master may safely cause a synchronization event to occur.

Take the case when the A.G.P. master writes LP data to memory, but does not use the Flush command before
generating an interrupt.  The driver reads its device and determines that data is valid in memory.  When it accesses
system memory (from the CPU), it may access stale data because the data is still in the A.G.P. domain.  In the PCI
domain, this sequence was all that was required to guarantee that the correct data would be accessed.  However, for
A.G.P., this is not sufficient.  Since A.G.P. accesses have no ordering with respect to any other accesses in the
system (in this example from the CPU), the A.G.P. interface is not required to flush posted write data before
completing a read to the A.G.P. interface.  Therefore, the posted write data may still reside in the A.G.P. interface
and the driver may access stale data.  For PCI transactions, the flush of posted data on any read causes loss of
performance in the system and generally is only required in certain cases.  The Flush command provides a
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mechanism for the master to ensure that the correct LP data will be accessed when a synchronization event occurs,
but does not force the system to flush buffers when not required.

The Flush command occupies a slot in the Transaction Request Queue when issued and is retired from the queue
when the associated single Qword of LP data is returned.  The only limit to the number of outstanding Flush requests
is the limit of the Transaction Request Queue itself.  It is possible to have the Transaction Request Queue full of
Flush commands.

Fence

Because of the A.G.P. ordering rules, the master needs a mechanism that forces LP writes not to pass previously
enqueued LP Read commands.  An A.G.P. master uses the Fence command to demarcate one set of LP A.G.P.
Requests from another.  The Fence command affects the order in which A.G.P. Requests are completed in memory
and may not necessarily determine the order in which they complete on the bus.  On either side of the demarcation,
A.G.P. Requests are processed based on the A.G.P. ordering rules.  However, all LP requests generated prior to the
Fence command are processed prior to any LP request following the Fence command.  A.G.P. LP Write requests
generated after a Fence command may not pass any LP Read requests generated prior to the Fence command.

High priority requests are exceptions and are allowed to pass the demarcation established by the Fence command.
The Fence command does not occupy a slot in the LP Request Queue of the A.G.P. master or target.  An A.G.P.
master may generate an unlimited number of Fence commands.

3.4.4 Access Request Priority

The A.G.P. bus command set supports two levels of access priority.  In general, the HP Queue has the highest
priority for memory service, and the LP Queue has lower priority than the processor, but generally higher than any
other subsystem for memory service.  The HP Queue should be used with caution since it causes additional latency to
other requests.  For example, the HP Queue may be useful for a graphics controller reading display memory or to
avoid overflow/underflow in a data stream having real-time deadlines.  The HP Queue is intended for very selective
use and only when an A.G.P. Request needs immediate processing.

Requests in the HP Queue may bypass all other (LP or PCI) requests and may be returned out of order with respect
to other streams.  Only requests that can tolerate re-ordering (with respect to all accesses other than themselves)
should be completed using an HP command.  HP accesses only have order with respect to the same type of request.
For example, HP Read requests only have ordering with respect to other HP Read requests.  HP write accesses only
have ordering with respect to other HP write accesses.  Unlike LP operations, there are no ordering requirements
between HP Read and HP write accesses.  The sequence, HPR-A, HPW-B, HPR-C, and HPW-D, will be used in the
following discussion.  Read data will be returned in the order in which read accesses were requested.  In this
example, A will always complete before C.  Write data will always complete in the order requested; in this example,
write B will always complete before write D.  There is no order between read and write HP operations.  In this
example, the accesses may complete as:  A, C, B, and D; or A, B, C, and D; or A, B, D and C; or B, A, D, and C; or
B, D, A, and C; or A, B, D and C.  However, the order can never be:  C completes before A or D completes before
B.

Both read and write requests may be issued as HP accesses.  The A.G.P. protocol designates read replies as part of
either the high or low priority stream, enabling the bus master which originated the access to associate the reply with
the correct outstanding request.  Writes issued as HP accesses will have transferred the data across the interface
within the maximum latency window established for HP accesses.  This does not imply that the data will have been
retired to main memory within this latency window.
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3.5 Bus Transactions
A.G.P. has two types of operation on the interface, enqueueing requests and transferring data.  Each is a separate and
distinct bus operation.  The following sections will discuss the actual transaction and not how an agent requests
permission to initiate the transaction.  In this section, the REQ# and GNT# signals have been intentionally been
omitted to simplify the diagrams.  How permission is obtained for an agent to use the interface and when it is
required to start a transaction, once permission has been granted, is discussed in Section 3.6.

In describing how each transaction is initiated and completed, timing diagrams will be used.  To help understand the
relationship of significant signals involved in A.G.P. transactions, a brief discussion about how the diagrams are
drawn is useful.  When a signal is drawn as a solid line, it is actively being driven by the current master or target.
When a signal is drawn as a dashed line, no agent is actively driving it.  However, it may still be assumed to contain
a stable value if the dashed line is at the high rail.  Tri-stated signals are indicated to have indeterminate values when
the dashed line is between the two rails (e.g., AD or C/BE# lines).  When a solid line becomes a dotted line, it
indicates the signal was actively driven and now is tri-stated.  When a solid line makes a low to high transition and
then becomes a dotted line, it indicates the signal was actively driven high to precharge the bus and then tri-stated.  A
turnaround cycle is required on all signals that may be driven by more than one agent.  The turnaround cycle is
required to avoid contention when one agent stops driving a signal and another agent begins driving the signal.  This
is indicated on the timing diagrams as two arrows pointing at each others’ tail.

3.5.1 Enqueueing Requests

There are two ways to enqueue requests on the A.G.P. interface, the SBA port, or the AD bus.  An A.G.P. master
can use either mechanism to enqueue requests, and bit 9 of the Status register (see Section 6.1.9) indicates which
mechanism it will use.  When the SBA port is used to enqueue requests, the AD bus cannot be used.  When the AD
bus is used to enqueue requests, the SBA port cannot be used.  The corelogic is required to support both mechanisms
and this allows a master to choose which of the two mechanisms it will implement.  Since the master is only allowed
to use one of the two mechanisms, the corelogic is allowed to disable the other mechanism.  Bit 9 of the corelogic’s
Command register is programmed to indicate which mechanism the master will use to enqueue requests.

Ideally, to maximize efficiency and throughput on a random access memory bus such as A.G.P., the address is
demultiplexed (separate address pins) from the data pins.  The A.G.P. interface provides an optional sideband signal
set to do this (SBA[7::0]), referred to as the SBA port.  However, in order to keep pin cost down, it is only an 8-bit
wide interface.

The SBA port is used exclusively to transmit A.G.P. access requests (all PCI transactions use the AD pins for both
data and address); and, therefore, it is always driven in one direction, from master to corelogic.  The semantics of an
A.G.P. Request transmitted via AD pins or SBA pins are identical; only the actual syntax of transmission varies.
The SBA and AD pins are never used in any combination to transmit requests; in any given configuration, all A.G.P.
Requests are transmitted either on AD pins or SBA pins.  A master that uses the SBA port has no need of the PIPE#
signal which is used only to frame requests on the AD pins.

3.5.1.1 Address Demultiplexing Option

In order to transmit the complete A.G.P. access request across the 8-wire SBA port, the request is broken into three
parts (optionally four parts):  low order address bits and length, mid-order address bits and command, and high order
address.  These three parts are referred to as Type 1, Type 2, and Type 3 respectively.  All Type commands are
“sticky” except Type 1.  Where sticky refers to the attribute where they retain what was last loaded into them, so
these two parts of the request need only be transmitted if they have changed since the previous request.  This exploits
the potential locality in the access request stream to minimize the address traffic over the eight SBA signals.
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Figure 3-4 is an A.G.P. Request and illustrates which bits go with which Type.  The Types that have gray shading
behind them are “sticky” in the corelogic and when a Type 1 is sent, the entire request is reconstructed and sent to
the memory controller.  Note that Type 2 includes address bits 15-23 and the four command bits.

33 22 11

CCCC AAAA   AAAA AAAA   AAAA    A  AAA  AAAA  AAAA  ALLL 
31  24 23 16   15             08             07        03

Figure 3-4:  A.G.P. Request

The transmission of each of these three Types is accomplished by a separate SBA operation.  Each operation on the
SBA port delivers a total of 16 logical bits, in two phases or transfer ticks of 8 bits each.  In 1x transfer mode, each
SBA operation requires two A.G.P. clocks; while in the 2x transfer mode (source clocked option is active), the entire
transfer completes in one A.G.P. clock.  In 4x transfer mode, two complete transfers can complete in a single A.G.P.
clock.  When only a single transfer is required, the master must drive the NOP command during the second transfer.

When addresses greater than 36 bits are needed, a Type 4 command can be used if enabled.  Bit 5 in the Command
register determines if the extended address bits are supported or not.  When bit 5 is set, the device supports up to
address bit 47.  When cleared (0), the extended address bits are not supported and the master is not allowed to
initiate a Type 4 command.  Type 4 command is the same as a Type 3 command except Type 4 presents address bits
36 through 47.

The SBA port always operates at the same transfer rate as the AD bus; either 1x, 2x, or 4x transfer mode as
initialized in the A.G.P. Command register.  This relationship keeps the 8-bit SBA port well matched in speed with
data transfer on the AD bus, since the minimum data transfer size is 8 bytes (two AD ticks), and most A.G.P. access
requests will only involve the low order address bits and length, requiring a single SBA operation (two SBA ticks).

Table 3-13 shows the definition and encoding of each of the SBA port operations.  Bold underlines in the encoding
column indicate op codes.  Each opcode requires two data transfers to move the entire 16 bits to the A.G.P. target.
Note that the first piece of data transferred includes the op code.  For example, for the Length and Lower Address
Bits encoding the opcode is 0.  In this encoding, the first data transferred is the op code (0) and address bits 14 - 08.
The second piece of data transferred is address bits 7-3 and the three length encoded bits.
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Table 3-13:  SBA Port Encoding

Encoding Description

S7.. ...S0 Shows alignment of messages on physical sideband wires.

1111 1111

1111 1111

Bus Idle:  used to indicate the bus is idle, also referred to as a NOP.  When
running at 1x transfer mode, this command is limited to a single clock tick of
8 bits (all ones).  While operating at 2x or 4x transfer mode, the Bus Idle
encoding requires the full 16 bits.

0AAA AAAA

 
14
      

08

AAAA ALLL
07
    

03

Length & Lower Address Bits:  the A.G.P. access length field (LLL), and
lower 12 address bits (A[14::03]) are transferred across the SBA port, and a
memory access is initiated.  The encoding is also referred to as a Type 1
sideband command.  The remainder of the A.G.P. access request (A[31::15]
and bus command) is defined by what was last transmitted using the other
two SBA port commands (Type 2 and Type 3).  Note that AD[2::0] are
assumed to be zero when using this encoding and these bits are not
transferred.

10CC CCRA

        
15

AAAA AAAA
23
       

16

Command & Mid Address Bits:  the A.G.P. bus command (CCCC18) and
mid-order 9 address bits (A[23::15]) are transferred across the SBA port; no
memory access is initiated.  This encoding is also referred to as a Type 2
sideband command.  This command, when followed by the previous
command (Type 1) provides for memory access anywhere within a naturally
aligned 16 MB “page”.  Note that the “R” indicates a reserved bit that must be
driven by the master as a “0” and is ignored by the target.

110R AAAA

     
35
  

32

AAAA AAAA
31
       

24

Upper Address Bits:  the upper 12 address bits (A[35::24]) are transferred
across the SBA port; no memory access is initiated.  This encoding is also
referred to as a Type 3 sideband command.  This command, when followed
by the two previous commands (Type 2 and Type 1) provides for memory
access anywhere within a 36-bit physical address space.

The master drives A[35::32] to zero when its bit 5 of the A.G.P. Command
register is cleared (0).  When bit 5 is set (1), the master must actively drive
these bits.  The target ignores these bits when its corresponding bit 5 is
cleared.  Note: the ‘R’ indicates a reserved bit that must be driven as a “0” by
the master and is ignored by the target.

1110 AAAA

     
39
  

36

AAAA AAAA
47
       

40

Extended Address Bits:  the extended 12 address bits (A[47::36]) are
transferred across the SBA port; no memory access is initiated.  This
encoding is also referred to as a Type 4 sideband command.  This
command, when followed by the three previous commands (Type 3, Type 2,
and Type 1) provides for memory access anywhere within a 48-bit physical
address space.  The master must actively drive all bits when this command is
used.  Note that bit 5 on the master’s Command register must be set to use
this command.

1111 0***

**** ****

reserved:  must not be issued by an A.G.P. master and may be defined by
Intel in the future.  Any encoding when S[7:4] are 1111 and S3, S2, S1, or S0
is a 0 is considered reserved.

                                                          

18 The A.G.P. master, when using the SBA port, must treat the DAC command as a reserved command.
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Note that only one SBA port command (Type 1) actually initiates a memory cycle; the other port commands (Type
2, Type 3, and Type 4) simply update respective “sticky” bits.  There is no restriction on the relative ordering in
which Type 1, 2, 3, or 4 commands can be issued by the master.  If a memory cycle is initiated prior to the initial
setting of all access request “sticky” bits, those bits will be treated as indeterminate.  For example, if the first
command issued after the port is enabled is a Type 1 command (Type 2 or Type 3 has not yet occurred), the A.G.P.
target may use an indeterminate address bits (A15- A31) and command (C3-C0) to access memory19.  When the
A.G.P. target receives a Type 1 command it takes the Type 1 information and combines it with previously stored
Type 2 and Type 3 (and optionally Type 4) information to reconstruct a full address, command, and length
information to initiate a memory access.  Note that the SBA port only supports 48 bits of addressing while the AD
bus supports all 64.  When the SBA port is used, it is assumed by both the A.G.P. master and target that address bits
63 through 48 are zero.

The SBA port has no associated control or framing signals; command framing is content sensitive (similar to serial
interconnects).  That is, the port encoding signifies whether there is valid information on the port.  A NOP encoding
(all 1’s) indicates the port is idle and no action is initiated by the master.  NOP must be continually transmitted when
the port is not in use.  The Type 2, 3, and, when enabled, Type 4 target registers are not affected while NOPs appear
on the SBA interface.  Since all SBA operations must start with the rising edge of the A.G.P. clock, the port idle
encoding is 8-bits long in 1x transfer mode and 16-bits long in 2x and 4x transfer modes.  In 2x mode, a single 16 bit
NOP is all that is required to realign itself to CLK.  In 4x mode, the master may be required to send two NOP
commands before starting a new request to align itself with respect to CLK.

SBA Port Operation

Using the SBA Port to enqueue requests allows the AD bus to be used exclusively for data transfers.  Table 3-14
lists the signals needed to enqueue requests using the SBA Port.  Note that the SBA Port operates at the same rate as
the data transfers on the AD bus.  The minimum number of signals needed to enqueue requests on the SBA Port is
eight which is when the data transfer rate is 1x.  The maximum number of signals needed is 10 which occurs when
the data transfer rate is 4x.

Table 3-14:  SBA Signals

Data Transfer Rate Signals Required

1x SBA[7::0]

2x SBA[7::0], SB_STB

4x SBA[7::0], SB_STB, and SB_STB#

                                                          

19 When bit 5 is set in the Command register, Type 4 may also be indeterminate.  When bit 5 is cleared, Type 4
“sticky” bit must not be used and the address sent to memory must have address bits 32-47 set to zero.  In either
case, bits 48-63 are assumed to be zero.
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Request Enqueueing 1x Data Transfer Mode

Figure 3-5 illustrates the use of the SBA Port to enqueue requests.  R1, R2, R3, or R4 in the figure could use Type 1,
2, 3, or 4 commands.  A Type 4 command can only be used when enabled (see Sections 6.1.9 and 6.1.10 for details).

CLK
1 2 3 4 5 6 7 8 9

SBA[7::0] R1H R1L R2H R2L RR4L OP R3H R3L R4H

4G-5

Figure 3-5:  SBA Port Request - 1x

The SBA Port is always driven by the master, and, if not enqueuing new requests, the master must drive the NOP
command on the port which is signaled by driving SBA[7::0] to “1111 1111” or FFh for 1x data transfers and “1111
1111 1111 1111” or FFFFh for 2x or 4x data transfers.  The target ignores the SBA Port until enabled to decode it.
All commands on the SBA Port always come in pairs except for the NOP case when 1x data transfer is done.  In this
case, a NOP is a single clock in duration.  Unlike the enqueuing of requests on the AD bus, the master does not
request use of the port, but simply sends the request at any time (when a request slot is available).  If a subsequent
command is near a previous command, only the lower address bits and length need to be transferred.  The target will
use the previously sent upper address bits and command to initiate a new memory access.  With this abbreviated
addressing, the AD bus can be completely utilized transferring small pieces of data that are close to each other.  In
the diagrams, the notion of “R1H and R1L” indicate that this is request 1 high and request 1 low.  High refers to the
upper 8 bits (where the OP code resides) and Low refers to the lower 8 bits.  A request can be a Type 1, Type 2,
Type 3, or Type 4 command.

CLK
1 2 3 4 5 6 7 8 9

SBA[7::0] R1H R1L R2H R2L RR3H OP
8-5

NOP NOP NOP

Figure 3-6:  1x Sideband Addressing

In Figure 3-6, the master sends the NOP encoding on clock 1 and sends the high bits of a Type x (1, 2, 3, or 4) on
clocks 2, 4, and 9 and the low order bits on clocks 3, 5, and 10.  The master sends NOPs on clocks 1, 6, 7, and 8 to
indicate that the SBA Port does not contain a new request.  There is no specific sequence in which Type 1, 2, 3, or 4
encodings are required to transfer across the SBA Port.  In this figure, every non-NOP time could only be Type 1 or
Type 3 commands.  Recall that memory accesses are only initiated when a Type 1 encoding is decoded by the target.
A Type 2 simply stores updated middle addresses and the command in the Type 2 register of the target.  A Type 3
encoding updates the upper address bits in the Type 3 register.  Only when a Type 1 command is received does the
target reconstruct an address by using the Type 3 and Type 2 registers (and, when enabled, Type 4 registers) with the
Type 1 value and enqueue it to the memory controller.
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Request Enqueueing 2x Data Transfer Mode

Figure 3-7 illustrates the SBA Port operating in 2x mode.  In this mode, a new address is transferred across the SBA
Port each CLK. This figure is the same as the previous one except that both pieces of the encoding, the high and low
portions, transfer across the port during a single CLK period.

CLK
1 2 3 4 5 6 7 8 9

SBA[7::0] R3H R5HNOP R5LR1L R2LR2H NOPR4LR4HR3L

SB_STB
8-6

NOPNOP NOPNOP NOPNOPR1H

Figure 3-7:  2x Sideband Addressing

Notice that NOPs come in pairs since the full 16 bits are required to be transferred, unlike the 1x mode when only 8
bits were required to be transferred.  The high portion of the command is transferred on the falling edge of SB_STB
while the low portion is transferred on the rising edge.  There is no relationship to commands being enqueued by
SB_STB and CLK when the data transfer is at a level other than 1x.

Request Enqueueing 4x Data Transfer Mode

Figure 3-8 is the same as Figure 3-7 except the requests are enqueued at the 4x data transfer rate rather than the 2x
transfer rate.  In this case, the entire sequence was completed in five clocks instead of 10 clocks.  In this mode, two
strobes are required to transfer the data.  The strobes can be used as a differential pair or two independent strobes to
transfer data.  (See Section 3.5.3.4 for more detail.)  A request is enqueued on each falling edge of the strobe, R1H is
latched on the first falling edge of SB_STB, and the R1L is latched on the first falling edge of SB_STB#.  Only a
single Type 1 can be enqueued per CLK.  For example, R1 or R2 can be a Type 1 but not both.  However, R2 and
R3 can both be Type 1.

CLK

1 2 3 4 5

SBA[7::0]

SB_STB 

SB_STB#
8-6a

R3H R5HNOP R5LR1L R2LR2H NOPR4LR4HR3L NOPNOP NOPNOP NOPNOPR1H

Figure 3-8:  4x Sideband Addressing

3.5.1.2 AD Bus

When implementing the SBA port is not feasible due to pin or performance constraints, enqueuing requests via the
AD bus may be the preferred choice.  A new request is enqueued on each clock in which PIPE# is asserted and is
used in conjunction with the AD bus.  Requests are only enqueued on the rising edge of CLK when PIPE# is
asserted, regardless of the data transfer rate selected for data movement.  The master indicates to the corelogic when
the last request is enqueued by deasserting REQ# during the last clock in which a request is enqueued.  The next
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clock the master is required to have PIPE# deasserted.  The master is not allowed to insert waitstates while
enqueueing requests.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# C1

REQ#

A1 

8-1a

Figure 3-9:  Single Address

Figure 3-9 illustrates a single address being enqueued by the master.  Sometime before clock 1, the master asserted
REQ# to gain permission to use the AD bus.  How and when the arbiter grants the bus will be discussed in
Section 3.6.  A new request (address, command, and length) is enqueued on each clock in which PIPE# is asserted.
The address of the request to be enqueued is presented on AD[31::03], the length on AD[2::0], and the command
on C/BE[3::0]#.  In this figure, only a single address is enqueued since PIPE# is asserted for only a single clock.
The master indicates that the current address is the last it intends to enqueue when PIPE# is asserted and REQ# is
deasserted which occurs in the figure on clock 3.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# C1

REQ#

A1 A2 A3 A4 A5 

C2 C3 C4 C5

8-3a

Figure 3-10:  Multiple Addresses Enqueued, Maximum Delay by Master

Figure 3-10 illustrates a master that enqueues five requests.  Note that REQ# remains asserted until clock 7 to
indicate that the master desires to continue enqueueing requests and the current request is not the last one.  When
REQ# is deasserted with PIPE# asserted on clock 8, it indicates that the current request is the last one to be
enqueued during this transaction.  PIPE# must be deasserted on the next clock when REQ# is sampled deasserted.
If the master desired to enqueue more requests during this bus operation, it would simply continue asserting PIPE#
until all of its requests are enqueued or until the master has filled all the available request slots provided by the
corelogic.
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The master is not allowed to insert any waitstates while enqueuing requests and the target has no mechanism to stop
an address from being enqueued.  Once PIPE# is asserted, every rising edge of CLK, enqueues a new request.  The
clock following the last request, the master is required to tri-state the AD and C/BE# buses.  Once the master has
deasserted REQ#, it is not allowed to reassert it and continue asserting PIPE#.  Once REQ# is deasserted, PIPE#
must be deasserted on the next clock.

3.5.1.3 64-bit Requests on the AD Bus

The A.G.P. master can enqueue a request using the AD bus by asserting PIPE# when initiating the transaction.
When the master initiates a 32-bit request, it enqueues a new request on each clock in which PIPE# is asserted.  The
last request is enqueued when REQ# is deasserted and PIPE# is asserted.  When bit 5 of the master’s A.G.P.
Command register is set, it is enabled to make 64-bit requests.  When the A.G.P. master enqueues a request that uses
a 64 bit address, it is required to use two clocks to transfer the request.  During the first clock, the master provides
the lower address bits (A3-A2) and the length encoding (A2-A0) when the command is DAC (C/BE[3::0]# is 1101).
The following clock, the master provides the upper address bits (A63-A32) and the actual command on
C/BE[3::0]#.  REQ# is deasserted during the final clock of the last request to be enqueued.  Note that the A.G.P.
master is not allowed to use DAC to enqueue a request when the upper address bits are all zero.  In other words, the
master must use a single address cycle (SAC) when accessing a location that resides within the lower 4 GB of
memory and is only allowed to use a DAC when accessing addresses above that boundary.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# DAC

REQ#

A1Lower 

4G-1a

C1

A1Upper 

Figure 3-11:  Single 64-bit Request

Figure 3-11 illustrates a single request being enqueued that uses a 64 bit address or DAC command.  The transaction
is the same as Figure 3-9 except the DAC command is used during the first clock in which PIPE# is asserted and it
remains asserted for two clocks.  In this case, PIPE# is asserted for two clocks even though only a single address is
enqueued.  Notice that REQ# is deasserted during the second address phase of the transaction and not during the
initial clock of the request.  The transaction appears to have enqueued two requests, but since the first command was
DAC, two clocks are used to enqueue the complete request.
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CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# DAC

REQ#

A1Lower 

4G-3a

C1

A1Upper 

DAC

A2Lower 

C2

A2Upper 

DAC

A3Lower 

C3

A3Upper 

Figure 3-12:  Multiple 64-bit Requests

Figure 3-12 illustrates multiple 64-bit requests being enqueued during a single request transaction.  Notice that all
these requests are using the DAC and require two clocks for each request to be transferred.  The target (and arbiter)
know that the last request is enqueued on clock 8 because REQ# is deasserted when PIPE# is asserted.  The master
always provides the lower part of the address and the length encoding on the first clock and the upper bits on the
subsequent clock.  The master is not allowed to insert or delay a request once PIPE# is asserted.

The A.G.P. master is allowed to mix SAC and DAC within the same transaction on the interface.  An A.G.P. master
is allowed to enqueue both requests that access data above and below the 4 GB boundary in the same bus transaction.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# C1

REQ#

A1

4G-4a

DAC

A2Lower 

C2

A2Upper

DAC

A3Lower 

C3

A3Upper

C4

A4

Figure 3-13:  32-bit and 64-bit Requests

Figure 3-13 illustrates SAC and DAC requests being enqueued during the same transaction.  In this case, the first and
fourth request use the SAC while the second and third use the DAC command.  For this transaction, two transactions
address data in the lower 4 GB of the address space and the other two address data above the 4 GB boundary.  Like
all requests that are enqueued using the AD bus, REQ# is deasserted during the final clock of the request
transaction.  One request slot is consumed when either a DAC or SAC is enqueued.
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3.5.2 Flow Control

3.5.2.1 Address Flow Control

Address flow control for an A.G.P. Request is source controlled.  This means that the A.G.P. master is responsible
for not enqueuing more requests than the target is capable of handling.  System software reads the RQ field in the
A.G.P. target’s Status register (see Section 6.1.9) to learn the maximum number of requests that the target is capable
of supporting.  Software can also learn the maximum number of request slots supported by the master by reading RQ
field in the A.G.P. master Status register.  Software then writes the master’s RQ_DEPTH register in the Command
register (see Section 6.1.10) with the value of the number of requests that the master can have outstanding.  When the
value is more than the master requested, the master limits the number of outstanding requests by design.  When the
value is less than the master requested, the master is not allowed to enqueue more requests than the maximum value
programmed.  This guarantees that the A.G.P. target’s request queue will never overflow.

The A.G.P. master must track the number of outstanding requests it has issued.  A slot in the master’s request queue
is considered “used” whenever a Read, Write, or Flush command is issued to the target.  The request queue slot
becomes available again for another request when data associated with that request starts to transfer across the bus.
Since a Flush command is treated like an LP Read, it consumes a slot until the dummy read data is returned.  When
the number of outstanding requests reaches the allocated limit, the master is not allowed to generate further Read,
Write, or Flush requests until a slot is freed.

3.5.2.2 Data Flow Control

Flow control on A.G.P. is different than on PCI.  On PCI, the master and target may delay transferring data on any
data phase.  Before each data phase can complete, both the master and target must agree that data can be transferred
by asserting their respective xRDY# signal.  When either is not prepared to transfer data, the current data phase is
held in waitstates.  PCI also allows the target to indicate to the master that it is not capable of completing the request
at this time (Retry or Disconnect).  Only when both agents agree to transfer data does data actually transfer.

On A.G.P., flow control is over blocks of data and not individual data phases.  Flow control will be discussed with
respect to initial blocks and subsequent blocks.  Some transactions only have an initial block, which means that the
entire transaction completes within four clocks.  For transactions that require more than four clocks to complete,
they are comprised of both an initial block and one or more subsequent blocks.  A block is defined as the amount of
data that can be transferred in four A.G.P. clocks which must be 8 byte aligned, but is not required to be cacheline
aligned.  Depending on the transfer mode, the amount of data that is actually transferred may change.  But in all
cases, the number of clocks between throttle points is always four.  Flow control on A.G.P. can occur at three
different times of a transaction after it has been requested:

1. Before the arbiter indicates that the data transfer will begin.

2. After the arbiter indicates the data movement will occur but before the data actually starts transferring.

3. Between the completion of the current block and the start of a subsequent block.

For example, while the initial block is being transferred, flow control can occur that will cause a subsequent block of
data to be delayed.  The stream type and whether the transaction is a read or write will determine whether one or
more of the three options are available.  Flow control also is different for a master than for a target.  Table 3-15 is for
the master while Table 3-16 is for the target or corelogic.  The first row in the tables lists the transaction type while
the first column lists the times when flow control can occur.
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Table 3-15:  A.G.P. Master Flow Control Conditions

Transaction Type LP Read HP Read A.G.P. Write FW20

Before Transfer RBF# None None WBF#

Initial Block None None IRDY# None

Subsequent Block IRDY# IRDY# None TRDY#/STOP#

Table 3-15 lists the flow control conditions for a master; each column in the table will be discussed separately.  In
the table, when a signal name is listed it indicates that the master can use that signal to cause data not to transfer.
When “None” is entered in the table, then the master has no mechanism to stall the data from transferring.

Column 2 lists whether the master can cause the transfer of LP Read data to be delayed or not.

Row 2 is the time when the master can prevent the arbiter from initiating the return of previously requested LP
Read data to the master.  The table indicates that the master can assert RBF# to prevent the arbiter from
initiating the return of LP Read data.  Note, once the arbiter has indicated that LP Read data is being returned,
GNT# asserted and ST[2::0] is “000”, RBF# has no affect on the return of data for the current transaction and
only applies to the return of data for the next LP Read transaction.

Row 3 is the time when the arbiter has indicated that the next transaction on the interface will be the return of LP
Read data for the initial block of data.  In this case, the master has no mechanism to delay the data from being
transferred.

Row 4 is the time when the transaction will not complete during the current transfer block but requires at least
one more subsequent block to complete.  For example, the requested data is 24 bytes in length and the transfer
rate is 1x.  This transfer requires the initial block (16 bytes) and an additional two clocks (8 bytes) of the
subsequent block to complete the transfer.  When this occurs, the master is allowed to insert waitstates between
the completion of the current block and the start of a subsequent block.  The number of clocks the master is
allowed to insert waitstates is not defined.  The master deasserts IRDY# to cause the return of a subsequent
block of data to be delayed.

Column 3 lists whether the master can cause the transfer of HP Read data to be delayed or not.

Row 2 is the time when the master can prevent the arbiter from initiating the return of previously requested HP
Read data to the master.  The entry in the table indicates that there is no mechanism for the master to delay the
return of HP Read data.  The reason for this behavior is that HP accesses can stall the CPU; and, therefore, it is
reasonable to require the master to accept the data when the corelogic can provide it.

Row 3 is the time when the arbiter has indicated that the next transaction on the interface will be the return of
HP Read data for the initial block of data.  In this case, the master has no mechanism to delay the data from
being transferred.

Row 4 is the time when the transaction will not complete during the current transfer block.  This is the same as
the LP Read flow control for subsequent block.

Column 4 lists whether the master can cause the transfer of A.G.P.  write data to be delayed or not.  Since there is no
difference between HP and LP write data transfers, they are combined in the table.

Row 2 is the time when the master can prevent the arbiter from initiating the return of previously requested write
data to the corelogic.  The table indicates that the master has no mechanism to delay the transfer of write data
once the master has enqueued the request.

                                                          

20 This transaction type is a modified PCI operation with flow control over blocks and not data phases.
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Row 3 is the time when the arbiter has indicated that the next transaction on the interface will be the transfer of
write data for the initial block of data.  In this case, the master can delay providing the write data by one clock
by keeping IRDY# deasserted.  Note that when the arbiter has indicated that the next transaction on the interface
is write data, the master must provide the data within two clocks of when the bus becomes available to complete
the request.

Row 4 is the time when the transaction will not complete during the current transfer block.  The master has no
mechanism to stall a subsequent block of write data.  This is because the master may choose the transfer size of
the write request; and, therefore, there is no reason to allow the master to stall the transfer.

Column 5 lists whether the master can delay the transfer of PCI write data in an accelerated way (FW) from the
corelogic to the A.G.P. master acting as a PCI target.  See Section 3.5.3.5 for details of the behavior of an FW
transaction.

Row 2 is the time when the master can prevent the arbiter from initiating the transfer of memory write data from
the corelogic to the A.G.P. master.  This data is typically initiated by the CPU.  Since the master did not request
the data, the write buffers of the master may be full and initiating the request just to have the transaction (PCI)
terminated with retry wastes bus bandwidth.  Therefore, the master can assert WBF# to indicate to the corelogic
that it cannot accept any FW data.

Row 3 is the time when the arbiter has indicated internally to the corelogic that FW data is the next transaction
on the interface.  Since the master does not know that the transaction is coming, it must decode the PCI
transaction to determine if it is the target of the request.  The A.G.P. master must accept the first four clocks
worth of data regardless of whether the device has completed the address decode or not.

Row 4 is the time when the transaction will not complete during the current transfer block.  The master can
insert waitstates between the completion of the current block and the start of a subsequent block.  The A.G.P.
master is also allowed to use PCI termination of Disconnect at any time after the initial block.

Table 3-16:  A.G.P. Target Flow Control Conditions

Transaction Type LP Read HP Read A.G.P. Write FW

Before Transfer GNT#/ST[2::0] GNT#/ST[2::0] GNT#/ST[2::0] GNT#/ST[2::0]

Initial Block TRDY# TRDY# None IRDY#

Subsequent Block TRDY# TRDY# TRDY# IRDY#

Table 3-16 lists the flow control conditions for the corelogic and each column will be discussed.  In the table when a
signal is listed, the target can use that signal to cause data not to transfer.  When “None” is entered in the table, the
target has no mechanism to stall the data from transferring.

Row 2 is the time when the target can delay the data movement regardless of the transaction type.  Since the
corelogic is a combination of A.G.P. target and A.G.P. arbiter, it can use the arbitration signals to delay the
transfer of data when appropriate.  The corelogic can choose when the data traverses the bus subject to the
availability of the of A.G.P. master’s buffering (RBF# and WBF#) since it is providing or accepting data.  The
arbiter uses GNT# and ST[2::0] to delay when data will transfer.

Columns 2 and 3 are the return of read data and are the same for the corelogic.

Row 3 is the time when the corelogic can delay the return of the initial block of read data.  The entries in the
table indicate that the corelogic is allowed to delay the return of read data for 1 clock when the bus is available
to move the data.  The corelogic delays the return of read data by deasserting TRDY# for one clock.
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Row 4 is the time between the transfer of the current block and the start of a subsequent block.  The corelogic is
allowed to delay the return of a subsequent block of read data.  The amount of delay that the corelogic can insert
between blocks is undefined, and the corelogic inserts the delay by deasserting TRDY#.

Column 4 is the movement of previously enqueued write data.

Row 3 is the time when the arbiter has indicated that write data will transfer and before the transaction actually
starts.  Per the table, the corelogic has no mechanism to delay the acceptance of the data.  Therefore, if the
corelogic is not capable of accepting the data, it must not allow the arbiter to indicate that write data is to be
provided.

Row 4 is the time between the transfer of the current block and the start of a subsequent block.  The corelogic is
allowed to delay the acceptance of a subsequent block of write data.  The amount of delay that the corelogic can
insert between blocks is undefined and the corelogic inserts the delay by deasserting TRDY#.

Column 5 is the movement of PCI write data from the corelogic to the A.G.P. master that was not requested by the
A.G.P. master.  Note that FW transactions are only supported when enabled and the data transfer rate is greater then
1x.  When the transfer rate is 1x or FW is disabled, PCI memory writes from the corelogic to the A.G.P. master must
be done using PCI protocol and follow the PCI rules.

Row 3 is the time when the arbiter has indicated that write data will transfer and before the transaction actually
starts.  Per the table the corelogic can delay providing the data to the A.G.P. master by deasserting IRDY#;
however, the delay is limited to a single clock.

Row 4 is the time between the transfer of the current block and the start of a subsequent block.  The corelogic is
allowed to delay providing a subsequent block of write data.  The amount of delay that the corelogic can insert
between blocks is undefined and the corelogic inserts the delay by deasserting IRDY#.

For the throttle point (TP), there is no specified limit to how long IRDY# or TRDY# may be deasserted.  However,
the master must realize that inserting even one waitstate at any TP of a read transaction may invalidate the latency
guarantee of all outstanding high priority requests.  If the master inserts a waitstate at a TP, it cannot make any
assumptions about what impact the waitstate will have on the latency guarantee.  For instance, inserting five
waitstates at a TP of read A (high or low priority) does not mean that outstanding high priority read request B will
complete in x + five clocks (where x is the latency guarantee provided by the corelogic).  The target must include
any potential TRDY# throttle point waitstates in its latency guarantee.  The specific latency behavior of a target
when a master inserts a waitstate is implementation specific.  Refer to the data sheet of the specific device to
understand this affect.

3.5.2.2.1 Read Flow Control

Initial Master Flow Control (Low Priority Reads)

RBF#  (Read Buffer Full) is an output of the master and indicates whether it can accept low priority read data or not.
What affect the assertion of RBF# has on the data transfers depends on the length of the next transaction and the rate
at which data is being transferred.  If the master has RBF# deasserted, it must be able to accept the following
transactions assuming that the master asserts RBF# on the clock in which the grant is received:

For transactions that can be completed in four clocks or less, the master is required to accept the entire
transaction without waitstates regardless of the data transfer mode.  When the transaction requires more than
four clocks to complete, the master is allowed to insert waitstates after each four clocks in which data is
transferred.

For 1x data transfers, the master must accept the entire transaction without waitstates when the length is less than
or equal to 16 bytes.  When the transfer length is greater than 16 bytes, the master is allowed to flow control
after each 16 byte transfer.  When the length is 8 bytes or larger, the master has sufficient time to assert RBF#
to prevent the arbiter from initiating the return of more LP Read data.
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For 2x data transfers, if a low priority read transaction’s length is greater than 8 bytes, the master must accept
only the one low priority read transaction, because the master has sufficient time to assert RBF# to prevent the
arbiter from initiating the return of more read data.  When the transfer size is greater than 32 bytes, the master is
allowed to flow control after the transfer of each 32 byte block.

For 2x data transfers, if the first low priority read transaction’s length is equal to 8 bytes, the master must be able
to accept two low priority read transactions.  The first transaction must be accepted without flow control.  The
master must also accept the entire second transaction without flow control when its length is less than or equal to
32 bytes.  When the second transaction’s length is greater than 32 bytes, the master must accept the initial 32
bytes of the transaction, but is then allowed to flow control the subsequent 32 byte block(s).

Note:  The arbiter must delay the assertion of GNT# for a subsequent read data transfer so that it is sampled
asserted on the same clock edge as the last data phase for the previous read transaction when it is greater than
8 bytes.  In order to allow full performance of 8 byte read transfers, the arbiter must pipeline the assertion of
GNT# in a back-to-back fashion; otherwise, dead clocks will appear on the AD bus.

Table 3-17 shows the minimum amount of buffering required in the master when RBF# is deasserted.  This
table only applies to 2x data transfer mode21.

Table 3-17:  Data Buffering for 2x Transfers

1st Read
Transaction

2nd Read
Transaction

Buffer Space
Needed to
Deassert RBF#

8 bytes 8 < n < 32 bytes 8 + n bytes

8 bytes n > 32 bytes 40 bytes

16 bytes don’t care 16 bytes

24 bytes don’t care 24 bytes

32 bytes don’t care 32 bytes

> 32 bytes don’t care 32 bytes

Table 3-18 shows the minimum amount of buffering required in the master when RBF# is deasserted.  This
table only applies to 4x data transfer mode.

                                                          

21 For 1x data transfer mode, the amount of data buffering required is simply enough to accept the next data transfer
or up to 16 bytes, whichever is greater.
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Table 3-18:  Data Buffering for 4x Transfers

1st Read
Transaction

2nd Read
Transaction

Buffer Space
Needed to
Deassert RBF#

8 bytes 8 < n < 64 bytes 8 + n bytes

8 bytes n > 64 bytes 72 bytes

16 bytes 16 < n < 64 bytes 16+n bytes

16 bytes n > 64 bytes 80 bytes

24 bytes don’t care 24 bytes

32 bytes don’t care 32 bytes

64 bytes don’t care 64 bytes

> 64 bytes don’t care 64 bytes

If the master cannot accept the above transaction(s), it asserts RBF#.  The A.G.P. arbiter will not assert a subsequent
grant for low priority read data while RBF# is sampled asserted.  In the event that GNT# and RBF# are asserted on
the same clock, the master must be able to accept at least four clocks worth of data when the next transfer is an LP
Read data.  The amount of data buffering required for one full block of data is dependent on the transfer mode.  For
the 2x transfer mode, one block is 32 bytes, and, for the 4x transfer mode, it is 64 bytes.

Note:  The A.G.P. master has many implementation alternatives that can be predicated by buffer budget and
complexity.  For example, the A.G.P. master could restrict itself to generating only 16 byte low priority read
transactions.  In this case, only 16 bytes of buffering need to be available in order to deassert RBF#.  If an A.G.P.
master restricts itself to 8 and 16 byte low priority read transactions, RBF#  can be deasserted whenever 24 bytes of
buffering are available when in 2x transfer mode.  An A.G.P. master that does not restrict the size of its low priority
read requests needs a minimum of 40 bytes of buffering for 2x transfer mode and 80 bytes for 4x transfer mode.
Optionally, this master could dynamically alter the RBF# threshold point based on the size of the next two accesses.
It is highly recommended that the master use RBF# only in unusual circumstances in which the target is able to
provide data quicker than the master is able to consume it.  In normal operations, the master should be able to
consume that requested data faster than the target is able to provide it.  The assertion of RBF# to stop the return of
data should not be part of the “normal” behavior of the master.  Figure 3-14 illustrates the enqueuing of two grants
before the arbiter detects that RBF# is asserted.
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Figure 3-14:  Maximum Number of GNT#s Queued Before the Assertion of RBF#

Since RBF# is deasserted on clock 1, the A.G.P. arbiter asserts GNT#/ST[2::0] to indicate the return of a low
priority read data (D0) for clock 2.  Since the first read data being returned is 8 bytes, the A.G.P. arbiter continues
asserting GNT#/ST[2::0] for clock 3 to allow the second transfer to occur without dead time on the AD bus between
data transfers of D0 and D1.  At this point, the arbiter has indicated to the master that two transactions worth of data
will be returned.  Because RBF# is asserted on clock 3, the arbiter is not allowed to initiate the return of any more
LP read data after this point until RBF# is sampled deasserted again.  The arbiter asserts GNT# for clock 6, since
the master deasserted RBF# on clock 5 and the arbiter is ready to return more low priority read data to the master.

The master decodes the initial request (clock 2), determines that sufficient buffer space is not available for a
subsequent transaction, and asserts RBF#.  Since GNT# and RBF# are both asserted on clock 3, the master must
accept the second transaction.  While the master keeps RBF# asserted, the arbiter is not allowed to initiate the return
of any new low priority read data.  However, the arbiter is allowed to return high priority read data, request (high or
low priority) write data from the master, or grant the master permission to initiate requests (see Section 3.6).

Since GNT# is asserted on clock 2 (ST[2::0] indicates the return of low priority read data), the master starts
accepting data and qualifies it with TRDY# to determine when it is valid.  Note that TRDY# is only asserted on the
initial data transfer of this transaction since it will complete within four clocks.  Once the initial data transfer
completes, the master begins accepting data for the second transaction and qualifies that data with TRDY#.  Note
that TRDY# must be asserted on the initial data phase of each transaction.

Initial Master Flow Control (High Priority Reads)

The master must always be able to accept read data for all high priority queued transactions that can complete within
four clocks.  When a high priority read request requires more than four clocks (multiple blocks) to complete, the
master can throttle the transaction (and effectively stall subsequent high priority read data) with IRDY# after each
data block transfers.  RBF# does not apply to high priority read data and IRDY# cannot be used to initially stall the
return of high priority read data.

Throttling

Throttling applies uniformly to both low and high priority read data.  Both the target and the master have the ability
to throttle read data by adding waitstates after each block of data transfers.  If either the target or the master wants to
throttle the transfer of a subsequent block of data, the target must have TRDY# or the master must have IRDY#
deasserted two 1x clocks prior to when the subsequent block would begin to transfer.  This is referred to as the
throttle point (TP).  Data transfer will resume two 1x clocks after both IRDY# and TRDY# are sampled asserted.  If
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throttling is not required by either the master or the target, then both IRDY# and TRDY# will be asserted at the
throttle point.
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Figure 3-15:  Read Transaction with TP with No Waitstate

Figure 3-15 illustrates the basic elements of an A.G.P. read transaction.  The transaction was initiated sometime
before clock 1 and the corelogic initiates the transaction by asserting TRDY# on clock 1 indicating that the initial
block of data is starting to transfer.  (The figure assumes that RBF# is deasserted.)  In this figure, the initial block of
data is transferred on clocks 1 through 4.  The first opportunity at which either the corelogic or the master is allowed
to request a waitstate is on clock 3 and is called the initial TP.  Both agents are ready to continue the transaction on
clock 5 since the TP completes on clock 3 when both IRDY# and TRDY# are asserted.

A new throttle point occurs four clocks after the previous TP completes.  The initial TP occurs two clocks after the
initial block starts transferring.  IRDY# and TRDY# have no meaning between throttle points and may be
deasserted.  IRDY# and TRDY# also have no meaning on the last throttle point of a transaction that is equal to or
less than a block.  Note that IRDY# and TRDY# must be actively driven during each TP.  After a TP and before the
next TP, xRDY# can be actively driven or tri-stated.  When actively driven, the state can be asserted or deasserted.
When tri-stated, the last agent to actively drive the signal is required to actively deassert it before tri-stating.  When
the transaction requires more than four clocks to complete, xRDY# is allowed to be actively driven before the first
TP.
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Figure 3-16:  Read Transaction with TP with a Waitstate

Figure 3-16 is the same as Figure 3-15, except that the A.G.P. master inserts one waitstate at the first TP.  Since the
first TP does not complete until clock 4, the subsequent block does not begin to transfer data until clock 6.  The
second TP completes with no delay and is the same as in the previous figure.  Because the TP does not complete on
clock 3, a waitstate occurs on the AD bus on clock 5.  If the master had continued to keep IRDY# deasserted on
clock 4, a second waitstate would have occurred on clock 6.



Revision 2.0

69

CLK

AD

IRDY#

TRDY#

1 2 3 4 5 6 7 8 9

TP

Initial Block Subsequent Block

FC-3

TP

Subsequent

Figure 3-17:  Write Transaction with TP with No Waitstate

Figure 3-17 shows an A.G.P. Write data transaction.  In this case, the A.G.P. master asserts IRDY# to indicate that it
is providing the write data.  Notice that IRDY# is deasserted on clock 2 and is then tri-stated.  The A.G.P. master is
not allowed to cause the delay of write data once the transaction has been initiated.  Therefore, for Write
transactions, only the target is involved in TPs.  In this case, the corelogic determines when subsequent blocks of
write data are transferred.  In this figure, the corelogic is ready and completes the TPs at the earliest time possible.
Note that the corelogic is not required to deassert TRDY# after the first TP on clock 3, but could continue to drive
TRDY# asserted.  Notice on clock 8, that the corelogic deasserted and tri-stated TRDY#.  This could mean that the
transaction will complete in the next block, or the corelogic simply deasserted and tri-stated TRDY#.  It could re-
assert TRDY# in clock 10 if the burst continued.
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Figure 3-18:  Write Transaction with TP with a Waitstate

Figure 3-18 is the same as Figure 3-17 except in this case the corelogic inserted a waitstate at the initial TP which
occurs on clock 3.  Since TRDY# was not asserted until clock 4, a waitstate is inserted on the AD bus on clock 5.
What the A.G.P. master drives on the AD bus during the “wait” time does not matter.  If it wanted to, the A.G.P.
master could continue to drive the previous data, drive dummy data, or drive the initial data of the next block during
the wait time.  However, two clocks after TRDY# is asserted, the master must provide the subsequent block of data
with no delays.

3.5.2.2.2 Write Data Flow Control

Initial Target Flow Control

The A.G.P. arbiter will only assert GNT#/ST[2::0] for write data when the target can accept the entire transaction or
the initial block.  The initial flow control is the same for both high and low priority data write requests.

Initial Master Flow Control

The master samples GNT#/ST[2::0] asserted for write data and asserts IRDY# to begin the write data transfer.  The
master can delay the beginning of the write data transfer one clock by delaying the assertion of IRDY#.  Figure 3-19
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illustrates the maximum delay which a master can introduce when providing write data.  IRDY# must either be
asserted on clock 3 (the earliest in which data can be provided) or clock 4 (the latest in which data can be provided).
Once the master asserts IRDY#, it must transfer all write data associated with the transaction without waitstates.
Since the master is not allowed to insert waitstates on a subsequent TP, IRDY# must be deasserted and tri-stated
after it is asserted to start the data transfer.  On read transactions,  IRDY# is meaningless except during TPs.  When
the transfer requires a subsequent block, the A.G.P. master is required to actively drive IRDY# during the entire TP.
Once the last TP completes, the master must deasserted and tri-stated IRDY#.
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Figure 3-19:  Maximum Delay by Master on Write Data

Throttling

Since the master is aware of the quantity of data it wants to send and can generate a smaller write request if
necessary, thus the master is not allowed to throttle write data.  Write data is only allowed to be throttled by the
target.  The target is only allowed to throttle between blocks.  When the target wants to throttle the transfer of a
subsequent block of write data, it must have TRDY# deasserted at the TP which occurs two 1x clocks prior to when
the subsequent block would begin to transfer.  The transfer of the subsequent block of data will resume two 1x clocks
after TRDY# is sampled asserted.  If throttling is not required by the target, TRDY# will be asserted at the TP.
TRDY# is meaningless (it may be asserted, deasserted, or tri-stated22) between TPs but must be actively driven
during a TP.  When the last TP completes, TRDY# must be deasserted and tri-stated.  TRDY# also has no meaning
on the last TP of a transaction that takes less than or a multiple of a block.  For example, if fewer than four clocks are
required to complete the transaction, then the next TP does not occur.  In Figure 3-20, the first TP occurs on clock 4
and since the transaction completes before clock 10, the subsequent TP which would occur on clock 8 is not required
and, therefore, does not exist.  In this figure, the TP on clock 4 is the last and TRDY# must be deasserted on clock 5
and tri-stated on clock 6.

                                                          

22 When tri-stated, it must have been driven deasserted before being tri-stated since this is a sustained tri-state signal.
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Figure 3-20:  Write Data with One TP

One and Two Clock Rule for IRDY# and TRDY#

For initial write data, IRDY# must be asserted for one clock by the master one or two clock edges after GNT# is
sampled asserted when the AD bus is free.  In the case where GNT# is pipelined to the master, IRDY# must be
asserted on the first or second clock after when the AD bus becomes free to complete the data transfer.

For initial read data, TRDY# must be asserted for one clock by the target one or two clocks after GNT# is sampled
asserted when the AD bus is free.  The target cannot assert TRDY# on the same clock that it asserts GNT#.  In the
case where GNT# is pipelined, the one or two clock rule starts from the earliest time that TRDY# could be asserted.

3.5.2.3 Other Flow Control Rules

The agent receiving data should assert its flow control signal independent of the sender’s flow control.  For example,
for low priority read data, the master must assert RBF# for the initial data block transfer and IRDY# for subsequent
block data transfers independently of the assertion of TRDY#.  On transfers of subsequent blocks of read data
(where both IRDY# and TRDY# need to be asserted to continue), once xRDY# is asserted in a TP, it must remain
asserted until both IRDY# and TRDY# are asserted on the same clock, which then completes the TP.  In other
words, once an agent has indicated that it is ready to continue the transfer, it cannot change its mind.  Outside of the
TP, the state of xRDY# is meaningless.
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3.5.3 Data Transactions

As described earlier, data transfers across the interface as an independent transaction from the request that initiated
the data movement.  The following sections will discuss the movement of data with transfer rates of 1x, 2x, and 4x.
In addition to the discussion of the transfer rate, the discussion will include basic read and write transfers.  The
pipeline A.G.P. transactions are always initiated by the A.G.P. master and not the corelogic.  (However, the
corelogic does initiate the data movement of the transaction in response to the master’s request.)  A discussion about
an enhanced unsolicited data transfer initiated by the corelogic to the A.G.P. master (acting as a PCI target) will
follow and is called Fast Write (FW) data transfer mode.  FW mode is limited to PCI memory write commands.

3.5.3.1 1x Data Transfers

Data transfers between the A.G.P. master and the A.G.P. target in the 1x transfer mode use CLK to qualify both the
control signals and the data.  The transfer of data is initiated by the A.G.P. master making a request to the corelogic,
while the corelogic initiates the actual data transfer

Figure 3-21 illustrates the return of read data that was previously requested by the master.  The bus is in an idle
condition and the arbiter indicates to the master that the next transaction to appear on the AD bus is read data for the
master.  This is indicated by the assertion of GNT# with the ST[2::0] being 00x.  To signal low priority read data
returning, the ST encoding would be “000”; for high priority read data, the ST encoding would be “001”.  In the
diagrams where the ST encoding is 00x, the data being moved could be low or high priority data.  In those cases that
it makes a difference which type of read data being returned, the ST encodings will be either “000” or “001”.
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Figure 3-21:  Minimum Delay by Target of Read Transaction

The master is informed that the read data is coming, when GNT# is asserted and ST[2::1] equals “00” which occurs
on clock 2.  The master knows the next time TRDY# is asserted, that the AD bus contains valid data.  Once GNT#
has been asserted for read data, the master starts latching the AD bus on each rising clock and qualifies the data with
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TRDY#.  When TRDY# is deasserted, the data is not valid.  Once TRDY# is asserted and the entire transaction will
complete within four clocks, no waitstates can be inserted.  Notice that TRDY# is a single clock pulse and that there
is no IRDY# handshake as is done on the PCI bus.  When the transfer size of the read data can complete within four
clocks, neither the master nor target is allowed to do flow control (waitstates) on the transaction.  The C/BE# bus
does not contain valid byte enables since the smallest addressable size of memory is 8 bytes and all 8 bytes are
always returned.  The C/BE# bus is driven by the A.G.P. target to “0000” and the byte enables are ignored by the
master.  Once TRDY# has been asserted, it must be deasserted by the following clock (unless it will be asserted
again) and tri-stated.  This is shown in this figure by a solid line being driven high, then on the next clock the signal
is tri-stated.  The signal is held in this state by a pull-up.  This is referred to as a sustained tri-state signal and is the
same as TRDY# as defined by the PCI specification.

Figure 3-21 illustrates the earliest the target can return data to the master once GNT# has been asserted indicating a
read data transfer.  Notice that there is no PIPE# or SBA port in the figure, the transaction in which data is returned
to the master is the same no matter how the request was transferred to the target.
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Figure 3-22:  Minimum Delay on Back-to-Back Read Data

Figure 3-22 illustrates a stream of 8 byte read operations being returned to the master.  This figure shows that the
arbiter is indicating to the master that read data is being returned on every clock.  Remember that the minimum
transfer size is 8 bytes, and in 1x transfer mode,  it requires two clocks to return the data.  Therefore, enqueuing
GNT#s earlier accomplishes nothing.  The arbiter will not assert GNT# for a new transaction until the last clock of
the current read transaction.
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Figure 3-23:  Master Does Not Delay Providing Write Data

Figure 3-23 shows a basic write data transfer.  The arbiter indicates to the master that write data should be provided
to the corelogic by the assertion of GNT# and ST[2::0] being “010” or “011”.  The first being a low priority write
data and the second being a high priority write data.  In this example, the signaling is the same and, therefore, the
“01x” value is used.

The master is required to provide the write data within two clocks of the indication from the arbiter.  In this example,
the master provides the data immediately because the bus was idle.  The assertion of IRDY# is a single clock pulse
and goes with the first piece of data to indicate to the target that data is valid.  Once IRDY# has been asserted, data
transfers at 4 bytes per CLK until the transaction has completed (for transactions that complete within four clocks).
In this example, the transaction is 16 bytes and completes in four clocks.  The master is required to deassert and then
tri-state IRDY# after it was asserted.  The data is transferred on the AD bus while the C/BE[3::0]# provide the byte
enables.  The byte enables indicate which byte lanes carry meaningful data.  The target is not allowed to delay the
movement of write data (initial data block) after GNT# and the ST bus indicate a write data transfer.
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Figure 3-24:  Back-to-Back Write Data Transfers - No Delay

Figure 3-24 is an example of back-to-back write data transfers.  Each of these transactions are 8 bytes and could be
either high priority or low priority write data transfers.  On clock 2, the arbiter indicates to the master to provide
previously requested write data to the corelogic.  Since these are small transfers, the arbiter provides a GNT# on
every other clock.  Since a new transaction begins on clock 3, 5, 7, and 9, the master asserts IRDY# on these clocks
to indicate that the first piece of data of each transaction is valid on the AD bus.

3.5.3.2 2x Data Transfers

This section discusses 2x data transfers.  Basically, 2x clocking is the same as 1x clocking except an entire 8 bytes
are transferred during a single CLK period.  This requires that two 4 byte pieces of data are transferred across the
AD bus per CLK period.  First read data transfer will be discussed; then a write transfer will be discussed.  The
control signals are identical to the 1x read signals, except that AD_STBx has been added when data is transferred at
8 bytes per CLK period.  AD_STBx represents AD_STB0 and AD_STB1 which are used by the 2x interface logic
to determine when valid data is present on the AD bus.  The falling edge of AD_STBx is used by the receiving agent
to latch the first four bytes of data residing on the AD bus and the rising edge is used to latch the second 4 bytes of
the transaction.  Note that CLK is not used to latch data but is used to qualify the control signals.
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Figure 3-25:  2x Read Data - No Delay

Figure 3-25 is the same as Figure 3-21 except that 16 bytes are transferred in four clocks; while in this figure, 32
bytes are transferred during the same four clocks.  The control logic (TRDY# in this case) indicates when data can
be used by the internal consumer of the data.
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Figure 3-26:  2x Back-to-Back Read Data - No Delay

Figure 3-26 shows back-to-back 8 byte read transactions.  The ST[2::0] toggle between “000”and “001” to illustrate
that they are actually changing.  However, they are not required to change between high priority and low priority in
order to do back-to-back transactions.  In this diagram, TRDY# must be asserted on each clock since a new
transaction starts on each clock.
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Figure 3-27:  2x Basic Write - No Delay

Figure 3-27 is a basic write transaction that transfers data at the 2x rate.  This figure is the same as Figure 3-23 (1x
basic write).  There is no difference in the control signals; and only more data is moved.  The normal control signals
determine when data is valid.  This diagram shows 32 bytes of data being moved in the same time as 16 bytes are
moved in Figure 3-23.
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Figure 3-28:  QuadWord Writes Back-to-Back - No Delay

Figure 3-28 illustrates multiple 8 byte write operations while previous diagrams illustrated  32 byte transfers.  When
the transactions are short, the arbiter is required to give grants on every clock or the AD bus will not be totally
utilized.  In this example, a new write is started on each rising clock edge except clock 7, because the arbiter
deasserted GNT# on clock 6.  Since a new transaction is started on each CLK, IRDY# is only deasserted on clock 7.
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3.5.3.3 Relationship Between xRDY# and AD_STBx

All 2x diagrams in this section are drawn from the worst case timings point of view of the receiver.  Therefore, it
appears that data is transferred the clock after xRDY# is asserted; when, per Section 0, the data can actually occur
the clock in which xRDY# is asserted.
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R1 +1 +2 +3 +4 +5 +6

ADr

AD_STBxr

R1 +1 +2 +3 +4 +5

 tTSf

tTSf + tPROP

Figure 3-29:  Maximum Shift Between xRDY# and AD_STBx

In Figure 3-29, signal names with a subscript t, indicate the signal at the transmitter of the data, while the subscript r
indicates the signal at the receiver.  AD_STBxt is the strobe driven by the transmitter and is required to be valid
within tTSf which is 2-12 ns23 after the rising edge of CLK.  AD_STBxr is the strobe as seen by the receiving agent.
It is delayed tPROP from the transmitter’s delay by up to an additional 2.5 ns24. The maximum total of these delays
puts the falling edge of AD_STBxr on the rising edge of clock 2.  This makes it appear as though data R1 is driven
off of clock 2 with no propagation delay, while in fact it was driven from clock 1 with nearly a full clock of delay.
Section 0 discusses 2x transactions, when data is valid and when it may be used.

Figure 4-13 clearly shows that the first data transfers during T1 and illustrates a more typical value where tTSf and
tPROP are not at the maximum delays allowed.  When the agent providing the data uses the minimum times, both the
falling and rising edges of AD_STBx can occur during T1 or clock 1 in the figure.  The agent that receives the data
is required to handle the data transferring anywhere between the minimum to the maximum delays of the transmitting
agent and the motherboard.

                                                          

23 See Table 4-7.

24 See Table 4-18.
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Figure 3-30:  Minimum Shift Between xRDY# and AD_STBx

Figure 3-30 is the same as Figure 3-29 except that the minimum times have been used for the agent providing the
data.  Notice that in this case, both the falling and rising edges of AD_STB occur during clock 1 while in
Figure 3-29 they occur in clock 2.  When the agent providing the data is between the minimum time and the
maximum time, then the falling edge occurs in clock 1 while the rising edge occurs in clock 2.

3.5.3.4 4x Data Transfers

This section discusses 4x data transfers.  Basically this is the same as 2x clocking except an entire 16 bytes can be
transferred during a single CLK period.  This requires that four 4 byte pieces of data are transferred across the AD
bus per CLK period.  First a read data transfer will be discussed, and then a write transfer. The control signals are
identical as for the 2x read, except that AD_STBx# has been added when data is transferred at 16 bytes per CLK
period.  AD_STBx# represents the compliment of AD_STB0 and AD_STB1 and are used with AD_STB0 and
AD_STB1 by the 4x interface logic to know when valid data is present on the AD bus.  The receiving agent has two
choices of how it uses the four strobes to latch data.

The first choice is to use only the falling edge of each strobe to latch data.  The first falling edge of AD_STB0 is
used to determine when the receiving agent latches the first four bytes of data residing on the AD bus, and the first
falling edge of AD_STB0# is used to latch the second 4 bytes of the transaction.  The second falling edge of
AD_STB0 is used to determine when the receiving agent latches the third four bytes of data residing on the AD bus,
and the second falling edge of AD_STB0# is used to latch the fourth 4 bytes of the transaction.  Note that the rising
edges of AD_STBx or AD_STBx# are never used to latch data when in the 4x transfer mode.

The second choice is to use the strobes as differential pairs and not as four separate signals.  The compliment pairs
are AD_STB0 and AD_STB0#; and AD_STB1 and AD_STB1#.  When this choice is used, an internal latch
signal is created in which data is latched on both the falling and rising edges.  Assume for illustration purposes that
the internal signal is AD_STBx in Figure 3-31.  The first falling edge of AD_STBx is used to determine when the
receiving agent latches the first 4 bytes of data residing on the AD bus and the first rising edge of AD_STBx is used
to latch the second 4 bytes of the transaction.  The second falling edge of AD_STBx is used to determine when the
receiving agent latches the third 4 bytes of data residing on the AD bus and the second rising edge of AD_STBx is
used to latch the fourth 4 bytes of the transaction.  Note that the rising edges of the internal signal are used to latch
data when in the 4x transfer mode.
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Note that CLK is not used to latch data but is used to qualify the control signals.  AD_STBx is always pulled up and
AD_STBx# is always pulled down by the central resource.
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ST[2::0] 00x xxxxxx
4x-1

xxx

AD_STBx#

Figure 3-31:  4x Read Data - No Delay

Figure 3-31 is the same as Figure 3-25 except that data transfers at double the speed (4x).  The same clock numbers
are used to illustrate the differences.  The control signals are identical, since flow control is over four clocks
regardless of the transfer mode.  R1 is transferred across the bus on the first falling edge of AD_STBx.  The data
phase marked as +1 is transferred on the falling edge of AD_STBx#.  The data phases marked +2 and +3 are the
same as the first two data phases.
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Figure 3-32:  4x Back-to-Back Read Data - No Delay

Figure 3-32 is the same as Figure 3-26 except that data transfers at double the speed (4x).  The difference in this
figure is that only 8 bytes of data has been requested.  Since 16 bytes can be transferred per clock period, the
corelogic provides the 8 bytes requested and then transfers 8 bytes of meaningless data.  The master is responsible
for discarding any data that it does not require.  Note that the strobes toggle during the third and fourth data phases
even though the data is meaningless which is indicated with an X when data would have been valid.  Therefore, when
the 4x transfer mode is supported, the master should ask for a minimum of 16 bytes, otherwise, bus bandwidth is
wasted.  However, if 8-byte transactions are requested, the corelogic will provide the requested 8 bytes and then will
provide an additional 8 bytes of meaningless data.  The critical data is always transferred first regardless of whether
the address is an odd or even QuadWord.  The corelogic is required to drive the byte enables to the asserted state
when meaningful data is transferred and to the deasserted state when meaningless data is transferred.
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Figure 3-33:  4x Basic Write - No Delay

Figure 3-33 is the same as Figure 3-27 except data transfers at twice the speed.  This transaction completes in half
the time as the 2x transaction, because the master requested more than 8 bytes for this transaction.  The control
signals are the same for both figures.
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Figure 3-34:  4x QuadWord Writes - No Delay

Figure 3-34 is the same as Figure 3-28 except that data transfers at double the speed.  However, both transactions
take the same number of clocks to complete because these are 8 byte transactions.  The third and fourth data phases
of each transaction transfer meaningless data.  For this transaction, the byte enables determine which byte lanes
provide meaningful data, and since the third and fourth data phases provide meaningless data, the byte enables are
deasserted.

Refer to the other 2x diagrams to determine how 4x transactions work under the other conditions.  Note that flow
control the pipelining of GNT#s is the same for 1x, 2x, or 4x data transfers.  There is no change in basic control
timing in 4x mode.  However, it should be highlighted that in 4x mode, the maximum transfer size in one clock is 16
bytes.  To support back-to-back 16 byte transfers without an idle bus clock between transactions, the arbiter must
pipeline GNT# in the same fashion as GNT# is pipelined for back-to-back 8 byte transfers in 2x mode.

3.5.3.5 Fast Write Transfers

The Fast Write (FW) transaction is from the corelogic to the A.G.P. master acting as a PCI target.  This type of
access is required to pass data/control directly to the A.G.P. master instead of placing the data into main memory and
then having the A.G.P. master read the data.  For 1x transactions, the protocol simply follows the PCI bus
specification.  However, for higher speed transactions (2x or 4x), FW transactions will follow a combination of PCI
and A.G.P. bus protocols for data movement which is defined in this section.  PCI protocol will be followed to
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initiate the transaction, while flow control will follow the A.G.P. block style and not PCI data phase style.
Termination of the transaction is like PCI with some modifications to relationships between signals.  For example,
PCI requires IRDY# to be asserted when FRAME# is deasserted.  However, for FW transactions, this relationship is
not required.

One new signal is needed when using FW protocol – Write Buffer Full (WBF#).  When WBF# is asserted, it
indicates to the corelogic that the PCI target’s write buffers are full and that initiating an FW transaction to the target
is not allowed.  When WBF# is deasserted, the target is indicating to the corelogic that it can accept at least five
clocks worth of data before it will terminate the transaction.  (Note:  five clocks are required when the first of two
back-to-back transactions is short – see Figure 3-53 for details.)

The corelogic uses PCI signals to perform FW transactions to the A.G.P. master (acting as a PCI target).  For FW
transactions, the behavior of the PCI signals has been modified and do not follow the PCI specification in their
function or requirements.  For example, there is no relationship between FRAME# and IRDY# for FW transactions.

FRAME# is used to signal the start and duration of a transaction.  On the first clock in which FRAME# is sampled
asserted, the corelogic has placed the address on the AD bus and the command on the C/BE# bus.  Only PCI
memory write commands (Memory Write and Memory Write and Invalidate) are allowed for FW transactions.  I/O
and Configuration Write commands must be completed using PCI protocol.  The first clock in which FRAME# is
deasserted indicates the last clock in which data may be transferred.  This means that FRAME# is allowed to be
deasserted while IRDY# is deasserted.

IRDY# is used by the corelogic to indicate to the target that a block of data is beginning to transfer.  The corelogic
provides up to four clocks of data without inserting waitstates starting with the clock in which IRDY# is first
asserted.

C/BE[3::0]# indicate which byte lanes carry meaningful data.  Like PCI, any combination of byte enables is legal
including none.  When the corelogic initiates an FW transaction that transfers less data than an entire block (FW-2x
8 bytes, FW-4x 16 bytes), it deasserts the byte enables for the lanes that do not have valid data.  The target must
qualify the data it latches with the byte enables to determine if valid data was latched.

TRDY# is used by the A.G.P. master (acting as a PCI target) to indicate to the corelogic if it is willing to transfer a
subsequent block of data.  The target cannot terminate an FW transaction with Retry as it can with PCI.  The target
uses WBF# to prevent the corelogic from initiating an FW transaction when its write buffers are full.  The target can
request the master to stop the current transaction like PCI, but with slightly different meanings and protocol.  A
target of an FW transaction can terminate the request after the initial block transfers with Disconnect (with and
without) data, Target-Abort or with a modified version of Master-Abort.  Each of these terminations will be
discussed and illustrated in later sections.

DEVSEL# is used by the target to indicate that it owns the target control signals and must be asserted with or before
the target can drive TRDY# or STOP#.  There are some cases, in which the target must suppress the assertion of
DEVSEL#.  This occurs when an FW transaction is short, and is to avoid contention of DEVSEL# for back to back
transactions.  When a transaction requires multiple blocks to complete, the target is required to have DEVSEL#
asserted by slow decode time, otherwise the corelogic will assume that there is no target.  If this condition occurs, the
corelogic completes the transaction with Master-Abort semantics.  Master-Abort termination on an FW transaction
can only occur after the initial block of data transfers.  Therefore, the initial four clocks of data is lost if an FW
Master-Abort is signaled.

STOP# is used by the target to request the corelogic to stop the FW transaction after the current block complete
(disconnect without data) or after the next block (disconnect with data).  The target is allowed to terminate the
transaction with Target-Abort when the target cannot complete the transaction as requested.  The target is allowed to
restrict how it is accessed using FW transactions (i.e., only Dword accesses or contiguous byte enables).

The generation and checking of parity is not supported on FW transactions.
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The following sections will describe the FW bus protocol in detail and illustrate interesting cases of FW transactions
themselves and their interaction with other bus transactions, both PCI and A.G.P.  Note that the following figures
only illustrate 2x data transfers.  However, FW protocol is supported for 4x data transfers.

3.5.3.5.1 FW Basic Transaction
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Figure 3-35:  Minimum Delay for AD_STBx

Figure 3-35 is an example of an FW transaction.  The corelogic, when it has memory write data and has been
enabled to do FW transactions, requests use of the AD bus by asserting its REQ#.  This is not shown in the diagram
since the corelogic’s REQ# is an internal signal since the arbiter is part of the corelogic.  When the corelogic has
been granted access to the bus (internal GNT# is asserted and the bus is Idle) and WBF# is deasserted, it starts the
transaction by placing the memory write command on C/BE[3::0]#, the address on AD[31::00], and asserting
FRAME# which occurs on clock 2.  The corelogic on the next clock places the actual data on the AD bus and asserts
IRDY#.  The first Dword of data actually transfers on the first falling edge of AD_STBx and the second Dword
transfers on the rising edge.  In this figure, both transfers occur during clock 2.  The target (A.G.P. master) is
required to accept the first block of data before it can insert waitstates or terminate the transaction because WBF# is
deasserted on clock 1.  The target accepts the first block of data and indicates to the master that it is willing to accept
the next block by the asserting TRDY# (for a single clock) on clock 5.  If the master wishes to continue the
transaction, it would keep FRAME# asserted on clock 6 which is illustrated in Figure 3-37.  Since the master
deasserts FRAME# on clock 6, the assertion of TRDY# on clock 5 was meaningless.  In this example, the target
does not know that a second block of data is not required to complete the transaction until FRAME# is deasserted on
clock 6.  The target asserts TRDY# for clock 5 to allow the master to continue the burst (transfer a subsequent
block) without waitstates.
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Figure 3-36:  Maximum Delay for AD_STBx

Figure 3-36 is the same as Figure 3-35 except that the corelogic takes the maximum delay for the assertion and
deassertion of AD_STBx while Figure 3-35 shows a minimum time.  The rest of the transaction is the same with a
single block of data being transferred.  This figure illustrates that the actual data transfer can occur entirely in the
second clock after the assertion of FRAME# or that (as in this figure) that part of the data occurs in first clock after
the assertion of FRAME# and the rest in the second clock.  Since the data only transfers on the edge of AD_STBx
and not on the rising edge of CLK when IRDY# is asserted, care needs to be taken when latching data for FW
transactions.  The falling edge of AD_STBx can occur on the rising edge of CLK.  This condition occurs when the
corelogic takes the maximum  time of 12 ns to assert AD_STBx, the system can use an additional 3 ns to propagate
the signal to the target.  Therefore, the target can receive AD_STBx 15 ns after the rising edge of CLK, which is the
period of CLK.  The rest of the timing diagrams will assume a more typical value than the maximum.  Therefore,
both edges of AD_STBx will occur in the same period of CLK; but note that this is not required and the target must
be able to accept the maximum delay allowed by this interface specification.
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Figure 3-37:  Transaction with Subsequent Block

Figure 3-37 is the same as Figure 3-35 except the corelogic continues the transaction past the initial block of data.
The assertion of TRDY# on clock 5 has meaning and indicates that the target is ready to transfer the second block of
data.  Since TRDY# is asserted on clock 5, the corelogic is allowed to transfer data for the second block starting on
clock 7.  The target knows that the transaction is ending on clock 8 because FRAME# is deasserted.  The next TP
would have occurred on clock 9 if FRAME# had remained asserted.  The state of IRDY#, after it is asserted
indicating the start of a block transfer, is meaningless until two clocks after the completion of the next TP (TRDY#
is asserted).  In this example, IRDY# is meaningless on clocks 4, 5, and 6.

3.5.3.5.1.1 FW Transactions with Waitstates

FW transactions are like A.G.P. transactions and not like PCI transactions with respect to waitstates.  The corelogic
is allowed to insert up to one waitstate between the address phase and the first clock of the data transfer.  The target
cannot insert any waitstates during the initial block transfer.  It uses WBF# to prevent the corelogic from initiating
an FW transaction.  Both agents are allowed to insert waitstates between subsequent data blocks.  The number of
waitstates between subsequent blocks is not defined.
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Figure 3-38:  Master Delays Data One Clock

Figure 3-38 is an example where the corelogic inserts a waitstate (maximum delay) to assert IRDY# indicating that
the data is valid on the interface.  The master starts the transaction as in Figure 3-35, but in this case delays providing
the data by one clock.  This is indicated by not asserting IRDY# until clock 4 while in Figure 3-35 the corelogic
asserts IRDY# on clock 3.  Beyond this the two figures are the same.
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Figure 3-39:  Target Delays Subsequent Block

Figure 3-39 is the same as Figure 3-37 except the target inserts one waitstate between the first and second blocks of
data.  Because TRDY# is deasserted on clock 5, a waitstate is inserted on the AD bus on clock 7 if FRAME#
remains asserted on clock 6.  Because TRDY# and FRAME# are asserted on clock 6, the target is ready to accept
data on clock 8.  The corelogic provides data and asserts IRDY# on clock 8 starting the transfer of the second block
of data.  This is the only case when an FW transaction follows the standard PCI FRAME# - IRDY# rule.  This
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occurs because the master transfers only one Qword of a subsequent block.  In all other cases, FRAME# will be
deasserted when IRDY# is deasserted.

3.5.3.5.2 FW Transaction with Different Terminations

This section will discuss the different terminations that can occur for an FW transaction.  Each of the terminations
that can be used with PCI will be discussed.  These include Retry, Disconnect with Data, Disconnect without Data,
Target-Abort, Master-Abort, and Normal terminations.

3.5.3.5.2.1 Retry

The target termination known as Retry on PCI is not supported for FW transactions.  The target does not require this
termination because it has WBF#.  WBF# prevents the corelogic from initiating an FW transaction to the graphics
agent and, therefore, has no need of Retry termination.  Refer to the Write Buffer Full discussion in the FW followed
by FW section for details about WBF# operation.

3.5.3.5.2.2 Disconnect With Data

The PCI target termination know as Disconnect With Data is supported for FW transactions.  This is the preferred
implementation of the two Disconnect options since it minimizes the wasted clocks on the interface.  Disconnect
With Data is signaled on the bus when the target claims the access by asserting DEVSEL# and then asserts both
STOP# and TRDY# at the TP which occurs on clock 5.  STOP# is used to request the master to stop the
transaction and TRDY# is used to indicate that the target is willing to transfer the next block of data.
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Figure 3-40:  Target Stops Transaction After Second Block

Figure 3-40 is a transaction where the target is only willing to accept two blocks of data.  In this case, the assertion of
TRDY# on clock 5 indicates that the target is willing to accept the second block of data.  But since STOP# is also
asserted on clock 5, the target is indicating that it is not willing to accept a third block of data.  In this case, the
master may have intended to complete the transaction on clock 7 anyway, or is required to stop it prematurely
because STOP# was asserted on clock 5.  Regardless of the master’s intent, the transaction ends on clock 7 which is
indicated by FRAME# being deasserted on clock 7.  The target is required to accept up to four clocks of data per
block when it asserts TRDY# indicating it is willing to accept the next block.  In this case, if the corelogic had
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desired to continue, it could have transferred data on clocks 9 and 10 before it is required to stop the transaction
because STOP# was asserted on clock 5.  The target is required to keep STOP# asserted until it samples FRAME#
deasserted, at which time it is required to deassert STOP# and tri-state it (per standard s/t/s requirements).
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Figure 3-41:  Target Delays and Then Stops Transaction After Second Block

Figure 3-41 is the same as Figure 3-40 except in this case the target inserts a waitstate between the blocks of data.  In
this case, the assertion of STOP# is required to be delayed one clock.  If STOP# is asserted on clock 5 with
TRDY# deasserted, that would indicate that the target is not willing to transfer the second block of data.  As shown
in this figure, the target is willing to accept the second block after a waitstate, but is not willing to accept the third
block of data.  Again, the master may have been intending to stop during the second block anyway because
FRAME# is deasserted before clock 11.  (IRDY# is asserted when FRAME# is deasserted because the corelogic is
transferring one Qword in the subsequent block.  If it had been two, three, or four Qwords, FRAME# would be
deasserted when IRDY# was also deasserted.)

3.5.3.5.2.3 Disconnect Without Data

The PCI target termination known as Disconnect Without Data is supported for FW transactions.  This is not the
preferred implementation of the two Disconnect options, since it requires clocks on the bus in which no data is
transferred.  Disconnect Without Data is signaled on the bus when the target claims the access by asserting
DEVSEL# and then asserts STOP# but keeps TRDY# deasserted at the TP which occurs on clock 5.  The TP
completes when either TRDY# or STOP# is asserted.  STOP# is used to request the master to stop the transaction
and TRDY# is used to indicate that the target is not willing to transfer the next block of data.
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Figure 3-42:  Target Stop Transaction After First Block

Figure 3-42 is a case when the target accepts the first four clocks worth of data since WBF# is deasserted, but is not
willing to accept the second block of data because STOP# is asserted on clock 5.  In this case, the corelogic is
required to deassert FRAME# on clock 6 to indicate the last data phase.  Caution needs to be taken by the arbiter
that it does not assert GNT# for a different transaction until all shared signals have been deasserted and tri-stated in
preparation for the next transaction.  In the case of FW transactions, the bus will appear to be in the Idle condition
one clock before it actually reaches that state.  Therefore, the arbiter needs to track what type of access is currently
on going and then delay the assertion of GNT# for a new transaction until it ensures that no contention occurs on the
shared signals.  Avoiding contention on the AD and C/BE# buses is relatively easy, but avoiding contention of
TRDY# and IRDY# may be more difficult.
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Figure 3-43:  Target Delays and Then Stops Transaction After First Block

Figure 3-43 is the same as Figure 3-42, except that the target inserts one waitstate before it indicates that it is
incapable of continuing the burst.  In this case, a waitstate is inserted on clock 7 because TRDY# was deasserted on
clock 5 and the corelogic deasserts FRAME# on clock 7 because STOP# was asserted on clock 6.  The TP for this
transaction completes on clock 6 because STOP# is asserted.  Once STOP# is asserted, it must remain asserted
until FRAME# is sampled deasserted which occurs on clock 7.

The master has indicated to the target that some data in the next block will be transferred because FRAME# is
asserted on clock 6.  If the master would insert a waitstate between blocks, it is allowed to delay the deassertion of
FRAME# even though STOP# is asserted on clock 6.  The master is required to complete the current transaction as
soon as possible.

3.5.3.5.2.4 Target-Abort

The PCI target termination know as Target-Abort is supported for FW transactions.  It has the same meaning as for
PCI, in that the target can never complete the current request and the master is required to not repeat it again.  This is
an error condition and is signaled on the interface by deasserting DEVSEL# (after it was asserted) with TRDY#
deasserted and STOP# asserted.
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Figure 3-44:  Target-Abort

The target of the FW transaction claims the access by asserting DEVSEL# on clock 3, in Figure 3-44, when it has
completed the address and command decodes.  The target is required to accept the first block of data before it can
request the transaction to stop.  In this case, the target has determined that it cannot complete the transaction and
requests the master to stop when the transfer of the first block completes.  The target deasserts DEVSEL#, keeps
TRDY# deasserted, and asserts STOP# on clock 5 to signal a Target-Abort.  Since STOP# is asserted on clock 5,
the master is required to deassert FRAME#.  The target is required to keep STOP# asserted until it samples
FRAME# deasserted, which occurs on clock 6 in the example.  Once FRAME# is deasserted, the target then
deasserts and tri-states STOP#.  The target could have delayed the signaling of Target-Abort by keeping DEVSEL#
asserted and STOP# and TRDY# deasserted.

3.5.3.5.2.5 Master-Abort

The PCI termination know as Master-Abort is supported for FW transactions.  It has the same meaning as PCI but
can occur when data transfers for the transaction.  Since the target is required to accept the first four clocks worth of
data (WBF# deasserted), the true meaning of a PCI Master-Abort cannot be signaled.  However the same signaling
is used.  The difference is that four clocks of data are transferred before the master knows that there is no target
accepting the data.  FW Master-Abort termination is signaled on the interface the same way it is on PCI in that
DEVSEL# is not asserted by slow decode time.  (Subtractive decoding is not supported on the A.G.P. interface.)
The master knows that waitstates are not being inserted by the target between the initial and subsequent blocks, when
both TRDY# and DEVSEL# are deasserted by the slow decode sample point.
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Figure 3-45:  Master-Abort

In Figure 3-45 the target fails to assert DEVSEL# by clock 5, in this case the master knows that no target is going to
responding.  The data transferred during the first block is dropped.  Subsequent blocks are treated as a separate
transaction, since separate memory write operations can be combined into a single bus transaction.  The target is
required to assert DEVSEL# by clock 5 in order to perform target termination or to insert waitstates.

3.5.3.5.2.6 Normal

PCI normal termination is where the master was able to transfer all the data that it desired.  This means that the target
did not assert STOP# to request the master to end the transaction.  This is the typical termination of an FW
transaction.  A normal completion is shown in Figure 3-35 and Figure 3-37.

3.5.3.5.3 Back to Back Transactions

Because the interface supports multiple bus protocols, this section will discuss the relationships when an FW
transaction precedes or follows another transaction.  Table 3-19 lists all the combinations where an FW precedes or
follows another transaction.  The first column is the transaction sequence.  For example, the first row indicates that
an FW is followed by another FW.  In this case, column two indicates that a turn-around cycle is not required
between the two transactions.  The third column refers the reader to a figure that illustrate this example.  The fourth
and fifth columns indicate which agent is the initiator and target of the first transaction.  The last two columns
indicate the agents for the second transaction.  Following the table each of these cases will be illustrated and
discussed.
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Table 3-19:  Back to Back Transactions

Turn-

around

First Transaction Second Transaction

Transaction Type Required Figure Initiator Target Initiator Target

FW to FW No Figure 3-46 to

Figure 3-53

Corelogic A.G.P. Master Corelogic A.G.P. Master

FW to PCIc Read No Figure 3-54 Corelogic A.G.P. Master Corelogic A.G.P. Master

PCIc Read to FW Yes Figure 3-55 Corelogic A.G.P. Master Corelogic A.G.P. Master

FW to A.G.P. Read Yes* Figure 3-56 to

Figure 3-58

Corelogic A.G.P. Master Corelogic A.G.P. Master

A.G.P. Read to FW Yes Figure 3-59 Corelogic A.G.P. Master Corelogic A.G.P. Master

FW to A.G.P. Write Yes* Figure 3-60 to

Figure 3-61

Corelogic A.G.P. Master A.G.P. Master Corelogic

A.G.P. Write to FW Yes Figure 3-62 A.G.P. Master Corelogic Corelogic A.G.P. Master

FW to PCIa Read Yes Figure 3-63 Corelogic A.G.P. Master A.G.P. Master Corelogic

PCIa Read to FW Yes Figure 3-64 A.G.P. Master Corelogic Corelogic A.G.P. Master

FW to PCIa Write Yes Figure 3-65 Corelogic A.G.P. Master A.G.P. Master Corelogic

PCIa Write to FW Yes Figure 3-66 A.G.P. Master Corelogic Corelogic A.G.P. Master

FW to PIPE# Yes Figure 3-67 Corelogic A.G.P. Master A.G.P. Master Corelogic

PIPE# to FW Yes Figure 3-68 to

Figure 3-69

A.G.P. Master Corelogic Corelogic A.G.P. Master

* Figure 3-57 and Figure 3-61 require two turn-around cycles.
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3.5.3.5.3.1 FW to FW
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Figure 3-46:  Back-to-Back Transaction with Turn-around Cycle

Figure 3-46 is an example of back-to-back transactions where a dead clock is placed between the transactions.
Notice that most of the shared signals have a turn-around time on clock 7, such that the second transaction is not
required to be from the same master as the previous transaction.  However, in this figure, they are both from the
corelogic.  This condition may be required when the corelogic uses the maximum time to assert AD_STBx.  The
timing could be such that it is impossible to do back-to-back transactions without a dead clock between transactions.
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Figure 3-47:  Fast Back-to-Back Transaction

Figure 3-47 is the same as Figure 3-46 except that the dead clock has been removed from between the transactions.
As mentioned earlier, this type of transaction may not be possible if the maximum delay is used by the corelogic in
driving the strobes and data lines.  Since it is possible for the corelogic to do this access, the target (the A.G.P.
master acting as a PCI target) is required to handle it when issued.  Since ownership of the shared signals does not
change, a turn-around cycle is not required.  The A.G.P. master, when functioning as the PCI target for FW protocol,
must be able to handle fast back-to-back transactions like the PCI requirement for targets.  In this case, this type of
transaction can only be initiated when both accesses are from the same master.
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3.5.3.5.3.1.1 Write Buffer Full

CLK

1 2 3 4 5 6 7 8

FRAME#
AD

C/BE#

IRDY#

TRDY#

   

WBF#

fw-14

   

+3+2WD3 +1 +4 +5 +6 +7

BE BE BE BE BE BE BE BE

AD_STBx

ADD

CMD

STOP#

DEVSEL#

Figure 3-48:  WBF# Asserted Prevents Second Transaction

Figure 3-48 shows an FW transaction completing normally.  However, notice that WBF# is asserted by the A.G.P.
master on clock 6 which prevents the corelogic from initiating a new transaction on clock 7 or after.  In this case, the
corelogic was not doing a fast back-to-back transaction and would have asserted FRAME# on clock 8 if  WBF# had
been deasserted on clock 7.  In this case, the target indicates, by asserting WBF#, that its write buffers are full and it
cannot accept a new memory write transaction.  If the corelogic has more write data buffered that needs to be
delivered to the target, it must not initiate the FW transaction until WBF# is deasserted.  (Note that when FW
protocol is enabled, the corelogic is not allowed to initiate a PCI memory write25 transaction using standard PCI
protocol.)

                                                          

25 Can be either Memory Write or Memory Write and Invalidate commands.
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Figure 3-49:  Second Transaction Prevented Because WBF# is Asserted

Figure 3-49 is the same as Figure 3-48 except the second transaction could be done as fast back-to-back (no turn-
around between accesses).  In this case, WBF# is asserted one clock earlier to ensure that the second transaction is
not allowed to be initiated.  If WBF# had been delayed one clock, the second transaction would have been allowed
to occur as illustrated in Figure 3-53.  With the proper use of WBF#, the target is only required to have five clocks
of buffering which is shown in Figure 3-53.  The target is required to accept the first four clocks of any transaction
before it is allowed to insert waitstates or do a target termination (Disconnect or Target-Abort).  A target termination
of Retry is not allowed since this termination means that no data was transferred for the current transaction.  This
would mean that the master initiated the transaction even though WBF# was asserted or the target did not accept the
four clocks worth of data.  In either case, this is a violation of the FW protocol.
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3.5.3.5.3.1.2 DEVSEL# Operation and FW Transactions
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Figure 3-50:  Relationship of DEVSEL# and Short Transaction

Figure 3-50 is an interesting case, in which the amount of data transferred is small.  This causes some interesting
conditions that need to be reviewed.  In this case, the entire transaction can be completed in two clocks.  The first
clock is for the address and command, while the second clock is for the actual data transfer.  In this case, since
WBF# is deasserted, the corelogic knows that the entire transaction can complete without a TP.  In this case, the
target may not have completed the address decode before the data has completely transferred.  The assertion of
DEVSEL# in this condition is optional.  The target is only required to assert DEVSEL# before or with the assertion
of TRDY# or STOP#.  Since this transaction does not reach a TP, the assertion of DEVSEL# is optional.  The
target must accept the first four clocks of any transaction independent of completing the address decode.  Once the
decode completes and the device is not the target of the transaction, it discards the data that was latched.  This is a
requirement if there is more than one target interface active when the corelogic is the master.  This can occur when
the A.G.P. master contains more than a single function; in other words, when the A.G.P. master is a multifunction
device that presents multiple PCI configuration spaces to the system.  (See Section 6.3 for details.)  In this case, the
corelogic believes there is a single device and assumes that it is targeting a single device and is allowed to do fast
back-to-back accesses.  If the first access was to function 0 and the second to function 1, both devices must latch the
transaction and store the write data until a full address decode can be completed.  When this has occurred, the device
not selected by the address simply discards the latched data and does not assert DEVSEL# (claiming ownership of
the current transaction).
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Figure 3-51:  Suppression of DEVSEL# on a Short Transaction

Figure 3-51 is a back-to-back transaction where the initial transaction is short.  In this case, a turn-around cycle is
placed between the transactions.  Note that the extra clock is not required in all cases.  Notice that DEVSEL# was
not asserted for the first transaction since it completes before reaching a TP.
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Figure 3-52:  WBF# Asserted When First Transaction is Short

Figure 3-52 is the same as Figure 3-48 except that in this case the first transaction is short.  WBF# must be asserted
as soon as the transaction starts in order to prevent a subsequent transaction from being initiated.



Revision 2.0

102

CLK

1 2 3 4 5 6 7 8 9

FRAME#

AD

C/BE#

IRDY#

TRDY#

   

WBF#

fw-19

   

WD3 +1

BE BE

WD4 +1

BE BE

AD_STBx

ADD

CMD

STOP#

   

   

+4 +5

BE BE

ADD

CMD BE BE

+6 +7+2 +3

BE BE

DEVSEL#

Figure 3-53:  Back-to-Back Transaction When First Transaction is Short

Figure 3-53 is the case where the target cannot prevent two transactions from completing.  In this case, the first
transaction is so short that the corelogic cannot detect WBF# asserted until clock 3 which is the same clock in which
the second transaction is initiated using a fast back-to-back transaction.  For this type of sequence, the A.G.P. master,
acting as a PCI target doing FW protocol, is required to provide enough buffering to accept five clocks worth of
data.  In this case, it requires two Dwords for the first transaction and an additional eight Dwords for the subsequent
transaction.  Note that the target is only allowed to insert waitstates or terminate the transaction at block boundaries
which occur every four clocks.  If the master had inserted a waitstate on the initial transaction (delayed the assertion
of IRDY#) or the transaction was longer than a two clocks, WBF# could be detected before the second transaction
was initiated.  Since this transaction is possible, the target must provide sufficient buffering for it to occur.
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3.5.3.5.3.2 FW to PCIc Read
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Figure 3-54:  FW Followed by PCI Read by Corelogic

When an FW transaction is followed by a corelogic PCI read transaction no turn-around cycle is needed for the AD
or C/BE# buses since the corelogic is the master for both transactions.  Figure 3-54  illustrates that there is no
contention on any of the shared signals, therefore the need to put a turn-around cycle between the transactions is not
required.  However, the corelogic is allowed to insert multiple dead clocks if it desires.  Notice that PCI transaction
occurs on the interface at 1x transfer rates and use a IRDY# - TRDY# handshake to transfer data.
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3.5.3.5.3.3 PCIc Read to FW
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Figure 3-55:  PCI Read by Corelogic Followed by FW

Figure 3-55 shows that a turn-around cycle is needed on the AD bus since the graphics agent was driving it at the end
of the PCI Read transaction and the corelogic will drive it for the next transaction.  All other signals have sufficient
time for a turn-around to prevent contention.
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3.5.3.5.3.4 FW to A.G.P. Read
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Figure 3-56:  FW Followed by an A.G.P. Read Data

Figure 3-56 is the same as Figure 3-59 except the transaction order is reversed.  A turn-around is required on clock 7
for TRDY# since it changes ownership.  While in Figure 3-59 no turn-around is required even though ownership of
TRDY# changes.
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Figure 3-57:  Two Dead Clocks Between FW and an A.G.P. Read Data

When an A.G.P. read transaction follows an FW transaction that has three clocks of data, two turn-around cycles are
required.  In Figure 3-57, the graphics agent does not know the length of the transfer and asserts TRDY# on clock 5
to indicate that it is willing to continue the burst without waitstates.  However, the corelogic transfers the entire
transaction during the initial block and does not require a subsequent block.  Since TRDY# was asserted, the
graphics agent must deassert it and then tri-state it.  The corelogic cannot control TRDY# until clock 7.  Therefore,
the AD bus has two dead clocks before the corelogic can initiate the second transaction.  This same condition can
occur whenever FRAME# is deasserted and TRDY# is asserted.  For example, in Figure 3-56 if the graphics agent
had inserted a waitstate on clock 5, TRDY# would have been asserted on clock 6 when FRAME# was deasserted.
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Figure 3-58:  Short FW Followed by an A.G.P. Read Data

When the FW transaction completes with fewer than three clocks of data, only a single turn-around is required.  In
Figure 3-58, the graphics agent does not assert TRDY# on clock 5 because FRAME# is deasserted on clock 4.  The
corelogic indicates that the current clock is the final data phase when FRAME# is deasserted.
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3.5.3.5.3.5 A.G.P. Read to FW
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Figure 3-59:  A.G.P. Read Followed by an FW Transaction

Figure 3-59 is an A.G.P. read data transaction followed by an FW.  In this case, the corelogic is driving the AD bus
for both transactions.  However, IRDY# is required to have a turn-around cycle since ownership changes.  In this
case, the second transaction is the FW and has an address phase which gives IRDY# time to switch ownership.  A
turn-around cycle is required when bus protocols change, therefore, a turn-around cycle occurs on clock 4 because of
protocol requirements and not to avoid contention.  The same is true for AD_STBx# but is not required.
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3.5.3.5.3.6 FW to A.G.P. Write
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Figure 3-60:  FW Followed by an A.G.P. Write Data

Figure 3-60 shows the same two transactions as Figure 3-62, except they are in reverse order.  In this case, multiple
signals are required to have turn-around cycles to remove contention.  This is different than the previous figure
because there is no address phase on the second transaction.  In the previous case, the other signals had a chance to
turn around before they were driven by the second agent.  Note that the arbiter is allowed to assert GNT# for a write
transaction, when FRAME# (or PIPE#) is asserted on the previous transaction as described in Table 3-19.
Therefore, the arbiter could assert GNT# in this figure on clocks 3, 4, 5, 6, or 7.
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Figure 3-61:  Long FW Followed by an A.G.P. Write Data

Figure 3-61 is the same as Figure 3-63 except that in this figure the FW transfers one clock of data in the second
block.  When this occurs, the corelogic asserts IRDY# on clock 5 indicating that the second block of data is starting
to transfer and since FRAME# is deasserted it is the last clock in which data will transfer.  Because ownership of
IRDY# occurs between these transactions, the arbiter is required to ensure that two clocks of turn-around occur
before the next transaction can start.



Revision 2.0

111

3.5.3.5.3.7 A.G.P. Write Followed by FW
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Figure 3-62:  A.G.P. Write Followed by FW

Figure 3-62 is an A.G.P. write transaction followed by an FW transaction.  In this case, the turnaround is required
because the AD bus is owned by different agents.  Notice that no other signal has any requirement for a turn-around.
In this case, the write data is being provided by the A.G.P. master while the FW data is provided by the corelogic.  If
the A.G.P. write transaction had been short, IRDY# may have also required a turn-around cycle.
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3.5.3.5.3.8 FW Followed by Graphics PCI Master Read
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Figure 3-63:  FW Followed by Graphics PCI Master Read

Figure 3-63 is an FW transaction followed by a graphics PCI master read transaction and indicates that a turn-around
is needed since a change of ownership of the AD and C/BE# buses occurs.
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3.5.3.5.3.9 Graphics PCI Master Read Followed by FW
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Figure 3-64:  Graphics PCI Master Read Followed by FW

In Figure 3-64, the AD bus is owned by the same agent and therefore does not need a turn-around.  However, the
C/BE# bus changes ownership from the graphics agent as master to the corelogic as master for the FW transaction.
With this turn around cycle, IRDY# and TRDY# have sufficient time not to have contention.
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3.5.3.5.3.10 FW Followed by Graphics PCI Master Write

CLK

1 2 3 4 5 6 7 8 9

FRAME#

AD

C/BE#

IRDY#

TRDY#

   

WBF#

fw-31

   

+3+2WD3 +1 +4 +5 +6 +7

BE BE BE BE BE BE BE BE

AD_STBx

ADD

CMD

STOP#

   

DEVSEL#

BE

   

   

ADD

CMD

   WD

Figure 3-65:  FW Followed by Graphics PCI Master Write

When different agents are bus masters for a back to back transaction, a turn-around cycle is needed and occurs on
clock 7 in Figure 3-65.
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3.5.3.5.3.11 Graphics PCI Master Write Followed by FW
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Figure 3-66:  Graphics PCI Master Write Followed by FW

Ownership of the AD and C/BE# buses and FRAME# changes, and, therefore, they need a turn-around cycle
between bus transactions which occurs on clock 6 in Figure 3-66.
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3.5.3.5.3.12 FW Followed by PIPE#
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Figure 3-67:  FW Followed by an A.G.P. Request

Figure 3-67 is an FW followed by an A.G.P. Request using the AD bus.  In this case, a turn-around cycle is required
on the AD bus since different agents are driving it.  In this case, the corelogic was driving the AD bus for the FW
transaction and the A.G.P. master drives it for the A.G.P. Request.  The arbiter asserts the GNT# for the A.G.P.
master when it samples FRAME# deasserted on the FW transaction.  In this figure, the A.G.P. master starts as
quickly as it can.  The A.G.P. master is allowed to delay the assertion of PIPE# one clock if it desires.
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3.5.3.5.3.13 PIPE# Followed by FW
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Figure 3-68:  Request Enqueued Followed by an FW Transaction

Figure 3-68 is an FW transaction following an A.G.P. Request (single request).  In this case, the AD and C/BE#
buses must be turned around before the FW transaction can be initiated.  This can be accomplished with a single
turn-around access since the arbiter knows that the request transaction will be a single clock because REQ# is
deasserted on the clock in which PIPE# is asserted.  This indicates that a single request is being enqueued.  Since the
corelogic is the arbiter and the master of an FW transaction, the corelogic does not need an external GNT# and,
therefore, can know in advance that it can start on the clock after PIPE# is deasserted.
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3.5.3.5.3.13.1 PIPE# Followed by FW with Delay
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Figure 3-69:  Request Followed by an FW Transaction

Figure 3-69 is the same as Figure 3-68 except that the corelogic takes an extra clock to start the FW transaction.  In
this case, the arbiter was slow in giving the internal GNT# or the FW interface took an extra clock to get started.
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3.6 Arbitration

3.6.1 Introduction

This section describes the rules that the A.G.P. master’s REQ# signal and the A.G.P. arbiter’s GNT# signal need to
follow for correct A.G.P. operation.  These rules are a necessary part of the A.G.P. protocol.

The rules associated with the master’s REQ# output signal provide an early indication to the A.G.P. arbiter as to
when an access request transaction will complete.  The arbiter may take advantage of this to eliminate idle bus clocks
between transactions.

The rules associated with the GNT# signal minimize the amount of read data buffering required in the master while
allowing back-to-back 8 byte transactions without idle bus clocks.  In order to achieve back-to-back data
transactions, the arbiter may pipeline grants and the master must be able to accept them.  Some of the rules in this
section are necessary to limit the number of pipelined transactions that can be outstanding.  This section will not
attempt to describe the arbitration priority algorithms since that is a chipset specific implementation issue.

3.6.2 Master’s REQ# Signal

The A.G.P. master asserts its REQ# signal when it wants to either initiate a PCI cycle or enqueue a request using
PIPE#.  When the master deasserts REQ# depends on whether the current request is an A.G.P. or PCI request.
When enqueueing A.G.P. Requests over the AD bus using PIPE#, the master must keep its corresponding REQ#
asserted until one clock prior to deasserting PIPE#.  When PIPE# is asserted and REQ# is deasserted (on the same
clock), it indicates that the current request is the last to be enqueued for this transaction and PIPE# is required to be
deasserted on the next clock returning the bus to an Idle condition.  When the current bus operation is the
enqueueing of requests on the AD bus, the master is not allowed to reassert REQ# to continue enqueueing more
requests once REQ# has been deasserted.  Therefore when REQ# is reasserted, it indicates that the A.G.P. master
has a new request to initiate on the interface.  This new request could be a new transaction to enqueue more A.G.P.
Requests or to initiate a PCI transaction.  The arbiter may utilize this information to avoid idle bus clocks when
asserting GNT# for a subsequent transaction.  This rule implies that REQ# will be deasserted for at least one clock
between back-to-back A.G.P. transactions that enqueue requests.  The master should concatenate as many requests
into a single PIPE# transaction as possible to minimize the turn-around and idle bus cycles.

When an A.G.P. or PCI master issues a PCI transaction using FRAME# (and no other access requests are pending) it
will deassert REQ# when it asserts FRAME#.  If another access request is pending, the master will keep REQ#
asserted.  These rules are summarized in Table 3-20.

Table 3-20:  A.G.P. Arbitration Rules

Current Access Next Access

PCI A.G.P. None

PCI Keep REQ# asserted. Keep REQ# asserted. Deassert REQ# when
asserting FRAME#.

A.G.P. Deassert REQ# one
clock prior to
deasserting PIPE#.

Deassert REQ# one
clock prior to
deasserting PIPE#.

Deassert REQ# one
clock prior to
deasserting PIPE#.
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Figure 3-10 shows an access request using PIPE#.  The master deasserts REQ# one clock prior to deasserting
PIPE#.  Simultaneously enqueueing requests on the SBA Port and the AD bus is not allowed.  An A.G.P. master
that is enabled to issue commands over the SBA Port is not allowed to generate commands with PIPE# over the AD
bus.

3.6.3 GNT# and ST[2::0]

The A.G.P. arbiter will assert GNT# to allow the A.G.P. master to initiate PCI or A.G.P. (non-sideband) activity.
The ST[2::0] signals are only meaningful while GNT# is asserted and are used to communicate the type of PCI or
A.G.P. activity being initiated.  The ST[2::0] encodings are shown in Table 3-3.

3.6.4 A.G.P. Master

3.6.4.1 A.G.P. Master Initiating an A.G.P. Request.

When the A.G.P. master has REQ# asserted to request permission to use the AD bus to make an A.G.P. Request, it
must assert PIPE# within two clocks of sampling GNT# asserted and ST[2::0] = 111 and the bus is in a state in
which the master can start.  Figure 3-70 illustrates the earliest in which PIPE# can be sampled asserted by the
arbiter.  Figure 3-71 illustrates the latest it can be sampled asserted.
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A1 

ST[2::0] 111 xxx xxx xxx xxx xxx xxx xxxx

8-1

Figure 3-70:  Single Address - No Delay by Master
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Figure 3-71:  Single Address - Maximum Delay by Master
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3.6.4.2 A.G.P. Master Initiating a PCI Transaction

When the A.G.P. master has REQ# asserted to request permission to use the AD bus to initiate a PCI transaction, it
must follow the PCI Local Bus Specification in initiating a transaction by asserting FRAME#.  This requires the
master to assert FRAME# from the clock in which GNT# is sampled asserted, ST[2::0] = 111, and the bus is in a
condition in which the master can start a transaction.  The master does not get the option of taking one or two clocks
to start.  If the master delays starting a transaction, it runs the risk of having GNT# removed and losing its turn to use
the bus.  The A.G.P. master must follow the PCI Local Bus Specification, not the A.G.P. rules for this type of
transaction.  This means that the master is only allowed to initiate a PCI transaction when GNT# is asserted
(ST[2::0] = 111) and the bus is in the Idle condition.  Figure 3-72 illustrates a PCI transaction on the A.G.P.
interface.  Since GNT# is asserted on clock 2, the A.G.P. master is required to assert FRAME# so the arbiter
samples it asserted on clock 3 otherwise, the master may26 lose its opportunity to initiate the transaction.  Since
GNT# is deasserted on clock 3, the master is not allowed to assert FRAME# (for the address phase) on clock 4.  If
GNT# is deasserted on clock 3 and if FRAME# is not asserted on clock 3, the master is not allowed to start a PCI
transaction.  The arbiter is not required to keep GNT# asserted for multiple clocks to allow the master to initiate a
PCI transaction.

DEVSEL#

CLK

1 2 3 4 5 6

FRAME#

AD

C/BE#

IRDY#

TRDY#

Add

CMD

DPCI

BEs

GNT#

REQ#

111 xxx xxx xxxxST[2::0] xxxxxx

8-74

Figure 3-72:  PCI Write Transaction on the A.G.P. Interface

                                                          

26 If the arbiter keeps GNT# asserted, the master is allowed to assert FRAME# later, but it must always be asserted
the next clock after GNT# was asserted or it may lose its opportunity to start a transaction.  If GNT# is only active
for a single clock and the PCI master requires two clocks to get going (i.e., address stepping), the master may never
gain access to the bus.
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3.6.5 A.G.P. Arbiter

The arbiter is allowed to deassert (remove) GNT# at any time which allows it to prevent deadlocks from occurring.

When the arbiter removes a GNT# (deasserts it), the arbiter must not assert a new GNT# (to grant permission to
initiate a request) to a different agent until the original master has been allowed sufficient time to initiate its
transaction.  For a PCI transaction, this is one clock while for an A.G.P. transaction, the master is allowed two clocks
to start.  In Figure 3-73, the arbiter grants the bus by asserting GNT# with ST[2::0] = 111 on clock 2.  In this
example, no master initiates a request by asserting PIPE# on clocks 3 or 4, or FRAME# on clock 3.  In this
example, GNT# is deasserted on clock 3.  The earliest the arbiter can assert a new GNT# with ST[2::0] = 111 is
clock 5 since PIPE# could be asserted on clock 3 or 4 and FRAME# could be asserted on clock 3.
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1 2 3 4 5 6 7 8

PIPE#

AD

C/BE#

REQ#

GNT#

ST[2::0] 111 xxx xxx 111 xxx xxx xxx xxxx

a-1
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Figure 3-73:  Arbiter Removes Grant - Master Does Not Start
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Figure 3-74 illustrates the arbiter keeping GNT# asserted on clock 3 instead of deasserting it, as in Figure 3-73.  In
this case, the arbiter is required to delay the assertion of a new GNT# until clock 6.  In this figure, the master is
allowed to assert PIPE# on clocks 3, 4, and 5 or FRAME# on clocks 3 and 4.  The assertion of GNT# on clock 3
allows FRAME# to be asserted on clock 4 and PIPE# to be asserted on clocks 4 and 5.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE#

REQ#

GNT#

ST[2::0] 111 111 xxx xxx 111 xxx xxx xxxx

a-2

FRAME#

Figure 3-74:  Arbiter Removes Grant Later - Master Still Does Not Start

3.6.6 GNT# Pipelining

In order to run back-to-back 8 byte data transactions (in 2x data transfer mode) without idle bus clocks between
transactions, the arbiter must pipeline GNT#s.  The arbiter limits the number of outstanding GNT#s resulting from
pipelining, to minimize the master’s GNT# tracking logic.  The master must be able to support the same number of
outstanding pipelined GNT#s as the arbiter can issue.  The rules associated with attaining these goals are
documented in this section.

When GNT# is pipelined, the new bus driver is responsible for correctly sequencing from the current transaction to
the next.  If an idle bus clock is required between transactions to allow for bus turn around, the new bus driver is
responsible for guaranteeing the turn around bus clock.

• If GNT# is pipelined for an access request or for write data, the master is responsible for correctly sequencing
from the previous transaction to the next.

• When GNT# is pipelined for read data, the target is responsible for correctly sequencing from the previous
transaction to the next.

The rules governing the earliest point that GNT# may be pipelined for the next transaction is solely dependent on the
current transaction type.  When the current transaction is returning read data, the arbiter must wait to drive GNT# for
the next transaction such that GNT# is first sampled asserted on the last data phase.  The last data phase is defined as
the last rising 1x clock of the read data transaction.  This rule (along with proper use of RBF#) minimizes the
amount of low priority read data buffering required by the master.  For a sequence of back-to-back 8 byte data
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transactions (in 2x data transfer mode), GNT# will be asserted on every 1x clock since, by definition, every 1x clock
is the last data phase of a transaction.

If the current transaction is providing write data, GNT# for the next transaction can be asserted on the clock
immediately following the GNT# for the current write data transfer while there are less than four GNT#s already
queued to request write data.  The arbiter tracks the number of outstanding GNT#s for write data and can only assert
a GNT# for a subsequent write transaction if there are less than four outstanding.  The arbiter increments its GNT#
for write data counter when it asserts GNT# for the master to provide write data and decrements the counter when
the master asserts IRDY#27.  The master must be able to handle five pipelined  GNT#s (this assumes that a master
does not consider a GNT# “canceled” until the data transaction has finished one request currently being handled and
four more enqueued.  This rule allows back-to-back 8 byte write data transactions to proceed when the master takes
two clocks to assert the initial IRDY# after sampling GNT# asserted.

If the current transaction is a PIPE# request, GNT# for a data transaction can be asserted immediately following the
GNT# for the current access request.  Since REQ# will stay asserted (but does not indicate another request) until
one clock prior to the deassertion of PIPE#, it is impossible to pipeline a GNT# for another request transaction (PCI
or PIPE#).  Note that a GNT# for a PIPE# access request could immediately be followed by up to four GNT#s for
write data transfers (or three writes and one additional transaction).  The master’s GNT# pipeline logic must be able
to handle this case.

If the current transaction is PCI, GNT# for the next transaction can be asserted immediately following GNT# for the
current PCI transaction.  Note that a GNT# for a PCI cycle could immediately be followed by up to four GNT#s for
write data transfers (or three writes and one additional transaction).  The master’s GNT# pipeline logic must be able
to handle this case.  An A.G.P. pipelined transaction is not allowed to start (after a PCI transaction) until the bus is
idle (FRAME# and IRDY# deasserted) for one clock.  Table 3-21 entries refer to the earliest clock off which the
arbiter can drive GNT# asserted for the next cycle.

                                                          

27 The count is four when a latched version of IRDY# is used to decrement the number of outstanding grants.  Since
the target could use either a latched or unlatched version, the master is required to handle four outstanding pipelined
transactions.
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Table 3-21:  Current/Next AD Activity

Current AD Transaction Next AD Transaction

PCI or A.G.P. Request A.G.P. Read Data A.G.P. Write Data

PCI FRAME# of current
transaction sampled
asserted.

FRAME# of current
transaction sampled
asserted and RBF# is
deasserted for LP Read.

FRAME# of current
transaction sampled
asserted.

A.G.P. Command REQ# sampled asserted
after being deasserted.

PIPE# of current
transaction sampled
asserted and RBF# is
deasserted for LP Read.

PIPE# of current
transaction sampled
asserted.

A.G.P. Read Data Next to last data phase
of current transaction.

Next to last data phase
of current transaction
and RBF# is deasserted
for LP Read.

Next to last data phase
of current transaction.

A.G.P. Write Data Immediately following
GNT# for current write
while less than four
outstanding GNT#s.

Immediately following
GNT# for current write
and RBF# is deasserted
for LP Read, while less
than four outstanding
GNT#s.

Immediately following
GNT# for current write
while less than four
outstanding GNT#s.

3.6.6.1 Pipelining GNT#s

The arbiter is allowed to pipeline grants when other bus transactions are in progress.  This pipelining can be grouped
into four different conditions:

1. A Request transaction followed by a Request transaction.

2. A Request transaction followed by a Data transfer.

3. A Data transfer followed by a Request.

4. A Data transfer followed by a Data transfer.
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3.6.6.2 A Request Transaction Followed by a Request Transaction.

The arbiter is allowed to assert GNT# for a subsequent Request (PCI or A.G.P.) when GNT# has been deasserted
for at least two clocks and FRAME# or PIPE# is not asserted during those two clocks which is illustrated in Figure
3-74.  The arbiter is allowed to assert a new GNT# when FRAME# is sampled asserted.  The arbiter is not allowed
to pipeline a second request while an A.G.P. Request is currently active.  (REQ# must be deasserted for at least one
clock before it can be reasserted to indicate that a “new” request is pending.)  There are six different combinations
where a request is followed by another request.  Each will be discussed in the following paragraphs.

 An A.G.P. Request followed by a PCI Read transaction.  (See Figure 3-75.)

 An A.G.P. Request followed by a PCI Write transaction.  (See Figure 3-76.)

 A PCI (Read or Write) transaction followed by a PCI (Read or Write) transaction.  (See Figure 3-77 and
Figure 3-78.)

 A PCI Read transaction followed by an A.G.P. Request (PIPE#).  (See Figure 3-79.)

 A PCI Write transaction followed by an A.G.P. Request (PIPE#).  (See Figure 3-80.)

 (Note:  An A.G.P. Request cannot be followed by an A.G.P. Request since REQ# is required to be deasserted
indicating the last request is being enqueued during the current transaction.  The arbiter does not know a
subsequent transaction is needed until the next clock.)
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TRDY#
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GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxx111xxx
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DataA6
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Figure 3-75:  PIPE# Followed by an A.G.P. Master’s PCI Read Transaction

Figure 3-75 illustrates the arbiter granting permission to start a request following an A.G.P. transaction.  In this case,
the arbiter does not know the master desires to use the bus until clock 4 when PIPE# is deasserted and REQ# is
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asserted.  For the arbiter to assert GNT# on clock 5, it must use real time versions of PIPE# and REQ#.  If latched
versions are used, GNT# would be delayed until clock 6.  The limiting condition for getting a subsequent GNT#
asserted in this example is the assertion of REQ#.  REQ# is used to indicate when the last request is present on the
AD bus.
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Figure 3-76:  Double Phase PIPE# Followed by an A.G.P. Master PCI Write Transaction

Figure 3-76 is the same as Figure 3-75 except that multiple requests are enqueued by the master.  Again, REQ# is
the gating condition to get GNT# asserted.  In this case, REQ# is not reasserted until clock 5, thus delaying GNT#
until clock 6.  If latched versions are used, the GNT# would be delayed until clock 7.
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Figure 3-77:  Back-to-Back PCI Read Transactions

Figure 3-77 illustrates that the arbiter can assert GNT# immediately following the assertion of FRAME# to grant
permission to the “next” agent to use the AD bus to initiate a request.  The next agent may be the current agent or the
other A.G.P. agent.  (When the agent is the corelogic, GNT# is an internal signal.)  The arbiter could have allowed
GNT# to remain asserted on clock 2 when the first and second transactions are by the same master.  In this case, the
master will not initiate the next transaction until clock 6 because a turn-around cycle is required between the read
data and the address of the next transaction.  The arbiter is allowed to deassert GNT# at any time.  This is why the
arbiter deasserts GNT# at the same time FRAME# is asserted which occurs on clock 6.  If the corelogic had delayed
asserting FRAME# beyond clock 6, it would have lost its opportunity to start a transaction.
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Figure 3-78:  Fast Back-to-Back PCI Write Transactions

Figure 3-78 illustrates the same operation as Figure 3-77 except the first transaction is a Write and a turn-around
between the first data and the second address phase is not required.  In this case, the arbiter does not remove GNT#
on clock 2 as it did in Figure 3-77, but keeps it asserted indicating that the current master is requesting to do multiple
transactions.  The master samples GNT# asserted on clock 4 which allows it to start the next transaction of clock 5
as long as the first transaction was a write.  Otherwise, a turn-around cycle would be required on clock 5.  If the first
transaction was terminated with Retry, the arbiter does not have sufficient time to remove GNT# before the master
could initiate the second transaction.  If the corelogic (target machine) indicates to the arbiter that it will assert
STOP# on clock 4, it could cause the arbiter to remove GNT# for clock 4.  Otherwise, the master will initiate the
second transaction (which may be a repeat of the current transaction) and most likely will complete the same as the
first transaction.  At a minimum, the arbiter must remove GNT# on the subsequent (third) transaction.  The master is
required to deassert REQ# on clock 5 (when the bus would have gone Idle) and one clock after in this case.  This
would allow the arbiter to grant the bus to a different resource.
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Figure 3-79:  PCI Read Transaction Followed by PIPE#

Figure 3-79 illustrates a PCI read transaction followed by a PIPE# transaction.  In this case, the AD bus requires a
turn-around cycle between the PCI address phase and the Read data phase.  A second turn-around cycle is then
required between the read data and the first request of the A.G.P. transaction.  The arbiter does not deassert GNT#
between the transactions and, thereby allows the A.G.P. master to initiate the request as soon as possible.  (The
arbiter does not need to know if the current transaction is a read or write.)  In this case, the A.G.P. master is not
allowed to start the transaction until clock 6 even though the GNT# was asserted on clock 3.  If the A.G.P. master
always uses two clocks to get the transaction started and knows that the PCI transaction completed on clock 4, it uses
the turn-around cycle to pipeline its request, thereby saving itself one dead clock on the bus.



Revision 2.0

132

CLK

1 2 3 4 5 6 7 8 9

PIPE#

AD

IRDY#

TRDY#

Add

GNT#

REQ#

FRAME#

W_Data A6

11111 111 xxxxxx xxx xx111ST[2::0] 111111

a-8

Figure 3-80:  PCI Write Transaction Followed by PIPE#

Figure 3-80 is the same as Figure 3-79 except that the PCI transaction is a write instead of a read.  In this case, a
turn-around is not required between the data phase of the PCI transaction and the A.G.P. Request, but a dead clock is
required between any PCI transaction and A.G.P. transaction.  The master of the A.G.P. transaction (in this example)
is required to delay the assertion of PIPE# until after the dead clock.  Again the fact that GNT# is asserted on clock
3 and held until clock 6 is acceptable since the GNT# is to the same master and it knows when the current
transaction completes and when the subsequent transaction is allowed to start.

3.6.6.3 A Request Transaction Followed by a Data Transfer.

The arbiter is allowed to assert GNT# to pipeline data transfers as soon as the Request has been started.  Note that
the logic starting the transaction may use latched signals, thereby causing the GNT# with ST[2::0] = 111 to remain
after the Request has started.  The A.G.P. master is required to ignore GNT# asserted when ST[2::0] = 111 except
on the clock in which it desires to start a transaction and is allowed to do so. In all other cases, this condition on the
interface is meaningless.

 An A.G.P. Request followed by an A.G.P. Read transaction.  (See Figure 3-81.)

 An A.G.P. Request followed by an A.G.P. Write transaction.  (See Figure 3-82 and Figure 3-83.)

 A PCI Read transaction followed by an A.G.P. Read transaction.  (See Figure 3-84.)

 A PCI Read transaction followed by an A.G.P. Write transaction.  (See Figure 3-85.)

 A PCI Write transaction followed by an A.G.P. Read transaction.  (See Figure 3-86 and Figure 3-87.)

 A PCI Write transaction followed by an A.G.P. Write transaction.  (See Figure 3-88 and Figure 3-89.)
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Figure 3-81:  PIPE# Followed by Read Data

Figure 3-81 is an example of an A.G.P. Request followed by an A.G.P. read data transfer.  In this example, the
arbiter deasserts GNT# for clock 3 and when it samples PIPE# asserted on clock 3, it asserts GNT# indicating that
previously requested read data will be returned when the current transaction completes.  The earliest the arbiter can
assert GNT# with ST[2::0] = 00x is clock 4.  The turn-around cycle is required on clock 4 since ownership of the
AD bus is changing.

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxxxxx01x

AD WD3 +1A1 

a-10

Figure 3-82:  PIPE# Followed by Write Data

Figure 3-82 is an A.G.P. Request followed by an A.G.P. Write transaction.  In this example, no turn-around is
required between the request and the write data transfer.  The dead clock on clock 4 is caused because the arbiter is
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not allowed to enqueue a data transaction until PIPE# is sampled asserted.  Figure 3-83 shows the case where
PIPE# is asserted long enough for the next GNT# to be pipelined, thereby allowing no dead clock between the two
transactions.  The arbiter is not allowed to enqueue an A.G.P. data transfer until PIPE# or FRAME# is asserted or
until GNT# with ST[2::0] = 111 has been deasserted for two clocks.  In this example, PIPE# was sampled asserted
on clock 3 and, therefore, the arbiter is allowed to assert GNT# with ST[2::0] = 01x indicating that when the current
transaction completes, the write data is to be transferred across the bus.  GNT# could have remained asserted on
clock 3 with ST[2::0] = 111.  If GNT# remained deasserted on clock 4 with ST[2::0] = 111, the write data transfer
would have been delayed.  This condition can occur when the arbiter uses a latched version of PIPE#.
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Figure 3-83:  Double Phase PIPE# Followed by Write Data

Figure 3-83 is a write data transfer following an A.G.P. Request.  In this case, a turn-around cycle is not required
since the same agent owns the AD bus for both transactions.  The arbiter asserts GNT# indicating the A.G.P. master
is to provide write data after the current transaction completes once it detects that the current transaction has been
initiated.  The arbiter in this figure removed the GNT# on clock 3 since the A.G.P. master is required to assert
PIPE# on either clock 3 or 4.  However, the arbiter could have left GNT# asserted with ST = 111 on clock 3 or
longer.  If the latter had occurred, the write data transaction would have been delayed and bus bandwidth would have
been wasted.  When this bus operation is supported by the master, careful review of the setup and hold times is
warranted.  See note 1 under Table 4-7 for details.
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Figure 3-84:  Master’s PCI Read Transaction Followed by Read Data

Figure 3-84 is a PCI transaction that is initiated by an A.G.P. master followed by an A.G.P. read data being returned
to the master.  A turn-around cycle is required between the PCI transaction and the A.G.P. transaction even though
ownership of the AD bus does not change.  In this case, the arbiter samples FRAME# asserted on clock 2 and asserts
a new GNT# to the master indicating that previously requested read data is being returned to the master.  In this
case, the arbiter uses the state of RBF# to determine if the assertion of GNT# is allowed for clock 3.  If RBF# is
asserted, the arbiter is not allowed to return the read data if it is low priority.  Since the PCI transaction is in process,
the return of the read data is not allowed to start until the PCI transaction completes.  In this example, the ownership
of the TRDY# signal does not change hands and, therefore, a turn-around is not required.  A dead cycle, however, is
required between PCI and A.G.P. transactions.
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Figure 3-85:  A.G.P. Master’s PCI Read Transaction Followed by Write Data

Figure 3-85 is basically the same as Figure 3-84 except that write data is being provided by the master.  In this case,
a turn-around cycle is required since ownership of the AD bus is changing.  In this case, the dead clock is required
because of a PCI to A.G.P. transition.  The arbiter in this example asserts the GNT# for the data movement at the
earliest possible time.  The A.G.P. master is required to monitor the bus until the current transaction completes and
then must provide the write data.  In this case, the arbiter could have waited until clock 4 to assert GNT# and
ST = 01x without causing additional delays.  When the A.G.P. master does not require an additional clock to start
the write data transfer, the assertion of GNT# on clock 5 would not cause a delay.  However, if the A.G.P. master
uses two clocks to initiate the transfer, a dead clock would appear on the bus.  Therefore, it is recommended that the
arbiter enqueue the next GNT# at the earliest time possible to give the agent providing the data as much notification
as possible to minimize the dead clocks on the interface.
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Figure 3-86:  A.G.P. Master’s PCI Write Followed by Read Data

Figure 3-86 is a PCI transaction initiated by the A.G.P. master and is followed by the return of read data.  Since
ownership of the AD bus changes, a turn-around cycle is required.  Note that ownership of IRDY# and TRDY# does
not change and, therefore, no turn around is required for them.
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Figure 3-87:  Corelogic’s PCI Write Followed by Read Data

Figure 3-87 is the same as Figure 3-86 except that the corelogic is the agent initiating the PCI write transaction.  In
this case, ownership of the control signals changes but ownership of the AD bus does not change.  Therefore, the
return of the read data is delayed an additional clock due to the turn-around on TRDY# which cannot occur until
clock 6.
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Figure 3-88:  Corelogic’s PCI Write Transaction Followed by Write Data

Figure 3-88 is the same as Figure 3-87 except that write data is being requested instead of read data being returned.
In this case, both the AD bus and the control signals require turn-around cycles.
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Figure 3-89:  A.G.P. Master’s PCI Write Transaction Followed by Write Data

Figure 3-89 is a the same as Figure 3-86 except that write data is also provided by the A.G.P. master.  In this case,
neither the AD bus nor the control signals change ownership, therefore, no turn-around cycles are required.  The
dead clock between the transactions is required when the bus is changing from one protocol to another.  In this case,
the change is from a PCI transaction to an A.G.P. transaction.

3.6.6.4 A Data Transfer Followed by a Request

During an A.G.P. Read transaction, the arbiter is not allowed to enqueue the next transaction until the read data
transaction enters the last data phase.

An A.G.P. Read transaction followed by an A.G.P. Request.  (See Figure 3-90 and Figure 3-91.)

An A.G.P. Write transaction followed by an A.G.P. Request.  (See Figure 3-92 and Figure 3-93.)

An A.G.P. Read transaction followed by a PCI (Read or Write) transaction.  (See Figure 3-94 and Figure 3-95.)

An A.G.P. Write transaction followed by a PCI (Read or Write) transaction.  (See Figure 3-96 and Figure 3-97.)
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Figure 3-90:  Single Read Data Followed by PIPE#

Figure 3-90 is an A.G.P. Read transaction followed by an A.G.P. Request.  Ownership of the AD bus changes;
therefore, a turn-around cycle is required.  In this case, the arbiter indicated to the master that read data is being
returned by asserting GNT# on clock 2 with ST = 00x.  Since grants for A.G.P. data transfers are latched and
remembered by the A.G.P. master, they only last a single clock.  The following clock, the arbiter is allowed to
pipeline another GNT# since the read transaction has entered the last data phase.
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Figure 3-91:  Burst Read Data Followed by PIPE#

Figure 3-91 is the same as Figure 3-90 except that the data transfer lasts longer, and, therefore, the GNT# to start a
Request is delayed until the read data transfer enters the last data phase which occurs on clock 7.  The arbiter is not
allowed to assert GNT# on clocks 3-6.  The arbiter could delay the assertion of GNT# beyond clock 7 but bus
bandwidth would be wasted.



Revision 2.0

142

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

01x 111 xxxxxx xxx xxxxST[2::0] xxxxxx111

AD WD3 +1 A1 

a-16

Figure 3-92:  Single Write Data Followed by PIPE#

Figure 3-92 is an A.G.P. write transaction followed by an A.G.P. Request.  This figure is similar to Figure 3-90
except the data transfer is a write instead of a read.  In this example, a turn-around cycle is not required between the
data transfer and the request since ownership of the AD bus does not change.  The data transfer is indicated on clock
2.  The arbiter is allowed to enqueue the next transaction immediately on a write transaction with up to a maximum
of four transactions outstanding.  In this case, there is only one outstanding transaction since the subsequent
transaction was not a write.
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Figure 3-93:  Burst Write Data Followed by PIPE#

Figure 3-93 is the same as Figure 3-92 except the write transaction is longer and illustrates how the GNT# to start
the Request is pending for a number of clocks.  Since the arbiter is allowed to remove a grant at any time, the master
cannot assume that it can start at the end of the write transaction until GNT# is sampled asserted (with ST = 111) on
clock 6 or 7.  If GNT# was asserted on clocks 3-5 and deasserted on clock 6, the master would not be allowed to
start the Request.  The A.G.P. master is not allowed to “remember” that it had been granted access to the bus but
must only check GNT# (ST = 111) when it is allowed to actually start the transaction.
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Figure 3-94:  Single Read Data Followed by A.G.P. Master’s PCI Transaction

Figure 3-94 is an A.G.P. read transaction followed by a PCI request.  In this case, TRDY# is required to have a turn-
around cycle.  Therefore, a dead clock is required between the A.G.P. and PCI transactions.  In this example, the
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arbiter is allowed to pipeline a GNT# on clock 3 since the Read transaction is in the last data phase.  If the arbiter
caused GNT# to be deasserted on clock 4, the PCI master would not be allowed to start the request.  The PCI master
is only allowed to initiate a request when GNT# is asserted (ST = 111 for an A.G.P. master initiating a PCI
transaction) and FRAME#, IRDY#, and TRDY# are deasserted.  This condition occurs on clock 4, the master
asserts FRAME#, and the address phase completes on clock 5.  When supporting both PCI and A.G.P. interfaces,
each state machine needs to know when the other type of transaction is occurring.  For example, the PCI state
machine needs to know when the A.G.P. interface is active.
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Figure 3-95:  Burst Read Data Followed by A.G.P. Corelogic’s PCI Transaction

Figure 3-95 is an example of an A.G.P. read followed by a PCI transaction.  In this case, the PCI master is required
to put a turn-around cycle in because the bus protocol changes even though there is no contention on IRDY# or
TRDY# and ownership of the AD bus does not change.  This sequence can only occur when the PCI master is the
corelogic.  Otherwise, a turn-around cycle would be required between the data transfer and the PCI request because
ownership of signals changes.  The PCI master is allowed to initiate the transaction on clock 8 since an internal
GNT# is asserted on clock 7 (which is indicated in Figure 3-95 with a dotted line) and FRAME# and IRDY# are
deasserted on clock 7.  Notice on clock 9 that GNT# is still asserted.  In this case, the master could do a fast back to
back transaction.  The arbiter can cause this not to occur by deasserting GNT# when FRAME# is sampled asserted.
Note: if the arbiter uses a latched version of FRAME#, it may lose its ability to prevent a fast back-to-back
transaction from occurring when the first transaction is terminated with Retry or Disconnect.  The arbiter is required
to remember that a previous transaction was terminated with the assertion of STOP#, and the bus must be given to a
different agent, otherwise, a livelock condition can occur.
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Figure 3-96:  Single Write Data Followed by A.G.P. Master’s PCI Transaction

Figure 3-96 is an example where a turn-around cycle is required between an A.G.P. and PCI transaction.  In this
case, ownership of the AD bus does not change and the A.G.P. master is initiating a PCI transaction after providing
data to the corelogic.  The arbiter is allowed to enqueue a new GNT# as soon as GNT# is asserted for the Write
transaction.  However, the PCI master is not allowed to start the transaction until the A.G.P. data transfer completes
and then causes a turn-around cycle to occur.  A dead clock can be inserted by the master on clock 5 if the master
desires.  However, if the arbiter removes GNT# on clock 5, then the master has lost its turn using the bus.  The fact
that GNT# was asserted for several clocks before is meaningless.  GNT# only has meaning when ST = 111 and the
master is allowed to start.  This condition is when the master is ready to start, the bus is in the correct state, and
GNT# is asserted (ST = 111 for an A.G.P. master doing a PCI transaction).
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Figure 3-97:  Burst Write Data Followed by an A.G.P. Master’s PCI Transaction

Figure 3-97 is the same as Figure 3-96 except that the write data transfer is longer.  In this figure, the arbiter delays
the assertion of GNT# (ST = 111) until clock 7.  The arbiter could assert GNT# earlier but no improvement in
performance occurs.  If GNT# was asserted earlier, the master is not allowed to start the transaction even though
FRAME# and IRDY# are both deasserted.  In this case, the agent initiating the PCI request is the same agent that is
providing the write data.  Therefore, the PCI master interface knows when the bus is free to start the PCI transaction.

3.6.6.5 A Data Transfer Followed by a Data Transfer.

 The arbiter is allowed to pipeline data transfers to maximize the throughput of the A.G.P. interface.  The
following figures will illustrate how the arbiter can schedule the movement of both read and write data.  In some
cases, turn-around cycles are required and in some cases they are not.

 An A.G.P. Read transaction followed by an A.G.P. Read transaction.

 (See Figure 3-98 through Figure 3-101.)

 An A.G.P. Write transaction followed by an A.G.P. Write transaction.

 (See Figure 3-102 through Figure 3-104.)

 An A.G.P. Read transaction followed by an A.G.P. Write transaction.  (See Figure 3-105.)

 An A.G.P. Write transaction followed by an A.G.P. Read transaction.  (See Figure 3-106.)
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Figure 3-98:  Back-to-Back Read Data

Figure 3-98 shows a sequence of back-to-back 8 byte read data transactions in 2x data transfer mode.  The target
samples GNT# asserted on clock 2 and responds by asserting TRDY# and driving read data (L6) on the following
clock.  The arbiter can assert the GNT# for the second read data transaction (H4) on clock 3 since that is the last
data phase of the L6 read data transaction.  GNT# is asserted on every clock so that an 8 byte read data transaction
can occur on every clock.
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Figure 3-99:  GNT# Assertion for 16, 8, and then 16 Byte Read Transfers

Figure 3-99 shows a sequence of 2x read data transactions.  GNT# for the second read transaction (R2) is asserted
on the clock 4 which is the last data phase of the R1 read transaction.  GNT# for the third read transaction (R3) is
asserted on clock 5 which is the last data phase of the R2 read transaction.
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Figure 3-100:  GNT# Assertion for Next Read Data After Long Data Transfer

Figure 3-100 shows a 40 byte read transaction followed by another read transaction in 2x data transfer mode.  GNT#
for the second read data transaction (R2) is asserted on clock 7 which is the last data phase of the R1 read
transaction.

GNT# Interaction with RBF#

The A.G.P. arbiter will not assert GNT# for a low priority read data transaction if the RBF# signal is asserted.  In
the case where RBF# is asserted on the same clock as GNT# is asserted, the master is required to accept that
transaction.  The arbiter must deassert GNT# immediately upon sampling RBF# asserted so that no further low
priority read data transactions are signaled.  RBF# only prohibits GNT# from being asserted for low priority read
data transactions.  GNT# assertion for high priority read data, write data, and access requests can still be generated
even though RBF# is asserted.
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GNT#

000 000 xxx xxx 000 000000 000 00xxST[2::0]

AD L6 +1 L7 L8 L9 L10 L1+1 +1 +1 +1
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8-29

Figure 3-101:  LP GNT# Pipelining Stopped While RBF# is Asserted
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Figure 3-101 shows the master asserting RBF# indicating that it cannot accept further low priority read data.  The
master samples GNT# asserted on clock 2 with ST[2::0] indicating a low priority read data transaction.  The master
asserts RBF# on clock 3 because it does not have sufficient buffer space to take the next low priority read
transaction.  The arbiter has already asserted GNT# on clock 3 which is the last data phase of L6.  The master must
accept the GNT# on clock 3 for read data transaction L7.  The arbiter samples RBF# asserted on clock 3 and
deasserts GNT# until it samples RBF# deasserted on clock 5.  Note that if the arbiter did not deassert GNT#
immediately upon sampling RBF# asserted on clock 3, then GNT# would be asserted on clock 4.  This would
increase the minimum amount of low priority read data buffering required in the master.
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8-78

Figure 3-102:  GNT# Assertion for Back-to-Back Write Data Transfers

Figure 3-102 shows back-to-back 8 byte write data transactions in 2x data transfer mode.  The following figures
show that a maximum of three transactions are outstanding and will transfer data.  The reason that it is only three and
not four is that these diagrams assume that the arbiter is not using the latched version of IRDY#.  When the latched
version is used, all the counts of grants outstanding (beyond 3) are increased by one, since the arbiter delays the
decrement.  However, the arbiter can actually have four outstanding transactions; otherwise, dead clocks could occur
on the bus.  Note:  the arbiter can use a latched version of the control signals but this may require additional dead
clocks.  However, the A.G.P. target is not allowed to use a latched version of the control signals.

The master samples GNT# asserted on clock 2 and asserts IRDY# and drives write data W1 two clocks after
sampling (clock 4).  On clock 2, the arbiter increments its write GNT# counter to 1.  Since the GNT# counter is less
than three, the arbiter asserts GNT# for write data W2 on clock 3 and the arbiter increments the write GNT# counter
to 2.  Since the GNT# counter is still less than three, the arbiter asserts GNT# for write data W3 on clock 4.  Even
though GNT# is asserted on clock 4, the write GNT# counter does not increment since IRDY# for W1 is sampled
asserted on clock 4.  The arbiter continues asserting GNT# on every clock, sustaining the back-to-back 8 byte
transfers since the write GNT# counter is always less than three.  In fact, it is this waveform that established the need
to allow up to three outstanding write GNT#s.
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Figure 3-103:  Back-to-Back GNT# with Delay on Initial Transfer

Figure 3-103 shows a sequence of 16 byte write data transaction in 2x data transfer mode.  The master asserts
IRDY# and drives write data W1 two clocks after sampling GNT# asserted on clock 2.  On clock 2, the arbiter
increments its write GNT# counter to 1.  Since the GNT# counter is less than three, the arbiter asserts GNT# for
write data W2 on clock 3 and the arbiter increments the write GNT# counter to 2.  Since the GNT# counter is still
less than three, the arbiter asserts GNT# for write data W3 on clock 4.  Even though GNT# is asserted on clock 4,
the write GNT# counter does not increment since IRDY# for W1 is sampled asserted on clock 4.  Since the write
GNT# counter is still less than three, the arbiter asserts GNT# for write data W4 on clock 5.  Since there is no
IRDY# asserted on clock 5, the write GNT# counter increments to three and the arbiter is prohibited from asserting
GNT# for W5 on clock 6.  IRDY# for W2 is asserted on clock 6 decrementing the write GNT# counter to two.  This
allows the arbiter to assert GNT# for W5 on clock 7.  This again increments the write GNT# counter to three and
prohibits GNT# assertion for W6 on clock 8.  Note that on clock 5, four GNT#s have been pipelined to the master
and the first transaction is still underway.  This is the worst case scenario that the master’s GNT# pipeline logic
needs to account for.
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Figure 3-104:  Pipelined GNT#s - Read and Writes (Part 1)
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Figure 3-105:  Pipelined GNT#s - Read and Writes (Part 2)

Figure 3-104 and Figure 3-105 show back-to-back write data followed by back-to-back read data.  These figures
should be viewed as a single figure for the following discussion.  The first three GNT#s are for write data
transactions.  The master inserts a waitstate between the write data transactions.  The GNT# asserted on clock 5 is
for read data transaction R1.  Note that the GNT# for R1 on clock 5 did not cause the write GNT# counter to
increment from two to three.  The write GNT# counter only increments for GNT#s associated with write data
transactions.  The arbiter deasserts GNT# on clock 6 and waits to assert GNT# for read data R2 on clock 10 which
is the last data phase of read data transaction R1.  Note that by this time, the write GNT# counter has decremented to
zero by sampling IRDY# asserted on clock 6 and 8.  Note, also, that the write GNT# counter does not increment on
clock 10 since the GNT# is for a read data transaction.  The target is responsible for inserting the idle clock for bus
turnaround between transactions W3 and R1.  Read data transaction R2 is a 40 byte transaction, so the next GNT#
assertion is delayed by the arbiter until clock 15 which is the last data phase of R2.  The GNT# on clock 15 is for
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write data transaction W4.  This causes the write GNT# counter to increment.  The master is responsible for
inserting the idle clock for bus turn around between transactions R2 and W4.  The arbiter asserts GNT# for W5, W6,
and W7 on clock 16, 17, and 18, respectively.  The arbiter is prohibited from asserting GNT# on clock 19 for
another transaction since the write GNT# counter is at three.
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Figure 3-106:  A.G.P.Write Followed by a Read

Figure 3-106 is an example of an A.G.P. write transaction followed by an A.G.P. read transaction.  Since ownership
of the AD bus is required, then a turn-around cycle is inserted between the end of the first transaction and the start of
the second.  But since ownership of the control signals do not change, no turn around cycle is required.

Summary of Arbitration Rules

1. The A.G.P. master that has its GNT# asserted with ST[2::0] = 111 must not remember that GNT# was
asserted.  It must use the current version of GNT# to decide if it can initiate a transaction or not.

2. The A.G.P. master when initiating a PCI transaction must follow the PCI Local Bus Specification.  This requires
the master to assert FRAME# from the same clock in which GNT# is sampled asserted and ST[2:0] = 111.
The A.G.P. master initiating a PCI transaction is not allowed to start one or two clocks later as it is when
initiating an A.G.P. Request.

3. The A.G.P. master is required to deassert REQ# when it initiates the last transaction.  (The assertion of REQ#
indicates a true need to gain access to the AD bus.)  The A.G.P. master is required to deassert REQ# for two
clocks when the transaction is terminated with STOP# asserted.  An exception is granted when STOP# is first
asserted during the last data phase.

4. The A.G.P. master, when initiating an A.G.P. Request, is required to initiate the request within two clocks of
when GNT# is asserted, ST[2::0] is 111, and the bus is idle.
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3.7 Error Reporting
The error reporting philosophy of PCI applies to A.G.P. as well.  This philosophy requires any device involved in the
transfer or storage of permanent or retained system state (e.g., disk) to detect and report parity errors, and to compute
parity.  Devices involved with transient data only (e.g., graphics) are not so required.  Since the sole purpose of the
A.G.P. is the connection of video display devices, no provision has been made in this interface specification for
detection or reporting of any bus errors.

3.8 Special Design Considerations

Potential Deadlock With Misaligned Read Access to an A.G.P. Master

When data generated by the A.G.P. master is being written into main memory, a potential deadlock can occur when
the A.G.P. master requires the data to be flushed before completing a read initiated by the corelogic (PCI
transaction).  The read must be a misaligned memory access that straddles an odd DWORD boundary.

The deadlock occurs when the CPU initiates a read reference that the corelogic must split into two accesses on the
A.G.P. interface.  After the initial read completes, but before the second access is attempted, the A.G.P. master posts
write data into the interface.  When the corelogic attempts the second part of the read, the A.G.P. master terminates
with Retry forcing the access to stall in the corelogic.  Since the first half of the access has completed, the corelogic
is not allowed to discard the data since a side affect may occur.  The corelogic may not allow the write to occur until
the read can complete.  This is caused by the condition where the write may be required to be coherent with main
memory and the CPUs cache.  Since the processor bus is stalled pending the read request, the sequence ends in a
livelock or deadlock condition.  In either case, no agent can make forward progress and neither can be backed up to
allow the other to progress.

There are two proposed solutions that can be implemented in the PCI target interface of an A.G.P. master to prevent
this from occurring:

1. The A.G.P. master can require its driver28 to never access its internal register with a read operation that is
misaligned when it has posted write data.

2. Not require that posted write data be flushed before completing a PCI read transaction to the PCI target interface
of an A.G.P. master.

Option 1 is a reasonable choice if the device never writes data to main memory or posts data internally.  Posting
write data internally occurs when one state machine believes the access has completed at the final destination and
changes status or causes a new process to occur that depends on the write being at the final destination.  This
sequence assumes that when a read of the Status register occurs that the data will be pushed or pulled to the final
destination.

Option 2 is reasonable when the read of Status register has no effect on the posted write operation.  In this case, the
Status register does not get updated until the write data leaves the A.G.P. master.

                                                          

28 This may not be possible when support of legacy software is required.
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4.1 Overview

4.1.1 Introduction

As with the protocol enhancements, most of the Accelerated Graphics Port (A.G.P.) electrical interface requirements
are similar to the PCI specification, however, with extensions to allow the higher transfer rate.

The A.G.P. physical interface is optimized for a point to point topology using either 1.5 volt or 3.3 volt signaling.
The baseline performance level utilizes a 66 MHz clock29 to provide a peak bandwidth of 266 MB/s.

A.G.P. includes two options for higher performance levels.  The first option provides peak bandwidths of 533 MB/s.
This mode uses a double-clocked data technique to transfer twice the data per each A.G.P. clock.  This A.G.P. mode,
referred to as 2x transfer mode (also 2x mode), requires additional interface timing strobes and different signal
timings from the 1x mode.  Components supporting the 2x transfer mode must also support the 1x mode.  2x mode
requirements are a superset of the 1x mode timings.

The second mode provides an option for even higher performance levels providing peak bandwidths of up to
1066 MB/s.  This mode uses a quad-clocked data transfer technique to transfer four times the data per each 66 MHz
clock.  This mode, referred to as 4x transfer mode, requires differential interface timing strobes and different signal
timings from the 66 MHz baseline and 2x mode A.G.P. requirements.  The 4x clock mode requirements are a
superset of the baseline A.G.P. 66 MHz timings and the 2x clock mode.

The section establishes a conceptual framework by which to understand these transfer modes.

4.1.2 Transfer Mode Operation

4.1.2.1 Transfer Mode Signaling Levels

The A.G.P. interface allows signaling at either 3.3 volts or 1.5 volts.  The signaling level is determined through the
value of Vddq I/O interface voltage.  A.G.P. add-in cards operate at one of the two signaling levels and can only be
plugged into a motherboard capable of supporting that particular signaling level.  The signaling level of the
motherboard is indicated by the position of the key in the A.G.P connector.  In the case of the universal connector
where no key exists, the TYPEDET# pin on the add-in card indicates to the platform the signaling level for that
card.  Only core logic devices that support the universal connector need to have interfaces capable of operating at

                                                          

29 The A.G.P. base frequency is actually 662/3 MHz (15.0 ns period) and is the basis for the 2x and 4x transfer rates and
bandwidths described in this section.

4. Electrical Specification
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either value of Vddq.  All other core logic and all graphics devices operate at just one value of Vddq.  Note that the
interface signaling level is determined by the level of Vddq independent of transfer rate or whether the interface
protocol is PCI or A.G.P.  Section 4.3.4 gives more information on all pins in the A.G.P. interface.

Table 4-1 shows the allowed signaling levels for each data transfer mode.  The 1x and 2x modes can operate at either
signaling level.  The 4x mode is restricted to the 1.5 volt signaling level because of signal integrity limitations.  As
mentioned above, signaling level is determined by the connector on the motherboard or by the TYPEDET# signal
on universal connectors.  The signaling rate is determined by software negotiation based on the capabilities of the
A.G.P. master and target.

Table 4-1:  Allowed Transfer Mode Signaling Levels

Signaling Level 1x Mode 2x Mode 4x Mode

3.3 volt ✔ ✔ no

1.5 volt ✔ ✔ ✔

4.1.2.2 1x Transfer Mode Operation

The 1x mode, 66 MHz A.G.P. interface can be designed using standard CMOS I/O buffer technology.  Since A.G.P.
is a point to point interface, adjustments have been made in the system timing budgets that relax component input
requirements relative to PCI.

Conceptually, 1x mode A.G.P. operation is similar to PCI.  All timings are referenced to a single clock, the A.G.P.
clock.

4.1.2.3 2x Transfer Mode Operation

The A.G.P. protocol provides Qword access granularity.  Qword transfers normally take two clock cycles in the 1x
mode.  Likewise, sideband address commands normally take two clocks per each 16-bit command.  The 2x transfer
mode provides a mechanism for doubling the data transfer rate of the AD, C/BE#, and SBA signals30.  With 2x
transfer, Qword transfers only require one clock cycle, and sideband commands only require one clock per 16-bit
command.

4.1.2.4 4x Transfer Mode Operation

With the 4x mode, the A.G.P. protocol provides double Qword access granularity and can transfer a double Qword
and two 16-bit commands on the sideband address lines in one 66 MHz clock cycle.  The 4x transfer mode provides
a mechanism for quadrupling the data transfer rate of the AD, C/BE#, and SBA signals30 relative to the 1x mode.

4.1.2.5 2x/4x Timing Model

The 2x and 4x transfer modes are implemented as a timing layer below the 1x protocol’s flow control mechanisms.
This timing layer, referred to as the inner loop, specifies timing relationships for the reliable transfer of data from the
output latches at the transmitting device to the input latches at the receiving device.  The logical protocol

                                                          

30 The clock mode of these signals is controlled as a unified group; independent control of the clocking mode for sub-groups is
not provided.
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mechanisms operate above this layer, via an outer loop, to control the actual transfer of data between the data
queues.  A model illustrating these various time domains is shown in Figure 4-1.

Transmitter Receiver

Inner Loop

A.G.P. CLK

Outer Loop

Control

Data

Timing

data

timing

data

timing

Figure 4-1:  2x/4x Mode Time Domains

The outer loop of both devices operates from a common A.G.P. clock, and outer loop controls are specified relative
to this clock (as in the 1x operation mode).  The inner loop timings use additional source synchronous timing signals
to realize the data transfer.  Note that the only clock defined in the system is the A.G.P. clock.

Source timed strobes, where the device sourcing the data also sources a timing signal for use by the receiver, are
used since data transport delays are compensated by the strobe delays at the receiver.  These source synchronous
strobes are derived from the common A.G.P. clock at the transmitter, placed at the center of the output data valid
window, and used by the receiver to directly capture data at the interface.

The inner loop and outer loop timing dependencies are defined by a set of relationships between the strobes and the
A.G.P. clock.  The relationship allows for a deterministic transfer of data between the inner and outer loops.  These
timing dependencies are specified in such a way as to allow implementation flexibility at the receiver.  A tradeoff can
be made between the latency through the inner loop and the implementation technology and/or design complexity.
Refer to the A.G.P. Design Guide for more information.

In 2x mode, two single-ended strobes AD_STB[1::0] are used to capture the address-data lines and another strobe
SB_STB is used for the sideband signals.  In 4x mode, differential strobe pairs AD_STB[1::0], AD_STB[1::0]#,
and SB_STB, SB_STB# are used to capture data.  In the following descriptions, the 4x transfers will reference the
AD_STB[1::0] signals to show the common timings between 4x mode and 2x mode.  However, 2x timings are
referenced at a particular level on the rising or falling strobe edge while 4x timings are referenced to the crossover
point of the differential strobes.  The crossover is targeted to be at 0.5Vddq.
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The timing model presented above contains four different time domains, described in the following sections:

• Transmit/Receive Outer Loop

• Transmit to Receive Inner loop

• Transmit Outer to Inner Loop

• Receive Inner to Outer Loop

4.1.2.6 Transmit/Receive Outer Loop

The outer loop between the devices uses the 1x mode A.G.P. timings for bidirectional control information transfer
between the transmitter and receiver.

4.1.2.7 Transmit to Receive Inner loop

Transfer of data31 between the transmit and receive inner loop circuits is accomplished using timing strobes sent
from the transmitter to the receiver, with a set of simple timing relationships between the data and strobes.  Both
edges of the strobes are used to transfer data, with the first half of data corresponding to the falling edge of the strobe
and the second half corresponding to the rising edge.

The transmit strobe edges are positioned near the center of the minimum data valid window to give the receiver a
good input data sampling window for all the various system timing skew cases.  A minimum data valid before strobe
edge (tDvb) and a minimum data valid after strobe edge (tDva) are specified.  The transmit strobe/data timings are
shown in Figure 4-2.
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Transmit Data Data1 Data2

tDvb
tDvatDva

tDvb

    Note 1:  This waveform represents two differential strobes

2X Mode Transmit Timing

4X Mode Transmit Timing

Transmit Strb/Strb# 1

Transmit Data

tDvb
tDvatDva

tDvb

Data1 Data4Data3Data2

Figure 4-2:  Mode Transmit Strobe/Data Timings

                                                          

31 Data refers to any of the 2x/4x capable signal groups:  AD[31:00], C/BE[3:0]#, or SBA[7:0].
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The receive strobe input is directly used to capture data into the device.  Again, both edges of the strobe are used to
capture data, since new data is valid on each edge.  A minimum setup (tDsu) and hold time (tDh) relative to the
strobe edges is therefore required, as shown in Figure 4-3.
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Receive Data Data1 Data2
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    Note 1:  This waveform represents two differential strobes

2X Mode Receive Timing

4X Mode Receive Timing
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tDhtDh

tDsu

Data1 Data4Data3Data2

Figure 4-3:  Receive Strobe/Data Timings

4.1.2.8 Transmit Outer to Inner Loop

The next timing relationship to understand is the relationship between the outer loop and inner loop at the
transmitter.  These timing specifications are needed to create a deterministic data relationship between the inner loop
transfer and the related outer loop flow control events (e.g., IRDY#).  The relationship is specified by relating the
output strobe to the A.G.P. clock, as shown in Figure 4-4.  Note that two clock periods, T1 and T2, are shown since
the strobe pulse is permitted to cross the A.G.P. clock boundary.
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Figure 4-4:  Transmit Strobe/Clock Timings
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To guarantee a deterministic relationship between inner loop data transfer and the corresponding outer loop flow
control, the leading strobe edge is required to occur within the T1 clock period, as seen at the receiver.  This
requirement dictates a minimum and maximum specification for the clock to strobe falling edge (tTSf).  The clock to
strobe lagging edge only requires a maximum specification (tTSr).  Actually, all the transmit strobe specifications are
driven by receiver requirements and system skews.  The receiver requirements are discussed in more detail in the
next section.

Figure 4-5 and Figure 4-6 show the composite inner and outer loop timing relationships for the transmitter in 2x and
4x transfer modes respectively.
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Figure 4-5:  Composite 2x Mode Transmit Timings
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 Figure 4-6:  Composite 4x Mode Transmit Timings
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4.1.2.9 Receive Inner to Outer Loop

The last, and most complex, set of timings to understand is the receiver inner to outer loop relationships.  To better
understand these timings, a model of the inner to outer loop transfer interface is needed.  Refer to the receive transfer
timing in Figure 4-7 and Figure 4-8.

For 2x transfer mode, after the rising edge of the receive strobe, a Qword of valid data will be available from the AD
bus interface.  Data will be transferred from the inner loop to the outer loop based on an A.G.P. clock event.  The
requirement is to define a circuit to reliably affect this transfer for all system conditions.

tRShtRSsu
tRShtRSsu

Strobe Pulse Duration Uncertainty

T1 T2

Earliest Safe Transfer ^
Point for 1st QWORD of data

1st QWORD XFER 2nd QWORD XFER

A.G.P. CLK

Receive Strobe MIN

Receive Strobe MAX

RDY# (outer loop)

Figure 4-7:  2x Mode Receiver Inner to Outer Loop Transfer Timing

Figure 4-7 depicts the possible minimum and maximum strobe relationships at the receiver.  Two consecutive data
transfers occur, with the first one starting in T1.  In the minimum strobe delay case, both strobe edges occur in T1,
and, in the maximum strobe delay case, the second edge does not occur until T2.  Thus, there is an uncertainty
window for the strobe duration which can cross the clock boundary.

The same problem exists in 4x mode and is shown in Figure 4-8.  After the fourth strobe pair transition, a double
Qword is available, but because of the uncertainty of the strobe timing, this can occur in T1 or T2.

Due to this uncertainty window, the earliest safe transfer point from the inner loop to an A.G.P. clock edge in the
outer loop occurs at the end of T2.  Notice that in the minimum case, a second set of strobes occurs in T2, since a
second Qword (2x) or double Qword (4x) of data is being transferred.  Therefore, to prevent 2x transfer mode data
from being overwritten before the safe transfer point, at least two stages of Qword-wide edge-triggered latches must
exist in the inner loop input circuitry.  For 4x mode, at least two stages of double Qword-wide edge-triggered latches
are required.

The latched data will be transferred to the outer loop block based on the A.G.P. clock.  The inner loop latched data
must be guaranteed to remain stable at the point of transfer.  The minimum setup specification on the receive strobe
to clock (tRSsu) exists to ensure that data from the output of an inner loop latch has a defined setup time to the input
of the outer loop’s latch.  Likewise, the minimum hold specification on the strobe (tRSh) exists to ensure that data
from the output of an inner loop latch has a defined hold time relative to the input of the outer loop’s latch.

Note that tRSsu and tRSh are associated with the strobe edge for a particular T1 cycle data transfer.  Due to the
minimum to maximum strobe variation, it is possible for tRSsu to extend across a clock edge into the T1 cycle.
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Also, the tRSh hold time is provided for data transfer from the end of the previous set of strobes, not the immediately
prior one.

A.G.P. CLK

Receive
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D Qword TransferD Qword Transfer

Double QWord
Received
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(Outer loop)

Receive
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Double QWord
Received
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T1 T2

tRSh

Strobe
Uncertainty

Figure 4-8:  4x Mode Receiver Inner to Outer Loop Transfer Timing

The receive strobe specification values were chosen to allow most implementations to transfer the data at the earliest
safe point, at the end of T2.  Note that the actual transfer point is not specified, only the earliest viable point.  An
implementation may elect to increase the effective setup time by additional pipeline delay stages.  Refer to the
A.G.P. Design Guide for more details.

The composite receive timings are shown in Figure 4-9 and Figure 4-10.

tRSsu tRSh

tDsu
tDh

tDsu
tDh

T1 T2

Data1 Data2 Data3 Data4 Data5

A.G.P. CLK

Receive Strobe

Receive Data

Figure 4-9:  2x Composite Receive Timings
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A.G.P. CLK

tRSsu

T1 T2

tRSh

Receive
Strb/Strb# MAX

Double QWord
Received

tDhldtDSu tDSu tDhld

Data 1 Data2 Data3 Data4Receive Data

 Figure 4-10:  4x Composite Receive Timings

4.1.2.10 SB_STB Synchronization

The 2x inner loop receiver timing specifications ensure reliable transfer between the time domains.  However, to
affect such transfer implicit knowledge of the current clock cycle (T1 or T2) is needed to determine which data to
transfer to the outer loop.  The AD bus outer loop protocol directly provides the required information, as each
xRDY# event signals a new T1.  However, the sideband address port, SBA, has no such inherent synchronization
information.32  To allow for the receiver circuitry to unambiguously synchronize with the correct clock event, an
additional synchronization protocol is defined for the sideband port.

Note that this synchronization protocol has no relationship to the normal command protocol defined for the SBA
signals.  The A.G.P. target protocol sequencer should be designed to be unaffected by this synchronization protocol.
In other words, commands over the SBA port are undefined until synchronization has occurred.

Whenever the SB_STB signal has been idle, including after a reset, prior to sending any sideband commands, the
master must transmit a special synchronization cycle.  This sync cycle is used by the receiver to determine proper
phasing information (T1 or T2) at the interface.

The sync cycle is defined as SBA[7::0] being driven to FEh for a single 1x clock cycle, with timings adhering to the
1x mode requirements.  Following the sync cycle, the SBA port state is undefined relative to the 1x clock, and is
only valid at the first valid 2x or 4x command strobe point.  This first valid 2x or 4x command strobe point occurs
exactly two clocks after the sync cycle event is sampled by the target (cycle T1 in Figure 4-11), at which point 2x or
4x timing operation has commenced.  The first valid command33 occurs on this first T1 cycle.

The 2x or 4x timing operation must continue, unless SB_STB is stopped.  Prior to stopping the SB_STB signal, a
minimum of four A.G.P. clock cycles of NOPs must be transmitted.  (Note this is equivalent to four 16-bit NOP
commands in 2x mode or eight NOP commands in 4x mode).  If stopped, SB_STB must be driven high and either
held high or tri-stated.  Once stopped, SB_STB must remain stopped for a minimum of eight A.G.P. clock cycles
prior to any new sync event.  The SB_STB synchronization protocol for 2x mode is shown in Figure 4-11.

                                                          

32 The strobe to clock AC timings specifications do not permit a synchronization based on sampling the strobe by the 1x clock;
they only allow for deterministic data transfer from strobe-based data latches to 1x-clock based latches.

33 The first command sent may be any of the defined sideband address commands, including a NOP.
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Minimum 8 CyclesMinimum 8 Cycles 2 Cycles2 Cycles

Min 4 16-bit NOP CommandsMin 4 16-bit NOP Commands

^ sync cycle

  2X transfers resume

T1

FEh

A.G.P. CLK

SB_STB

SBA[7:0]

 Figure 4-11:  SB_STB Synchronization Protocol

4.2 Component Specification
This section defines the electrical characteristics of the A.G.P. interface.  Most of the specifications are focused on
the A.G.P. modes and will not repeat all requirements defined in the PCI Local Bus Specification.

I/O buffer design technology to meet these requirements is beyond the scope of this specification.  Some general
guidelines can be found in the A.G.P. Design Guide.

4.2.1 DC Specifications

The A.G.P. interface has two voltage levels of operation.  The first is optimized for a 3.3 volt operating environment
and is based on PCI 3.3 volt signaling, with changes to allow higher data transfer rates.  DC parameters differing
from PCI 66 MHz specifications are highlighted in bold in Table 4-2.  The second signaling level is 1.5 volts.  It uses
the same signaling conventions as 3.3 volt signaling, scaled to 1.5 volts.  The DC parameters for 1.5 volt signaling
are shown in Table 4-3.
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4.2.1.1 A.G.P. 1x Mode DC Specification

Table 4-2:  DC Specifications for A.G.P. 1x Signaling at 3.3 Volts

Symbol Parameter Condition Min Max Units Notes

Vddq I/O Supply Voltage 3.15 3.45 V 1

Vih Input High Voltage 0.5Vddq Vddq+0.5 V

Vil Input Low Voltage -0.5 0.3Vddq V

Iil Input Leakage Current 0 < Vin < Vddq ±10 µA

Voh Output High Voltage Iout = -500 µA .9Vddq V

Vol Output Low Voltage Iout = 1500 µA .1Vddq V

Cin Input Pin Capacitance 8 pF 2

Cclk CLK Pin Capacitance 5 12 pF

Vol Output Low on
OVRCNT#

Iout = ±20 µA 0.4 V

Voh Output High on
OVRCNT#

Iout = ±20 µA 2.4 3.6 V

Table 4-3:  DC Specifications for A.G.P. 1x Signaling at 1.5 Volts

Symbol Parameter Condition Min Max Units Notes

Vddq I/O Supply Voltage 1.425 1.575 V 1

Vih Input High Voltage 0.6Vddq Vddq+0.5 V

Vil Input Low Voltage -0.5 0.4Vddq V

Iil Input Leakage Current 0 < Vin < Vddq ±10 µA

Voh Output High Voltage Iout = -200 µA .85Vddq V

Vol Output Low Voltage Iout = 1000 µA .15Vddq V

Cin Input Pin Capacitance 8 pF 2

Cclk CLK Pin Capacitance 5 12 pF

Vol Output Low on
OVRCNT#

Iout = ±20 µA 0.4 V

Voh Output High on
OVRCNT#

Iout = ±20 µA 2.4 3.6 V
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Notes:
1. Vddq only specifies the voltage at the A.G.P. interface; component supply voltages are independent of

Vddq.  Vddq for both A.G.P. master and A.G.P. target must be driven from the same supply line.
2. Absolute maximum pin capacitance for an A.G.P. compliant component input is 8 pF (except for CLK)

with an exception granted to motherboard-only devices, which could be up to 16 pF, in order to
accommodate PGA packaging.  This would mean, in general, that components for expansion boards would
need to use alternatives to ceramic PGA packaging (i.e., PQFP, BGA, etc.).

4.2.1.2 A.G.P. 2x and 4x Mode DC Specification

The parameters in Table 4-4 and Table 4-5 are the incremental requirements for the 2x and 4x mode interface for
their respective signaling levels.  Note that the primary change is the addition of a voltage reference, which allows
for a differential input buffer with a common reference voltage.  Implementation of a differential input buffer is not a
requirement if alternate design approaches can be used to meet all other requirements.

Table 4-4:  DC Specifications for 2x Mode only at 3.3 Volts Signaling

Symbol Parameter Condition Min Max Units Notes

Vref Input reference voltage 0.39Vddq 0.41Vddq V 1, 2

Iref Vref pin input current 0 < Vin < Vddq ±10 µA 2

Cin Input Pin Capacitance 8 pF 3

∆ Cin Strobe to data Pin
Capacitance delta

-1 2 pF 3, 4

Table 4-5:  DC Specifications for 2x or 4x Mode at 1.5 Volts Signaling

Symbol Parameter Condition Min Max Units Notes

Vref Input reference voltage 0.48Vddq 0.52Vddq V 1, 2

Iref Vref pin input current 0 < Vin < Vddq ±5 µA 2

Cin Input Pin Capacitance 8 pF 3

∆ Cin Strobe to data Pin
Capacitance delta

2x Mode

4x Mode

-1

-1

2

1

pF

pF

3, 4

Notes:

1. A.G.P. allows differential input receivers to achieve the tighter timing tolerances needed for 133MT/s.  Nominal
value of Vref is 0.4Vddq for 3.3 volt signaling and 0.5Vddq for 1.5 volt signaling.  Vref can be designed with 2%
resistors to achieve the specified minimum and maximum values.  The value of Vref is intended to specify the
center point of the VIL/VIH range.  For the 3.3 volt signaling case, at nominal Vddq (3.3 V), Vref is 1.32 V +/-
2.5%.  A single input interface buffer can be designed to meet the VIL/VIH levels of both the A.G.P. and PCI
specifications.  As in other A.G.P. specifications, note that the Vddq references the I/O ring supply voltage and not
the component supply.
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2. Although a differential input buffer is not a required implementation, it is recommended especially at higher data
transfer rates where there is less timing margin.  All designs regardless of implementation style must meet all other
specifications.  Component designs requiring a reference are required to adhere to the Vref and Iref specifications
and to facilitate a common reference circuit.  (A common reference circuit is not applicable to add-in card designs,
since Vref is not supplied via the connector.)

3. Capacitance specifications refer only to pin capacitance on the A.G.P. compliant components used on the A.G.P.
interface.

4. Delta Cin is required to restrict timing variations resulting from differences in input pin capacitance between the
strobe and associated data pins.  This delta only applies between signal groups and their associated strobes:
AD_STB1, AD_STB1# =>AD[31::16], and C/BE[3::2]#; AD_STB0, AD_STB0# =>AD[15::00], and
C/BE[1::0]#; SB_STB, SB_STB# =>SBA[7::0].  (Complementary strobes apply to 4x mode only.)

4.2.2 AC Timings

The A.G.P. timings are specified by two sets of parameters, one corresponding to the A.G.P. 1x operation (see
Table 4-6) and the second for the optional A.G.P. 2x transfer mode operation (see Table 4-7).  The A.G.P. 2x
specifications are in addition to the A.G.P. 1x specifications.  The A.G.P. 1x specifications still apply to all outer
loop control signals during A.G.P. 2x operation.  See Figure 4-12 for the 1x timing diagram and Figure 4-13 and
Figure 4-14 for the 2x timing diagram.
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4.2.2.1 A.G.P. 1x AC Timing Parameters

Table 4-6:  A.G.P. 1x AC Timing Parameters

Symbol Parameter Min Max Units Notes

Clock:

tCYC CLK cycle time 15 30 ns 2

tHIGH CLK high time 6 ns

tLOW CLK low time 6 ns

- CLK slew rate 1.0 4 V/ns 3

tLOCK PLL Lock Time 1000 µs 4

Transmitter Output Signals:

tVALC CLK to control
signal valid delay

1.0 5.5 ns 1, 5

tVALD CLK to data valid
delay

1.0 6.0 ns 1, 5

tON Float to Active
Delay

1.0 6 ns 1

tOFF Active to Float
Delay

1 14 ns

Output slew rate 1.5 4 V/ns

Receiver Input Signals:

tSUC Control signals
setup time to CLK

6.0 ns 5

tSUD Data setup time to
CLK

5.5 ns 5

tH Control signals hold
time to CLK

0.0 ns 5

Reset Signal:

tRST Reset active time
after power stable

1 ms

tRST-CLK Reset active time
after CLK stable

100 µs

tRST-OFF Reset active to output
float delay

40 ns

--- RST# Slew Rate 50 n/a mV/ns 6
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Notes:

1. Output delays into a capacitive load of 10 pF.

2. In general, A.G.P. devices must work with any stable clock frequency from 33 MHz to
66 MHz.  Changes in the clock frequency are allowed for mobile applications;
however, only a change between the normal operating state and a clock stopped state
are supported.  The clock may only be stopped in a low state.  Devices allowing for
clock stop operation must be static designs and maintain all software visible
configuration information during the clock stop state.  Also, during clock stop
operation, devices designed for mobile applications must control signal state as
specified in the PCI Power Management Interface Specification to minimize system
power dissipation.  The state of all new A.G.P. signals should be handled identically to
existing PCI signals of the same output type (e.g., s/t/s signals are floated by the
component and pulled-up to Vddq by the central resource).

3. Rise and fall times are specified in terms of the edge rate measured in V/ns.  This slew
rate must be met across the minimum peak-to-peak portion of the clock waveform as
shown in Figure 4-17.

4. Mobile A.G.P. systems can stop the A.G.P. clock during normal operation.  PLLs on
mobile components must relock within the specified time from a stable A.G.P. clock.
Mobile A.G.P. devices must allow for the clock to stop without any loss of data or
configuration information. When the clock is restarted, a bus master cannot issue a
new transaction or bus request until the tLOCK time period has been met.

5. In A.G.P. 2x mode, tVALD, tSUD, and tH values for the AD, C/BE#, and SBA
signals are superseded by the A.G.P. 2x parameters tDvb, tDva, tDsu, and tDh.

6. The minimum RST# slew rate applies only to the rising (deassertion) edge of the reset
signal, and ensures that system noise cannot render an otherwise monotonic signal to
appear to bounce in the switching range.

T 1 T 2

tVALD tVALD

tDsud tDsud

Data1 Data2

Data1 Data2

66MHZ

Data at Transmitter

Data at Receiver
tDh

 Figure 4-12:  A.G.P. 1x Timing Diagram
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4.2.2.2 A.G.P. 2x AC Timing Parameters

The parameters in Table 4-7 apply only to the inner loop 2x transfer mode signals (AD, C/BE#, SBA) during 2x
operation.  The data specifications below replace the corresponding data specifications from the A.G.P. 1x table for
these signals.  The A.G.P. 1x parameters apply to all other signal operations.

Table 4-7:  A.G.P. 2x AC Timing Parameters

Symbol Parameter Min Max Units Notes

Transmitter Output Signals:

tTSf CLK to transmit
strobe falling

2 12 ns 1

tTSr CLK to transmit
strobe rising

20 ns

tSlow Strobe width low 5.0 ns

tSHigh Strobe width high 5.0 ns

tDvb Data valid before
strobe

1.7 ns

tDva Data valid after
strobe

1.9 ns

tONd Float to Active
Delay

-1 9 ns

tOFFd Active to Float
Delay

1 12 ns

tONS Strobe active to
strobe falling edge
setup

6 10 ns

tOFFS Strobe rising edge to
strobe float delay

6 10 ns

Receiver Input Signals:

tRSsu Receive strobe setup
time to CLK

6 ns 2

tRSh Receive strobe hold
time from CLK

1 2

tDsu Data to strobe setup
time

1 ns

tDh Strobe to data hold
time

1 ns
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Notes:

1. When Write data immediately follows the enqueuing of requests (1x), the minimum
time of 2 ns causes a violation of the 1x hold time of the request.  When this type of
operation is supported by the master, the tTSf minimum time is required to be greater
than 2 ns.

2. These specifications refer to the setup and hold times for the strobe set started in the
previous cycle.  See Figure 4-13 and Section 4.1.2.9 for more details.

3. All the parameters in this table only apply to A.G.P. clock of 66 MHz (15.0 ns
period).  Parameters like tTSf(max), tTSr(max), tONS, and tOFFS are dependent on
the period of the A.G.P. clock.

T1 T2

A.G.P. CLK

Data at Transmitter

STB at Transmitter

Data at Receiver

STB at Receiver

Data1 Data2 Data3 Data4

tDvb tDva tDvb tDva

Data1 Data2 Data3 Data4

tDsu tDhtDsu tDh

tTSf

tTSr

tRSsutRSh

Figure 4-13:  A.G.P. 133 Timing Diagram

Strobe

tOFFD

AD

A.G.P.
CLK

tOND

tOFFS tONS

Figure 4-14:  Strobe/Data Turnaround Timings
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4.2.2.3 A.G.P. 4x AC Timing Parameters

The parameters Table 4-8 apply only to the inner loop 4x clock mode signals (AD, C/BE#, and SBA) during 4x
operation.  A pair of Strb/Strb# for each group of 16 bits data is required for 4x operation.  The data specifications
below replace the corresponding data specifications from the A.G.P. 1x mode and A.G.P. 2x mode tables for these
signals.  The A.G.P. 1x mode parameters apply to all other signal operation.

Table 4-8:  A.G.P. 4x AC Timing Parameters

Symbol Parameter Min Max Units Notes

Transmitter Output Signals:

tTSf
CLK to first transmit
strobe transition

1.9 8 ns 1

tTSr
CLK to 4th transmit
strobe transition

20 ns 1

tDvb Data valid before
strobe

-0.95 ns

tDva Data valid after
strobe

1.15 ns

tONd Float to Active
Delay

-1 7 ns

tOFFd Active to Float
Delay

1 14 ns

tONS Strobe active to first
strobe edge setup

4 9 ns

tOFFS Last strobe edge to
strobe float delay

4 9 ns

Receiver Input Signals:

tRSsu Receive strobe setup
time to CLK

6 ns 2

tRSh Receive strobe hold
time from CLK

0.5 2

tDsu Data to strobe setup
time

0.40 ns

tDh Strobe to data hold
time

0.70 ns

Notes:

1. See Figure 4-15 and Section 4.1.2.8 for more details.

2. These specifications refer to the setup and hold times for the strobe set started
in the previous cycle.  See Figure 4-15 and Section 4.1.2.9 for more details.
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A.G.P. CLK
T1 T2

tDVa

Data1Transmit
Data

Transmit
Strb/Strb#

tDVb tDVb tDVa

Data7Data6Data5Data4Data3Data2

TSf (max)

tTSr (max)

Receive
Data

Receive
Strb/Strb#

Data7Data6Data4Data3 Data5

tDhldtDSu tDSu tDhld

Data1 Data2

tRSh tRSsu

Figure 4-15:  4x Mode Timing Diagram
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 Figure 4-16:  4x Mode Strobe/Data Turnaround Timings
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4.2.3 Measurement and Test Conditions

This section gives the measurement and test conditions for design.  Production test systems and boards have different
capacitive loads than specified below.  It is the responsibility of the manufacturer to correlate those systems to the
reference points given in this section.  The reference point for all AC timing measurements is 0.4Vddq for 3.3 volt
signaling and 0.5Vddq for 1.5 volt signaling.  Table 4-9 lists the measurement and test condition parameters.

Table 4-9:  Measurement and Test Condition Parameters

Symbol 3.3 V Signaling Levels 1.5V Signaling Levels Units Notes

Vth 0.6Vddq 0.7Vddq V 1

Vtl 0.2Vddq 0.3Vddq V 1

Vtest 0.4Vddq 0.5Vddq V

Vmax 0.4Vddq 0.4Vddq V 1

Input Signal
Slew Rate

1.5-4.0 0.9-2.3 V/ns 2

Notes:

1. The test is done with 0.1*Vddq of overdrive.  Vmax specifies the maximum

peak-to-peak waveform allowed for testing input timing.

2. Outputs will be characterized and measured at the package pin with the load
shown in Figure 4-20.  Input signal slew rate will be measured between Vtl
and Vth.

4.2.3.1 1x Mode Measurements

For devices which are up to 2x mode capable, the output capacitive loading (CL) for all maximum timings is 10 pF
and for all minimum timings is 0 pF.  For 4x mode capable devices, see Section 4.2.3.3 for the loading method.
Figures 4-17 to 4-20 show the 1x mode measurement conditions.

VIL

Vtest

VIH

Vth

Vtl

0.4 Vddq
pk to pk

minimum

tLOWtHIGH

tCYC

Figure 4-17:  Clock Input Measurement Conditions
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tVALC

tVALD

tVALC

tVALD

tON

OUTPUT
DELAY

Tri-State

OUTPUT

CLK

tOFF

V_tl

V_th

vTEST vTEST

vTEST vTEST

Figure 4-18:  Output Timing Measurement Conditions
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V_test

V_tl
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valid
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Figure 4-19:  Input Timing Measurement Conditions
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 Figure 4-20:  Load for Testing Output Timings
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4.2.3.2 2x Mode Measurements

For 2x mode capable devices, the output capacitive loading (CL) for all maximum timings is 10 pF and for all
minimum timings is 0 pF (see Figure 4-21).  For 4x mode capable devices, see Section 4.2.3.3 for the loading
method.

Measured with transmission line:

Measured with CL = 10 pF load:

Tranmitter
Strobe

OUTPUT

Transmitter
OUTPUT

Receiver
Strobe
INPUT

tPROP tPROP

Other
Receiver
INPUTS

tSKEW tSKEW

vTESTvTEST

vTESTvTEST

vTESTvTEST

 Figure 4-21:  Flight Time and Skew Measurement

4.2.3.3 4x Mode Measurements

The timing margins for 4x mode are smaller and a simple capacitive load is not sufficient to accurately model the
load on a buffer.  The model for buffer loading is shown in Figure 4-22 uses a transmission line load.  The example
shown has a delay of 1.75 ns.  An equivalent model has a velocity of 1.75 ns/ft and length of 12 inches.  (This is the
velocity of the recommended board trace stackup for 4x mode systems.)  Figure 4-23 shows the 4x mode delay
measurement method.
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 ZO = 60 Ω
Delay = 1.75 ns

  Length = 12 inches

Transmission Line
Buffer
under
test

VtOUTVtIN

Figure 4-22:  4x Mode Buffer Test Load

Measurement with Transmission Line

Clock
INPUT

Receiver
INPUT
(VtOUT)

Other
Receiver
INPUTS

Equivalent
Buffer

OUTPUT

tVAL

tSKEW tSKEW

tVAL

tPROP
(1.75ns)

tPROP
(1.75ns)

tDLY tDLY

vTESTvTEST

vTEST

vTEST

vTEST

Figure 4-23:  4x Mode Delay Measurement Method

Buffer delays from clock tVAL are determined by measuring the delay at the output of the transmission, VtOUT, then
subtracting the delay in the transmission line, 1.75 ns, as shown in Figure 4-23.  Inter-buffer skews tSKEW can be
directly measured between the respective outputs of the transmission lines.

Buffer slew rates can be measured on the first rise time of a fully settled buffer at VtIN and normalizing to the shelf
voltage to Vddq.  Slew can also be determined at the output of the transmission line by normalizing the voltage
swing at the output to Vddq.  Both methods are shown in Figure 4-24.  Slew rate for the falling edge can be found in
an analogous manner by reversing the direction of the waveforms in Figure 4-24.
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∆t

∆V

Input of
Transmission Line

∆V and ∆t measured across
most linear slope of signal

Vddq

∆V
∆t
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Rate =

∆t ∆V and ∆t measured across
most linear slope of signal

∆V Vddq
Vsig

∆V
∆t

Slew
RateVddq Vsig

*=

Output of
Transmission Line

Figure 4-24:  Methods of Measuring Slew Rate

Once the buffer output delays are calculated, the propagation delay of the signal traces can be found by substituting
the actual trace model and receiver loading for the test load.  The trace propagation delay, tPROP, is the difference of
the total delay at the receiver and the buffer delay.
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4.3 General System Specifications

4.3.1 Physical Requirements

The AC timings and electrical loading on the A.G.P. interface are optimized for one active host component on the
motherboard and one active A.G.P. agent either on the motherboard or through a connector.  The interface is a
logical point-to-point34 network.  The board routing should use layout design rules consistent with high speed digital
design.  Due to the high speed nature of the A.G.P. bus, any design should be thoroughly simulated and every effort
should be made to reduce signal skew and improve signal quality.  If a bus with more than two loads and/or
branching in the topology is implemented, it is the system designer’s responsibility to ensure compliance to this
interface specification.  This can be accomplished by thoroughly simulating the design to ensure proper signal
quality and that the timings are met.  These topologies are not shown or discussed in this interface specification due
to the difficulty in designing them, especially at the higher transfer rates, and it is recommended that a physical point-
to-point topology be used.

4.3.2 Clock Skew

The maximum total system clock skew is 1 ns for all data transfer modes.  This 1 ns includes skew and jitter which
originates on the motherboard, add-in card, and clock synthesizer.  Clock skew must be evaluated not only at a single
threshold voltage, but at all points on the clock edge that fall in the switching range defined in Table 4-10 and
Figure 4-25.35  This is measured between the pins of the two A.G.P. components (not at the connector).

The total skew and jitter is allocated so that 0.1 ns originates from the add-in card routing, and 0.9 ns originates from
the motherboard routing and clock synthesizer.  The motherboard designer shall determine how the 0.9 ns is
allocated between the board and the synthesizer.  To correctly evaluate clock skew, the system designer must take
into account clock distribution on the add-in board as specified in Section 4.4.5.1.

Table 4-10:  Clock Skew Parameters, All Transfer Rates

Symbol 1.5 Volt Signaling 3.3 Volt Signaling Units

Vtest 0.5Vddq 0.4Vddq V

Tskew ±1 (max) ±1 (max) ns

                                                          

34  This means that active communication can only occur between two A.G.P. agents that reside on the interface, where one agent
is referred to as the A.G.P. target and the other the A.G.P. master.  The simplest implementation is to only have two devices
attached to the bus.  Attaching more than two devices to the interface is not precluded as long as there is only one active master
and one active target.  Any other device must not respond to or interfere with the interface operation.  When more than two
devices are attached to the interface, the system designer is responsible to ensure that all requirements of this interface
specification are met; since the component and/or add-in card designer has no control how the devices are used.

35 The system designer may need to address an additional source of clock skew.  This clock skew occurs between two
components that have clock input trip points at opposite ends of the V il - Vih range.  In certain circumstances, this can add to the

clock skew measurement as described here.  In all cases, total clock skew must be limited to the specified number.
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 Figure 4-25:  Clock Skew Diagram

4.3.3 Reset

A.G.P. devices are reset using the PCI reset signal (RST#).  The assertion and deassertion of RST# is asynchronous
with respect to CLK.  The rising (deassertion) edge of the RST# signal must be monotonic (bounce free) through the
input switching range and must meet the minimum slew rate specified in Table 4-6.  The specification does not
preclude the implementation of a synchronous RST#, if desired.  The timing parameters for reset are contained in
Table 4-6, with the exception of the Tfail parameter.  This parameter provides for system reaction to one or both of

the power rails going out of specification.  If this occurs, parasitic diode paths could short circuit active output
buffers.  Therefore, RST# is asserted upon power failure in order to float the output buffers.

The value of Tfail is the minimum of:

• 500 ns (maximum) from either power rail going out of specification (exceeding specified tolerances by more
than 500 mV)

• 100 ns (maximum) from the 5 V rail falling below the 3.3 V rail by more than 300 mV.

The system must assert RST# during power up or in the event of a power failure.  RST# should be asserted as soon
as possible during the power up sequence, or as soon as the “power good” signal indicates a power failure.  After
RST# is asserted, A.G.P. complaint components must asynchronously disable (float) their outputs but are not
considered reset until both Trst and Trst-clk parameters have been met.  RST#, therefore, should not be deasserted
until both Trst and Trst-clk parameters have been met.

4.3.4 Interface Signaling

A.G.P. interface signals (not including power supplies) fall into three categories:  Vddq signaling, 3.3 volt signaling,
and special signaling.  The signals in the Vddq group are REQ#, GNT#, ST[2::0], FRAME#, TRDY#, IRDY#,
DEVSEL#, STOP#, SERR#, PERR#, PAR, RBF#, PIPE#, AD[31::00], CB/E[3::0]#, SBA[7::0],
AD_STB[1::0], and SB_STB.  These signals scale with and reference to the Vddq power supply.  WBF#,
AD_STB[1::0]#, and SB_STB# are also Vddq signals for A.G.P. 4x signaling.

The 3.3 volt signals are CLK, RST#, PME#, INTA#, and INTB#.  Their signal levels are referenced to the VCC3.3
power supply.  These signals may require special handling for a device where the logic is powered by a supply of
less than 3.3 volts. CLK and RST# may require special input circuitry on the controller or dividers have to be
provided to prevent overvoltage on the pin and distortion of the source signal (see A.G.P. Design Guide).  The
A.G.P. Master outputs PME#, INTA#, and INTB# need to be 3.3 volt tolerant.

The interrupt signals from the A.G.P. bus must interface to the PCI bus interrupt and power management controllers.
These controllers and the PCI devices may be +5 V devices.  It is the requirement of the motherboard designer to
properly interface the A.G.P. interrupts to the PCI bus.  This can be done is several ways.  One way is to pull up the
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PCI interrupts to 3.3 V only, allowing the A.G.P. interrupts to connect directly to the PCI interrupts.  Alternatively,
the A.G.P. interrupts can be buffered to the PCI bus, thus isolating the 5 V environment from the A.G.P. bus.

In the special interface group, TYPEDET# indicates whether the interface is 1.5 volt or 3.3 volt.  If TYPEDET# is
open (not connected to any power rail or signal), the interface is 3.3 volt signaling.  If TYPEDET# is shorted to
ground, the interface is 1.5 volt.  Note that only a system with a universal connector will respond to the condition of
the TYPEDET# signal.  The remaining signals in the special interface group are the Universal Serial Bus signals
USB+, USB-, and OVRCNT#.  More information on these signals can be found in the “USB Design
Considerations” section and in the Universal Serial Bus Specification.

4.3.5 Vref Generation for 3.3V A.G.P. (2x)

The motherboard must generate Vref locally for any motherboard component which requires it.  Vref should be
generated from the A.G.P. interface Vddq rail, not the component power supply.  Vref should be properly decoupled
to ground to manage switching currents and should be as close to the receiver as possible.  Such decoupling is
platform dependent, and therefore, not specified.

4.3.6 Vref Generation for 1.5V A.G.P. (2x and 4x)

To preserve the common mode relationship between data and Vref at the receiving component, a source generated
Vref needs to be generated at the driving component using a simple resistor divider network from its Vddq and Vss
as opposed to Vref generation at the receiver component.  This will preserve the common mode relationship at the
receiver.  Two unidirectional Vref signals will be routed between the add in component and the motherboard
component.

The voltage divider network consists of an AC and DC element as shown in Figure 4-26.  The maximum current at
the input device using Vref must stay within the range of ±10 µA DC current load.  For the DC element, the resistor
ratio R1/R2 must be selected in order to meet this load specification.  For the AC element, the resistor ratio R3/R4
must be exactly 1/1 with a maximum R3 value equal to 80 Ω.  A low ESR/ESL NPO or X7R type capacitor with a
value of 0.5 nF at 4 MHz can be used for the Vref circuit.

R1

R2

  Graphics
     Chip

Vddq

Vss

Unidirectional Vref Signals

AGP Connector

R3

R4

C2

C1

 Core Logic

Vddq

Vss

C1

R3 R1

R4

C2
R2

B66

A66

A66 Vrefgc - Graphics Chip to Chipset
B66 Vrefcg - Chipset to Graphics Chip

Figure 4-26:  Source Generated Vref Scheme

Both the graphics controller and the core logic are required to generate Vref and distribute it through the connector
to their respective receivers.  Usage of the source generated Vref at the receiver is a product implementation issue
which is beyond the scope of this document.
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The Vref divider network should be placed as close to the A.G.P. interface as is practical to get the benefit of the
common mode power supply effects.  However, there must be less than 20 mV coupling to the Vref components and
signals from adjacent signal lines, especially from signals not associated with the A.G.P. interface.  The trace spacing
around the Vref signals must be a minimum of 25 mils or 5X the dielectric thickness, whichever is greater, to reduce
crosstalk and maintain signal integrity.

4.3.7 Component Pinout Recommendations

All A.G.P. signals on the graphics chip should be located to facilitate meeting the add-in card requirements as
specified in Section 4.4.5 and Section 4.5.5.  The component pinout should be ordered to match the connector pinout
and component side of the add-in card.  This alignment will minimize signal crossing, minimize overall trace lengths,
and aid in matching the trace lengths within the groups.  See Figure 4-27 for the recommended component pinout.

The strobe signals must be grouped with their associated data group:

• AD_STB0 with AD[15::00] and C/BE[1::0]#

• AD_STB1 with AD[31::16] and C/BE[3::2]#

• SB_STB with SBA[7::0]

There are three additional strobe signals for 4x mode that must also be grouped with their associated data group:

• AD_STB0# with AD[15::00] and C/BE[1::0]#

• AD_STB1# with AD[31::16] and C/BE[3::2]#

• SB_STB# with SBA[7::0]
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Motherboard component pinouts should also be defined based on the above recommendations.

A.G.P. Compliant
Component

All AGP Shared Signals
Below this Line

Control
Signals

. . . AD[0]

A.G.P. Card Edge

. . . AD[16]

AD[31] . . .

AD[15] . . .AD_STB1#* AD_STB0#*

AD_STB1 AD_STB0

* = 4X mode only

A.G.P. Compliant
Component

All A.G.P. Shared Signals
Below this Line

Control
Signals

. . . AD[0]

A.G.P. Card Edge

. . . AD[16]

AD[31] . . .

AD[15] . . .

AD_STB1#* AD_STB0#*

AD_STB1 AD_STB0

* = 4X mode only

 Figure 4-27:  Recommended Component Pinout



Revision 2.0

184

4.3.8 Motherboard / Add-in Card Interoperability

The A.G.P. interface can be classified by its signaling voltage level and maximum transfer rate capability.
Interoperability of a particular add-in card with a particular motherboard is dependent only on the signaling levels.
Signaling level is determined by the value of the Vddq I/O interface voltage.  If the add-in card and the motherboard
have the same Vddq or if the motherboard has a universal connector, the add-in card will work with the
motherboard.  A key in the A.G.P. connector prevents add-in cards from being plugged into an incompatible
motherboard.  Universal connectors have no key and will accept either 1.5 or 3.3 volt Vddq add-in cards.  The
TYPEDET# pin on the add-in card tells the universal motherboard which value of Vddq is to be supplied to the
interfaces as described above.

A given part will also have a maximum transfer rate capability.  However, every A.G.P. agent must be capable of
operating at all lower transfer rates as well (i.e., a 4x mode part must also work at 2x and 1x rates).  The transfer rate
actually used is determined at configuration time and is likely to be the largest common rate between the A.G.P.
master and target.  Table 4-11 shows the matrix of compatible motherboards and add-in cards.
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Table 4-11:  Motherboard / Add-in Card Interoperability

1.5 Volt Add-in Card 3.3 Volt Add-in Card

Motherboard 1x Capable 2x Capable 4x Capable 1x Capable 2x Capable

1.5 Volt - 2x Mode Capable ✔ ✔ Note 1

1.5 Volt - 4x Mode Capable ✔ ✔ ✔

3.3 Volt - 2x Mode Capable ✔ ✔

Universal - 2x Mode Capable ✔ ✔ (1) ✔ ✔

Universal - 4x Mode Capable ✔ ✔ ✔ ✔ ✔

  Indicates that this combination is precluded by the position of the key in the A.G.P. connector
Notes:
1. A 4x transfer mode capable add-in card can be plugged into a 2x capable motherboard, but it will

run only at 2x transfer rate.

This interoperability requires that all A.G.P. components and boards have a superset of the electrical characteristics
of all the signaling levels and transfer rates it supports.  This includes I/O timings, buffer drive characteristics, input
signal clamping, and board layout requirements.  In general, the higher transfer rate electrical interface and board
requirements are backward compatible to the lower rates for a particular signaling level.  The A.G.P. interface for a
core logic component on a universal motherboard must meet all electrical requirements up to its maximum capable
transfer rate.
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4.3.9 Pull-ups/Pull-downs

A.G.P. control signals require pull-ups to Vddq on the motherboard (or, optionally, integrated on the motherboard
chipset) to ensure they contain stable values when no agent is actively driving the bus.  These signals include
FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#, SERR#, PERR#, RBF#, INTA#, INTB#36, PIPE#,
AD_STB[1::0], and SB_STB.  The core logic (A.G.P. target or motherboard) may require a weak pull-up on
REQ# and SBA[7::0] to insure that this signal does not float when there is no add-in card in the connector.  Values
for this pull-up shall be specified by the core logic vendor.

Pull-ups are allowed on any A.G.P. pin with the exception of AD_STB[1::0]# and SB_STB#.  These signals
require pull-downs to ground   Care should be taken when attaching pull-ups to the AD, SBA, AD_STB[1::0],
SB_STB, or C/BE# signals.  The trace stub to the pull-up on these signals should be kept to less than 0.1 inch to
avoid signal reflections from the stub.

The pull-up/pull-down value requirements are listed in Table 4-12.

Table 4-12:  Pull-up/Pull-down Resistor Values

Rmin Rtypical Rmax Notes

Pull-up/Pull-down 4 KΩ 8.2 KΩ @ 10% 16 KΩ

4.3.10 Maximum AC Ratings and Device Protection

All A.G.P. input, bidirectional, and tri-state output buffers should be capable of withstanding continuous exposure to
the waveform shown in Figure 4-28.  It is recommended that these waveforms be used as qualification criteria
against which the long term reliability of each device is evaluated.  Table 4-13 lists the parameters of the waveform.
This level of robustness should be guaranteed by design; it is not intended that this waveform should be used as a
production test.

These waveforms are applied with the equivalent of a zero impedance voltage source, driving through a series
resistor directly into each A.G.P. input or tri-stated output pin.  The open-circuit voltage of the voltage source is
shown in Figure 4-28, which is based on the expected worst case overshoot and undershoot expected in actual
A.G.P. buses.  The resistor values are calculated to produce the worst case current into an effective (internal) clamp
diode.

Note that:

• The voltage waveform is supplied at the resistor shown in the evaluation setup, not the package pin.

• Any internal clamping in the device being tested will greatly reduce the voltage levels seen at the package pin.

                                                          

36 INTA# and INTB# are special cases.  The motherboard should ensure that these signals cannot float to other motherboard
inputs, while meeting the interface signaling requirements in Section 4.3.4.  If INTA# or INTB# are connected to inputs on the
add-in card, the add-in card design must ensure those inputs cannot float.
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Figure 4-28:  Maximum AC Waveforms for A.G.P. Signaling

Table 4-13:  Parameters for Maximum AC A.G.P. Signaling Waveforms

Symbol Parameter 3.3 Volt Signaling 1.5 Volt Signaling Units

Min Max Min Max

V1 Overshoot voltage 7.1 3.1 V

V2 Undershoot initial voltage 3.3 3.6 1.5 1.6 V

V3 Undershoot voltage -3.5 -1.5 V

VP Waveform peak-to-peak 7.1 3.1 V

tRF Rise fall time 1.5 4.0 0.9 2.3 ns

4.3.11 Power Supply Delivery

The power supply to the add-in card for core supply (VCC) and I/O supply voltage(Vddq) must be separated on the
die, package, and add-in card.  The VCC3.3 and Vddq power supplies must be sequenced such that the Vddq voltage
level is never more than 0.5 volts above the level of VCC3.3.  In systems with a universal connector and
programmable Vddq, the Vddq cannot exceed the maximum limits of the supply value selected by TYPEDET# at
any time.

The motherboard must connect all power supply pins on the connector as shown in Chapter 5 to guarantee proper
current delivery and to provide proper AC signal return paths.  The add-in card should also attach all connector
power pins to appropriate power planes on the card for good power delivery and signal returns.  Add-in cards must
use all ground pins, and any power pins not used must be bypassed to ground on the card with a good quality, low
inductance 0.01 µF or larger capacitor.

Table 4-14 lists the voltage ranges for the supplies to the add-in card and the maximum currents that can be supplied
via the connector.
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Table 4-14:  Add-in Card Power Supply Limits

Symbol Parameter Condition Min Max Units Notes

Vddq1.5 I/O Supply Voltage IMAX = 8.0 A 1.425 1.575 V 1

Vddq3.3 I/O Supply Voltage IMAX = 8.0 A 3.15 3.45 V 1

VCC3.3 3.3 V Power Supply IMAX = 6.0 A 3.15 3.45 V

VCC5 5 V Power Supply IMAX = 2.0 A 4.75 5.25 V

VCC12 12 V Power Supply IMAX = 1.0 A 11.4 12.6 V

Note:
1. The Vddq current is due mostly to the AC switching transients of the A.G.P. I/O buffers.  The maximum current listed

will not be seen in practice, but represents the current carrying capability of the connector.  Actual average currents will
be less than 2.0 A.

4.3.12 USB Design Considerations

When USB is included on an A.G.P. add-in card, there are two key issues that must be addressed:  signaling and
power delivery.  The USB signal lines on the add-in card need to be designed to 45 Ω ±15% to match the impedance
of the USB drivers and cable in order to preserve the signal integrity.  Care should also be taken to avoid coupling to
any high frequency signal as this can cause EMI radiation problems when a cable is attached.  The power lines
should be properly bypassed to decouple noise.  If USB is provided through a standard USB connector, it has to
support hot attach.  The power lines to the connector have to have sufficient bulk capacitance to filter the surge
currents.  Refer to the Universal Serial Bus Specification for more details.

Any system that delivers power to a cable (i.e., for I2C and USB) will need to provide overcurrent protection on the
card to comply with regulatory safety requirements (e.g., UL, CSA, etc.).  This can take the form of active current
limiting circuits or a simple self-resetting fuse.  The overcurrent protection should be set to limit the current available
to the cable at 2 A.  Additionally, USB requires that this condition be reported on the OVRCNT# pin.  The
overcurrent indication can be taken from the active limiting circuit or by a simple monitoring of the power condition
on the cable side of the fuse.  In the latter case, the cable power supply voltage must be reduced to be within the Voh
specification range.  A simple resistive divider, taking account of load current, is sufficient.  If the card does not
provide power to the cable, then the OVRCNT# pin should be tied to 3.3 volts via a pullup resistor.

A USB capable motherboard must be careful with the USB signal lines.  They must be designed to 45 Ω ±15% to
match the driver and cable impedance and carefully routed to avoid picking up high frequency noise that will radiate
on the cable.  Also, the 15 KΩ ±5% pull-down resistors required by the USB specification must be located on the
motherboard.  Lastly, the OVRCNT# signal should be tied to a 3.3 volt supply through a high value resistor.  The
OVRCNT# signal should be above the Voh level and the total current from the pullup and USB host controller
component is less than the 20 µA leakage limit.
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4.4 1x and 2x Transfer Mode Specifications

4.4.1 Signal Integrity Requirement

Table 4-15 lists the signal integrity requirements for the 1x and 2x modes.

Table 4-15:  Signal Integrity Requirements1

A.G.P. 1x A.G.P. 2x

3.3 Volt
Signaling

1.5 Volt
Signaling

3.3 Volt
Signaling

1.5 Volt
Signaling

Symbol Parameter Min Max Min Max Min Max Min Max Units Notes

Output Slew Rate 1.5 4.0 0.9 2.3 1.5 4.0 0.9 2.3 V/ns 2,3

Tset Output settling time
to ±20% of rail

7.0 7.0 ns 4

Notes:

1. Output buffer (OB) loading conditions under which measurements are made:  1) the OB driving a 6 inch
transmission line with a characteristic impedance range from 65 Ω ± 15 Ω; and 2) one CMOS type input loading
attached on the other side of an ideal transmission line.

2. As measured at the receiver input.

3.  For mobile or other system designs without a metal enclosure, to minimize EMI problems, it is recommended that
the output slew rate not exceed 2.5 V/ns.

4.  Settling time is a recommendation, not a requirement.  All delay simulations and measurements (flight times, flight
time skews) should be performed such that they include the impact settling time may have on interconnect delay, as
described in the A.G.P. Design Guide.

4.4.2 1x and 2x Mode Driver Characteristics

To provide optimal performance in a point-to-point environment, A.G.P. requires a driver that is roughly half the
strength of the PCI buffer.  The output driver must be able to deliver an initial voltage swing of at least the VIL/VIH
value to the receiver through the bus with a known characteristic impedance.  Since no external transmission line
termination mechanism is specified on the A.G.P. interface, under this environment, the signal at the device pins can
transition beyond Vddq and VSS voltages by a considerable amount due to signal reflection on the line.  The I/O
buffer must be designed to maintain acceptable signal quality levels.  Output slew rate and settling time
specifications are included for this purpose.

In 2x mode, the data and strobe output buffers should be designed with rise and fall delay matching to within 1 ns on
all process, temperature, and voltage conditions.  This is required for delay matching on the data and strobe paths for
source synchronous data transfer mechanism.

The minimum and maximum drive characteristics of A.G.P. output buffers are defined by V/I curves (see
Figure 4-29 and Figure 4-30).  These curves should be interpreted as traditional “DC” transistor curves with the
following exceptions:  the “DC Drive Point” is the only position on the curves at which steady state operation is
intended, while the higher current parts of the curves are only reached momentarily during bus switching transients.
The “AC Drive Point” (the real definition of buffer strength) defines the minimum instantaneous current curve
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required to switch the bus with a single reflection.  From a quiescent or steady state, the current associated with the
AC drive point must be reached within the output delay time, Tval.  Note, however, that this delay time also includes

necessary logic time.  The partitioning of Tval between clock distribution, logic, and output buffer is not specified;

but the faster the buffer (as long as it does not exceed the maximum rise/fall slew rate specification), the more time is
allowed for logic delay inside the part.  The “Test Point” defines the maximum allowable instantaneous current curve
in order to limit switching noise and is selected roughly on a 50 Ω load line.

Adherence to these curves should be evaluated at worst case conditions.  The minimum pull up curve should be
evaluated at minimum Vddq and high temperature.  The minimum pull down curve should be evaluated at maximum
Vddq and high temperature.  The maximum curve test points should be evaluated at maximum Vddq and low
temperature.
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0.6
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VddqVddq
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Voltage
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Equation A: Equation B:

Ioh = (54.0/Vddq)*(Vout-Vddq)*(Vout+0.4Vddq) Iol = (141/Vddq)*Vout*(Vddq-Vout)

for Vddq > Vout > 0.7 Vddq for 0v < Vout < 0.18 Vddq

Figure 4-29:  V/I Curves for 3.3 Volt Signaling
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Equation C: Equation D:

Ioh = (111.0/Vddq)*(Vout-Vddq)*Vout Iol = (111/Vddq)*Vout*(Vddq-Vout)

for Vddq > Vout > 06757 Vddq for 0v < Vout < 0.325 Vddq

Figure 4-30:  V/I Curves for 1.5 Volt Signaling

Inputs are required to be clamped to both ground and Vddq rails.  When dual power rails are used, parasitic diode
paths could exist from one supply to another.  These diode paths can become significantly forward biased
(conducting) if one of the power rails goes out of specification momentarily.  Diode clamps to a power rail, as well
as output pullup devices, must be able to withstand short circuit current until drivers can be tri-stated.  The clamp
diode characteristics are listed in Table 4-16 and Table 4-17.
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Table 4-16:  AC Specifications for A.G.P. 3.3 Volt Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<0.3Vddq -9Vddq mA 1

Current High 0.3Vddq<Vout<0.9Vddq -13(Vddq-Vout) Eqt’n A mA 1, 2

(Test Point) Vout = 0.7Vddq -18Vddq mA 2

Iol(AC) Switching
Vddq>Vout>0.6Vddq 12Vddq mA 1

Current Low 0.6Vddq>Vout>0.1Vddq 20Vout Eqt’n B mA 1, 2

(Test Point) Vout = 0.18Vddq 21Vddq mA 2

Icl Low Clamp Current -3<Vin ≤ -1 -25+(Vin+1)/0.015 mA

Ich High Clamp
Current

Vddq+4>Vin ≥ Vddq+1 25+(Vin-Vddq-1)/0.015 mA

slewr Output Rise Slew
Rate

0.2Vddq - 0.6Vddq I load 1.5 4 V/ns 3

slewf Output Fall Slew
Rate

0.6Vddq - 0.2Vddq l load 1.5 4 V/ns 3

Table 4-17:  AC Specifications for A.G.P. 1.5 Volt Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<0.325Vddq -11Vddq mA 1

Current High 0.325Vddq<Vout<0.9Vddq -16.5(Vddq-Vout) Eqt’n C mA 1, 2

(Test Point) Vout = 0.7Vddq -23.3Vddq mA 2

Iol(AC) Switching
Vddq>Vout>0.675Vddq 11Vddq mA 1

Current Low 0.675Vddq>Vout>0.1Vddq 16.5Vout Eqt’n D mA 1, 2

(Test Point) Vout = 0.3Vddq 23.3Vddq mA 2

Icl Low Clamp Current -3<Vin ≤ -1 -25+(Vin+1)/0.015 mA

Ich High Clamp
Current

Vddq+4>Vin ≥ Vddq+1 25+(Vin-Vddq-1)/0.015 mA

slewr Output Rise Slew
Rate

0.3Vddq - 0.7Vddq I load 0.9 2.3 V/ns 3

slewf Output Fall Slew
Rate

0.7Vddq - 0.3Vddq l load 0.9 2.3 V/ns 3
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Notes:
1. Refer to the V/I curves in Figure 4-29 and Figure 4-30.
2. Equations A and B are provided with the respective diagrams in Figure 4-29, and equations C and D are provided with

the respective diagrams in Figure 4-30.  The equation defined maxima should be met by design.  In order to facilitate
component testing, a maximum current test point is defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous
rate at any point within the transition range.  The specified load (Figure 4-20) is optional; i.e., the designer may elect to
meet this parameter with an unloaded output.  However, adherence to both maximum and minimum parameters is
required (the maximum is not simply a guideline).

4.4.3 1x and 2x Mode Receiver Characteristics

A differential input receiver is recommended for the 1x and 2x operation.  The voltage reference for 3.3 volt
signaling is specified at 0.4Vddq.  This reference voltage is compatible with the PCI 66 MHz VIL/VIH specification.
For 1.5 volt signaling, the voltage reference is 0.5Vddq.  This gives the best noise margin at the reduced signal
swing.  A differential input receiver is not a strict requirement, as long as an implementation can meet all other
AC/DC input specifications.

To reduce the current consumption of the Vref supply, the differential input buffer must be designed with  low input
leakage current such that the combined load on Vref of all inputs is less than 5.0 to 10 µA.  The differential input
buffer must be designed to have sufficient gain to convert an input differential voltage (~100 mV) to a full internal
CMOS voltage swing, without introducing additional skews.

4.4.4 1x and 2x Mode Motherboard Specifications

4.4.4.1 System Timing Budget

Table 4-18 summarizes the system timing parameters for 1x mode signals.

Table 4-18:  1x / 2x Mode System Timing Summary

Timing
Element

Parameter Max Units Notes

tcyc Cycle Time 15 ns

tval Valid Delay 5.5/6.0 ns 1

tprop Prop Delay 2.5 ns

tsu Input Setup 6.0/5.0 ns 1

tskew-total Total Skew 1 ns 2

tskew-mb Motherboard
Skew

.9 ns

tskew-add-in Add-in Card
Skew

.1 ns

Notes:
1. Control signal / Data line specification
2. tskew is the sum of all skews (motherboard and add-in).
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Table 4-19 summarizes all system interconnect delays.  Note that the individual motherboard and add-in card
components are repeated later in their respective sections.

Table 4-19:  1x / 2x Mode Interconnect Delay Summary

Symbol Parameter Max1 Units Notes

tPROP Signal propagation 2.5 ns 2

tPROP-MB Signal propagation,
motherboard

1.65 ns 5, 9

tPROP-CONN Signal propagation,
connector

.15 ns 9

tPROP--CARD Signal propagation,
add-in card

.7 ns 6, 9

tTRMATCH Total Trace
mismatch between
data and strobe

.7 ns 3, 4, 7, 8,
9

tTRMATCH-MB Trace mismatch,
motherboard

.5 ns 4, 7, 9

tTRMATCH-CARD Trace mismatch,
card

.2 ns 4, 8, 9

Notes:
1. Signal propagation delays are measured as the difference between the

driver driving a 10 pF lumped load vs. the driver driving an 80 Ω
transmission line terminated by a 10 pF lumped load.

2. Tprop is the sum of all other propagation delays.
3. Ttrmatch is the sum of all trace mismatches.
4. Trace mismatch applies between signal groups and their associated

strobes: AD_STB1=>AD[31::16] and C/BE[3::2]#;
AD_STB0=>AD[15::00] and C/BE[1::0]#; SB_STB=>SBA[7::0].
The trace mismatch specification only applies between the strobe and
data signals within a group, not between data signals within a group or
between groups.

5. Recommended motherboard trace lengths:  1.0 - 9 (inches) depending
on trace spacing.

6. Recommended add-in card trace lengths:  0.0 - 3.0 (inches).
7. Recommended motherboard matching between any data trace and its

associated STB# trace:
 L_data - L_stb = -0.5 to 0.0 (inches).
8. Recommended add-in card matching between any data trace and its

associated STB# trace:
 L_data - L_stb = -0.5 to +0.5 (inches).
9. Trace length and trace length matching are recommendations based on

interconnect simulations including a wide variety of transmission line
and loading effects.  Designers must ensure through simulation or other
techniques that the interconnect timing requirements will still be met.
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4.4.4.2 Motherboard Interconnect Delay

Table 4-20 lists the 1x/2x mode motherboard interconnect delays.

Table 4-20:  1x / 2x Mode Motherboard Interconnect Delays

Symbol Parameter Max1 Units Notes

tPROP-MB Signal propagation,
motherboard

1.65 ns 3, 5

tPROP-CONN Signal propagation,
connector

.15 ns 5

tTRMATCH-MB Trace mismatch,
motherboard

.5 ns 2, 4, 5

Notes:
1. Signal propagation delays are measured as the difference between the

driver driving a 10 pF lumped load vs. the driver driving an 80 ohm
transmission line terminated by a 10 pF lumped load.

2. Trace mismatch applies between signal groups and their associated
strobes:  AD_STB1=>AD[31::16] and C/BE[3::2]#;
AD_STB0=>AD[15::0] and C/BE[1::0]#; SB_STB=>SBA[7::0].
The trace mismatch specification only applies between the strobe and
data signals within a group, not between data signals within a group or
between groups.

3. Recommended motherboard trace lengths:  1.0 - 9 (inches) depending
on trace spacing.

4. Recommended motherboard matching between any data trace and its
associated STB# trace:

 L_data - L_stb = -0.5 to 0.0 (inches).
5. Trace length and trace length matching are recommendations based on

interconnect simulations including a wide variety of transmission line
and loading effects.  Designers must ensure through simulation or other
techniques that the interconnect timing requirements will still be met.

4.4.4.3 Physical Requirements

The AC timings and electrical loading on the A.G.P. interface are optimized for one active host component on the
motherboard and one active A.G.P. agent either on the motherboard or through a connector.  The interface is a
logical point to point network, with a maximum electrical length of 2.5 ns.  The board routing should use layout
design rules consistent with high speed digital design.  Due to the high speed nature of the A.G.P. bus, any design
should be thoroughly simulated and every effort should be made to reduce signal skew and improve signal quality.  If
a bus with more than two loads and/or branching in the topology is implemented, it is the system designers
responsibility to ensure compliance to this interface specification.  This can be accomplished by thoroughly
simulating the design to ensure proper signal quality and that the timings are met.  These topologies are not shown or
discussed in this interface specification due to the difficulty in designing them, and it is recommended that a physical
point-to-point topology be used.  The following paragraphs summarize the board layout restrictions on the 2x
transfer mode interface.
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4.4.4.4 Signal Routing and Layout

A.G.P. signals must be carefully routed on the motherboard to meet the timing and signal quality requirements of this
interface specification.  The following are some general guidelines that should be followed.  Trace lengths included
in this section are guidelines only.  It is recommended that the board designer simulate the board routing to verify
that the specifications are met for flight times and skews due to trace mismatch and crosstalk.

The total flight time allowed for the A.G.P. bus is 2.5 ns.  The timing budget for the components of the flight path is
identified in Table 4-18. The motherboard prop delay budget of 1.65 ns restricts the total trace length on the
motherboard to 9 inches or less, depending on trace spacing.  See the A.G.P. Design Guide for more details.

The trace lengths for signals within a group must be matched to meet the total mismatch requirement given in
Table 4-18, of 0.5 ns.  This means that the traces within a group on the motherboard must be matched to their
respective strobe trace, so that the length of each data trace is either equal in length to the strobe trace or up to
0.5 inches shorter than the strobe trace.  (The strobe should always be the longest motherboard trace in each group.)

4.4.4.5 Crosstalk Consideration

For 66 and 133 MT/s modes, noise due to crosstalk must be carefully controlled to a minimum.  Crosstalk is the key
cause of timing skews and is the largest part of the tRMATCH skew parameter.  Refer to the A.G.P. Design Guide
for typical values.

4.4.4.6 Impedances

The motherboard impedances should be controlled to minimize the impact of any mismatch between the
motherboard and the add-in card.  An impedance of 65 Ω ±15 Ω is strongly recommended; otherwise, signal
integrity requirements may be violated.

4.4.4.7 Line Termination

Line termination mechanisms are not specified for the A.G.P. interface.  Internal or external termination circuits may
be used to meet signal integrity requirements as long as these elements do not inhibit either sending or receiving
agents from meeting their performance specifications.  Active clamping devices and slew rate controlled output
buffers achieve acceptable signal integrity by controlling signal reflection, over/undershoot, and ringback.  Some
form of receiver termination is more likely with 1.5 volt signaling than with 3.3 volt signaling due to the tighter
settling times and smaller ringback margins.  Note that the receiver must allow for any drive strength and board
impedance characteristic within the specified ranges.  See the A.G.P. Design Guide for more details.

4.4.5 1x and 2x Mode Add-in Card Specifications

4.4.5.1 Clock Skew

The clock trace on the add-in card shall be routed to achieve an interconnect delay of 0.6 ± 0.1 ns as determined from
trace length and trace velocity.  System designers will assume the delay of 0.6 ns while designing the motherboard
for minimum clock skew.  The tolerance of ± 0.1 ns is the clock skew contribution allocated for the add-in card, as
specified in Section 4.3.2.
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4.4.5.2 Add-in Card Interconnect Delay

Table 4-21 lists the 1x/2x add-in card interconnect delays.

Table 4-21:  1x / 2x Mode Add-in Card Interconnect Delays

Symbol Parameter Max1 Units Notes

tPROP--CARD Signal propagation,
add-in card

.7 ns 3, 5

tTRMATCH-CARD Trace mismatch, add-
in card

.2 ns 2, 4, 5

Notes:
1. Signal propagation delays are measured as the difference between the

driver driving a 10 pF lumped load vs. the driver driving an 80 Ω
transmission line terminated by a 10 pF lumped load.

2. Trace mismatch applies between signal groups and their associated
strobes:  AD_STB1=>AD[31::16] and C/BE[3::2]#;
AD_STB0=>AD[15::00] and C/BE[1::0]#; SB_STB=>SBA[7::0].
The trace mismatch specification only applies between the strobe and data
signals within a group, not between data signal within a group or between
groups.

3. Recommended add-in card trace lengths:  0.0 - 3.0 (inches).
4. Recommended add-in card matching between any data trace and its

associated STB# trace:
L_data - L_stb = -0.5 to +0.5 (inches).

5. Trace length and trace length matching are recommendations based on
interconnect simulations including a wide variety of transmission line and
loading effects.  Designers must ensure through simulation or other
techniques that the interconnect timing requirements will still be met.

4.4.5.3 Physical Requirements

The AC timings and electrical loading on the A.G.P. interface are optimized for one active host component on the
motherboard and one active A.G.P. agent either on the motherboard or through a connector.  The interface is a
logical point to point network, with a maximum electrical length of 2.5 ns.  The board routing should use layout
design rules consistent with high speed digital design.  Due to the high speed nature of the A.G.P. bus, any design
should be thoroughly simulated and every effort should be made to reduce signal skew and improve signal quality.  If
a bus with more than two loads and/or branching in the topology is implemented, it is the system designers’
responsibility to ensure compliance to this interface specification.  This can be accomplished by thoroughly
simulating the design to ensure proper signal quality and that the timings are met.  These topologies are not shown or
discussed in this interface specification due to the difficulty in designing them, and it is recommended that a physical
point-to-point topology be used.  The following paragraphs summarize the board layout restrictions on the 2x
transfer mode interface.  The following paragraphs summarize the board layout restrictions on the 2x transfer mode
interface.
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4.4.5.4 Pin Assignment

Pins labeled Vddq are special power pins for defining and driving the A.G.P. signal rail on the board.  On the board,
the A.G.P. component’s I/O buffers must be powered from these special pins only — not from the other power
pins.37

4.4.5.5 Signal Routing and Layout

A.G.P. signals must be carefully routed on the graphics card to meet the timing and signal quality requirements of
this interface specification.  The following are some general guidelines that should be followed.  Trace lengths
included in this section are guidelines only.  It is recommended that the board designer simulate the board routing to
verify that the specifications are met for flight times and skews due to trace mismatch and crosstalk.

The total flight time allowed for the A.G.P. bus is 2.5 ns.  The timing budget for the components of the flight path is
identified in Table 4-19.  The add-in card prop delay budget of 0.7 ns restricts the total trace length on the add-in
card to be approximately 3 inches.

The trace lengths for signals within a group must be matched to meet the total mismatch requirement given in
Table 4-21, of 0.2 ns.  This means that the traces within a group on the add-in card must be matched to their
respective strobe trace, so that the length of each data trace in the group is within ± 0.5 inch of the strobe length.
Refer to Figure 4-27 for add-in card component placement recommendations.

4.4.5.6 Impedances

The add-in card impedances should be controlled to minimize the impact of any mismatch between the motherboard
and the add-in card.  An impedance of 65 Ω + 15 Ω is strongly recommended; otherwise, signal integrity
requirements may be violated.

                                                          

37 Any clamp diodes on A.G.P. signal pins must only connect to the Vddq rail and not to any other component power supply
rails.
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4.5 4x Transfer Mode Specifications

An objective of this specification is to not limit the implementation options available for motherboard and add-in
card designs.  Unfortunately, these cannot be implemented independently while still ensuring that all combinations of
add-in cards and motherboard assemblies will work.  For this reason, the A.G.P. 4x specification specifies add-in
line lengths as well as timing requirements.

4.5.1 Timing and Signal Integrity Requirements

The timing and signal integrity requirements for 4x mode are listed in Table 4-22.

Table 4-22:  A.G.P. 4x Timing and Signal Integrity Requirements

Symbol Parameter Min Max Units Notes

tFT Flight time (signal propagation) 0.0 2.5 ns 1,5

tSKEW Flight time skew -450 550 ps 1, 2, 3

Vosh Output overshoot 1.0 V 1, 4

Vrb Output ringback 0.55 V 1, 4

Notes:

1. Worst case interconnect parameters can be found in the A.G.P. 4x Mode and Low Voltage Design Guide .

2. tSKEW = data’s tFT (driver pad to receiver pad) – strobe’s tFT (driver pad to receiver pad).

3. AD_STB0 / AD_STB0# => AD[15::00] and C/BE[1::0]#; AD_STB1 / AD_STB1# => AD[31::16] and
C/BE[3::2]#; SB_STB / SB_STB# => SBA[7::0].  The skew specification only applies between the strobe and
data signals within a group, not between data signals within a group or between groups.

4. As measured at the receiver input pad (silicon).

5. Maximum trace length for the data, strobe, and sideband signals is likely to be limited by tSKEW and not tFT.

Flight time is the total delay of all of the interconnects, motherboard, connector, and add-in card.  This interconnect
delay needs to be simulated using worst case models for the interconnects, buffers, and packages.  Models for the
connector, add-in card, specified buffer, and package can be found in the A.G.P. 4x Mode and Low Voltage Design
Guide.  Motherboard parameters for some of the typical 4x mode routing guidelines can also be found in the A.G.P.
4x Mode and Low Voltage Design Guide.

All of the 1x transfer mode (common clock) requirements apply for 4x mode.  Refer to Table 4-18 for these
requirements.  The motherboard designer does not need to follow the 2x mode requirements; these will be met by
default if all of the 4x timing requirements are met.

Figure 4-31 shows how tFT is calculated. tFT is the time for a signal to propagate the entire interconnect.  This is
defined as from the buffer pin to the receiver pin.  The time at the buffer pin is found by finding the buffer output
delay (refer to Section 4.2.3.3 for information on how to calculate this value).  The buffer output delay is then
subtracted from the time that is measured at the receiver pin when it crosses 0.5 Vddq.

The signal variability at the receiver pin will add unpredictability to the skew measurements.  To minimize the
amount of variability, skew measurements are made at the receiver pad.  Refer to the A.G.P. 4x Mode and Low
Voltage Design Guide for an explanation of how and why this method is used.
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tFT

Vddq

Vss

0.5 Vddq

loaded driver (pin)

receiver (pin)
receiver (pad) shown as dashed line

buffer output delay

Figure 4-31:  Flight Time

Figure 4-32 shows an example of how Vosh and Vrb are measured.

Vosh

Vrb

Vrb

Vosh

Vddq

Vss

receiver (pad)

0.5Vddq +/- 200mV

receiver (pad)

Figure 4-32:  Signal Integrity Conditions

Clocks and the entire group of source synchronous signal traces (data and strobes) are not to cross split planes38.

                                                          

38 For more information on split planes refer to a paper Signal Integrity Issues at Split Ground and Power Planes  presented by
Haw-Jyh Liaw and Henhi Merkelo at the 46th Electronic components & Technology Conference 1996 (IEEE Catalog No.
96CH35931).
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4.5.2 4x Mode Driver Characteristics

A.G.P. is intended for point to point communication.  The output driver must be able to deliver an initial voltage
swing of at least the VIL/VIH value to the receiver through the bus with a known characteristic impedance.  Since no
external transmission line termination mechanism is specified on the A.G.P. interface, under this environment, the
signal at the device pins can transition beyond Vddq and Vss voltages by some amount due to signal reflection on the
line.

To reduce the amount of signal skew, output buffers must be designed to fit in the range specified in Figure 4-33 and
have characteristics which are shown in Table 4-23.  It is recommended that impedance compensated buffers with
slew rate control mechanisms be used in the I/O buffer design to maintain acceptable signal quality.  Output slew
rate, over/undershoot, and ringback specifications are also included for reliability and signal integrity purposes.  The
technology to implement output compensation or slew rate control is beyond the scope of this specification.  More
information on compensated buffers can be found in the A.G.P. 4x Mode and Low Voltage Design Guide.   Also, the
data and strobe output buffers should be designed with excellent rise and fall delay matching (~100 ps) across all
process, temperature, and voltage conditions.  This is required to provide sufficient data setup and hold times at the
receiver at a 266 MT/s data rate.

The minimum and maximum drive characteristics of the A.G.P.4x output buffers are defined by V/I curves.  These
curves should be interpreted as traditional “DC” transistor curves, except that the curves are more resistive than
standard CMOS curves with a less pronounced saturation region “knee.”  The 48 Ω and 73 Ω load lines in
Figure 4-33 have three purposes.  First, the 48 Ω load line represents the lowest recommended effective39

interconnect impedance.  This represents the drive level necessary to be reached within the output delay time tVAL in
order to get a good drive level at the receiver.  The partitioning of the tVAL between clock distribution, logic and
output buffer parameters is not a matter for this specification.  Second, the instantaneous impedance of the V/I curve
at the point where the 48 Ω load line intersects the curve defines the limits of resistivity of the curves.  Third, the
ratio of the impedances where any curve within the range crosses the 48 Ω line to the impedance where it crosses the
73 Ω line limits the curvature of the V/I curve.  Note that the lower impedance curves cannot have the maximum
allowed curvature.  It is important for signal integrity (especially skew and ringback) that the buffer characteristics
lie in the range specified by Figure 4-33.

Adherence to these curves should be evaluated at worst case system conditions, including the tolerances on any
components used to target the buffer impedance compensation.  The minimum curves should be evaluated at
minimum Vddq and high temperature.  The maximum curve test points should be evaluated at maximum Vddq and
low temperature.

Inputs are required to be clamped to both ground and Vddq (1.5V) rails.  When dual power rails are used, parasitic
diode paths could exist from one supply to another.  These diode paths can become significantly forward biased
(conducting) if one of the power rails goes out of specification momentarily.  Diode clamps to a power rail, as well
as output pull-up devices, must be able to withstand short circuit current until drivers can be tri-stated.  The clamp
diode characteristics are listed in Table 4-23.

                                                          

39 Assumes the recommended nominal board impedance of 60 Ω.  The 48 Ω impedance comes from all effects such
as board impedance tolerance and even and odd switching modes.  These effects are described in Chapter 2 of the
A.G.P. 4x Mode and Low Voltage Design Guide .
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Equation A:
Min Iol (mA) = 20.833*Vout for 0.15Vddq < Vout ≤ 0.5Vddq

Min Iol (mA) =  9.583Vddq + 1.667Vout for 0.5Vddq < Vout ≤ 1.0Vddq

 Equation B:
Max Iol (mA) = 22.222/Vddq*Vout*(2*Vddq-Vout) for 0 < Vout ≤ 0.5Vddq

Max Iol (mA) = 5.5Vddq + 22.222*Vout for 0.5Vddq < Vout ≤ 1.0Vddq

Equation C:
Min Ioh (mA) = 20.833*(Vout-Vddq) for 0.5Vddq ≤ Vout ≤ 0.85Vddq

Min Ioh (mA) = -9.583+1.667*(Vout-Vddq) for 0 < Vout < 0.5Vddq

 Equation D:
Max Ioh (mA) = 22.222/Vddq*(Vout-Vddq)*(Vout+Vddq) for 0.5Vddq ≤ Vout ≤ 1.0Vddq

Max Ioh (mA) -5.5Vddq+22.222*(Vout-Vddq) for 0 ≤ Vout < 0.5Vddq

Figure 4-33:  V/I Curves for 1.5 Volt Signaling
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Table 4-23:  AC Specifications for A.G.P. 1.5 Volt Signaling

Symbol Parameter Condition Min Max Units Notes

Iol(AC) Switching
Current Low

0.15Vddq<Vout<1.0Vddq Eqt’n A Eqt’n B mA 1

V/I Curve
Impedance

Intersection with 48 Ω Load
Line at test point 1

30 160 Ω 2

V/I Curvature Ratio of impedance at
test point 1 to test point 2

1.0 2.0 3

Ioh(AC) Switching
Current High

0.15Vddq<Vout<1.0Vddq Eqt’n C Eqt’n D mA 1

V/I Curve
Impedance

Intersection with 48 Ω Load
Line at test point 1

30 160 Ω 2

V/I Curvature Ratio of impedance at
test point 1 to test point 2

1.0 2.0 3

Icl Low Clamp
Current

-3<Vin ≤ -1 -25+(Vin+1)/0.015 mA

Ich High Clamp
Current

Vddq+4>Vin ≥ Vddq+1 25+(Vin-Vddq-1)/0.015 mA

slewr Output Rise
Slew Rate

0.3Vddq - 0.7Vddq 1.4 3.0 V/ns 4

slewf Output Fall
Slew Rate

0.7Vddq - 0.3Vddq 1.4 3.0 V/ns 4

Notes:
1. Refer to the V/I curves in Figure 4-33.
2. The specified parameter is the small signal (instantaneous) impedance of the buffer where the 48 Ω load line

crosses the V/I curve.  The 48 Ω load line represents the suggested lower bound of the interconnect
impedance.

3. Both the load lines should intersect the V/I curve in its linear region such that the ratio of the impedances at
test point 1 to test point 2 is within the specified range for any curve in the defined region.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the
instantaneous rate at any point within the transition range.  The load is specified in Figure 4-33.  Adherence
to the minimum parameter is required.  The maximum is an advisory value.  There are no interconnect signal
integrity issues with higher edge rates.  However, there may be package or board noise issues at higher rates
due to simultaneous switching outputs.  Designers are cautioned to simulate their buffers and system if higher
edge rates are allowed.

4.5.3 4x Mode Receiver Characteristics

The input timing and noise margins are the critical system parameter and a fixed component of timing and noise
budget at the receiver.  To minimize the input variability, a differential input receiver is recommended for A.G.P. 4x
mode operation.

The voltage reference is specified at 0.5 Vddq for 1.5 V operation.  This reference voltage is generated on the system
from Vddq, where Vref = 0.5Vddq ± 2%.
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To reduce the current consumption of the Vref supply, the differential input receiver must be designed with  low
input leakage current such that the combined load on Vref of all inputs is less than 10 µA.

4.5.4 4x Mode Motherboard Specification

4.5.4.1 Physical Requirements

The AC timings and electrical loading on the A.G.P. interface are optimized for one host component on the
motherboard and one A.G.P. agent either on the motherboard or through a connector.  The interface is a point to
point network, with a maximum electrical length of 2.5 ns.  The board routing should use layout design rules
consistent with high speed digital design.  Due to the high speed nature of the A.G.P. bus, any design should be
thoroughly simulated and every effort should be made to reduce signal skew and improve signal quality.

4.5.4.2 Signal Routing and Layout Recommendations

These are the key recommendations for signal routing and layout.  Refer to the A.G.P. 4x Mode and Low Voltage
Design Guide for a complete set of recommendations.

A.G.P. signals must be carefully routed on the motherboard to meet the timing and signal quality requirements of this
interface specification.  The following are some general guidelines that should be followed.  Trace lengths included
in this section are guidelines only.  It is recommended that the board designer simulate the board routing to verify
that the specifications are met for flight times, signal quality, and skews due to trace mismatch, crosstalk, and data
pattern dependency.

The motherboard impedance needs to be controlled to minimize the impact of any mismatch between the
motherboard and the add-in card.  Board impedance of 60 Ω ±10% is highly recommended; otherwise, signal
integrity requirements and flight time skews may be violated.

It is also recommended to route the source synchronous traces (data40 and strobe41) with a spacing of ≥ 3 times the
maximum dielectric thickness between the layer that the traces are routed on and the nearest plane (Vss, Vddq, etc.).
This is to keep the worst case coupled impedance within the range of 48 Ω to 73 Ω, when using a 60 Ω ±10% board.

Coupled impedance is the amount that the impedance of a victim trace can vary due to the effects of coupling from
adjacent traces.  This coupling can cause the impedance to either increase or decrease depending on the direction the
signals are switching.  A more detailed explanation of this effect can be found in the A.G.P. 4x Mode and Low
Voltage Design Guide.

Flight time skews will be the main factor in defining the maximum line length used on the motherboard.  This length
should be kept to < 7.25 inches.  Trace lengths greater than 6.0 inches require particularly careful simulation and
design as the flight time skew versus length increases rapidly after this point.  The difference in line lengths between
any strobe and its associated signals should be kept to a minimum to help control skews.

It is highly recommended that the strobe pairs be routed next to each other.  It is also recommended that the spacing
between the strobe pairs be between three and four times the maximum dielectric thickness.  The strobes should also
be spaced to other traces by a minimum of five times the maximum dielectric thickness.  It is recommended that the

                                                          

40 Data refers to the following signals:  AD[31::00], C/BE[3::0]#, and SBA[7::0].

41 Strobe refers to the following signals:  AD_STB0 / AD_STB0#, AD_STB1 / AD_STB1#, and SB_STB / SB_STB#.
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trace length of the strobe pairs be matched within 0.1 inches.  An explanation for why these rules are recommended
can be found in the A.G.P. 4x Mode and Low Voltage Design Guide .

These spacing recommendations for all of the source synchronous traces cannot be met near the component and
connector.  In order to escape the component pins, the routing recommendations should be met within 0.3 inches
from the pin that it is connected to.  The trace from the connector should meet the recommendations within 0.15
inches.  Figure 4-34 shows an example of how these recommendations can be achieved using a BGA component and
A.G.P. connector.  Note the use of serpentines to match data lengths within ±0.25 inch of the strobes.

1 :3  T ra c e
S p a c in g  .

1 :2  T ra c e
S p a c in g

 Figure 4-34:  Example of Routing Escaping a Component and Connector

4.5.4.3 Line Termination

No external line termination mechanisms are specified on the A.G.P. interface, but may be used to meet signal
integrity requirements as long as these elements do not inhibit agents from meeting their performance specifications.
Circuit design techniques may be used to handle signal reflection and over/undershoot, such as clamping devices and
slew rate controlled output buffers, to achieve acceptable signal integrity.
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4.5.5 4x Mode Add-in Card Specifications

4.5.5.1 Clock Skew

The clock trace on the add-in card shall be routed to achieve an interconnect delay of 0.6 ±0.1 ns as determined from
trace length and trace velocity.  System designers will assume the delay of 0.6 ns while designing the motherboard
for minimum clock skew.  The tolerance of ±0.1 ns is the clock skew contribution allocated for the add-in card, as
specified in Section 4.3.2.

4.5.5.2 Pin Assignment

Pins labeled Vddq are special power pins for defining and driving the A.G.P. signal rail on the board.  On the board,
the A.G.P. component’s I/O buffers must be powered from these special pins only—not from the other power pins.42

4.5.5.3 Signal Routing and Layout Recommendations

The add-in card impedance is to be controlled to minimize the impact of any mismatch between the motherboard and
the add-in card.  Impedance of 60 Ω ±10% is a requirement; otherwise, signal integrity requirements and flight time
skews may be violated.

To keep crosstalk to a minimum, it is required to route the source synchronous traces (data40 and strobe41) with a
spacing of ≥ 3 times the maximum dielectric thickness between the traces and the nearest plane (Vss, Vddq, etc.).
This is to keep the worst case coupled impedance within the range of 48 Ω to 73 Ω.

Coupled impedance is the amount that the impedance of a victim trace can vary due to the effects of coupling from
adjacent traces.  This coupling can cause the impedance to either increase or decrease, depending on the direction the
signals are switching.  A more detailed explanation of this effect can be found in the A.G.P. 4x Mode and Low
Voltage Design Guide.

A.G.P. signals must be carefully routed on the add-in card to meet the timing and signal quality requirements of this
interface specification.  All source synchronous signals need to be routed as microstrips.  The maximum trace length
of the source synchronous signals is 1.5 inches.  The traces within a group of data signals on the add-in card must be
matched to ±0.25 inches of the group’s associated strobes.  The line lengths of the strobe pairs are to be matched to
±0.1 inches.  All of the traces within a group, including the associated strobes, need to be routed on the same layer.

It is required that the strobe pairs are routed next to each other.  It is also required that the spacing between the strobe
pairs be between three and four times the maximum dielectric thickness.  The spacing between the strobes and any
other signal needs to be a minimum of five times the maximum dielectric thickness between them and any other
trace.  An explanation of why these rules are required can be found in the A.G.P. 4x Mode and Low Voltage Design
Guide.

These spacing requirements for all of the source synchronous traces cannot be met at the component and connector.
In order to escape the component pins, the routing requirements should be met within 0.3 inches from the pin that the
trace is connected to.  The trace from the connector needs to meet the requirements within 0.15 inches.  Refer to

                                                          

42 Any clamp diodes on A.G.P. signal pins must only connect to the Vddq rail and not to any other component power supply
rails.
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Figure 4-34 for an example of a layout using these parameters.  For further explanation, refer to the A.G.P. 4x Mode
and Low Voltage Design Guide .

Table 4-24: 4x Mode Add-in Card Source Synchronous Interconnect Summary

Parameter Min Max Units Notes

Coupled board impedance 48 73 ohms 1

Trace length 0 1.5 in

Trace length mismatch -0.25 0.25 in 2

Notes:

1. These coupling parameters can be achieved with a 60 Ω ±10% board with trace spacing that is three times the
maximum dielectric thickness.  Contact your board vendor(s) for the maximum amount that this value can be.

2. AD_STB0 / AD_STB0# => AD[15::00] and C/BE[1::0]#; AD_STB1 / AD_STB1# => AD[31::16] and
C/BE[3::2]#; SB_STB / SB_STB# => SBA[7::0].  The trace length mismatch specification only applies
between the strobe and data signals within a group, not between data signals within a group or between groups.
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5.1 Introduction
This chapter defines an A.G.P. 1X/2X connector and expansion card intended for high volume, high performance
desktop systems.  The connector must be low cost, reliable, electrically robust, and manufacturable in high volume
from multiple sources.  The A.G.P. connector effectively replaces one of the planar PCI connectors in ATX chassis
implementations and has been incorporated in the NLX Motherboard Specification (available at
http://www.teleport.com/~nlx/).  In the ATX case, the PCI connector that was previously utilized for graphics is now
replaced by the A.G.P. connector which provides higher performance.  The A.G.P. expansion card for ATX systems
is based on the PCI expansion card design with the same maximum dimensions and configuration.  It is easily
implemented in existing chassis designs from multiple manufacturers.  The A.G.P. expansion card requires a
mounting bracket for card location and retention which is the same as the PCI ISA retainer.  The bracket is the
interface between the card and the system that provides for cable escapement just as in PCI implementations.  (See
the PCI Local Bus Specification for the ISA bracket and retainer.)  The bracket shall be supplied with the card so
that the card can be easily installed in the system.

The A.G.P expansion card dimensions are also defined for the new NLX chassis.  The NLX card dimensions are a
subset of the ATX card dimensions.  It is possible to design an NLX card that can be used in both NLX and ATX
systems, but the mounting bracket must be changed.

Appendix C describes the high-end A.G.P 4X 110 W connector designed specifically for the server and workstation
market segments.  The connector provides the extra power necessary to support high-end A.G.P 4X graphics cards.
This connector is a superset of the existing A.G.P connectors and supports A.G.P 1X, 2X, and 4X mode graphics
cards with 1.5 volt or 3.3 volt signaling.

5.2 Expansion Card Description

5.2.1 Physical Dimensions and Tolerances

The A.G.P. card, like the PCI card, is designed to fit most existing ATX chassis.  (The NLX version of the A.G.P
card has reduced dimensions.)  The maximum component height on the primary side of the A.G.P. ATX expansion
card is not to exceed 14.47 mm (0.570 in.).  The maximum component height on the backside of the card is not to
exceed 2.667 mm (0.105 in.) unless otherwise specified.  Datum W on the illustrations is used to locate the A.G.P.
card to the planar and to the chassis frame interfaces, which could include the back of the chassis frame and the card
guide.  Datum W is carried through the locating key on the card edge and the locating key on the connector.  See
Figures 5-1A, 5-1B, 5-2, and 5-8 for A.G.P ATX form factor add-in card physical dimensions.  See Figure 5-3
through Figure 5-8 for A.G.P NLX form factor add-in card physical dimensions.

5. Mechanical Specification
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Figure 5-1A:  3.3 Volt A.G.P. ATX Form Factor Add-in Card
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Figure 5-1B:  1.5 Volt A.G.P. ATX Form Factor Add-in Card
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Figure 5-2:  Detail A and B:  A.G.P. Card Edge Finger Layout
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Figure 5-3:  A.G.P.  NLX Form Factor Add-in Card
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Figure 5-4:  A.G.P. NLX Factor Add-in Card Comprehensive
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Figure 5-5:  A.G.P. NLX Form Factor Card Detail

Figure 5-6:  A.G.P. NLX Form Factor Add-in Card Reference Bracket Details
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Figure 5-7:  A.G.P. NLX Form Factor I/O Bracket and Chassis Interaction
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5.2.2 Contact Design

A requirement of 100 microinches (min) tin lead over nickel underplate on solder tails, for all plating alternatives.
The following two plating alternatives are listed to allow flexibility to connector suppliers.  The absolute requirement
is that the plating must meet the qualification requirements listed in Section 5.10.

Alternative 1:  High strength copper alloy; 15 microinches (min) gold plating over 50 microinches minimum nickel
plating.

Alternative 2:  High strength copper alloy, 2 microinches (min) gold flash over 15 microinches palladium-nickel
over 50 microinches (min) nickel underplate in critical contact areas.

5.3 Thermal Specification
A.G.P. add-in card designers are responsible for supplying a thermal solution for their add-in card that meets the
requirements listed in Table 5-1.  An add-in card targeted for an OEM market segment (and not as a generic add-in
card) is exempt from meeting the requirements in Table 5-1.  This exemption is granted because the OEM will define
its own thermal requirements for the add-in card that may be more or less restrictive depending on the capabilities
and features supported by the OEM.

For example, the designer of an add-in card must ensure that the card, which is targeted for a retail market segment,
will operated under the thermal conditions shown in Table 5-1.  The OEM that allows a generic add-in card to be
inserted into its system must ensure that the specified thermal environment is maintained.  Another example is where
the included add-in card does not meet Table 5-1 but the OEM can accommodate the additional thermal load.
However, a generic add-in card cannot rely on the OEM to manage a thermal load greater than what is specified in
Table 5-1.

Please refer to the A.G.P. Design Guide for further details on thermal design for A.G.P. add-in cards.

Table 5-1:  Thermal Specification for Add-in Cards

Symbol Parameter Condition Min Max Units Notes

Ta Ambient Temperature Within 0.5 inch of card PCB 0 55 °C

Af Air flow 0 m/s 1

Notes:
1. Natural convection airflow only with any card orientation (vertical, horizontal-components up, horizontal-

components down) and air flow constrained by adjacent card and system modules.

5.4 A.G.P Add-in Card Connector Physical Description

5.4.1 Add-in Card Edge Dimensions

The connector shall hold the card at right angles to the system board.  All dimensions are metric, inch dimensions are
shown for reference only.  The connector must accommodate a 1.57 mm (0.062 in) thick card (Figure 5-8).
Connector key width dimension of 1.78 mm (.070 in.) is measured prior to draft.
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Figure 5-8:  A.G.P. Card Edge Connector Bevel

5.4.2 Insertion/Extraction Force

Insertion force of PCB into A.G.P connector:  12.8 lbf (max)

Extraction force of PCB from A.G.P connector:  7.7 lbf (min)

Connector shall withstand a minimum of 50 insertion/extraction cycles with an A.G.P add-in card.

5.4.3 Assembly Requirements to Motherboard

5.4.3.1 Pre-Solder Attachment

A method of fastening the connector to the motherboard is required to assist in the manufacturing process.  The
fastening method shall be consistent with low-cost, high volume printed circuit board assembly lines.  The
recommended approach is to use three snap-in clips, that require a total insertion force of 3 lb to 15 lb to install the
A.G.P add-in connector into the motherboard.  The A.G.P Universal Connector has two snap-in clips.  The clip
length can be longer that the solder tail pins for the purposes of alignment, but must not interfere with or misdirect
the alignment and penetration of the solder tails into the motherboard during the assembly process.
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5.4.3.2 Solder Tail Design and Alignment:

The connector solder tails must be designed and aligned such that the end of the solder tails must enter a virtual
condition hole that is 0.48 mm (.019 in.) in diameter. The virtual condition solder tail holes result from the true
positional tolerance dimensions specified in the motherboard layout shown in Figures 5-9B, 5-10B, and 5-11B. The
solder tails and retention clips have a 0.25 mm (.010 in.) perpendicularity requirement with respect to Datum V, see
Figures 5-9A, 5-10A, and 5-11A.

5.4.3.3 Contact Backout Wipe

The minimum contact backout wipe within the connector for the upper and lower contacts on the gold finger pads, as
shown in Figure 5-2, is .99 mm (0.039 in.).

5.4.4 A.G.P Add-in Card 3.3 Volt Connector

This section provides a physical description of the 124 pin A.G.P. connector.  The connector is intended for high
volume, high performance desktop systems.  In the connector drawings, the recommended board layout details are
given as nominal dimensions.  Layout detail tolerances should be consistent with the connector supplier’s
recommendations and good engineering practice.  See Figures 5-9A and 5-9B for connector dimensions and layout
recommendations.

The connector specification detail and connector supplier information is available from the A.G.P. Implementer’s
Forum homepage (http://www.agpforum.org).

Caution:  The connector is not hot unpluggable.  Be sure system and motherboard power is off.  Unplugging an
A.G.P. card with power and/or signals enabled at the connector may cause irreparable damage to the card and/or
system boards.  Disabling power and signals at the connector is a highly recommended standard practice for existing
systems using ISA, EISA, and PCI expansion cards.

Caution:  It is highly recommended that A.G.P. plug in cards are plugged and unplugged “straight” into the
connector, without rocking.  Using a “rocking” motion to seat and/or unseat the A.G.P. card may cause damage to
the system board A.G.P. connector and/or damage pads on the add-in card.  This is consistent with good practice and
recommendations for the presently used PCI connector.

Note:  All 3.3 volt cards leave TYPEDET# open.
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Figure 5-9A:  A.G.P. 3.3 Volt Connector Footprint and Layout Dimensions
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Figure 5-9B:  A.G.P. 3.3 Volt Connector Footprint and Layout Dimensions
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5.4.5 A.G.P Add-in Card Universal Connector

The A.G.P. 132 pin symmetrical universal connector (see Figures 5-10A and 5-10B) provides for the transition from
A.G.P. 3.3 volt signaling connector to A.G.P. 1.5 volt signaling connector.  The Universal connector will
accommodate 3.3 volt signaling for A.G.P. or 1.5 volt signaling for A.G.P.  The motherboard or planar will need to
detect and supply the correct voltage for the signaling interface based on TYPEDET#.  For A.G.P. 3.3 volt signaling
add-in cards, TYPEDET# is left open.  On an A.G.P. 1.5 volt signaling add-in card, TYPEDET# is hardwired to
ground.  Note that the A.G.P. clock and reset will be driven at a 3.3 volt signaling level regardless of what I/O
signaling levels (3.3 volt/1.5 volt) is selected by the add-in card.  Components that are not 3.3 volt tolerant must
divide the 3.3 volt A.G.P. clock and reset signaling levels down to avoid possible damage to the inputs of these
devices.
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Figure 5-10A:  A.G.P. Universal Connector Footprint and Layout Dimensions
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Figure 5-10B:  A.G.P. Universal Connector Footprint and Layout Dimensions
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5.4.6 A.G.P Add-in Card 1.5 Volt Connector

The 124 pin A.G.P. 1.5 volt signaling connector (see Figures 5-11A and 5-11B) will be implemented with the A.G.P
3.3 volt connector by rotating the connector 180 degrees on the planar (motherboard).  Therefore, the key of the
connector will move to the opposite side of the planar away from the I/O panel and will not allow A.G.P. 3.3 volt
cards to be inserted into the connector.  TYPEDET# must be provided by 1.5 volt signaling add-in cards.  Support
for detecting TYPEDET# on motherboards containing the A.G.P. 1.5 volt signaling connector is optional since only
1.5 volt signaling add-in cards are supported.  The signaling voltage is simply hard wired for 1.5 volt signaling levels
in this case.  Note that for the A.G.P. 1.5 volt connector, the A.G.P. clock and reset will be at 3.3 volt signaling
levels.  The same concerns apply here that apply for the universal connector in 1.5 volt signaling mode.
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Figure 5-11A:  A.G.P. Add-in Card 1.5 Volt Connector Footprint and Layout Dimensions
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Figure 5-11B:  A.G.P. Add-in Card 1.5 Volt Connector Footprint and Layout Dimensions
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5.4.7 A.G.P Add-in Card Planar Implementation

5.4.7.1 ATX Planar Implementation

Planar implementations are supported by the A.G.P. expansion card design.  For illustration purposes, the planar
mounted expansion connector is detailed in Figure 5-12, Figure 5-13, and Figure 5-14.  This example shows an ATX
form factor planar.  The A.G.P. connector effectively replaces one of the planar PCI connectors.  The PCI connector
that was utilized for graphics is now replaced by the A.G.P. connector which provides a higher performance A.G.P.
interface.  The principles outlined can be applied to locate the A.G.P. connector in any motherboard.

Figure 5-12  Typical ATX 3.3 Volt Connector Implementation
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Figure 5-13:  Typical ATX Universal Connector Implementation
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Figure 5-14:  Typical ATX 1.5 Volt Connector Implementation

5.4.7.2 NLX Planar Implementation

An A.G.P connector may be implemented on NLX planars.
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5.5 Connector Pinout
Table 5-2 lists the A.G.P. motherboard connector pinout.

Table 5-2:  A.G.P. Motherboard Connector Pinout

3.3 Volt Universal 1.5 Volt

Pin# B A B A B A

1 OVRCNT# 12V OVRCNT# 12V OVRCNT# 12V

2 5.0V TYPEDET# 5.0V TYPEDET# 5.0V TYPEDET#

3 5.0V Reserved 5.0V Reserved 5.0V Reserved

4 USB+ USB- USB+ USB- USB+ USB-

5 GND GND GND GND GND GND

6 INTB# INTA# INTB# INTA# INTB# INTA#

7 CLK RST# CLK RST# CLK RST#

8 REQ# GNT# REQ# GNT# REQ# GNT#

9 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3

10 ST0 ST1 ST0 ST1 ST0 ST1

11 ST2 Reserved ST2 Reserved ST2 Reserved

12 RBF# PIPE# RBF# PIPE# RBF# PIPE#

13 GND GND GND GND GND GND

14 Reserved Reserved Reserved WBF# Reserved WBF#

15 SBA0 SBA1 SBA0 SBA1 SBA0 SBA1

16 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3

17 SBA2 SBA3 SBA2 SBA3 SBA2 SBA3

18 SB_STB Reserved SB_STB SB_STB# SB_STB SB_STB#

19 GND GND GND GND GND GND

20 SBA4 SBA5 SBA4 SBA5 SBA4 SBA5

21 SBA6 SBA7 SBA6 SBA7 SBA6 SBA7

22 KEY KEY Reserved Reserved Reserved Reserved

23 KEY KEY GND GND GND GND
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Table 5-2:  A.G.P. Motherboard Connector Pinout (continued)

3.3 Volt Universal 1.5 Volt

Pin# B A B A B A

24 KEY KEY 3.3Vaux Reserved 3.3Vaux Reserved

25 KEY KEY VCC3.3 VCC3.3 VCC3.3 VCC3.3

26 AD31 AD30 AD31 AD30 AD31 AD30

27 AD29 AD28 AD29 AD28 AD29 AD28

28 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3 VCC3.3

29 AD27 AD26 AD27 AD26 AD27 AD26

30 AD25 AD24 AD25 AD24 AD25 AD24

31 GND GND GND GND GND GND

32 AD_STB1 Reserved AD_STB1 AD_STB1# AD_STB1 AD_STB1#

33 AD23 C/BE3# AD23 C/BE3# AD23 C/BE3#

34 Vddq3.3 Vddq3.3 Vddq Vddq Vddq1.5 Vddq1.5

35 AD21 AD22 AD21 AD22 AD21 AD22

36 AD19 AD20 AD19 AD20 AD19 AD20

37 GND GND GND GND GND GND

38 AD17 AD18 AD17 AD18 AD17 AD18

39 C/BE2# AD16 C/BE2# AD16 C/BE2# AD16

40 Vddq3.3 Vddq3.3 Vddq Vddq Vddq1.5 Vddq1.5

41 IRDY# FRAME# IRDY# FRAME# IRDY# FRAME#

42 3.3Vaux Reserved 3.3Vaux Reserved KEY KEY

43 GND GND GND GND KEY KEY

44 Reserved Reserved Reserved Reserved KEY KEY

45 VCC3.3 VCC3.3 VCC3.3 VCC3.3 KEY KEY

46 DEVSEL# TRDY# DEVSEL# TRDY# DEVSEL# TRDY#

47 Vddq3.3 STOP# Vddq STOP# Vddq1.5 STOP#

48 PERR# PME# PERR# PME# PERR# PME#

49 GND GND GND GND GND GND
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Table 5-2:  A.G.P. Motherboard Connector Pinout (continued)

3.3 Volt Universal 1.5 Volt

Pin# B A B A B A

50 SERR# PAR SERR# PAR SERR# PAR

51 C/BE1# AD15 C/BE1# AD15 C/BE1# AD15

52 Vddq3.3 Vddq3.3 Vddq Vddq Vddq1.5 Vddq1.5

53 AD14 AD13 AD14 AD13 AD14 AD13

54 AD12 AD11 AD12 AD11 AD12 AD11

55 GND GND GND GND GND GND

56 AD10 AD9 AD10 AD9 AD10 AD9

57 AD8 C/BE0# AD8 C/BE0# AD8 C/BE0#

58 Vddq3.3 Vddq3.3 Vddq Vddq Vddq1.5 Vddq1.5

59 AD_STB0 Reserved AD_STB0 AD_STB0# AD_STB0 AD_STB0#

60 AD7 AD6 AD7 AD6 AD7 AD6

61 GND GND GND GND GND GND

62 AD5 AD4 AD5 AD4 AD5 AD4

63 AD3 AD2 AD3 AD2 AD3 AD2

64 Vddq3.3 Vddq3.3 Vddq Vddq Vddq1.5 Vddq1.5

65 AD1 AD0 AD1 AD0 AD1 AD0

66 Reserved Reserved Vrefcg Vrefgc Vrefcg Vrefgc

1. Reserved pins are only for future use by the A.G.P interface specification.
2. IDSEL# is not a pin on the A.G.P. connector.  A.G.P. graphics components

should connect the AD16 signal to the 3. 3 volt IDSEL# function internal to
the component.

3. All 3.3 volt cards leave the TYPEDET signal open.  All 1.5 volt cards tie
this signal hard to ground.
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5.6 A.G.P Connector Electrical Requirements

5.6.1 Determination of Averaged Contact Resistance

• Measure Total Contact Resistance RAB for each of the 124 contacts.

• Measure Bulk Contact Resistance RAC for each of the 62 lower contacts.

• Determine Contact Resistance for each of the 124 contacts using either
RCB = RAB for upper contacts or
RCB = RAB - RAC for lower contacts.

5.6.1.1 Bulk Resistance

It is the resistance of the thin pad connecting a common bus and the lower contact pad on the mating substrate.  Bulk
Resistance is measured between point A on a common bus and point C at the junction of the thin pad and the contact
pad as shown in Figure 5-15.

5.6.1.2 Initial Contact Resistance

10 mΩ (max) before testing for any power and ground contact as specified in Table 5-2.

5.6.1.3 Final Contact Resistance

5 mΩ (max) increase through testing, for a total of 15 mΩ (max) after testing, for any power and ground contact as
specified in Table 5-2.

5.6.1.4 Test Voltage and Current Rating

Test to be performed at 1.0 A per contact.  Voltage can vary to a maximum of 5.0 V during  test to attain 1.0 A.
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B (+V, +I)

Test Board

Contact

A(-V, -I)

Solder Joint

C (+V, +I)
Lower Contact

Common Bus

Figure 5-15:  Bulk Resistance Measurement

5.6.2 Contact Current Rating

1.0 Amps / contact.

5.6.3 Effective Inductance

10.5 nH (max).  Measured between two adjacent pins which have their solder tails shorted together (using a shorting
bar or other mechanism), probed at a location within 0.25 mm (.010 in) from the top of the contact area.

5.6.4 Pin-to Pin-Capacitance

2 pF (max) at 1 MHz.  Measured between two adjacent pins which are not shorted together, probed at a location
within 0.25 mm (0.010 in) from the top of the contact area.
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5.6.5 Pin-to-Pin Insulation Resistance

800 MΩ (min), as measured per EIA 364, Test Procedure 21.

5.6.6 Dielectric Withstand Voltage

400 VAC per MIL-STD-1344 Method D3001.1 Condition 1 or, EIA 364, Test Procedure 20.

5.6.7 Characteristic Impedance, Propagation, and Crosstalk Coupling

35<Zo<80 Ω, Delay < 150 ps, Crosstalk Coupling < 10%, using the TDR measurements described in
Sections 5.6.7.1 and 5.6.7.2.  The assumed rise time is 1.0 ns.

5.6.7.1 Connector Impedance, Propagation Delay, and Crosstalk Measurements

Figure 5-16 shows the test structure for impedance, propagation delay, and crosstalk measurements.

GND GND

1A

2A

3A

1B

2B

3B

All lines at same length (+/- 0.1 in),
Zo = 50 ohms, +/- 5%

Figure 5-16.  Test Structure for Impedance, Propagation Delay, and Crosstalk Measurements
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5.6.7.2 Impedance and Propagation Delay

Measurement Conditions (see Section 5.6.7.1):

• TDR/TDT measurement (or equivalent technique)

• Signal:ground ratio = 3:1

• Test board Zo = 50 Ω ± 5%

• Connector delay measured from substrate via to motherboard via (substrate via to be within 0.25 mm (.010 in)
of the top of the edge finger).

• Measurements made on each line while others floating

Zo:  35 <= Zo <= 80 Ω Delay:  Tpd < 150 ps

5.6.7.3 Crosstalk

Measurement Conditions (see Section  5.6.7.1):

• TDR/TDT measurement (or equivalent technique)

• Signal driven into line 1, response measured on line 2

Magnitude:

• Coupled voltage <= 10 % of input voltage

5.7 A.G.P Connector Environmental Requirements
Design, including materials, shall be consistent with the manufacture of units which meet the following
environmental standards.

5.7.1 Temperature Range

5.7.1.1 Operating

0 ºC to +85 ºC.

5.7.1.2 Shipping and Storage

-40 ºC to +105 ºC.
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5.7.1.3 Temperature Life

The connectors shall withstand a minimum of 500 hours at the maximum operating  temperature plus the maximum
recommended temperature rise for the contact due to electrical heating.  Normally, this is 85 ºC plus 20 ºC
rise = 105 ºC.

5.7.2 Visual Inspection

Connector must meet mechanical requirements as specified in Section 5.4.

5.7.3 Vibration, Random

Tested per MIL-STD-1344A, Method 2005.1, Condition 5 or, EIA 364, Test Procedure 28, Test Condition 5, Letter
B:  50 Hz to 2000 Hz, 3.1 Grms, 45 min/axis, tested in each of three perpendicular axes.  No electrical discontinuities
> 1.0 µs.  The connector must be mated with a mechanical sample outlined in Section 5.9 and be retained via the I/O
bracket which is attached with a metal screw into the chassis.

5.7.4 Shock

Tested per MIL-STD-1344A, Method 2004.1, Test G, or EIA 364, Test Procedure 27: Test Condition A: 100 G, 6
ms duration, Sawtooth waveform.  Three shocks applied in each of three perpendicular axes (18 total).  No electrical
discontinuities > 1.0 µs.  The connector must be mated with the mechanical sample outlined in Section 5.9 and be
retained via the I/O bracket which is attached with a metal screw into the chassis.

5.7.5 Durability

Mate and unmate samples for 49 cycles at a rate of 500 cycles per hour (max), using the same add-in card.  On the
50th cycle use a new add-in card.

5.7.6 Mating Force

MIL-STD-1344, Method 2013.1 or, EIA 364, Test Procedure 13: Force necessary to mate steel gage to samples at a
maximum rate of 0.5 in. per minute.  3.3 oz average initial insertion force per opposing pair of contacts (performed
over a minimum of 10 opposing pair contacts) using steel gauge, per MIL-STD-C-21097, except 1.58 mm (0.062 in.)
thick with a 70 degree chamfer angle (see Figure 5-8 for side view of substrate).  Total force < 12.9 lbs, per
Section 5.4.2.

5.7.7 Unmating Force

Force necessary to unmate substrate from samples at a maximum rate of 0.5 in. per minute.  Test performed similar
to 4.6, except steel gage is extracted.  1.98 oz average initial extraction force per opposing pair of contacts
(performed over a minimum of 10 opposing pair contacts) using steel gauge, per MIL-STD-C-21097, except
1.58 mm (0.062 in.) thick with a 70 degree chamfer angle (see Figure 5-8 for side view of the substrate).  Total
extraction force < 7.6 lb., per Section 5.4.2.
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5.7.8 Thermal Shock

-55 ºC to +85 ºC, 5 cycles per MIL-STD-1344A, Method 1003.1, Test Condition A or, EIA 364, Test Procedure 32:
Test Group 4 (see Table 5-3) unmated and unmounted for this test.  Test group 5 mated and mounted for this test.

5.7.9 Humidity Temperature Cycling

25 ºC to 65 ºC at 90 % to 95 % RH (non-condensing) for 10 days per MIL STD 202 Method 106 or EIA 364, Test
Procedure 31, Method 3.

5.7.10 Temperature Life

Mated samples exposed to 105 ºC air temperature for 500 hr per EIA 364, Test Procedure 17.  See Section 5.7.1.3.
Precondition samples with three insertion/extractions (min).

5.7.11 Mixed Flowing Gas:

Testing shall be performed in accordance with EIA 364, Test Procedure 65, Class 2A.  The test is split into two
parts:  (1) Half of the samples (4) are exposed unmated to the mixed flowing gas for seven days, and then mated for
the remaining seven days of the test.  (2) The other half of the samples (4) are mated while exposed to the mixed
flowing gas conditions for the entire 14 days.  Precondition samples with three insertion and extractions (minimum)
using a new substrate that has not gone through the mixed flowing gas test.

5.7.12 Withstand Temperature

Ramp temperature at rate of 1 ºC to 3 ºC/s to 145 ºC for two minutes, then ramp to 225 ºC for 40 s.  Test per EIA
364, Test Procedure 56, Procedure 5.

5.7.13 Porosity

For plating alternative 2.1.3 (1) EIA 364, Test Procedure 53, Nitric Acid Test.  For plating alternative 2.1.3 (2) EIA
364, Test Procedure 60, Procedure 1.1.2 Sulfur Dioxide Test.

5.7.14 Plating Thickness

Record thickness of plating on contact surface per EIA 364, Test Procedure 48, Method C.

5.7.15 Solvent Resistance

EIA 364, Test Procedure 11.

Requirement:  No damage to ink markings if applicable.
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5.7.16 Normal Force

EIA 364, Test Procedure 4.

Requirement:  Calculate normal force using nominal thickness add-in card.

5.7.17 Solderability

EIA 364, Test Procedure 52, Class 2, Category 3.

Requirement:  95 % coverage.

5.7.18 Contact Retention

EIA 364, Test Procedure 29, 300 gm (min) load per individual contact.

Requirement:  No movement > 0.38 mm (.015 in).

5.7.19 Maximum Force on Connector

No physical damage to connector after application of 150 lbf to fully seated add-in card.  Time duration for the test
is 30 seconds.  Force applied to top surface of add-in card, perpendicular to the motherboard, after the add-in card is
fully mated and bottomed out in the connector.  No movement > 0.076 mm (.003 in.).  Test performed within a 15 °C
to 35 °C temperature range.

5.7.20 Contact Backout Wipe

There shall be no discontinuities or improper connections after withdrawing an add-in card 0.99 mm (.039 in.), after
the add-in card is first bottomed out in the connector.

5.8 Safety Requirements
Design, including materials, shall be consistent with the manufacture of units which meet the following safety
standards:

UL Recognition

CSA Certified

5.9 Add-in Card Mechanical Sample
The add-in card mechanical sample should be defined by the motherboard manufacturer who is qualifying the
connector.
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5.10 Connector Qualification

5.10.1 Sample Size Per Group

Test samples are to be taken from two different lots.  For example, if eight samples are required, four samples will be
used from two different lots.

5.10.2 Test Sequence

The numeric values in each column of Table 5-3 represents the order in which specific tests from the list are to be
conducted.  The following is an example of how the test sequence works:  In Test Group 8, the first test is (1) visual
inspection, followed by test (2) contact retention, followed by test (3) solvent resistance.

Table 5-3:  Qualification Test

Test Description Sequence Test Group

(Reference Section Location) 1 2 3 4 5 6 7 8 9

Visual Inspection (5.7.2) 1,9 1,5 1,5 1,8 1 1,5 1 1 1

Termination Resistance (5.6.1) 3,7 2,4 2,4 2,4,6

Adjacent Pair Inductance (5.6.3) 2

Pin to Pin Capacitance (5.6.4) 3

Insulation Resistance (5.6.5) 2,6

Dielectric Withstand Voltage (5.6.6) 3,7

Characteristic Impedance, Propagation,
and Crosstalk Coupling (5.6.7)

4

Vibration (5.7.3) 6

Shock (5.7.4) 5

Durability (5.7.5) 4

Mating Force (5.7.6) 2

Unmating Force (5.7.7) 8

Thermal Shock (5.7.8) 4 3

Humidity Temperature Cycling (5.7.9) 5 5

Temperature Life (5.7.10) 3

Mixed Flowing Gas (5.7.11) 3

Resistance to Solder Heat (5.7.12) 2
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Table 5-3:  Qualification Test (continued)

Test Description Sequence Test Group

(Reference Section Location) 1 2 3 4 5 6 7 8 9

Porosity (5.7.13) 2

Plating Thickness (5.7.14) 3

Solvent Resistance (5.7.15) 3

Normal Force (5.7.16) 4

Solderability (5.7.17) 5

Contact Retention (5.7.18) 2

Maximum Force on Connector (5.7.19) 3

Contact Backout Wipe (5.7.20) 4

Sample Size per Test Group 8 8 8 8 8 4 4 4 4
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There are three general types of A.G.P. configuration and initialization operations:

1. Power-on self test (POST) code allocates resources to all devices in the system. (BIOS)

2. The operating system activates A.G.P. features. (not BIOS)

3. Microsoft’s DirectDraw* carries out the final runtime memory management activity.

The first two of these operations are described in this chapter.  Refer to Microsoft documentation for details on the
third operation.

6.1 POST-time Initialization
Conventional bus enumeration software in the POST code identifies all system devices (including A.G.P. devices),
creates a consistent system address map, and allocates system resources to each device.  An A.G.P. device (master or
target) must provide all required fields in the device’s PCI configuration header, including Device ID, Vendor ID,
Status, Command, Class code, Revision ID, and Header type.  (See the PCI Local Bus Specification for more detail.)
Supporting the PCI header allows conventional bus enumeration software to function correctly while being
completely unaware of A.G.P. features.

6.1.1 A.G.P. Master Devices

A.G.P. master devices have a certain amount of memory resources that must be placed somewhere in the system
memory address map using a PCI base address register.  These memory resources fall into two categories,
prefetchable and non-prefetchable address regions.  Prefetchable memory space is where the linear framebuffer is
mapped to provide performance improvements.  Non-prefetchable memory space is where control registers and
FIFO-like communication interfaces are mapped.  Each of these address regions should have its own base address
register.  See the PCI Local Bus Specification for a description of PCI base address registers.

6. System Configuration and A.G.P.
Initialization
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6.1.2 A.G.P. Target Devices

Figure 6-1 illustrates a typical host bus bridge (also known as corelogic) implementation that supports the A.G.P.
interface along with other typical interfaces (or ports).  Ports, other than the A.G.P. port, of the corelogic are
included for illustrative purposes only and are not required by this interface specification.  The example corelogic
provides ports to the processor, system memory, the PCI bus, and to A.G.P.  The shaded area represents the A.G.P.
target.  The blocks inside the dashed line represent different functions that the host bus bridge usually provides.
Blocks that are not part of the A.G.P. target (shaded area) are included only for discussion purposes and are not
required by this interface specification.  The following paragraphs describe which accesses are typically supported at
each port; whether an access is supported or not may depend on the destination of the request.  For example, arrows
1, 2 and 3 are typically implemented by a host bus bridge that supports the PCI bus, but are not required if
supporting an A.G.P. interface.  Arrows 4 through 8 are associated with the A.G.P. port.  The arrows in the figure
describe paths in which transactions are routed inside the corelogic.  Each port will be discussed and the associated
paths (arrows) will be described.

System
Memory

Memory
Controller

Processor

P2P
Bridge

A.G.P.
Request
Queue

PCI
Controller

PCI
Target/Master

PCI
Target/Master

PCI
Target/Master

4 1 2

36

7
5

8

6-1

A.G.P. Compliant Corelogic

Host Bridge
Config Space

PCI Target

A.G.P. Master

A.G.P. Compliant Master

PCI Master
(Optional)

Figure 6-1:  Configuration View of an A.G.P. Target
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6.1.3 Corelogic Ports

6.1.3.1 Processor Port

The processor port is not required when supporting an A.G.P. interface, but is typically supported by a host bus
bridge.  The processor port provides a means for the processor to generate accesses to the PCI controller (path 1), to
the P2P (PCI to PCI bridge) (path 4), and to the memory controller (path 2).  The corelogic determines to which port
these accesses are routed by using information stored in the Host Bus Bridge Config Space block.  This information
is provided during the initialization process.

6.1.3.2 System Memory Port

This port provides a means to connect system memory to the corelogic.  The memory controller is responsible for
converting accesses that are initiated on other ports (processor, A.G.P., and PCI) into memory commands.

6.1.3.3 PCI Port

The PCI controller converts processor accesses into PCI transactions.  Since the processor has no Configuration
commands, the PCI controller generates PCI Configuration commands as described in the PCI Local Bus
Specification.  The PCI controller takes memory commands that address system memory and forwards them to the
Memory controller (path 3).  The PCI controller also provides a means for PCI masters to access the PCI target that
resides on the A.G.P. port and is represented by path 6 in the shaded area.  This path is limited in its functionality
and the corelogic is not required to provide full PCI to PCI bridge functionality.  The corelogic provides support for
PCI write43 commands as described in the PCI Local Bus Specification, while support of other PCI commands is
optional.

6.1.3.4 A.G.P. Port

When the corelogic supports an A.G.P. port, it requires new logic that has not been incorporated in previous
chipsets, however no new functionality is required to boot the system.  This new logic is shown in Figure 6-1 as a
shaded area.  To enable the use of existing enumeration code (unmodified) to handle A.G.P. devices the corelogic
will use functionality already defined by the PCI Local Bus Specification.  The P2P bridge block facilitates the
configuration of the second I/O port (A.G.P.) of the corelogic using enumeration code and follows the PCI to PCI
Bridge Architecture Specification.  The P2P bridge makes it possible to configure the PCI target interface in an
A.G.P. master device.  This information is also used to route memory and I/O addresses to the PCI target of an
A.G.P. master from the processor.  The P2P bridge block is not required to be a fully functioning PCI to PCI bridge.
The corelogic is only required to support PCI write commands from the PCI to the A.G.P. port.  The corelogic may
optionally support other PCI commands between PCI and A.G.P. or A.G.P. and PCI but there is no requirement.
The processor can initiate transactions to a PCI target on the A.G.P. port by path 4.  Path 7 optionally provides a
path for the A.G.P. master using PCI protocol to access a target on PCI.  The A.G.P. master can initiate PCI
commands to the memory controller by path 5.  Path 5 and path 3 have the same capabilities.  The new functionality
provided by the A.G.P. port is represented by the A.G.P. Request queue block.  The request queue accepts A.G.P.
commands from the A.G.P. master.  Once A.G.P. commands are accepted by the request queue, it is implementation
specific as to how these requests are presented to the memory controller (see path 8).  The A.G.P. master issuing

                                                          

43 Memory Write and Memory Write and Invalidate commands.
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A.G.P. commands can only access system memory.  Support to any other port is not required or supported by this
interface specification.

The A.G.P. master (solid line around the A.G.P. master, PCI master and PCI target blocks also identified as an
A.G.P. master) is allowed to initiate any A.G.P. commands described in Section 3.3.  The PCI master is allowed to
initiate any PCI command specified in the PCI Local Bus Specification.  Which commands the corelogic is required
to support and which commands may be optionally supported are listed in Table 6-1.  The manner in which the
corelogic behaves when an unsupported command is used is not defined by this interface specification44.

Table 6-1:  Commands Supported by Each Port

Path Typically Supported by
Corelogic

Commands Required to be
Supported by Corelogic

Commands Optionally
Supported by Corelogic

1 Processor memory read and
write and I/O read and write.
The corelogic generates PCI
Configuration Read and Write
commands from Processor I/O
read and write commands per
the PCI Local Bus
Specification.

None Interrupt Acknowledge and CPU
Special Cycles.

2 Processor memory read and
write commands.

None N/A

3 Memory Read, Memory Read
Line, Memory Read Multiple,
Memory Write, and Memory
Write and Invalidate.

None I/O (read and write) and
Configuration (read and write).

4 Same as 1. None N/A

5 Same as 3. None N/A

6 N/A Memory Write and Memory
Write and Invalidate

I/O (read and write),
Configuration (read and write),
and memory read (Read, Read
Line, and Read Multiple).

7 N/A None I/O (read and write),
Configuration (read and write),
memory read (Read, Read Line,
and Read Multiple) and memory
write (Write and Invalidate and
Write).

8 N/A A.G.P. commands N/A

The Host Bridge Config Space block contains configuration registers used to specify parameters associated with the
GART and circuitry in the A.G.P. interface.  The corelogic uses a PCI base address register to request a naturally

                                                          

44 The chipset can ignore the request and allow it to be terminated with Master-Abort or claim the access and return
FFFF FFFFh on a read and drop write data by asserting TRDY#.



Revision 2.0

247

aligned block of memory address space in which to locate the GART address range.  Initiation code determines the
size requested and allocates the resource.  The bridge also uses this information to route requests initiated by the
processor to either the memory controller, PCI controller, or P2P bridge.

6.1.4 Boot-time VGA Display Device(s)

Most A.G.P. graphics accelerators will have a VGA display device.  This means some systems may have more than
one VGA device.  Conventional BIOS code selects one VGA device by first searching the ISA bus, then PCI add-in
card slots (includes A.G.P. connector), and then motherboard devices (includes motherboard A.G.P. devices).  Note:
boot-time bus enumeration software is unaware of A.G.P. features.

6.1.5 Operating System Initialization

The operating system initializes A.G.P. features by performing the following operations:

1. Allocate memory for the A.G.P. remapping table.

2. Initialize the A.G.P. target’s address remapping hardware.

3. Set the A.G.P. target and master data transfer parameters.

4. Set host memory type for A.G.P. memory.

5. Activate policy limiting the amount of A.G.P. memory.

An A.G.P. chipset driver API will be used for the second item.  Refer to the appropriate Microsoft device driver
interface kit for details.

The third item requires access to configuration registers defined later in this interface specification.  Setting bit 4
(Status register) at offset 6 indicates the device implements New Capabilities mechanism as described in the PCI
Local Bus Specification.  The New Capabilities structure is implemented as a linked list of registers containing
information for each function supported by the device.  A.G.P. status and Command registers are included in the
linked list.  The structure for the A.G.P. specific ID and structure is illustrated in Figure 6-2.

1Status

Capability Registers (last device)

NULL

A.G.P. Status Register

A.G.P. Command Register

ID

ID = 2h

34h

08hCommand

MinorMajor

Capability Pointer

Bit 4

Figure 6-2:  Location of A.G.P. Capabilities
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Configuration registers are used by the operating system to initialize A.G.P. features.  These features must be
supported by both A.G.P. master and target devices in the following registers.  The explanatory text describes the
specific behavior of the target and master with respect to each function.

6.1.6 PCI Status Register

Bit Field Description

31:5 See the PCI Local Bus Specification.

4 CAP_LIST If the CAP_LIST bit is set, the device’s configuration space implements a
list of capabilities.  This bit is Read Only.

3:0 See the PCI Local Bus Specification.

6.1.7 Capabilities Pointer - (Offset 34h)

Bits Field Description

31:8 Reserved Always returns 0 on read; write operations have no effect.

7:0 CAP_PTR This field contains a byte offset into the device’s configuration space
containing the first item in the capabilities list and is a Read Only
register.

CAP_PTR gives the location of the first item in the list, which, in this example, is for the A.G.P. device.  Device
capabilities may appear in any order in the list.  The CAP_PTR register and the Capability Identifier register are
Read Only with reserved fields returning zero when read.

6.1.8 Capability Identifier Register  (Offset = CAP_PTR)

Bits Field Description

31:24 Reserved Always returns 0 on read; write operations have no effect.

23:20 MAJOR Major revision number of A.G.P. interface specification this device
conforms to.

19:16 MINOR Minor revision number of A.G.P. interface specification this device
conforms to.

15:8 NEXT_PTR Pointer to next item in capabilities list.  Must be NULL for final item in list.

7:0 CAP_ID The value 02h in this field identifies the list item as pertaining to A.G.P.
registers.

The first byte of each list entry is the capability ID.  The PCI Special Interest Group assigned A.G.P. an ID of 02h.
The NEXT_PTR field contains a pointer to the next item in the list.  The NEXT_PTR field in final list item must
contain a NULL pointer.
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6.1.9 Status Register (Offset CAP_PTR + 4)

Bits Field Description

31:24 RQ The RQ field contains the maximum number of A.G.P. command
requests this device can manage.  “0” means a depth of 1 entry, while
FFh means a depth of 256 entries.

23:10 Reserved Always returns 0 when read; write operations have no effect.

9 SBA If set, this device supports sideband addressing.

8:6 Reserved Always returns 0 when read; write operations have no effect.

5 4G If set, this device supports addresses greater than 4 GB.

4 FW When the bit is set, the device supports FW transfers.

3 Reserved Always returns 0 when read; write operations have no effect.

2:0 RATE The RATE field indicates the data transfer rates supported by this
device.  A.G.P. devices must report all that apply.

Bit Set Transfer Rate
0 1X
1 2X
2 4X

Note:  The RATE field applies to AD and SBA buses.

The A.G.P. Status register is a read only register.  Writes have no affect and reserved or unimplemented fields return
zero when read.
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6.1.10 Command Register  - (Offset CAP_PTR + 8)

Bits Field Description

31:24 RQ_DEPTH Master:  The RQ_DEPTH field must be programmed with the maximum
number of pipelined operations the master is allowed to enqueue in the
target.  The value set in this field must be equal to or less than the value
reported in the RQ field of target’s Status register.  “0” means a depth of
one entry, while FFh means a depth of 256 entries.

Target:  The RQ_DEPTH field is reserved.

23:10 Reserved Always returns 0 when read; write operations have no effect.

9 SBA_ENABLE When set, the sideband address mechanism is enabled in this device.

8 AGP_ENABLE Master:  Setting the AGP_ENABLE bit allows the master to initiate
A.G.P. operations.  When cleared45, the master cannot initiate A.G.P.
operations.

Target:  Setting the AGP_ENABLE bit allows the target to accept
A.G.P. operations.  When cleared, the target ignores incoming A.G.P.
operations.

Notes:

1. The target must be completely configured and enabled
before the master is programmed.

2. A device can make no assumptions as to the sequence of
command field programming, except that AGP_ENABLE is
the last bit set.  Concurrently setting all command fields
and the AGP_ENABLE bit using a single 32-bit write is
also permitted.

The AGP_ENABLE bit is cleared by AGP_RESET.

7:6 Reserved Always returns 0 when read; write operations have no effect

5 4G Master:  Setting the 4G bit allows the master to initiate A.G.P. Requests
to addresses above the 4 GB address boundary.  When cleared, the
master is only allowed to access addresses in the low 4 GB of the
address space.

Target:  Setting the 4G bit enables the target to accept A.G.P. protocol
DAC46 commands when bit 9 is cleared.  Setting the 4G bit enables the
target to accept a Type 4 command and to utilize A[35::32] for a Type 3
command when bit 9 is set.

                                                          

45 When this bit is cleared, the A.G.P. master is allowed to quit driving the SBA port; however, if bits 1 or 2 are set
in the Rate register, the master is required to perform a re-synch cycle before initiating a new request.  (See Section 0
for details.)

46 This bit has no affect on whether PCI protocol DAC is supported or not.
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4 FW_Enable When this bit is set, the device must do Memory Write transactions from
the corelogic to the A.G.P. master following FW47 protocol.  When this bit
is cleared memory write transactions from the corelogic to the A.G.P.
master follow standard PCI protocol.

3 Reserved Always returns 0 when read, write operations have no effect

2:0 DATA_RATE One (and only one) bit in the DATA_RATE field must be set to indicate
the desired data transfer rate.  The same bit must be set on both master
and target.

Bit Set Transfer Rate
0 1X
1 2X
2 4X

Note:  The DATA_RATE field applies to AD and SBA buses

The A.G.P. Command register is a read/write register, with reserved fields returning zero when read and remaining
unaffected when written.  All bits in the A.G.P. Command register are initialized to zero at reset.  How a device
behaves when this register is modified during runtime operation is not specified with the following exception.  If the
AGP_ENABLE bit is cleared, the A.G.P. master is not allowed to initiate a new request.

6.2 A.G.P. Master MDA Resource Use Restrictions
A.G.P. platforms may support multiple graphics adapters in the system, including monochrome device adapters
(MDA) off the PCI or standard expansion buses.  A.G.P. graphics controllers which support coexistence with an
MDA controller are required to not use any of the following standard MDA resources, whenever an MDA is present
in the system:

Memory addresses: 0B0000h - 0B7FFFh

I/O Addresses: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, and 3BFh,

(including ISA address aliases, A[15::10] are not used in decode)

A.G.P. graphics controllers may utilize the MDA resources if an MDA is not present in the platform.  A.G.P.
graphics controllers that do not support coexistence with MDA are not required to follow these MDA resource use
restrictions; however, such controllers will cause platform failures if MDA devices are present.

During system initialization, software needs to determine if an MDA is present in the system or not.  Before the
primary graphic device is enabled, software will generate a write access to an MDA memory range
(B0000h-B7FFFh), then read it back to determine if MDA is present.  If an MDA device is present, software may
configure the corelogic to pass MDA references to the primary PCI bus (which can then be claimed by the expansion
bus bridge).  How the corelogic chooses to provide this functionality (if supported) is specific to the implementation
of the corelogic and is beyond the scope of this interface specification.  Software completes the initialization process
by allocating resources requested by the different agents and enabling the devices to operate.

                                                          

47 Fast Write protocol is not defined nor supported for accesses from the A.G.P. master to the corelogic.  This type of
transaction follows standard PCI protocol.
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6.3 Multifunction A.G.P. Master
A multifunction device consists of at least two independent functions integrated on a single piece of silicon.  Any
single function device can be composed of multiple sub-functions.  The left block diagram in Figure 6-3 is a single
function PCI agent that has two subfunctions x and y.  The right hand block is a multifunction device that has
functions A and B.  Note that A or B could have multiple subfunctions as illustrated in the left block diagram.  From
a software point of view, the main difference between a single function device (that has multiple subfunctions) and a
true multifunction device, is that a unique device driver is required for each function, but is not required for each
subfunction.  For a multifunction PCI device, the only logic shared between functions is the actual I/O buffers and an
internal arbiter that determines when each function gains access to the bus.  Beyond this difference, each function is
completely independent of all other functions.  A PCI example might be a LAN and a SCSI controller each of which
was developed independently but are now integrated on the same silicon.  Function A in the figure could be the LAN
controller and function B could be the SCSI controller.

Since only a single REQ#/GNT# pair is available at the device interface, the arbiter determines which interface
logic may become a master on the bus.  Each must do its own decode and assert DEVSEL# when selected.  The
existing device driver for each function can be used unmodified48 with the new integrated device.
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Figure 6-3:  PCI Device Block

When implementing an A.G.P. multifunction device, it is similar to a PCI multifunction device, but with significant
differences.  Since the A.G.P. master sequencer can only request a single data transfer rate, all functions on the
device must use the same rate.  All devices must use either 1x, 2x, or 4x and are not allowed to switch data rates
between transactions.  The master must also indicate whether it will enqueue requests via the AD bus or the SBA
port.  Simply integrating independent A.G.P. implementations does not result in a viable implementation since the
master must present one choice per option.  This requires all functions of the device to use the same modes.

                                                          

48 This means that the same driver is used independent of whether a single function card is inserted in the system, or
a multifunction card containing the same function is used.
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On the other hand, the corelogic must support all basic modes of operation defined by this interface specification.  It
may optionally support the enhanced modes (4x and FWs transactions).  However, the corelogic is not required to
support all modes at the same time.  For example, the corelogic can be programmed to accept requests on the AD bus
or the SBA port but is not required to support both at the same time.

No device driver changes are required for a PCI multifunction implementation.  The same should be true for a
multifunction A.G.P. implementation.  However, care needs to be taken to ensure that this is true.  If the driver used
information on how the interface was implemented, the integration of multiple functions could require driver
changes.  For example, if the driver used the RQ_DEPTH value to optimize its operation, the device driver would
require changes when the function is integrated with other A.G.P. functions.  In the multifunction case, this value is
shared between multiple functions and cannot be used directly by the driver.  On the other hand, if this type of
information is not used directly by the driver, no driver changes are required.

Figure 6-4 shows how an A.G.P. master would support multiple functions.  Note that unlike the PCI block diagram
(Figure 6-3) where there are differences between a multifunction device and a single function device with multiple
subfunctions, A.G.P. has no differences.  Consequently, function 0 represents the A.G.P. capabilities of the device
regardless of how many functions use the A.G.P. interface.
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6.3.1 A.G.P. Configuration Registers

Each A.G.P. function is required to implement its own PCI target interface.  This ensures that system resources
(memory space, I/O space, and an interrupt line) that the device requires are assigned during configuration time.

Since A.G.P. capabilities are queried after the operating system is running, function 0 (single or multifunction
device) of the A.G.P. master presents its capabilities to the system in the A.G.P. Status register.  System software
then programs the A.G.P. Command register as to how the A.G.P. interface will operate.  A summary of operating
options is presented in Table 6-2.  The designer must ensure that all functions that use the interface make the same
choices.

Table 6-2:  A.G.P. Options

A.G.P. Attribute Options

Rate 1x, 2x, or 4x

FW Support or not

4 GB addressing Support or not

Requests SBA port or PIPE#

Outstanding requests 1 to 256

Close attention should be paid to the RQ field of the Status register and the RQ_DEPTH field of the Command
register.  The RQ field must represent the sum of the maximum number of memory reference transactions that all
functions on the device can have outstanding at any given time.  For example, if function 0 can have 24 A.G.P.
Requests outstanding and function N49 can have an additional 12 A.G.P. Requests, then the RQ field of the master
needs to indicate that up to 36 requests can be outstanding at any given time.

Careful attention needs to be paid when the RQ_DEPTH field is programmed to a value less than the RQ field.
When this condition occurs, the designer must choose how the available request slots are allocated.  A simple
implementation would be to do a first come first served approach.  A more complicated, but fairer option would be
to allocate a fixed ratio to each function.  Any choice is acceptable as long as the A.G.P. master never allows more
requests to be enqueued then the RQ_DEPTH field allows.

The AGP_ENABLE bit (9) in the Command register controls all master functions that use the A.G.P. interface.
When this bit is cleared (0), the interface is not allowed to make any new requests to the corelogic.  This bit has the
same meaning for both single or a multifunction implementations.  For example, if function 0 is a 3D engine and
function 4 is a video capture device, both functions are disabled when the AGP_ENABLE bit (which resides in
function 0) is cleared.  If individual enable bits are desired, these are provided for in function specific space.

                                                          

49 The device is not required to implement the second function as number 1, but can assign it any value between 1
and 7.
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6.3.2 Internal Arbiter

In a PCI multifunction device the arbiter determines which PCI master interface logic gains access to the device’s
pins to initiate a request on the bus.  This same functionality does not exist in a multifunction A.G.P. implementation.
The arbiter in the A.G.P. master sequencer determines which request is enqueued next, regardless of which function
generated the request, but common logic presents the request to the system.

6.3.3 Deadlock Avoidance

When multiple A.G.P. functions are supported, the designer must ensure that no deadlocks or livelocks are possible.
The designer must ensure that the master device appears to the corelogic as a single function agent.  This requires
that the A.G.P. master make no assumptions as to the order in which requests are completed.  Note that in a
multifunction implementation, function A and function B may interfere with each other’s operation.  For example,
function A has LP Read requests 4, 5, and 9 outstanding while function B has LP Read requests 6, 7, and 8
outstanding.  If function B asserts RBF# when data for request 7 is returned, it will cause the delay of function A’s
data until request 8 completes.  Function A may have room to accept the data but the corelogic is not allowed to
return it until transaction 8 completes.  Therefore, care needs to be taken to balance how requests are enqueued and
provide sufficient buffer to ensure that one function does not affect the other.
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A.  Terminology

A.G.P. bus  Abbreviation for PCI/A.G.P. bus.

A.G.P. master  An A.G.P. compliant master interface that is capable of generating A.G.P.
pipelined read/write operations per this interface specification.

A.G.P. operation  Memory read/write operation subject to A.G.P. ordering rules and protocol.
A.G.P. operations that are initiated by PIPE# or SBA bus.

A.G.P. port  Connection point on a chipset where an A.G.P. compliant master may be
attached.

API  Application Programming Interface.

Bus 0  Compatibility PCI bus (where the ISA bridge resides).

Bus n  PCI/A.G.P. bus.  n = 1 when no PCI to PCI Bridges present on Bus 0.

Chipset  Motherboard chipset that provides connections to: Host Bus, Compatibility
PCI bus, and A.G.P. interface.

DirectX  Microsoft API’s for accessing graphics and audio hardware.

DirectDraw  Microsoft graphics API.

Display surface  Memory area containing graphics data object.

Fence  Means of synchronizing A.G.P. write operations with subsequent A.G.P.
read operations.

Flush  Operation that makes an A.G.P. compliant target’s accesses to system
graphics memory visible to other parts of the system.

A.G.P. target  An A.G.P. compliant target interface that is capable of interpreting A.G.P.
addresses (e.g., the chipset) per this interface specification.

Local graphics memory  Memory local to the graphics controller.

Non-prefetchable memory  PCI registers that have side effects.

Prefetchable Memory  PCI memory and memory mapped registers that are free from side-effects.

Uncacheable Memory  Host caching protocol used on I/O operations, non-prefetchable regions or
prefetchable regions not supported by hardware coherency.

Ordering rules  Rules specifying when the effect of a read or write operation can be observed
by another operation.

Paging  Movement of data between disk and other memory levels of the virtual
memory system.

Pipelining  A.G.P. read/write operations use a split transaction like paradigm where one
or more addresses may be transferred during one bus operation and data is
transferred during another.

POST or POST Code  Initialization software executed out of the startup ROM.

SPI  System Programming Interface.
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Synchronization  A.G.P. ordering rules allow certain memory operations to complete in a
different order than initiated by the master which improves performance.
Synchronization operations provide additional control of the completion
order.

System graphics memory  System memory accessible via the A.G.P. port by the graphics controller.

WriteBack  A type of Host cache coherency used for application memory.
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B.  A.G.P PRO
This appendix contains the A.G.P. PRO specification for the high performance workstation market segment.  The
specification will be available from Intel in Q2 of 1998.  A.G.P. PRO is expected to deliver up to four times the
electrical power of the standard A.G.P. interface through an extended connector.  This appendix will have electrical,
mechanical, and thermal specifications for the A.G.P. PRO connector, card, and chassis.  It will also include
examples of possible thermal solutions.

A.G.P. PRO will retain mechanical and functional compatibility with A.G.P.  This implies that an A.G.P. add-in card
can plug into an A.G.P. PRO connector although the reverse will not be allowed.


