Program Verification and Hardware Synthesis 1

Program Verification

and
Hardware Synthesis

A common approach to hardware design is to
write a program in a hardware description
language and then compile it to a state machine
using a synthesis system. Some correctness
properties are naturally expressed at the
programming level and established by program
verification methods, but others are best specified
in terms of the state transitions of the synthesised
machine. I will give examples of both kinds of
properties, and then discuss how they can be can
be verified using a theorem-prover.

This talk is intended for a general audience.

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 2

Synthesis Design Flow

(From Kurt Keutzer’s paper in FMCAD ’96)

Algorithmic Specification

Manual
1

Behavioral Specification

Behavioral
Synthesis Tools

Manuai design

HOL. Simulation

Unoptimized
L.ogic Description

Gate-level

Optimized - Simulation

Logic Description

Physicat Design
Tools

Circuit-devel
Layout (= Simulstion
|
Manufacturing
Integrated Circuit

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 3

Register Transfer Level

e Currently RTL is the ‘workhorse’ level

— lower levels for EE experts

— higher levels still experimental
e Two views of RTL:

— programming (HDL)

— state machine (structure)

e Specification and verification needed with

respect to both views

— program verification for some properties

— state space analysis for others

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 4

e Traditional verification uses simulation

— event simulation

— cycle simulation

e Formal verification uses automated proof

— boolean equivalence checking

* uses OBDDs etc
* now standard

— model checking

x checks properties of state machines
x currently used by Intel, TI, HP etc

— theorem proving

x uses powerful undecidable logics
x long term promise
x still a research area

e Reasons for formal verification

— commercial: better debugging
— safety critical: save lives

— security critical: ensure privacy/secrecy

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 5

Rest of Talk

e Mainly RTL Verification
— 1deas relevant to behavioural level too
e Combine:

— program verification

— state machine analysis

e HDL semantics
— based on simple hardware synthesis

e Discussion of needed theorem prover support
— methodology, not details

e Some related current research at Cambridge

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 6

Program Specification

e Hoare triples:

{precondition} program {postcondition}

e Semantics (total correctness):

— if the precondition holds
— then the program terminates
— in a state in which the postcondition holds

e Example: a simple division program

(X divided by Y gives quotient Q & remainder R)

{Y > 0} (precondition)
begin R = X; Q = 0;
while (Y < R)
begin
R=R-1Y;
Q=Q+1;
end
end

{X = R+YXQ A R < Y} (postcondition)

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 7

Program Logic

e Much knowledge about verifying Hoare triples

— establishing invariants
— termination via ‘variants’

— weakest preconditions
e Standard

— taught to undergraduates

— textbooks
e Nice to mechanise

— verification conditions

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 8

Hardware versus Program

e Continuously running

— always <statement>
e (Calculations may spread over several cycles
— @CLOCK <statement>

e Need input/output protocol,

various possibilities:

— tri-state bus

— handshake, e.g:

* device available when BUSY=0
* to start assert Start=1
x results on Q and R when next BUSY=0

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 9

Division Program + I/0

always @CLOCK

if (Start)
begin
X =1Inl; Y = In2;
BUSY = 1;
R=X; Q= 0;
while (Y<R)
begin
@CLOCK
R = R-Y;
N = Q+1;
end
BUSY = 0;
end

e Start, Inpl, Inp2 controlled by environment

e X, Y, Q, R, BUSY controlled by program
(initially 0)

e device available when BUSY=0
e to start computation assert Start=1

e results on Q and R when next BUSY=0

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 10

Control + Data

HDL program specifies a machine:

def
Mpy = always eCLOCK

if (Start)
begin
X =1Inl; Y = In2;

that contains an embedded program:

f
Sp1v e R=X; Q =20;

while (Y<R)
begin
@CLOCK
R = R-Y;
N = Q+1;

end

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 11

Specifying Properties of Machines

e Machines determine sequences of states
— one for each cycle
e Environment provides values for In1, In2

e Read inputs & update state every clock tick
(RTL behaviour)

e Variables range over sequences of values

e Temporal operators specify
properties of sequences

O(Y>0)

value of Y always greater than 0

O(X = R+(YxQ))
sometime X will equal R+(YxQ)

O(BUSY=1 = < (BUSY=0))
if BUSY=1 then sometime later BUSY=0

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 12

Correctness of HDL Divider

Need to show:

e [f Start is asserted when BUSY=0 then:

— Inpl and Inp2 read during that cycle
— eventually BUSY becomes 0 again

— X = R+YXQ A R<Y when next BUSY=0
e Can split these into:

— program correctness (Hoare logic)

{X = R+¥xQ A R < Y}

— control correctness (temporal logic):
BUSY=1 < control inside Spry
and

O(BUSY=1 = < (BUSY=0))

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 13

Making Cycles Explicit

With respect to an HDL program:

always @CLOCK
if (Start)
begin
X =1Inl; Y = In2;
BUSY = 1;

How do we interpret Hoare triples:
{Y > O} SDIV {X = R+YXQ A R<Y}

and temporal formulas
BUSY=1 < control inside Spry

O(BUSY=1 = < (BUSY=0))

Answer:
e convert HDL to a state machine

e then interpret w.r.t. input/state sequences

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 14

Synthesis Semantics

e HDL semantics = translation to machine

e Definitional synthesis

— not optimised implementation!

— c.t. definitional interpreters for

programming languages
e Doesn’t reveal IP of proprietary tools

— approach being used to define semantics of
synthesisable Verilog

— i.e. ‘Synopsys subset’
(Synopsys are helping)

e Engineer friendly

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 15

Compiling to State Machines

e Introduce a ‘program counter’ pc

— intialised to O
— encodes control state
— one state for each ecrLock

e Symbolically execute

— from each ecLock
— t0 next @CLOCK

e Example

always @CLOCK (State 0)
begin
X = Inp;
@CLOCK (State 1)
X=X+ 1;
end

compiles to (using Verilog-like notation)

case (pc)

O : pc=11] X =1Inp (parallel assignment)
1: pc=0 || X=X+1

endcase

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 16

Another Sequencing Example

always @CLOCK (State 0)

begin

X = Inpl; Y = X + Inp2;
@CLOCK (State 1)
OUT = X + Y;

end

compiles to

case (pc)
O: pc =1
X = Inpl
Y = Inpl + Inp2
OUT = OUT
1 : pc =0
X =X
Y =Y
OUT = X + Y
endcase

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 17

Conditional Example

always @CLOCK (State 0)

begin
if (Choose) X = Inl; else X = In2;
QCLOCK (State 1)
OUT = X + 1;

end

compiles to

case (pc)

O: pc =1
X = Choose 7 Inl : In2
OUT = 0UT

1 : pc =0
X = X
OUT = X + 1

endcase

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 18

While Example: divider

always OCLOCK (State 0)
if (Start)
begin X = Inl; Y = In2; BUSY = 1;
R=2X;,Q=0;
while (Y < R)
QCLOCK (State 1)
begin
R=R-Y; Q=0Q+1;
end
BUSY = 0;
end
compiles to
case (pc)
O : pc =Start 7 In2<Inl1 71 : 0 : O
X = Start 7 Inl : X
Y = Start ? In2 : Y
7 Inl : R

Q = Start 7 0 : Q
BUSY = Start 7 In2<Inl 7 1 : O : BUSY
1 : pc=Y<@®Y)?71:0
| X =
| Y=
| B =R
I
]

|
|
| R = Start
|
|

D J < <
+

Q = Q+1
BUSY ='Y§(R-Y) ? BUSY : O
endcase

BUSY = 1 & control inside Spry
can now be interpreted as

O(BUSY =1 & pc=1)

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 19

Divider + more states

always @CLOCK (State 0)
if (Start)
begin X = Inl; Y = In2;
BUSY = 1;
@CLOCK (State])
R=X; Q=0;
@CLOCK (State 2)
while (Y < R)
begin
@CLOCK (StaﬁeB)
R=R-Y;
@CLOCK (State 4)
Q=0Q+1;
end
BUSY = 0;
end

e Allocating operations to states is

behavioural synthesis

e Functional specification unchanged by

additional states

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 20

Corresponding Machine

O: pc==Start 71 : 0
X = Start 7 Inl : X
?

I
| Y = Start ? In2 : Y
' R=R| Q=0
| BUSY = Start 7 1 : BUSY
1 : pc =2
| X=X Y=Y
| R=X
| a=0
| BUSY = BUSY
2: pc=Y<R 73 :0
| X=X||Y=Y||R=R| Q=0Q
| BUSY = Y<R 7 BUSY : O
3 : pc =4
| X=X Y=Y
| R = R-Y
| Q=0
| BUSY = BUSY
4 : pc =Y<R 7?73 :0
| X=X||Y=Y| R=R
| Q= Q+1
| BUSY = Y<R 7 BUSY : O
endcase

BUSY = 1 < control inside Spry
can now be interpreted as

O(BUSY =1 & pce{1,2,3,4})

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 21

Program Proof 4+ State Exploration

e Data processing verification via

ordinary program logic

— may require human guided reasoning

(e.g. guessing invariants)

e Control correctness via state space of

synthesised machine

— often automatic (c.f. model checking)

design = program + machine
verification verification analysis

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 22

Hoare Logic as Temporal Logic

e Hoare triples can be interpreted on machine

behaviours

— roughly
P} S {9}
1s:

O(P A pceS = pceS Until Q A —pceS)
e Hoare-style reasoning principles derivable

— for ideas (applied to real-time) see:

M.J.C. Gordon, A mechanized Hoare
logic of state transitions, in A Classical
Mind, Festschrift for Professor C.A.R.

Hoare edited by Roscoe, W.,
Prentice-Hall, 1994, pp. 143-159.

— for RTL hardware see lecture notes on web

http://www.cl.cam.ac.uk/users/mjcg/

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 23

Tower of Semantic Abstraction

Everything can be reduced to pure logic

Hoare Triple
{P} S {2}

Temporal Logic
O(P A pceS = pceS Until Q A —pceS)

Raw Logic
Vt. P(t) N pc(t)eS =
At />t A Q') N —pc(t')eS A
(V" t<t" At <t = pc(t')eS)

e P Until O

means Q will eventually hold true
and until it does P holds

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 24

Handling Multiple Descriptions

e Need to represent

— Hoare triples
— temporal formulas & state machines

— verification conditions
(could involve complex arithmetic
or even real analysis — e.g. FP, DSP)

e Need a general purpose formalism
— suitable for ‘arbitrary mathematics’

— mechanizable

e Several general systems exist

— set theory
(Isabelle/ZF, HOL-ST)
— classical higher order logic
(PVS, HOL, Isabelle/HOL, IMPS)

— constructive type theory
(Nuprl, Lego, Coq, Alf)

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 25

Pragmatic Requirements

e Combine general framework with ‘best

practice’ specialised tools

e Many decision procedures known
(hot research area: CAV etc.)

— tautologies
— linear arithmetic

— temporal properties

e Partial decision procedures can often handle
simple verification conditions (CADE)

— inductive proofs (Boyer-Moore, Clam)

— tableau methods

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 26

Existing Approaches to Integration

e Add ‘trusted’ external oracles to general

proof system

— OBDD and model checkers for PVS
— arithmetic decision procedures to Isabelle
— LTL in HOL (Karlsruhe)

Features:

— get state-of-the-art efficiency
— only as sound as the oracle

— low integration with other tools

e Kflicient derived rules

— tableau provers in Isabelle & HOL

— linear arithmetic in HOL
Features:

— guaranteed sound
— inefficient (not as bad as some say)

— high integration with other tools

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 27

New Project

(PROSPER)

e Attempt to have our cake and eat it
— general purpose system
— clean integration with external oracles
— support for specific applications
— theorem provenance tracking

e Approach

— start by ‘deconstructing” HOL9S

x theory database
* rewriting engine
* decision procedures and provers
x Interactive shell

— devise protocol for external tools
(maybe use XML to specify data formats)

e Lixperiments:
— link to SMV model checker
— link to NP Prover tautology checker
— support Verilog and VHDL

e Vapourware!

— but strong team ...
(Cambridge,Glasgow,Karlsruhe, IFAD,NP)

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 28

Grand Long-Term Goals

e Use industry-standard syntax
— Verilog, VHDL, ...
e Develop different semantic views

— familiar to engineers

— compatible with standard design &

verification flows

— mutually consistent
e Provide semantically compatible tools

— compilers, simulators, verifiers etc.

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 29

Ongoing Research at Cambridge

e Semantics of synthesisable Verilog
(with Abhijit Ghosh of Synopsys)
— industrial strength subset
— simulation (event) semantics
— state-machine (cycle) semantics

— analysis of syntactic conditions for
event and cycle semantics to agree

— semantics based tools

e Simulation core for VHDL and Verilog
— common simulation cycle

— rigorously specified and analysed
— application to OMI
— just started (Daryl Stewart’s PhD)

e Hardware compilation workbench
— based around Ian Page’s Handel language
— implement design manipulation tools
— compare Handel, Verilog design flows
— postdoc: Myra Vanlnwegen

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 30

Conclusion

e Need diverse kinds of specifications
— for different abstraction levels
e Need diverse verification tools

— specialised algorithms

— general theorem-proving
e Can embed specifications in powerful logics

— gives unified framework

— but hard to preserve efficiency

e Software verification methods useful for

hardware

— hardware and software theories merging

Mike Gordon www.cl.cam.ac.uk/users/mjcg

Program Verification and Hardware Synthesis 31

THE END

Mike Gordon www.cl.cam.ac.uk/users/mjcg

