Notes on the
Representation of State Machines
in Higher Order Logic

Mike Gordon
Computer Laboratory
University of Cambridge

January 6, 1999

1 Introduction

State machines (or automata) are an important component of hardware de-
sign. This note discusses their representation in higher order logic from the
perspective of formal verification. Quite a lot of work already exists on rep-
resenting machines in higher order logic, such as Loewenstein’s theories of
automata in HOL and the formulation of parts of Hopcroft and Ullman in
Nuprl. The discussion here is intended to provide a framework for represent-
ing synchronous hardware designs in the HOL logic in a way that supports
the application of both automatic tools (equivalence checkers, model checkers
etc) and user guided proof.

2 Abstract state machines

State machines are a mathematical abstraction of synchronous digital sys-
tems. Such systems have a behaviour determined by their state, whose value
is drawn from a state space. A state machine is assumed to remain in a
given state emitting some outputs until a state change event occurs (usually
a clock edge). When this happens a new state is entered which depends on
the current state and current inputs.

2.1 Moore and Mealy machines

Machines are traditionally classified into Moore machines and Mealy ma-
chines. With Moore machines, the value being output depends only on the
value of the current state. With Mealy machines, the output depends on
both the current state and on the value being input.

Let state be the type of states (so the state space consists of all values of
type state). Let input be the type of input values and output be the type of
output values.

A Moore machine is represented by a triple (s, d,), where s : state is the
an initial state, 0 : (state x input) — state is the next-state function and
v : state — output is the output function.

A Mealy machine is the same, except that it has a different type of output
function v : (state x input) — output (i.e. outputs can depend on the input
as well as the state).

Note that if the state space of a Mealy machine has just one element, then
the only non-trivial component of the machine is the output function, which
in this case is essentially just a function from inputs to outputs. Thus Mealy
machines include as a special case a representation of combinational logic.
For pragmatic reasons (minimising state space size, avoiding asynchronous
loops), hardware designers sometimes use Mealy machines and sometimes
use Moore machine with separate combinational logic.

The kind of state machines just defined are deterministic in that a unique
next state is determined by the current state and input. Non-deterministic
machines are represented by having a set of initial states, replacing the next
state function by a next state relation' ¢ : ((state x input) x state) — bool
and the output function by a relation? v : ((state x input) x output) — bool.

2.2 Transition systems

State machines can be represented as transition systems. This representation
is used for model checking.

A transition system is a pair (I, R), where I is a set of initial states and
R is a relation between pairs of states. The interpretation of R(s,s’) —i.e. s
is related to s’ by R —is that s’ is a possible successor to s.

'In higher order logic, a relation between types o and 7 can be represented as the
characteristic function of the graph of the relation, i.e. as a function of type (o X 1) — bool,
where bool is the type of Booleans consisting of the two truth-values T (¢true) and F (false).

2Machines with truly non-deterministic outputs don’t seems to arise often, but the
representation of outputs with a relation rather than a function is useful when encoding
machines in logic.

With the transition system representation, the inputs and outputs are
regarded as part of a more general kind of state. A non-deterministic Mealy
machine M = (I, daq, Yaq) is represented by a transition system (I, Raq)
where

Ru((s,4,0),(s',i',0") = oaml(s,i,8) A vpm(s,i,0)

This is slightly subtle and needs some explanation, but first note that the
state space of the transition system is statens X input,, X output,,, which
has more components (namely inputs and outputs) than the state of the
Mealy machine from which it was derived. There is potential for confusion
between these two different notions of state space. In the definition of R,
note that the input and outputs in the successor state (i.e. i' and o) are
not constrained. This reflects the idea that the input is determined by the
environment and that the output is a ‘combinational’ function of the current
state and — in the case of a Mealy machine — the inputs. The physical
intuition of Rp((s,1,0), (s',7',0")) is that during stable or ‘quiescent’ periods
of M’s behaviour in which its state is s and input ¢ then the output will be
o. When a state change event occurs then the current state will become s’
and the output will change to reflect the new state and input.

2.3 Traces

A transition system (I, R) determines a set of traces. A trace is an infinite
sequence of states such that the first member of the sequence is in I and each
member of the sequence is related to its successor by R.

If the state space is product, say State; x --- x State,, then a trace is an
infinite sequence of n-tuples:

((s?,...,s%),(s%,...,sé), co)

It is sometimes convenient to consider instead the transpose of this,
namely the n-tuple of infinite sequences:

((s1, 51,87, .0,
(89,88, 52,...),

(52 5> S0+ --))

Each infinite sequence in such an n-tuple is the trace of one component
of the state.

3 Hardware description languages

To specify a machine for a particular task it is necessary to express the initial
state and transition. For simple examples, this can be done using standard
mathematical notation (e.g. set theory or higher order logic), but for complex
hardware designs this is impractical for several reasons:

e Standard mathematical notation is not formal, so cannot be easily
parsed and processed by CAD tools.

e Standard mathematics does not provide notation for hardware oriented
operations such as manipulating bitstrings (words, bytes etc).

e Industrial scale machines are very large and need to be structured
and parameterised in complex ways (modules, instances etc) requir-
ing programming-like constructs.

e The abstract state machine realised by a hardware design is only one
aspect of the design: its function. Other aspects include timing and
electrical details.

For these (and other) reasons, machines are usually expressed using a
hardware description language (HDL). Industry standard languages, like Ver-
ilog and VHDL, are designed primarily to support detailed hardware simu-
lation. The function — i.e. abstract state machine — represented by an HDL
text is hard to extract from the mass of other detail. Furthermore, there
may be several different abstraction levels (RTL, behavioral etc) at which
the abstract function can be viewed.

To enable pure functional behaviour to be expressed, a number of lan-
guages have been developed that provide a more mathematical way of ex-
pressing machines. These include model checker input languages (e.g. SMV)
and synchronous languages (e.g. Esterel, Lustre). Such languages stand mid-
way between commercial HDLs and abstract state machines: they enable
complex designs to be specified in a structured way, yet have a direct math-
ematical interpretation.

4 Embedding semantics in logic

There are two main approaches to representing the semantics of HDLs in
higher order logic: deep embedding and shallow embedding. With deep em-
bedding a type, syn say, is defined inside the logic to represent HDL texts
(values of type syn will essentially just be parse trees of texts). A type, sem

4

say, that represents the semantics is also defined, and then a semantic func-
tion, Meaning : syn — sem say, is defined, usually by primitive recursion over
syn. With a shallow embedding there is no type syn or semantic function
Meaning inside the logic. Instead a parser (e.g. written in ML) is used to
translate HDL texts directly into terms of the logic.

Shallow embedding places less demands on the logic, but doesn’t allow
certain kinds of properties to be formulated. For example, with a deep em-
bedding formulae of the form

Vz : syn. Meaning(z) = Meaning(Transform(x))
can be formulated. With a shallow embedding this cannot be expressed.

On the other hand, with a deep embedding the semantics must be ex-
pressible with a function inside the logic, and this semantic function must
have a type. If different members of syn need a semantics represented by
values of different types, it may not be possible to find a type for a semantic
function (especially in simple type theory — in set theory or dependent type
theory this is less of a potential problem). There is no corresponding prob-
lem with a shallow embedding, because the process of assigning meanings to
texts does not have to encoded as a function inside the logic. A metalan-
guage program can easily compute differently typed terms for different HDL
texts.

Shallow embedding tends to be more efficient because neither the type of
program texts not the semantic functions need to be represented in logic. For
example, defining a datatype in ML to represent Verilog parse trees is easy,
but making a type definition inside HOL to represent such trees stresses the
HOL system almost to its limits.

Thus deep embedding allows richer properties to be expressed, but shal-
low embedding allows a richer choice of semantics and is less computationally
demanding.

5 Representing machines in logic

In order to define the semantics of an HDL in logic it is necessary to devise
a way to represent machine behaviours as logical formulae.

For model checking is is necessary to extract the transition system (i.e. the
model), which is then encoded in a compact form (e.g. as a BDD). The usual
logical representation of a transition system is to use primed state variables
to denote the successor state.

For example: consider the (arbitrary) example below.

wl w2

i————— Mux Reg ol
g L

Add Reg b————— 02

The state vector is (i, sel, wl, w2, w3, 0l,02). If instances of the register
Reg are modeled as unit delays (i.e. the output is the input in the preceding
state) and Add and Mux are a combinational adder and multiplexer, respec-
tively, then the transition relation can be represented as the formula:

(wl = sel?izol) A (w2 = wl) A (w3 =wl+w2) A (ol =w2) A (02" = w3)

A formula like this can be directly encoded as a BDD and used for model
checking, however it is ‘flat’ and does not show any module hierarchy. Such
structure is normally expressed in an HDL using a variety of linguistic devices
for modularisation, module instantiation and interconnection, and localisa-
tion (hiding) of state and wires.

Consider the following hierarchical version of the diagram:

... Ml reeeerereemreareen s renn sy
.................... M eremsseeenmssennnnns seseesssseeesssssesenns |2 seeressseesenseeeennans

i —‘——-’—- Mux wl Reg -—'M i ol

P Add Reg |—+——+— 02

A simplified pseudo-Verilog specification of this is:

MODULE M(sel,i,ol,02)

INPUT sel,i;

OUTPUT o1,02;

WIRE wil,w2;
Mux(sel,i,ol,wl);
Reg(wl,w2);
M1(wl,w2,01,02)

END

MODULE M1(i1,i2,01,02)
INPUT i1,i2;

OUTPUT o1,02;

WIRE w;
ASSIGN ol=il;
Add(i1,i2,w);
Reg(w,02);

END

MODULE Mux(sel,il,i2,o0)
INPUT sel,il,i2;
OUTPUT o;
ASSIGN o = sel 7 il : 12;
END

MODULE Reg (i,0)
INPUT 1i;
OUTPUT o;
EN%LWAYS @(posedge clock) o<=i;

MODULE Add(i1,i2,0)
INPUT i1,i2;
OUTPUT o;

ASSIGN o = i1+i2;

END

A cycle-based semantics of this hierarchical structure (but not the local-
isation of wires) can be represented inside logic using the definitions below
(which is an abstraction based on state transitions occurring on the positive
edge of clock).

DEFINE M((sel, i, wl, w2, w3, 0l,02), (sel',i', wl', w2, w3’ ol’, 02")) =
M1((sel,i,02,w2), (sel',i', 02", w2")) A
M2((wl, w2, w3, 0l,02), (wl’, w2 w3, ol’, 02'))

DEFINE M1((sel,il,i2,,01,02), (sel’,il’,i2',, 01" 02")) =
Mux((sel,il,i2,01), (sel’,il’",i2',01")) A
Reg((01, 02), (01", 02')

DEFINE M2((i1,i2,w,o0l,02), (il",i2',w’, 01, 02")) =
Add((i1, 12, w), (il’,i2', w')) A
Reg((w,o0l), (w',01")) A (02 =1i2)

DEFINE Mux((sel,i1,i2,0), (sel’,i1',i2',0')) =
(o = sel?il:42)

DEFINE Add((il,i2,0), (il',i2',0")) =
(0 =il +i2)

DEFINE Reg((7,0), (i',0')) =

(0" = 1)

This modularisation is over-the-top for such a simple example, but modu-
lar specifications scale much better than flat ones. For example, the BDDs for
the whole machine can be built incrementally following the module structure.

The obvious redundancy of having both primed and unprimed variables
could could be eliminated by using some syntactic conventions, such as
(T1,. .. xpy) for ((x1,...,2m), (24, ...,2,)). Although this might work, ex-
perience (e.g. with Z) suggests that such hidden priming conventions can
sweep under the carpet tricky proof issues, because the logical form of the
specification becomes obscured (e.g. Reg(w,ol) has four free variables, not
two).

The localisation of variables is usually mimicked in logic by existential
quantification. At first sight this might appear to work with the convention
that the next state is represented by primed variables. Consider M2. The
wire from Add to Reg (w in the definition of M2 which is instantiated to w3
in the diagram) can be hidden by existential quantification:

DEFINE M2((i1,42,01,02), (i1',i2',01’,02")) =
Jw w'. Add((i1,12, w), (i1",42", w")) A
Reg((w,ol), (w',01")) A (02 =1i2)

From this it follows that:

M2((i1,42, 01, 02), (il',i2', 01’ 02'))

= Jw w'. (w=1il+1i2) A (ol'=w) A (02 =12)
= Jw. (w=1il4+12) A (ol'=w) A (02 =12)
= (Fw. (w=1il+1i2) A (ol'=w)) A (02 =12)
= (Fw. (' =il+i2) A (o' =w)) A (02 =12)
= (' =il+1i2) A (Fw. (o' =w)) A (02 =12)
= (=il4+i2) AT A (02=12)

(' =

Iﬁ—' Reg Reg %0

This represented in logic by:

DEFINE RegReg((i,0), (i',0')) =
Jw w'. Reg((i,w), (i',w')) A Reg((w,o), (w',0))

From this it follows that:

RegReg((i, 0), (i', o))
= Jww'. (w'=1i) A (J =w)
= (. w'=i) A Fw. d =w)

This is clearly wrong! The problem is that the values of i and o don’t
determine the value stored in the first register (the one with input ¢ and
output w) at the current cycle, though the stored value becomes i on the
next cycle. Since any value could be being stored, the value of o' could
be any value too. Thus (i,0) does not constrain (i’,0') — which is exactly
what the calculation above verifies. The value output by the second register
(the one with output o) is actually the value input to the first register two
cycles earlier. This suggests the need for something like 0" = i, where 0" is
another variable. This is a slippery slope — consideration of three registers in
series would require 0" etc. Instead of having a cumbersome (and potentially

infinite) sequence of variables o, o', 0" etc. ranging over the values during all
cycles, it is neater to have a single variable ranging over traces. Traces are
naturally represented as functions from the type num of natural numbers to
values. Operators like + and the conditional —? —: — can be ‘lifted’ pointwise
to operate on sequences, for example f; + fo = At.f1(t) + fo(t) etc. Instead
of the priming notation, an operator next is defined by next(f) = A\t.f(t+1).
This also eliminates the duplication of variables due to priming. With this
approach, two registers in series are modelled by:

DEFINE Reg(i,0) = (next(o) = i)
DEFINE RegReg(i,0) = Jw. Reg(i,w) A Reg(w,o)
Now a correct result is obtained:

RegReg(i, 0)
= Jw. (next(w) = i)
= Jw. (next(next(o))
= (next(next(0)) = 1)
= (next(next(0)) = 1)
= (next(next(0)) = 1)
Similarly with three registers in series, the relation next(next(next(o))) =i
would follow, and so on.

With variables ranging over traces, the hierarchy M can now be defined,
with both modularisation and localisation, as follows:

DEFINE
M(sel, i, 01, 02) = Jwl w2. M1(sel,i,02,w2) N M2(wl,w2,0l,02)

DEFINE
M1(sel,i1,i2,,01,02) = Mux(sel,il,i2,0l) A Reg(ol,o02)

DEFINE
M2(il,i2, 01, 02) = Jw. Add(i1,i2,w) A Reg(w,ol) A (02 =12)
DEFINE
Mux(sel, i1, 2, 0) = (0= sel?il:i2)
DEFINE
Add(i1, 2, 0) — (0=il1+1i2)
DEFINE
Reg(i, 0) = (next(o) =)

10

The pseudo-Verilog description given above can be compared with this
purely logical representation. It is clear that a shallow embedding can easily
take the former into the latter.

The transition system can be derived by purely logical manipulation:

M(sel,i,01,02) =
(next(ol) = (sel?i:02) + 02) A (next(02) = sel?i:02)

which is the transition system:

(sel, i, ol, 02) — (sel, i, (sel?i:02) + 02, sel?i:02)

11

