EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 4: Digital Camera: Software Implementation®

Prof. Mingjie Lin

UCF

Stands For Opportunity

1

* Some slides based on ISU CPrE 588

Digital Camera Introduction

Captures images
Stores images in digital format
— No film

— Multiple images stored in camera

« Number depends on amount of memory and bits used
per image

Downloads images to PC
Only recently possible
— Systems-on-a-chip
« Multiple processors and memories on one IC
— High-capacity flash memory
Very simple description used for example
— Many more features with real digital camera

Compression

« Store more images
* Transmit image to PC in less time
« JPEG (Joint Photographic Experts Group)

— Popular standard format for representing digital
images in a compressed form

— Mode used in this chapter provides high
compression ratios using DCT (discrete cosine
transform)

— Image data divided into blocks of 8 x 8 pixels

— 3 steps performed on each block
« DCT
« Quantization

—_— Hufmanencodinge

Huffman Encoding Step

« Serialize 8 x 8 block of pixels

— Values are converted into single list using zigzag
pattern

AT
VU
AR
AR
AN
AN
\—\ \\;\\\x\t[

A

}

4

S & AT

* Perform Hutinanr e1CuUIlIYy

— More frequently occurring pixels assigned short
binary code

— Longer binary codes left for less frequently
occurring pixels

« Each pixel in serial list converted to Huffman
encoded values

— Much shorter list, thus compression

4

Huffman Decoding

In 1951, David Huffman and his MIT information
theory classmates given the choice of a term paper or
a final exam

Huffman hit upon the idea of using a frequency-
sorted binary tree and quickly proved this method the
most efficient.

In doing so, the student outdid his professor, who had
worked with information theory inventor Claude
Shannon to develop a similar code.

Huffman built the tree from the bottom up instead of
from the top down

A simple example

Suppose we have a message consisting of 5
symbols, e.g. [P &s&a @ P &1 1P @]

How can we code this message using 0/1 so the
coded message will have minimum length (for
transmission or saving!)

» | 000

5 symbols - at least 3 bits « | 001
. . ® |010

For a simple encoding, s 011
length of code is 10*3=30 bits ¥ | 100

A simple example — cont.

* Intuition: Those symbols that are more frequent
should have smaller codes, yet since their length is
not the same, there must be a way of distinguishing

each code

Symbol | Freq. | Code
* For Huffman code, > 3 00
length of encoded message : g (1)(1)
will be P ssa @ P& @ N 1 110
=3*2 +3*2+2*2+3+3=24bits x| 1] 1
Frequency Number Huffman code
45 1000 00
20 100 01
10 10 100
5 5 1010

1 1 1011

JPEG encoding compresses data in five
ways

« Because DC coefficients do not change significantly
between adjacent blocks, they are encoded as
differences. (Diff = DCi - DCi-1) This coding
technique is known as Differential Pulse Code
Modulation (DPCM).

* Quantized AC coefficients usually contain a run of
consecutive zeroes. For this reason AC codes specify
the run-length (number of consecutive zeroes
preceding a non-zero coefficient) in addition to the
amplitude of the coefficient.

JPEG encoding compresses data in five ways
(cont.)

* An end-of-block (EOB) code compresses data by
indicating that the data in the rest of the scan are
Zeroes.

 Variable-length Huffman codes are selected such that
shorter codes are used for frequently occurring run-
length/coefficient sizes and longer codes are used for

less-frequently occurring run-length/coeffi- cient
sizes.

* There is a unigue Huffman code for each combination
of run-length and coefficient size. There are separate
tables for AC and DC Huffman codes because they
exhibit different characteristics

JPEG-Lite

* The input has been modified to 4x4 blocks as opposed
to the 8x8 blocks used in the JPEG standard in order to
reduce the layout effort of hardware elements

« A simplified Huffman table will be used by the Encoder
and Decoder that contains 10-bit Huffman codes and
allows a maximum run-length of 3. The JPEG-baseline
standard contains 16-bit Huffman codes and supports a
maximum run-length of 15.

« Only a single AC and a single DC Huffman table will be
used. In the JPEG baseline standard, two AC and DC
tables were supported.

* 1-bit Huffman codes are not allowed in JPEG-lite. « Only
grayscale images will be decoded in JPEG-lite.

10

What is in a JPEG bitstream?

There are two sets of Huffman codes
— DC codes and AC codes

DC Huffman codes are used to represent the first
coefficient in the 4x4 block

AC Huffman codes are used to represent the
remaining coefficients

Coefficients are the transformed values of the pixels
In the 4x4 block

Only the non-zero coefficients are explicitly passed in
the bitstream which improves the compression ratio.

11

Definitions: a 4x4 block encoded on a

bitstream.
Definitions:
151012 Coefficient: Pixel value after having been transformed by the JPEG
algorithm
1 110 DC term: The first coefficient in the upper-left corner.
AC terms: The remaining coefficients in the 4x4 block.
0 (4]0 Coeff size: The number of binary bits needed to represent the
coefficient. (0-10 bits)
0 015 Run-length: The number of zeros preceding a non-zero coefficient.
(Range of 0-3 zeroes allowed)
DC Term EOB: End-of-block. If the remaining coefficients are all zero, a
special Huffman code indicates that the end of the 4x4 block
AC Terms has been reached.

12

Example: a 4x4 block encoded on a
bitstream.

DC Coefficient of previous block=12
15 2 |1
Run-length Coeff_size = Huffman Code Coefficient
1 010 0 2 011 11 (3=15-12)
1 2 11011 10 (2)
0 1 00 1(1)
0 010 0 1 00 1(1)
0 1 00 1(1)
0 510 3 3 111110101 100 (4)
3 0 111001 none
0 3 100 101 (5)
0 0 1010 none - EOB

Bitstream =0111111011100010010011111101011001110011001011010

13

Informal Functional Specification

* Flowchart breaks
functionality down
into simpler functions <P

 Each function’s "
details could then be
described in English

* Low quality image
has resolution of 64 x
64

« Mapping functions to
a particular processor
type not done at this
stage

| DCT

Zero-bias adjus‘;

Quantize

yes

no /" Done?

4 4 . N\
Archive in
(| memory |

Transmit serially

serial output

. g, 011010...

14

Refined Functional Specification

Refine informal specification
into one that can actually be
executed

Can use C/C++ code to
describe each function

— Called system-level model,
prototype, or simply model

— Also is first implementation

Can provide insight into
operations of system
— Profiling can find
computationally intensive
functions
Can obtain sample output used

to verify correctness of final
implementation

Executable model of digital camera

1010110101
101010100
10101101...

@

1mage file

CNTRL.C

1010101010
1010101010
10101010...

output file

15

- Simulates real CCD
« CcdInitialize is passed name of image file
- CcdCapture reads “image” from file

« CcdPopPixel outputs pixels one at a time

CCD Module

rowIndex

moid CcdInitialize (const char *imageFilel

imageFileHandle fopen (imageFileName, "r");

Name) |

return pixel;

16

CCDPP Module

Performs zero-bias adjustment

CcdppCapture uses CcdCapture and
CcdPopPixel to obtain image

Performs zero-bias adjustment after each row

read in

woid CcdppCapture (void)

char bias;

17

UART Module

Actually a half UART

Only transmits, does not receive

Uatrtinitialize is passed name of file to output to

UartSend transmits (writes to output file) bytes at a time

#include <stdio.h>
static FILE *outputFileHandle;
volid UartInitialize (const char *outputFileName)
outputFileHandle = fopen (outputFileName, "
}
void UartSend(char d) {
fprintf (outputFileHandle, "%i\n", (int)d);

}

{
W ") ’

18

CODEC Module

Models FDCT encoding
ibuffer holds original 8 x 8 block
obuffer holds encoded 8 x 8 block

CodecPushPixel called 64 times
to fill ibuffer with original block

CodecDoFdct called once to
transform 8 x 8 block

Explained in next slide
CodecPopPixel called 64 times to

retrieve encoded block from
obuffer

19

CODEC Module (cont.)

Implementing FDCT formula
C(h) = if (h == 0) then 1/sqrt(2) else 1.0
F(u,v) = % x C(u) X C(v) Zx=0..7 Zy=0..7 Dxy X
cos(1(2x + 1)u/16) x cos(TT(2y +

1)v/16)

Only 64 possible inputs to COS, so

table can be used to save performance [.- ...

time 32768, 32138, 30273, 27245, 231
Floating-point values multiplied by (32768, 27245, 12539, -6392, -2317
32,678 and rounded to nearest (32768, 18204, -12539, -32138, -23170,
integer (32768, 6392, -30273, -18204,
32,678 chosen in order to store each (32768, -6392, -30273, 1
value in 2 bytes of memory (32768, -18204, -12539, 32138, -23170,
Fixed-point representation explained (32768, -2724F >33, 6392, -
more later (32768, -32138, 30273, -27245,

FDCT unrolls inner loop of summation,

implements outer summation as two
consecutive for loops
static short ONE_OVER_SQRT_TWO = 23170;
static double COS(int xy, int uv) {
return COS_TABLE[xy] [uv] / 32768.0;

static double C(int h) {

return h ? 1.0 : ONE_OVER_SQRT TWO / 32768.07 for(x=0; x<B; x++) r += s[x] * COS(x,

CNTRL (Controller) Module

Heart of the system

Chntrlinitialize for consistency with other

modules only

CntriCapturelmage uses CCDPP module

to input image and place in buffer

CntrliCompressimage breaks the 64 x 64

buffer into 8 x 8 blocks and performs FDCT

on each block using the CODEC module
Also performs quantization on each
block

CntrlISendImage transmits encoded image

serially using UART module

e (void)

21

Putting it All Together

- Main initializes all modules, then uses CNTRL module
to capture, compress, and transmit one image

- This system-level model can be used for extensive
experimentation
Bugs much easier to correct here rather than in later models

int main(int argc, char *argv([])
char *uartOutputFileName = argc > 1 ? argv[1l] : "uart out.txt";
char *imageFileName = argc > 2 ? argv[2] : "image.txt";

/* initialize the modules */
UartInitialize (vartOutputFileName);
CcdInitialize (imageFileName);
CcdpplInitialize();
CodecInitializel();
CntrlInitialize();

/* simulate functionality */
CntrlCapturelmage () ;
CntrlCompressImage () ;

CntrlSendImage () ;

Final issues

« Come by my office hours (right after class)

* Any questions or concerns?

23

