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Overview

Recap + Questions?
What is a HDL? Why do we need it? (simplified view)

— Guess?

Verilog (?)

— History

— Impact

— Huge potential for research (surprise ©)

VHDL
Verilog vs. VHDL



HDL (Hardware Description Language)

HDL is a language used to describe a digital system,
for example, a computer or a component of a
computer.

Most popular HDLs are VHDL and Verilog

— Exotic ones: bluespec, ...

Verilog programming is similar to C programming

VHDL programming is similar to PASCAL (some say
like Ada)
— Is an IEEE standard



Levels of description

Switch Level
— Layout of the wires, resistors and transistors on an IC chip

Gate (structural) Level
— Logical gates, flip flops and their interconnection

RTL (dataflow) Level

— The registers and the transfers of vectors of information
between registers

Behavioral (algorithmic) Level
— Highest level of abstraction

—BreerrttiormairaterH = bt



Tradeoffs between Abstraction Levels

* Behavioral level
— Easiest to write and debug, not synthesizable

* Register Transfer Level
— Synthesizable

— Uses the concept of registers (a set of flipflops) with
combinational logic between them

« Structural level
— Very easy to synthesize
— Atext based schematic entry system



Why Do We Need HDL"?

NO OTHER CHOICE

For large digital systems, gate-level design is
unmanageable

Millions of transistors on a digital chip

HDL offers the mechanism to describe, test and
synthesize large designs



Verilog Language

« Describe a system by a set of modules (~functions in
C)

« Keywords, e. g., module, are reserved and in all
lower case letters
— Verilog is case sensitive

* QOperators (some examples)

— Arithmetic: +, -1 ~7*/

— Binary operators: &, |, *, ~, !

— Shift: << >> Relational: <, <=, >, >=, == I=

— Logical: &&, ||
* |dentifiers

— Equivalent to variable names

———tentifiers.canbe un io 1024 characiors

« Comments start with a "//" for one line or /* to */

across several lines



Number representation

 Numbers are specified in the traditional form of a
series of digits with or without a sign but also in the
following form

— <size><base format><number>
— <size>: number of bits (optional)

— <base format>: is the single character ' followed by one of
the following characters b, d, o and h, which stand for binary,
decimal, octal and hex, respectively

— <number>: contains digits which are legal for the
— <base format>

 Examples
— 'h 8FF // hex number
— 4'b11 I/ 4-bit binary number 0011

_ _ it rif -
— -4'b11 Il 4-bit two's complement of 0011, or equivalently 1101 8



Data types

Variables of type wires (wire) and registers (reg)
— NOTE: A variable of type register does not necessarily
represent a physical register
Register variables store the last value that was
procedurally assigned

Wire variables represent physical connections
between structural entities such as gates (Does not
store anything, only a label on a wire)

The reg and wire data objects may have the following
possible values:
— 0,1,x,z (0,1,unkown, high impedance of tri-state gate)

— “reg” variables are initialized to O at the start of the
simulation

— “wire” variable not connected to something has the x value.



Data Types: Conceptual Differences

« Wires/Nets represent connections between things

Do not hold their value

— Take their value from a driver such as a gate or other module

Cannot be assigned in an initial or always block

* Regs represent data storage

Behave exactly like memory in a computer

Hold their value until explicitly assigned in an initial or always
block

Never connected to something

Can be used to model latches, flip-flops, etc., but do not
correspond exactly

Shared variables with all their attendant problems
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Program structure

« Adigital system as a set of modules

« Each module has an interface to other module
(connectivity)

« GOOD PRACTICE: Place one module per file (not a
requirement)

 Modules run concurrently

« Usually there is a top level module which invokes
—instances of othermodules
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Module

* Represent bits of hardware ranging from simple gates
to complete systems, e. g., a microprocessor

« Specified behaviorally, RTL, or structurally
« The structure of a module is the following:

module <module name> (<port list>);
<declarations>
<module items>

endmodule
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example: NAND gate

Here is an RTL specification of a module NAND

// Behavioral model of a NAND gate

module NAND(in1, in2, out);
input inl, in2;
output out;

::é :DO— out
// continuous assignment statement
assign out = ~(inl & in2);

endmodule

Default: All undeclared variables are wires and are one bit wide!

GOOD PRACTICE: Declare all variables
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Instance of a module

The general form to invoke an instance of a module is:
<module name> <parameter list> <instance name> (<port list>);

<parameter list> are values of parameters passed to the instance
<instance name> identifies the specific instance of the module

An example parameter passed would be the delay for a gate

We will not use parameter list in this course!
= For our purposes, to invoke an instance of a module

<module name> <instance name> (<port list>);
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Structural example: AND gate

//Structural model of AND gate from two NANDS
module AND(in1, in2, out);
input inl, in2;

inl —
output out; in2 —?O_‘—} out

wire wl;

// two instances of the module NAND
NAND NAND1(in1, in2, wl);
NAND NAND2(w1, wil, out);

endmodule

= This module has two instances of the NAND module called NAND1
and NAND2 connected together by an internal wire wl.
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Continuous vs. procedural assignments

Continuous statement is used to model combinational logic
» Continuous assignments drive wire variables
» Evaluated and updated whenever an input operand changes value

Procedural assignment changes the state of a register
» Used for both combinational and sequential logic
» All procedural statements must be within “always” block

» Example

reg A; This is combinational logic

always @ (B or C) begin
A=B&C;

end
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Events

The execution of a procedural statement is triggered by:
= A value change on a wire
» The occurrence of a named event

always @ (B or C) begin // controlled by any value change in Bor C
X=B&GC;
end

always @(posedge Clk) Y <= B&C; // controlled by positive edge of Clk

always @(negedge Clk) Z <= B&C; // controlled by negative edge of Clk
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Model of a D-Flip flop

What is the behavior of a D-flipflop ?
» During every positive clock edge, the input is transferred to the output

RTL model

module Dflipflop(D, Clk, Q, Qbar);
input D, Clk;
output Q, Qbar;

reg Qint;
// always is a procedural construct
// any assignment may be made only to registers

always @(posedge Clk) Qint <= D;

assign Q = Qint;
assign Qbar = ~Qint;

endmodule
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Control constructs

Two control constructs are available:

if (A== 4) case (<expression>)
begin <valuel>:
B =2; begin
end <statement>;
else if (A == 2) end
begin <value2>:
B=1; begin
end <statement>;
else end
begin default:
B =4; <statement>;
endcase

end
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VHDL

* NOT: Very Hard Difficult Language ©

« VHSIC Hardware Description Language + VHSIC
(Very High Speed Integrated Circuits)

 Benefits

— VHDL is a programming language that allows one to model
and develop complex digital systems in a dynamic
envirornment.

— Object Oriented methodology for you C people can be
observed -- modules can be used and reused.

— Allows you to designate in/out ports (bits) and specify
behavior or response of the system.
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Verilog vs. VHDL

* \erilog and VHDL are comparable languages
* VHDL has a slightly wider scope

« System-level modeling

* Exposes even more discrete-event machinery
 VHDL is better-behaved

* Fewer sources of nondeterminism (e.g., no shared
variables)

« VHDL is harder to simulate quickly

« VHDL has fewer built-in facilities for hardware
modeling

 VHDL is a much more verbose language

Mo codoni bl i

21

e Spn ciinnlemantans doctimaent



Final issues

« Come by my office hours (right after class)

* Any questions or concerns?
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