EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 8: Short Introduction to Verilog

*

Prof. Mingjie Lin

UCF

Stands For Opportunity

* Beased on notes of Turfts lecture

Overview

Recap + Questions?
What is a HDL? Why do we need it? (simplified view)

— Guess?

Verilog (?)

— History

— Impact

— Huge potential for research (surprise ©)

VHDL
Verilog vs. VHDL

HDL (Hardware Description Language)

HDL is a language used to describe a digital system,
for example, a computer or a component of a
computer.

Most popular HDLs are VHDL and Verilog

— Exotic ones: bluespec, ...

Verilog programming is similar to C programming

VHDL programming is similar to PASCAL (some say
like Ada)
— Is an IEEE standard

Levels of description

Switch Level
— Layout of the wires, resistors and transistors on an IC chip

Gate (structural) Level
— Logical gates, flip flops and their interconnection

RTL (dataflow) Level

— The registers and the transfers of vectors of information
between registers

Behavioral (algorithmic) Level
— Highest level of abstraction

—BreerrttiormairaterH = bt

Tradeoffs between Abstraction Levels

* Behavioral level
— Easiest to write and debug, not synthesizable

* Register Transfer Level
— Synthesizable

— Uses the concept of registers (a set of flipflops) with
combinational logic between them

« Structural level
— Very easy to synthesize
— Atext based schematic entry system

Why Do We Need HDL"?

NO OTHER CHOICE

For large digital systems, gate-level design is
unmanageable

Millions of transistors on a digital chip

HDL offers the mechanism to describe, test and
synthesize large designs

Verilog Language

« Describe a system by a set of modules (~functions in
C)

« Keywords, e. g., module, are reserved and in all
lower case letters
— Verilog is case sensitive

* QOperators (some examples)

— Arithmetic: +, -1 ~7*/

— Binary operators: &, |, *, ~, !

— Shift: << >> Relational: <, <=, >, >=, == I=

— Logical: &&, ||
* |dentifiers

— Equivalent to variable names

———tentifiers.canbe un io 1024 characiors

« Comments start with a "//" for one line or /* to */

across several lines

Number representation

 Numbers are specified in the traditional form of a
series of digits with or without a sign but also in the
following form

— <size><base format><number>
— <size>: number of bits (optional)

— <base format>: is the single character ' followed by one of
the following characters b, d, o and h, which stand for binary,
decimal, octal and hex, respectively

— <number>: contains digits which are legal for the
— <base format>

 Examples
— 'h 8FF // hex number
— 4'b11 I/ 4-bit binary number 0011

_ _ it rif -
— -4'b11 Il 4-bit two's complement of 0011, or equivalently 1101 8

Data types

Variables of type wires (wire) and registers (reg)
— NOTE: A variable of type register does not necessarily
represent a physical register
Register variables store the last value that was
procedurally assigned

Wire variables represent physical connections
between structural entities such as gates (Does not
store anything, only a label on a wire)

The reg and wire data objects may have the following
possible values:
— 0,1,x,z (0,1,unkown, high impedance of tri-state gate)

— “reg” variables are initialized to O at the start of the
simulation

— “wire” variable not connected to something has the x value.

Data Types: Conceptual Differences

« Wires/Nets represent connections between things

Do not hold their value

— Take their value from a driver such as a gate or other module

Cannot be assigned in an initial or always block

* Regs represent data storage

Behave exactly like memory in a computer

Hold their value until explicitly assigned in an initial or always
block

Never connected to something

Can be used to model latches, flip-flops, etc., but do not
correspond exactly

Shared variables with all their attendant problems

10

Program structure

« Adigital system as a set of modules

« Each module has an interface to other module
(connectivity)

« GOOD PRACTICE: Place one module per file (not a
requirement)

 Modules run concurrently

« Usually there is a top level module which invokes
—instances of othermodules

11

Module

* Represent bits of hardware ranging from simple gates
to complete systems, e. g., a microprocessor

« Specified behaviorally, RTL, or structurally
« The structure of a module is the following:

module <module name> (<port list>);
<declarations>
<module items>

endmodule

12

example: NAND gate

Here is an RTL specification of a module NAND

// Behavioral model of a NAND gate

module NAND(in1, in2, out);
input inl, in2;
output out;

::é :DO— out
// continuous assignment statement
assign out = ~(inl & in2);

endmodule

Default: All undeclared variables are wires and are one bit wide!

GOOD PRACTICE: Declare all variables

13

Instance of a module

The general form to invoke an instance of a module is:
<module name> <parameter list> <instance name> (<port list>);

<parameter list> are values of parameters passed to the instance
<instance name> identifies the specific instance of the module

An example parameter passed would be the delay for a gate

We will not use parameter list in this course!
= For our purposes, to invoke an instance of a module

<module name> <instance name> (<port list>);

14

Structural example: AND gate

//Structural model of AND gate from two NANDS
module AND(in1, in2, out);
input inl, in2;

inl —
output out; in2 —?O_‘—} out

wire wl;

// two instances of the module NAND
NAND NAND1(in1, in2, wl);
NAND NAND2(w1, wil, out);

endmodule

= This module has two instances of the NAND module called NAND1
and NAND2 connected together by an internal wire wl.

15

Continuous vs. procedural assignments

Continuous statement is used to model combinational logic
» Continuous assignments drive wire variables
» Evaluated and updated whenever an input operand changes value

Procedural assignment changes the state of a register
» Used for both combinational and sequential logic
» All procedural statements must be within “always” block

» Example

reg A; This is combinational logic

always @ (B or C) begin
A=B&C;

end

16

Events

The execution of a procedural statement is triggered by:
= A value change on a wire
» The occurrence of a named event

always @ (B or C) begin // controlled by any value change in Bor C
X=B&GC;
end

always @(posedge Clk) Y <= B&C; // controlled by positive edge of Clk

always @(negedge Clk) Z <= B&C; // controlled by negative edge of Clk

17

Model of a D-Flip flop

What is the behavior of a D-flipflop ?
» During every positive clock edge, the input is transferred to the output

RTL model

module Dflipflop(D, Clk, Q, Qbar);
input D, Clk;
output Q, Qbar;

reg Qint;
// always is a procedural construct
// any assignment may be made only to registers

always @(posedge Clk) Qint <= D;

assign Q = Qint;
assign Qbar = ~Qint;

endmodule

18

Control constructs

Two control constructs are available:

if (A== 4) case (<expression>)
begin <valuel>:
B =2; begin
end <statement>;
else if (A == 2) end
begin <value2>:
B=1; begin
end <statement>;
else end
begin default:
B =4; <statement>;
endcase

end

19

VHDL

* NOT: Very Hard Difficult Language ©

« VHSIC Hardware Description Language + VHSIC
(Very High Speed Integrated Circuits)

 Benefits

— VHDL is a programming language that allows one to model
and develop complex digital systems in a dynamic
envirornment.

— Object Oriented methodology for you C people can be
observed -- modules can be used and reused.

— Allows you to designate in/out ports (bits) and specify
behavior or response of the system.

20

Verilog vs. VHDL

* \erilog and VHDL are comparable languages
* VHDL has a slightly wider scope

« System-level modeling

* Exposes even more discrete-event machinery
 VHDL is better-behaved

* Fewer sources of nondeterminism (e.g., no shared
variables)

« VHDL is harder to simulate quickly

« VHDL has fewer built-in facilities for hardware
modeling

 VHDL is a much more verbose language

Mo codoni bl i

21

e Spn ciinnlemantans doctimaent

Final issues

« Come by my office hours (right after class)

* Any questions or concerns?

22

