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Sanders Codesign Methodology 
•  Subsystems process 

–  Processing requirements are modeled in an architecture-
independent manner 

–  Codesign not an issue 
•  Architecture process 

–  HW/SW allocation analyzed via modeling of SW 
performance on candidate architectures 

–  Hierarchical verification is performed using finer grain 
modeling (ISA and below) 

•  Detailed design 
–  Downloadable executable application and test code is 

verified to maximum extent possible 
•  Library support 

–  SW models validated on test data 
–  HW models validated using existing SW models 
–  HW & SW models jointed iterated throughout designs 
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Major Codesign Research Efforts 

•  Chinook - University of Washington - Chou, Ortega, 
Borriello 

•  Cosmos - Grenoble University - Ismail, Jerraya 
•  Cosyma - University of Braunschweig - Ernst, Henkel, 

Benner 
•  Polis - U. C. Berkeley - Chiodo, Giusto, Jurecska, Hsieh, 

Lavagno, Sangiovanni-Vincentelli 
•  Ptolemy - U. C. Berkeley - Kalavade, Lee 
•  Siera- U. C. Berkeley - Srivastava, Broderson 
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Chinook 

•  Unified representation: Event Graph (CDFG) 
•  Partitioning: constraint driven by scheduling 

requirements 
•  Scheduling: timing driven 
•  Modeling substrate: based on Verilog HDL 
•  Validation: simulation based (Verilog) 
•  Main emphasis on synthesis of hardware/software 

interfaces 
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Cosmos 

•  Unified representation: Initial description is done in SDL 
(specification description language) which is translated into SOLAR, 
an intermediate form that allows several description levels (CSPs, 
FSMs, etc.) 

•  Partitioning: user driven using a tool that allows processes to be 
grouped together or split into sub-processes 

•  Scheduling: based on the partitioning 

•  Modeling substrate: VHDL simulation after architecture mapping 

•  Validation: simulation based 

•  Main emphasis on synthesis of communications mechanisms 
between processes - reuse of existing communication models 
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Cosyma 

•  Unified representation: ES graph (CDFG) 
•  Partitioning: combined method based on course 

partitioning by user with cost guidance and finer 
scheduling done by simulated annealing 

•  Scheduling: no specific method 
•  Modeling substrate: based on C++ 
•  Validation: simulation based (C++) 
•  Main emphasis on partitioning for hardware 

accelerators 
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Polis 

•  Unified representation: Codesign Finite State Machine 
(CFSM) based 

•  Partitioning: user driven with cost estimated provided by 
co-simulation 

•  Scheduling: classical real-time algorithms 
•  Modeling substrate: Ptolemy based (C++) 
•  Validation: co-simulation and formal FSM verification 
•  Main emphasis on verifiable specification not biased to 

either hardware or software implementation 
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Ptolemy 

•  Unified representation: Data Flow Graph 
•  Partitioning: greedy algorithm based on scheduling 

constraints 
•  Scheduling: linear based on sorting blocks by “criticality” 
•  Modeling substrate: heterogeneous modeling and 

simulation framework based on C++ 
•  Validation: based on simulation 
•  Main emphasis on heterogeneous modeling framework 

(mixing different models of computation) 
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Siera 

•  Unified representation: static, hierarchical network of concurrent 
sequential processes communicating via message queues (similar to 
DFG) 

•  Partitioning: manual user driven 
•  Scheduling: static process to processor mapping, priority based 

preemptive schedulers available within real-time OS on processors 
•  Modeling substrate: based on VHDL - includes support for modeling 

continuous time systems such as sensors and actuators 
•  Validation: based on simulation 
•  Main emphasis on the design of embedded systems targeted 

towards a predefined architectural template 
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Chinook 

•  Hardware/Software Co-synthesis system developed 
at the University of Washington 

•  Targeted at real-time reactive embedded systems 

•  Control dominated designs constructed from off-the-
shelf components 
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Chinook’s Principal Innovations 

•  Single Specification - one specification, with explicit timing/
performance constraints is used for the system’s hardware and 
software 

•  One Simulation Environment - the high level specification, the final 
result, and any intermediate steps can be simulated to verify and 
debug the design 

•  Software Scheduling - the appropriate software architecture is 
synthesized to meet the timing requirements 

•  Interface Synthesis - the hardware and software necessary to 
interface between system components (glue logic and device drivers) 
is automatically synthesized 

•  Complete Information for Physical Prototyping - a complete netlist is 
generated for the hardware, and C source code is generated for the 
software 
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System Specification in Chinook 
(Unified Representation) 

•  The system specification is written in a dialect of Verilog and 
includes the system’s behavior and the structure of the system 
architecture 

•  The behavior is specified as a set of tasks in a style similar to 
communicating finite state machines - control states of the 
system are organized as modes which are behavioral regimes 
similar to hierarchical states 

•  In a given mode, the system’s responses are defined by a set 
of handlers which are essentially event-triggered routines 

•  The designer must tag tasks or modules with the processor that 
is preferred for their implementation - untagged tasks are 
implemented in software 

•  The designer can specify response times and rate constraints 
for tasks in the input description 
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Scheduling in Chinook 

•  Chinook provides an automated scheduling algorithm 
•  Low-level I/O routines and high level routines grouped in 

modes are scheduled statically 
•  A static, nonpreemptive scheduling algorithm is used to meet 

min/max timing constraints on low-level operations 
–  Determines serial ordering for operations 
–  Inserts delays as necessary to meet minimum constraints 
–  Includes heuristics in the scheduling algorithm to help exact 

algorithm generate valid solution to NP-hard scheduling problem 
•  A customized dynamic scheduler may be generated for the top-

level modes 
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Interface Synthesis in Chinook 

•  Realization of communication between system components is 
an area of emphasis in the Chinook system 

•  Chinook synthesizes device drivers from timing diagrams 
•  Custom code for the processor being used is generated 

–  For processors with I/O ports, an efficient heuristic is used to 
connect devices with minimal interface hardware 

–  For processors w/o I/O ports, a memory mapped I/O interface is 
generated including allocating address spaces, and generating the 
required bus logic and instructions 

•  Portions of the interface that cannot be implemented in 
software are synthesized into external hardware 
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Communications Synthesis and 
System Simulation in Chinook 

•  Chinook provides methods for synthesizing communications 
systems between multiple processors if a multicomputer 
implementation is chosen 
–  Bus-based, point-to-point, and hybrid communications schemes are 

supported 
–  Communications library that includes FIFOs, arbiters, and interconnect 

templates is provided 

•  Simulation of the design at different levels of detail is supported 
–  Verilog-XL Programming Language is used 
–  Verilog PLI is used to interface to device models written in C 
–  Each device supports the same API for simulation and synthesis - API 

calls can be used by the designer to animate the model interactively 
–  RTL level models of the processors are used to simulate the final 

implementation of the system (software) 
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Cosynthesis of Embedded 
Applications (COSYMA) 

•  Developed at the Technical University of Braunschweig, 
Germany 

•  An experimental system for HW/SW codesign of small 
embedded real time systems 
–  Implements as many operations as possible in software 

running on a processor core 
– Generates external hardware only when timing constraints 

are violated 
•  Target architecture: 

– Standard RISC processor core 
– Application-specific processor 

•  Communication between HW and SW through shared 
memory with a communicating sequential processes (CSP) 
type protocol 
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COSYMA (Cont.) 

•  Input description of system in C* is translated into an 
internal graph representation supporting 
– Partitioning 
– Generating hardware descriptions for parts moved to 

hardware 
•  Internal graph representation combines 

– Control and dataflow graph 
– Extended syntax (ES) graph 

•  Syntax graph  
•  Symbol table 
•  Local data/control dependencies 
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COSYMA - Aims and Strategies 

•  Major aim is automating HW/SW partitioning 
process, for which very few tools currently exist 

•  COSYMA partitions at the basic block and function 
level (including hierarchical function calls) 
– Simulated annealing algorithm is used because of its 

flexibility in the cost function and the possibility to 
trade-off computation time vs result quality 

– Starts with an unfeasible all-software solution 
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COSYMA - Cost Function  
and Metrics 

•  The cost function is defined to force the annealing to 
reach a feasible solution before other optimization 
goals (e.g., area) 

•  The metrics used in cost computation are:  
– Expected hardware execution times 
– Software execution times 
– Communication 
– Hardware costs 

•  The cost function is updated in each step of the 
simulated annealing algorithm  
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COSYMA  - Cost Function and 
Metrics (Cont.) 

•  After partitioning, the parts selected to be realized in 
software are translated to a C program, thereby 
inserting code for communicating with the 
coprocessor 

•  The rest of the system is translated to the input 
description of the high-level synthesis system, and 
an application-specific coprocessor is synthesized 

•  Lastly, a fast-timing analysis of the whole HW/SW 
system is performed to test whether all constraints 
are satisfied 
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Ptolemy 

•  A software environment for simulation and 
prototyping of heterogeneous systems 

•  Attributes 
–  Facilitates mixed-mode system simulation, 

specification, and design  
– Supports generation of DSP assembly code from a 

block diagram description of algorithm 
– Uses object-oriented representations to model 

subsystems efficiently 
– Supports different design styles called domains 
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Codesign Methodology 
Using Ptolemy 

•  Ptolemy supports a framework for hardware/software 
codesign, called the Design Assistant 

•  The Design Assistant consists of two components 

– Specific point tools for estimation, partitioning, 
synthesis, and simulation 

– An underlying design methodology management 
infrastructure for design space exploration 
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Codesign Methodology 
Using Ptolemy (Cont.) 
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Ptolemy Heterogeneous 
Simulation Environment 

Structural Components 

•  Data encapsulated in “particles” 
•  “Block” objects send and receive messages 
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POLIS 

•  Hardware/Software Codesign and synthesis system 
developed at the University of California, Berkeley 

•  Targeted towards small, scale, reactive, control 
dominated embedded systems 

•  Includes an “unbiased” mechanism for specifying the 
system’s function that allows for maximum flexibility 
in mapping to hardware or software and also allows 
for formal verification 
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POLIS 
Unified Representation 

•  System behavior is specified in a formal manner using Codesign Finite State 
Machines (CFSMs) 
–  CFSMs translate a set of inputs to a set of outputs with only a finite amount of 

internal state 
–  Unlike traditional FSMs, CFSMs do not all change state exactly at the same time 

(globally asynchronous) 
•  CFSMs are designed to be unbiased towards hardware or software 
•  Translators exist to convert other specification languages (e.g. ESTEREL) 

into CFSMs 
•  CFSMs can be translated into traditional FSMs to allow formal verification 
•  CFSMs can communicate with each other using events 

–  Events are unidirectional and happen in non-zero, unbounded time 
–  Events can be used to communicate across all domains (hardware or software) 
–  Events are unbuffered and can be overwritten - however, they can be used to 

implement fully interlocked handshaking 
•  CFSMs are translated into behavioral FSMs for hardware synthesis and into 

S-graphs for software synthesis 
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Codesign Finite State 
Machines 

•  Specification: “Five seconds 
after the key is turned on, if the 
belt has not been fastened, an 
alarm will beep for ten seconds 
or until the key is turned off” 
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S-graph Software Specification 
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Partitioning and Scheduling in POLIS 

•  Partitioning based on mapping CFSMs to either 
hardware or software 

•  This mapping is left to the user - performance feedback 
is provided by simulation 

•  Interfaces between partitions are automatically 
generated 

•  Scheduling based on executing CFSMs 
•  Selection of scheduling algorithm left to user - built into 

RTOS 
– Round-robin cyclic executive 
– Off-line I/O rate-based cyclic executive 
– Static pre-emptive: rate monotonic scheduling 
– Dynamic pre-emptive: Earliest Deadline First 
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Interfaces Among Partitions 

●  Interfaces use strobe/data protocol (corresponding to the event/
value primitive) 
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The POLIS Co-design Environment 
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Final issues 

•  Come by my office hours (right after class)  

•  Any questions or concerns?  


