
1

EEL 5722C
Field-Programmable Gate Array Design

Lecture 22: HW/SW Codesign:
Industry Practice and Academic Research*

Prof. Mingjie Lin

* Copyright © 1995-1999 SCRA

2

Rapid Prototyping Design
Process

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

REUSE DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

HW & SW
Partitioning
& Codesign

3

Sanders Codesign Methodology

Integrate

& Test

Global influences

Libraries

Design

rules

Tool

select.

Virtual

Environ.

Cost

models

Design Development Software Modules

Hardware Modules

Feedback

to user

Requirements

Req.

Analysis

Algorithm

Develop.

HW/SW

Tradeoff

Analysis

SW Req.

Partition.

HW Req.

Partition.

At all

steps

Design Code Test

Integrated HW/SW

Simulation

Logical

& Phys.

Design

Anal.

 &

Simul.

Fab &

Test

System

Checkout

[HOOD94]

4

Sanders Codesign
Methodology

Integrated Modeling Substrate

Gate Level

Model

Arch Ind.

Proc Model

Behavior

Level Model
ISA

Model

Hardware

Perf. Model

System

Requirements

RTL Model

Prototype

Hardware

Software

Perf. Model
Arch Dep.

Proc Model

Source Code

Load

Module

S
I

M

U
L
A
T
I

O
N

L
I

B
R
A
R
Y

HOL

Assembly

[RASSP94]

5

Sanders Codesign Methodology
•  Subsystems process

–  Processing requirements are modeled in an architecture-
independent manner

–  Codesign not an issue
•  Architecture process

–  HW/SW allocation analyzed via modeling of SW
performance on candidate architectures

–  Hierarchical verification is performed using finer grain
modeling (ISA and below)

•  Detailed design
–  Downloadable executable application and test code is

verified to maximum extent possible
•  Library support

–  SW models validated on test data
–  HW models validated using existing SW models
–  HW & SW models jointed iterated throughout designs

6

Lockheed Martin ATL
Codesign Methodology

Req.

 &

Spec.

Top

level

Arch.

Algor.

develop.

& simul.

SW Req.

Spec.

Partition.

HW

Spec..

Partition

HW/SW

Tradeoff

HW

Design

HW/SW

Cosimul.

SW

Design

SW

Code

Prototype

User

Interface

HW

Dev.

HW

Sim.

HW

Anal.

& Fab

HW

Test

SW

Debug

SW

Test

HW/SW

Integ.

System

Checkout

[RASSP94]

7

Major Codesign Research Efforts

•  Chinook - University of Washington - Chou, Ortega,
Borriello

•  Cosmos - Grenoble University - Ismail, Jerraya
•  Cosyma - University of Braunschweig - Ernst, Henkel,

Benner
•  Polis - U. C. Berkeley - Chiodo, Giusto, Jurecska, Hsieh,

Lavagno, Sangiovanni-Vincentelli
•  Ptolemy - U. C. Berkeley - Kalavade, Lee
•  Siera- U. C. Berkeley - Srivastava, Broderson

8

Chinook

•  Unified representation: Event Graph (CDFG)
•  Partitioning: constraint driven by scheduling

requirements
•  Scheduling: timing driven
•  Modeling substrate: based on Verilog HDL
•  Validation: simulation based (Verilog)
•  Main emphasis on synthesis of hardware/software

interfaces

9

Cosmos

•  Unified representation: Initial description is done in SDL
(specification description language) which is translated into SOLAR,
an intermediate form that allows several description levels (CSPs,
FSMs, etc.)

•  Partitioning: user driven using a tool that allows processes to be
grouped together or split into sub-processes

•  Scheduling: based on the partitioning

•  Modeling substrate: VHDL simulation after architecture mapping

•  Validation: simulation based

•  Main emphasis on synthesis of communications mechanisms
between processes - reuse of existing communication models

10

Cosyma

•  Unified representation: ES graph (CDFG)
•  Partitioning: combined method based on course

partitioning by user with cost guidance and finer
scheduling done by simulated annealing

•  Scheduling: no specific method
•  Modeling substrate: based on C++
•  Validation: simulation based (C++)
•  Main emphasis on partitioning for hardware

accelerators

11

Polis

•  Unified representation: Codesign Finite State Machine
(CFSM) based

•  Partitioning: user driven with cost estimated provided by
co-simulation

•  Scheduling: classical real-time algorithms
•  Modeling substrate: Ptolemy based (C++)
•  Validation: co-simulation and formal FSM verification
•  Main emphasis on verifiable specification not biased to

either hardware or software implementation

12

Ptolemy

•  Unified representation: Data Flow Graph
•  Partitioning: greedy algorithm based on scheduling

constraints
•  Scheduling: linear based on sorting blocks by “criticality”
•  Modeling substrate: heterogeneous modeling and

simulation framework based on C++
•  Validation: based on simulation
•  Main emphasis on heterogeneous modeling framework

(mixing different models of computation)

13

Siera

•  Unified representation: static, hierarchical network of concurrent
sequential processes communicating via message queues (similar to
DFG)

•  Partitioning: manual user driven
•  Scheduling: static process to processor mapping, priority based

preemptive schedulers available within real-time OS on processors
•  Modeling substrate: based on VHDL - includes support for modeling

continuous time systems such as sensors and actuators
•  Validation: based on simulation
•  Main emphasis on the design of embedded systems targeted

towards a predefined architectural template

14

Chinook

•  Hardware/Software Co-synthesis system developed
at the University of Washington

•  Targeted at real-time reactive embedded systems

•  Control dominated designs constructed from off-the-
shelf components

15

Chinook’s Principal Innovations

•  Single Specification - one specification, with explicit timing/
performance constraints is used for the system’s hardware and
software

•  One Simulation Environment - the high level specification, the final
result, and any intermediate steps can be simulated to verify and
debug the design

•  Software Scheduling - the appropriate software architecture is
synthesized to meet the timing requirements

•  Interface Synthesis - the hardware and software necessary to
interface between system components (glue logic and device drivers)
is automatically synthesized

•  Complete Information for Physical Prototyping - a complete netlist is
generated for the hardware, and C source code is generated for the
software

16

The Chinook System

Verilog

Specification

Processor &

Device Libraries

parser scheduler

comm.

synthesizer

code

generator

driver

synthesizer
interface

synthesizer

program

netlist

Behavioral

Simulation

Mixed

Simulation

Structural

Simulation

17

System Specification in Chinook
(Unified Representation)

•  The system specification is written in a dialect of Verilog and
includes the system’s behavior and the structure of the system
architecture

•  The behavior is specified as a set of tasks in a style similar to
communicating finite state machines - control states of the
system are organized as modes which are behavioral regimes
similar to hierarchical states

•  In a given mode, the system’s responses are defined by a set
of handlers which are essentially event-triggered routines

•  The designer must tag tasks or modules with the processor that
is preferred for their implementation - untagged tasks are
implemented in software

•  The designer can specify response times and rate constraints
for tasks in the input description

18

Scheduling in Chinook

•  Chinook provides an automated scheduling algorithm
•  Low-level I/O routines and high level routines grouped in

modes are scheduled statically
•  A static, nonpreemptive scheduling algorithm is used to meet

min/max timing constraints on low-level operations
–  Determines serial ordering for operations
–  Inserts delays as necessary to meet minimum constraints
–  Includes heuristics in the scheduling algorithm to help exact

algorithm generate valid solution to NP-hard scheduling problem
•  A customized dynamic scheduler may be generated for the top-

level modes

19

Interface Synthesis in Chinook

•  Realization of communication between system components is
an area of emphasis in the Chinook system

•  Chinook synthesizes device drivers from timing diagrams
•  Custom code for the processor being used is generated

–  For processors with I/O ports, an efficient heuristic is used to
connect devices with minimal interface hardware

–  For processors w/o I/O ports, a memory mapped I/O interface is
generated including allocating address spaces, and generating the
required bus logic and instructions

•  Portions of the interface that cannot be implemented in
software are synthesized into external hardware

20

Communications Synthesis and
System Simulation in Chinook

•  Chinook provides methods for synthesizing communications
systems between multiple processors if a multicomputer
implementation is chosen
–  Bus-based, point-to-point, and hybrid communications schemes are

supported
–  Communications library that includes FIFOs, arbiters, and interconnect

templates is provided

•  Simulation of the design at different levels of detail is supported
–  Verilog-XL Programming Language is used
–  Verilog PLI is used to interface to device models written in C
–  Each device supports the same API for simulation and synthesis - API

calls can be used by the designer to animate the model interactively
–  RTL level models of the processors are used to simulate the final

implementation of the system (software)

21

Cosynthesis of Embedded
Applications (COSYMA)

•  Developed at the Technical University of Braunschweig,
Germany

•  An experimental system for HW/SW codesign of small
embedded real time systems
–  Implements as many operations as possible in software

running on a processor core
– Generates external hardware only when timing constraints

are violated
•  Target architecture:

– Standard RISC processor core
– Application-specific processor

•  Communication between HW and SW through shared
memory with a communicating sequential processes (CSP)
type protocol

22

COSYMA (Cont.)

•  Input description of system in C* is translated into an
internal graph representation supporting
– Partitioning
– Generating hardware descriptions for parts moved to

hardware
•  Internal graph representation combines

– Control and dataflow graph
– Extended syntax (ES) graph

•  Syntax graph
•  Symbol table
•  Local data/control dependencies

23

Design Flow in a
COSYMA System

C* Mode

Simulator

C* Compiler

ES Flowgraph ES to HW C

HW-C Model

ES to C

C Program

C Compiler

Object Code

Partitioning

 Cost

Estimation

Run time

Analysis

Olympus

24

COSYMA - Aims and Strategies

•  Major aim is automating HW/SW partitioning
process, for which very few tools currently exist

•  COSYMA partitions at the basic block and function
level (including hierarchical function calls)
– Simulated annealing algorithm is used because of its

flexibility in the cost function and the possibility to
trade-off computation time vs result quality

– Starts with an unfeasible all-software solution

25

COSYMA - Cost Function
and Metrics

•  The cost function is defined to force the annealing to
reach a feasible solution before other optimization
goals (e.g., area)

•  The metrics used in cost computation are:
– Expected hardware execution times
– Software execution times
– Communication
– Hardware costs

•  The cost function is updated in each step of the
simulated annealing algorithm

26

COSYMA - Cost Function and
Metrics (Cont.)

•  After partitioning, the parts selected to be realized in
software are translated to a C program, thereby
inserting code for communicating with the
coprocessor

•  The rest of the system is translated to the input
description of the high-level synthesis system, and
an application-specific coprocessor is synthesized

•  Lastly, a fast-timing analysis of the whole HW/SW
system is performed to test whether all constraints
are satisfied

27

Ptolemy

•  A software environment for simulation and
prototyping of heterogeneous systems

•  Attributes
–  Facilitates mixed-mode system simulation,

specification, and design
– Supports generation of DSP assembly code from a

block diagram description of algorithm
– Uses object-oriented representations to model

subsystems efficiently
– Supports different design styles called domains

28

Codesign Methodology
Using Ptolemy

•  Ptolemy supports a framework for hardware/software
codesign, called the Design Assistant

•  The Design Assistant consists of two components

– Specific point tools for estimation, partitioning,
synthesis, and simulation

– An underlying design methodology management
infrastructure for design space exploration

29

Codesign Methodology
Using Ptolemy (Cont.)

[Rozenblit94]

Design constraints Design specs. User inputs

Design Flow Area/Time

Estimation

HW/SW

Partitioning

Interface

Synthesis
Netlist

Generation

Hardware

Synthesis

Software

Synthesis

Simulation

Ptolemy VHDL/Synopsys

System

Manual

CPLEX(ILP)

GCLP...

Layout + Software © IEEE 1994

30

Ptolemy Heterogeneous
Simulation Environment

Structural Components

•  Data encapsulated in “particles”
•  “Block” objects send and receive messages
•  Particles travel to/from external world through

“portholes”

Geodesic

Plasma

Block Block Porthole Porthole Porthole Porthole

Universe

(Ptolemy Simulation Kernel)

Separate Model of Computation

(e.g. discrete event)

Separate Model of Computation

(e.g. data flow)

31

POLIS

•  Hardware/Software Codesign and synthesis system
developed at the University of California, Berkeley

•  Targeted towards small, scale, reactive, control
dominated embedded systems

•  Includes an “unbiased” mechanism for specifying the
system’s function that allows for maximum flexibility
in mapping to hardware or software and also allows
for formal verification

32

POLIS
Unified Representation

•  System behavior is specified in a formal manner using Codesign Finite State
Machines (CFSMs)
–  CFSMs translate a set of inputs to a set of outputs with only a finite amount of

internal state
–  Unlike traditional FSMs, CFSMs do not all change state exactly at the same time

(globally asynchronous)
•  CFSMs are designed to be unbiased towards hardware or software
•  Translators exist to convert other specification languages (e.g. ESTEREL)

into CFSMs
•  CFSMs can be translated into traditional FSMs to allow formal verification
•  CFSMs can communicate with each other using events

–  Events are unidirectional and happen in non-zero, unbounded time
–  Events can be used to communicate across all domains (hardware or software)
–  Events are unbuffered and can be overwritten - however, they can be used to

implement fully interlocked handshaking
•  CFSMs are translated into behavioral FSMs for hardware synthesis and into

S-graphs for software synthesis

33

Codesign Finite State
Machines

•  Specification: “Five seconds
after the key is turned on, if the
belt has not been fastened, an
alarm will beep for ten seconds
or until the key is turned off”

Wait

Alarm

Off

(*Key == On) → *Start	

(*End == 5) → *Alarm = On	

(*Key == Off) or	

(*Belt == On) →	

(*End == 10) or	

(*Belt == On) or

(*Key == Off) → *Alarm = Off

(*Key == ON) and	

(*Belt == On) →	

34

S-graph Software Specification

Begin

S==Off

S==Wait *Key==On

*END==5 *END==10

*Alarm=On

S=Alarm

*Belt==On

*Key==Off

*Alarm=Off

*Key==Off

S=Off

End

*Belt==On

*Start

S=Wait

[Chiodo94]

Next

Next

Next

Next Next

Next

True False

True False

True False

True False

True False

True False Next True False

True
False

True
False

© IEEE 1994

35

Partitioning and Scheduling in POLIS

•  Partitioning based on mapping CFSMs to either
hardware or software

•  This mapping is left to the user - performance feedback
is provided by simulation

•  Interfaces between partitions are automatically
generated

•  Scheduling based on executing CFSMs
•  Selection of scheduling algorithm left to user - built into

RTOS
– Round-robin cyclic executive
– Off-line I/O rate-based cyclic executive
– Static pre-emptive: rate monotonic scheduling
– Dynamic pre-emptive: Earliest Deadline First

36

Interfaces Among Partitions

●  Interfaces use strobe/data protocol (corresponding to the event/
value primitive)

A B C Sender Receiver

Sender’s Domain Receiver’s Domain Channel’s Domain

●  Example HW to SW interface

0 1 -0 / 1

10 / 1

-1 / 0 11 + 0- / 0

x ack / y

X

y

ack

y
HW HW to SW SW

ack

X

37

The POLIS Co-design Environment

Compilers

SW Synthesis
Interface
Synthesis

HW Synthesis

Formal
Verification

Partitioning

Simulation

Graphical EFSM ESTEREL (Other)…

CFSMs

SW Code +

RTOS

Prototype

Logic Netlist

38

References

[Boehm73] Boehm, B.W. “Software and its Impact: A Quantitative Assessment,” Datamation, May 1973, p.
48-59.

[Buchenrieder93] Buchenrieder, K., “Codesign and Concurrent Engineering”, Hot Topics, IEEE Computer, R. D.
Williams, ed., January, 1993, pp. 85-86

[Buck94] Buck, J., et al., “Ptolemy: a Framework for Simulating and Prototyping Heterogeneous Systems,”
International Journal of Computer Simulation, Vol. 4, April 1994, pp. 155-182.

[Chiodo92] Chiod0, M., A. Sangiovanni-Vincentelli, “Design Methods for Reactive Real-time Systems
Codesign,” International Workshop on Hardware/Software Codesign, Estes Park, Colorado, September
1992.

[Chiodo94] Chiodo, M., P. Giusto, A. Jurecska, M. Marelli, H. C. Hsieh, A. Sangiovanni-Vincentelli, L. Lavagno,
“Hardware-Software Codesign of Embedded Systems,” IEEE Micro, August, 1994, pp. 26-36; © IEEE
1994.

[Chou95] P. Chou, R. Ortega, G. Borriello, “The Chinook hardware/software Co-design System,” Proceedings
ISSS, Cannes, France, 1995, pp. 22-27.

[DeMicheli93] De Micheli, G., “Extending CAD Tools and Techniques”, Hot Topics, IEEE Computer, R. D.
Williams, ed., January, 1993, pp. 84

[DeMicheli94] De Micheli, G., “Computer-Aided Hardware-Software Codesign”, IEEE Micro, August, 1994, pp.
10-16

[DeMichelli97] De Micheli, G., R. K. Gupta, “Hardware/Software Co-Design,” Proceedings of the IEEE, Vol. 85,
No. 3, March 1997, pp. 349-365.

[Ernst93] Ernst, R., J. Henkel, T. Benner, “Hardware-Software Cosynthesis for Micro-controllers”, IEEE Design
and Test, December, 1993, pp. 64-75

[Franke91] Franke, D.W., M.K. Purvis. “Hardware/Software Codesign: A Perspective,” Proceedings of the 13th
International Conference on Software Engineering, May 13-16, 1991, p. 344-352; © IEEE 1991

39

References (Cont.)

[Gajski94] Gajski, D. D., F. Vahid, S. Narayan, J. Gong, Specification and Design of Embedded Systems,
Prentice Hall, Englewood Cliffs, N J, 07632, 1994

[Gupta92] Gupta, R.K., C.N. Coelho, Jr., G.D. Micheli. “Synthesis and Simulation of Digital Systems Containing
Interactive Hardware and Software Components,” 29th Design Automation Conference, June 1992, p.
225-230.

[Gupta93] Gupta, R.K., G. DeMicheli, “Hardware-Software Cosynthesis for Digital Systems,” IEEE Design and
Test, September 1993, p.29-40; © IEEE 1993.

[Hermann94] Hermann, D., J. Henkel, R. Ernst, “An approach to the estimation of adapted Cost Parameters in
the COSYMA System”, 3rd International Conference on Hardware/Software codesign, Grenoble, France,
September 22-24, 1994, pp. 100-107

[Hood94] Hood, W., C. Myers, "RASSP: Viewpoint from a Prime Developer," Proceedings 1st Annual RASSP
Conference, Aug. 1994.

[IEEE] All referenced IEEE material is used with permission.
[Ismail95] T. Ismail, A. Jerraya, “Synthesis Steps and Design Models for Codesign,” IEEE Computer, no. 2, pp.

44-52, Feb 1995.
[Kalavade93] A. Kalavade, E. Lee, “A Hardware-Software Co-design Methodology for DSP Applications,” IEEE

Design and Test, vol. 10, no. 3, pp. 16-28, Sept. 1993.
[Klenke96] Klenke, R. H., J. H. Aylor, R. Hillson, D. J. Kaplan, “VHDL-Based Performance Modeling for the

Processing Graph Method Tool (PGMT) Environment,” Proceedings of the VHDL International Users
Forum, Spring 1996, pp. 69-73.

[Kumar95] Kumar, S., “A Unified Representation for Hardware/Software Codesign”, Doctoral Dissertation,
Department of Electrical Engineering, University of Virginia, May, 1995

[Jalote91] Jalote, P., An Integrated Approach to Software Engineering, Springer-Verlag, New York, 1991.
[McFarland90] McFarland, M.C., A.C. Parker, R. Camposano. “The High-Level Synthesis of Digital Systems,”

Proceedings of the IEEE, Vol. 78, No. 2, February 1990, p.301-318, © IEEE 1990.

40

References (Cont.)

[Parker84] Parker, A.C., “Automated Synthesis of Digital Systems,” IEEE Design and Test,, November 1984, p.
75-81.

[RASSP94] Proceedings of the 1st RASSP Conference, Aug. 15-18, 1994.
[Rozenblit94] Rozenblit, J. and K. Buchenrieder (editors). Codesign Computer -Aided Software/Hardware

Engineering, IEEE Press, Piscataway, NJ, 1994; © IEEE 1994.
[Smith86] Smith, C.U., R.R. Gross. “Technology Transfer between VLSI Design and Software Engineering:

CAD Tools and Design Methodologies,” Proceedings of the IEEE, Vol. 74, No. 6, June 1986, p.875-885.
[Srivastava91] M. B. Srivastava, R. W. Broderson, “Rapid prototyping of Hardware and Software in a Unified

Framework,” Proceedings ICCAD, 1991, pp. 152-155.
[Subrahmanyam93] Subrahmanyam, P. A., “Hardware-Software Codesign -- Cautious optimism for the future”,

Hot Topics, IEEE Computer, R. D. Williams, ed., January, 1993, pp. 84
[Tanenbaum87] Tanenbaum, A.S., Operating Systems: Design and Implementation, Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1987.
[Terry90] Terry, C. “Concurrent Hardware and Software Design Benefits Embedded Systems,” EDN, July 1990,

p. 148-154.
[Thimbleby88] Thimbleby, H. “Delaying Commitment,” IEEE Software, Vol. 5, No. 3, May 1988, p. 78-86.
[Thomas93] Thomas, D.E., J.K. Adams, H. Schmitt, “A Model and Methodology for Hardware-Software

Codesign,” IEEE Design and Test, September 1993, p.6-15; © IEEE 1993.
[Turn78] Turn, R., “Hardware-Software Tradeoffs in Reliable Software Development,” 11th Annual Asilomar

Conference on Circuits, Systems, and Computers, 1978, p.282-288.
[Vahid94] Vahid, F., J. Gong, D. D. Gajski, “A Binary Constraint Search Algorithm for Minimizing Hardware

During Hardware/Software Partitioning”, 3rd International Conference on Hardware/Software Codesign,
Grenoble, France, Sepetember22-24, 1994, pp. 214-219

[Wolf94] Wolf, W.H. “Hardware-Software Codesign of Embedded Systems,” Proceedings of the IEEE, Vol. 82,
No.7, July 1994, p.965-989.

41

References (Cont.)

Additional Reading:
Aylor, J.H. et al., "The Integration of Performance and Functional Modeling in VHDL” in Performance and Fault

Modeling with VHDL, J. Schoen, ed., Prentice-Hall, Englewood Cliffs, N.J., 1992.
D’Ambrosio, J. G., X. Hu, “Configuration-level Hardware-Software Partitioning for Real-time Embedded

Systems”, 3rd International Conference on Hardware/Software codesign, Grenoble, France, September
22-24, 1994, pp. 34-41

Eles, P., Z. Peng, A. Doboli, “VHDL System-Level Specification and Partitioning in a Hardware-Software
Cosynthesis Environment”, 3rd International Conference on Hardware/Software codesign, Grenoble,
France, September 22-24, 1994, pp. 49-55

Gupta, R.K., G. DeMicheli, “Hardware-Software Cosynthesis for Digital Systems,” IEEE Design and Test,
September 1993, p.29-40.

Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal Processors, Kluwer
Academic Publishers, Norwell, MA, 1997

Schultz, S.E., “An Overview of System Design,” ASIC and EDA, January 1993, p.12-21.
Thomas, D. E, J. K. Adams, H. Schmit, “A Model and Methodology for Hardware-Software Codesign”, IEEE

Design and Test, September, 1993, pp. 6-15
Zurcher, F.W., B. Randell, “Iterative Multi-level Modeling - A Methodology for Computer System Design,”

Proceedings IFIP Congress ‘68, Edinburgh, Scotland, August 1968, p.867-871.

42

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

