

Datapath Synthesis for Standard-Cell Design

Reto Zimmermann

DesignWare, Solutions Group

Synopsys Switzerland LLC, 8050 Zurich, Switzerland

reto@synopsys.com

Abstract

Datapath synthesis for standard-cell design goes

through extraction of arithmetic operations from RTL

code, high-level arithmetic optimizations and netlist

generation. Numerous architectures and optimization

strategies exist that result in circuit implementations

with very different performance characteristics. This

work summarizes the circuit architectures and tech-

niques used in a commercial synthesis tool to optimize

cell-based datapath netlists for timing, area and power.

1. Introduction

Design Compiler is the Synopsys platform to syn-

thesize RTL code into a standard-cell netlist. Arithmet-

ic operations are first extracted into datapath blocks,

undergo high-level arithmetic optimizations and are

finally mapped to gates through dedicated datapath

generators. This paper highlights the circuit architec-

tures and optimization techniques used to generate op-

timized netlists for a given design context. Special

emphasis is given to the relatively new area of power

optimization. The paper does not go into any technical

details, but rather gives an overview of what mostly

known and published architectures and techniques are

successfully applied in our cell-based synthesis flow.

2. Datapath Extraction

Arithmetic operations  such as addition, multipli-

cation, comparison, shift, as well as selection  are first

extracted from the RTL code into datapath blocks.

Thereby largest possible clusters are formed by includ-

ing all connected operations into one single datapath

block. This allows the subsequent high-level optimiza-

tions and number representation selection to be most

effective.

The most generic arithmetic operation that is ex-

tracted is the sum-of-products (SOP), which also covers

simple addition, subtraction, increment, multiplier and

even comparison. Therefore the extracted datapath

blocks consist of a collection of SOPs, shifters and se-

lectors. An SOP furthermore is composed  just like a

simple multiplier  of partial-product generation

(PPG), carry-save addition (CSA, Wallace tree) and

carry-propagate addition (CPA). All extracted opera-

tions can handle inputs and outputs in carry-save num-

ber representation, which allows to keep internal results

in carry-save and therefore to improve performance by

eliminating internal carry propagations [1].

3. Datapath Optimization

After datapath extraction high-level arithmetic op-

timizations are carried out, such as common sub-

expression sharing or unsharing, sharing of mutually

exclusive operations, comparator sharing, constant

folding and other arithmetic simplifications. Sum-of-

products are converted to product-of-sums where bene-

ficial (A*B+A*C  A*(B+C)). Number representa-

tions for intermediate results are selected among bi-

nary, carry-save and partial-product based on the de-

sign constraints and optimization goals. Generally bi-

nary representation is used for area optimization and

carry-save for delay optimization.

4. Datapath Generation

Flexible context-driven generators are used to im-

plement the gate-level netlist for a datapath under a

given design context. This context includes input ar-

rival times, output timing constraints, area and power

constraints, operating conditions and cell library cha-

racteristics.

4.1. Partial-Product Generation

Partial products have to be generated for multiplica-

tion operations. The following generators are included:

1. Constant multiplication: CSD (canonic signed-

digit) encoding of constant input to minimize the

number of partial products that need to be summed

up.

2. Binary multiplication:

2009 19th IEEE International Symposium on Computer Arithmetic

1063-6889/09 $25.00 © 2009 IEEE

DOI 10.1109/ARITH.2009.28

207

a. Brown (unsigned), Baugh-Wooley (signed):

Best architectures for small word lengths (8-

16 bits).

b. Radix-4 Booth: Good area, best delay for

large word lengths.

c. Radix-8 Booth: best area for large word

lengths, but longer delay.

3. Special multiplication:

a. Square: Implemented as A*A, bit-level gate

simplification and equivalent bit optimization

before carry-save addition automatically re-

sults in an optimized squarer structure.

b. Blend: Partial-product bits of the blend opera-

tion A*B+~A*C are generated using multip-

lexers to reduce the number of product bits.

4. Carry-Save multiplication: One input is carry-

save, which allows to implement product-of-sums,

like (A+B)*C, without internal carry propagation.

Delay is reduced at the expense of larger area.

a. Non-Booth: Carry-save input is converted to

delayed-carry representation (through a row of

half-adders), then pairs of mutually exclusive

partial-product bits can be added with a sim-

ple OR-gate.

b. Booth: Special Booth encoder for carry-save

input.

All of the above architectures prove beneficial un-

der certain conditions and constraints. More informa-

tion and references on the individual architectures are

available in [1].

4.2. Carry-Save Addition

All partial-product bits are added up by reducing

every column from N inputs bits down to 2 output bits

(carry-save representation). Column compression is

done using compressor cells, such as half-adders (2:2

compressor), full-adders (3:2 compressor) and 4:2

compressors. The timing-driven adder tree construc-

tion considers input arrival times as well as cell pin-to-

pin delays, resulting in delay-optimal adder trees that

are better than Wallace trees [2].

4.3. Carry-Propagate Addition

The carry-save output from carry-save addition is

converted to binary through a carry-propagate adder.

Since carry propagation is a prefix problem, most adder

architectures can be categorized as different kinds of

parallel-prefix adders. These adders share a prefix

structure to propagate carries from lower to higher bits.

A wide range of prefix structures exists that fulfill dif-

ferent performance requirements. These differ in terms

of depth (= circuit speed), size (= circuit area) and max-

imum fanout (= net loads). The following schemes are

used to optimize the adder for a given context:

1. Parallel-prefix structure: A prefix graph optimiza-

tion algorithm is used to generate area-optimized

flexible prefix structures (unbounded fanout) for

given timing constraints [1]. The algorithm is able

to generate a serial-prefix structure for very loose

constraints, a fast parallel-prefix structure for tight

constraints, and a mix of both for constraints in

between. It takes bit-level input arrival times and

output required times into account and therefore

adapts the prefix structure to any arbitrary input

and output timing profile, including late arriving

single bits or U-shaped input profiles of the final

adder in multipliers. This helps reduce circuit area

but also delay for the most critical input bits.

Bounded fanout prefix structures (like Kogge-

Stone) can also be generated, but are not opti-

mized for non-uniform timing profiles.

2. Sum bit generation: In the carry-lookahead

scheme the prefix structure calculates (look-

ahead) all the carries, which then compute the sum

bits. In the carry-select scheme the two possible

sum bits for a carry-in of 0 and 1 are calculated in

advance and then selected through a series of mul-

tiplexers controlled by the carries from all levels

of the prefix structure. This latter scheme is used

in carry-select and conditional-sum adders.

3. Prefix signal encoding: The prefix structure can

either compute generate/propagate signal pairs

using AND-OR gates (optimized into AOI/OAI

structures) or carry-in-0/carry-in-1 signal pairs

using multiplexers.

4. Prefix radix: The most common parallel-prefix

adders use a radix-2 prefix structure (i.e., each

prefix node processes two input signal pairs to

produce one output pair). Radix-3 and radix-4

prefix adders on the other hand process 3 or 4 in-

put pairs in each prefix node. The resulting prefix

node logic is more complex but the prefix struc-

ture is shallower and thus potentially faster. The

high-radix parallel-prefix adders only give better

performance if special multilevel AND-OR-gates

(like AOAOI) are available in the library.

5. Special architectures: Ling adder and spanning-

tree adder architectures are also supported.

All of the above schemes can be combined almost

arbitrarily. This allows the implementation of well-

known architectures like the Brent-Kung, Ladner-

Fisher and Kogge-Stone parallel-prefix adders, carry-

select adders, conditional-sum adders, Ling adder, but

also many more mixed alternatives.

Most of the described more special adder architec-

tures only give superior performance under rare condi-

208

tions, if at all. The regular Ladner-Fisher parallel-

prefix adder (unbounded fanout, carry-lookahead

scheme, generate/propagate signal encoding, radix-2

prefix) with flexible prefix structure gives best and

most reliable performance in most cases and therefore

is selected most of the time.

4.4. Shifters

Shifters are implemented with multiplexers or

AND-OR structures depending on the context. To im-

prove timing the levels inside the shifter can be reor-

dered based on the delay of the shift control inputs.

The special case where a shifter actually implements a

decoder (X=1<<A) is detected and a dedicated decoder

circuit is synthesized instead. Shifters can accept bi-

nary and carry-save inputs and can therefore reside

between two arithmetic operations with no need for a

binary conversion (carry propagation).

4.5. Selectors

Selectors are as well implemented with multiplexers

or AND-OR structures based on context. They can

have arbitrary number of inputs. Selectors also support

carry-save inputs, which allows to move them around

inside a datapath (e.g., from the binary output to an

internal carry-save operand) in order to enable addi-

tional sharing.

4.6. Architecture Selection

During synthesis all applicable architectures de-

scribed in the previous sections are evaluated and

costed for timing, area and power. The architecture

that fulfills the constraints best for a given cell library

is selected. The use of specific architectures can also

be manually controlled through dedicated switches.

4.7. Pipelining

Pipelining of datapaths is supported indirectly. All

the pipeline registers must be placed at the inputs or

outputs of the block in the RTL code. The datapath is

then synthesized as a combinational block with a re-

laxed timing constraint that is proportional to the num-

ber of pipeline stages. Finally the pipeline registers are

moved to the optimal locations inside the datapath

through register retiming.

4.8. Carry-Save Registers

Where a datapath is split by a register (i.e., arith-

metic operations on both sides of a register) synthesis

can extract the first datapath block with carry-save out-

put and the second with carry-save input, so that the

register between them stores an intermediate result in

carry-save representation. This optimization, however,

currently poses problems in formal verification.

5. Low Power Datapath

Datapaths often consume large amounts of dynamic

power due to their large circuit size and high switching

activity during operation. Therefore our recent focus

was to lower dynamic power dissipation in synthesized

datapath circuits.

5.1. Operand Isolation

One of the most effective way to save dynamic

power is to turn off entire blocks when not in use.

When the output of a block is not read (e.g., deselected

by a multiplexer) the inputs into the block are either

forced to a constant value or the previous value is kept.

Synthesis can automatically apply the former technique

and tries to integrate the isolation gates into the data-

path logic in order to minimize performance impact.

5.2. Transition-Probability-Based

Optimizations

In many applications transition probabilities

(switching activities) are not evenly distributed among

all inputs. Lower activities on some input operands or

some input bits can be exploited to reduce overall ac-

tivity and power.

5.2.1. Transition-Probability-Based Adder Tree

In applications like signal processing input samples

can be correlated and higher bits can have lower transi-

tion probabilities. The following techniques from the

literature were investigated but found not feasible for

cell-based synthesis:

 Left-to-right multiplier: Adds the MSB partial

products first, which results in lower activity in

the entire adder array [3]. However, array multip-

liers are generally much worse in terms of switch-

ing activity and dynamic power compared to tree

multipliers because of the much longer signal

paths and the ripple structure. Since synthesis

usually generates adder trees, synthesized multip-

liers are already more power efficient than any

kind of array multiplier except for very extreme

activity distributions.

 Disable MSB logic: If upper bits do not change,

the upper portion of a multiplier can be shut off

[4]. Efficient transistor-level circuits exist for dy-

namically detecting signal inactivity, but with

standard-cells the logic is very expensive. Also,

latches would be needed to store previous values,

which is problematic in synthesis.

209

The optimization that was eventually implemented

is to balance the adder tree based on input transition

probabilities instead of input timing (transition-

probability-driven adder tree construction). There-

by low activity inputs enter the tree early and high ac-

tivity inputs late. In the extreme case of monotonically

increasing activities from LSB to MSB a structure simi-

lar to the left-to-right multiplier is generated. This ap-

proach is very flexible and it guarantees an adder tree

with lowest possible overall activity for arbitrary input

activity profiles.

5.2.2. Transition-Probability-Based Operand

Selection

In Booth multipliers the input that is Booth encoded

drives extra logic. Power can be saved by Booth-

encoding the input with lower average activity. This

operand selection is done statically during synthesis.

Approaches to dynamically switch operands based on

actual activity have also been proposed but are again

rejected here due to the too large circuit overhead for

activity detection in cell-based design.

5.3. Glitching Reduction

Glitching power, caused by spurious transitions, can

be as high as 60% of total dynamic power in datapaths,

especially when multipliers are involved. Glitching

reduction is therefore considered as the most promising

way to reduce dynamic power in datapaths.

5.3.1. Delay Balancing

Glitches are produced when inputs into gates are

skewed, i.e., an output transition caused by a transition

on an early input is undone later by a transition on a

late input. Glitch generation and propagation is largest

in non-monotonic gates, like XORs, where each input

transition causes an output transition. Preventing input

skews through delay balancing can very effectively

reduce the amount of produced glitches. It is often

sufficient to do it in specific glitch-prone locations only

(like Booth encoding/selection), limiting the negative

impact of buffer insertion and gate sizing. However,

effective delay balancing needs to be done in the back-

end (after place-and-route) because only then the final

delays are known. It is interesting to note that glitching

is usually lower in circuits optimized for speed because

skews are smaller when the structure is as parallel as

possible and all gates are sized up for optimal speed.

5.3.2. Architecture Selection

Not all architectures are equally prone to glitching.

It is observed that in multipliers most glitching origi-

nates from partial-product generation, especially in

Booth multipliers where signal skews are big because

of unbalanced signal paths. A well balanced carry-save

adder tree does not produce much additional glitching,

but it can propagate incoming glitches all the way

through due to the non-monotonic nature of the com-

pressor cells (XOR-based). Thus the adder tree can

actually be the largest contributor to glitching power.

Glitching power in non-Booth multipliers can range

from 10% to 30%, depending on multiplier size and

delay constraints, while for radix-4 Booth multipliers

the range is 15% to 60% and for radix-8 Booth multip-

liers 40% to 70%. Therefore glitching must be taken

into account when selecting an optimal architecture for

lowest possible power.

5.3.3. Special Cells

Complex special cells, such as 4:2 compressors

and Booth encoder/selector cells, can reduce glitching

in two ways: a) well balanced path delays can reduce

glitch generation and b) long inertial delays can filter

out incoming glitches. Synthesis makes use of such

cells if available in the library.

A more aggressive way to filter out glitches is to

use pass-gate or pass-transistor compressor cells.

Multiple cells in series act like a low-pass filter, but

their long delay makes then suitable only for low-

frequency applications. However, pass-gate logic is

not compatible with current standard-cell methodolo-

gies, so this strategy is not considered in synthesis.

5.3.4. NAND-Based Multiplier

Brown and Baugh-Wooley multipliers use nm

AND-gates to generate the partial-product bits, which

are implemented with INVERT-NOR structures for

better results (nm inverters, nm NOR-gates). An

alternative implementation uses nm NAND-gates to

generate inverted partial-product bits, which can be

added up with a slightly adapted adder tree to generate

an inverted carry-save sum. While this architecture

does not always give better timing or area, depending

on the need for input buffering and output inversion, it

often helps reduce glitching because of the absence (of

possibly unbalanced) input inverters.

5.4. Shifter Optimization

Dynamic power in shifters is reduced by replacing

the multiplexers of a conventional design with demul-

tiplexers, as described in [5]. The resulting structure

has lower overall wire load and reduced transition

probabilities on the long wires, which both help reduce

power dissipation.

5.5. Techniques Incompatible with Cell-Based

Design

Other techniques for reducing dynamic power in

arithmetic circuits that are found in the literature are

210

not compatible with cell-based design and synthesis for

different reasons. These include:

 Exchange multiplier inputs or form 2’s comple-

ment of multiplier inputs if this results in lower

transition probabilities at the multiplier inputs [6].

The special circuits that are required can be im-

plemented efficiently at the transistor level, but

not with standard-cells.

 Bypass rows/columns in array multipliers where

partial products are 0 [7]. This technique applies

to array multipliers and requires latches and mul-

tiplexers, which only at the transistor-level can be

efficiently integrated into the full-adder circuit.

 Glitch gating suppresses the propagation of

glitches at certain locations in a combinational

block by inserting latches or isolation gates that

are driven by a delayed clock [8]. The required

latches and delay lines are not compatible with a

synthesis flow.

 Logic styles, such as pass-transistor logic, can be

useful to reduce power because of reduced number

of transistors (capacitive load) and through glitch

filtering [9], but they are again not feasible in

standard-cells.

6. Summary

The extraction of arithmetic operations from RTL

into large datapath blocks is key to enabling high-level

arithmetic optimizations and to efficient implementa-

tion at the circuit level through exploiting redundant

number representations and reducing expensive carry

propagations to a minimum.

For the synthesis of sum-of-products the different

architectures to generate partial products for multipliers

all prove to be valuable alternatives to optimize a data-

path for a given context. The timing-driven or transi-

tion-probability-driven adder tree construction results

in optimal carry-save adders for delay, area and power

under arbitrary timing and activity input profiles. The

flexible parallel-prefix adder with timing-driven prefix

structure optimization is the architecture of choice for

the implementation of carry-propagate adders and

comparators under arbitrary timing constraints.

For the reduction of dynamic power dissipation in

datapaths many techniques proposed in the literature

are tailored towards full-custom and transistor-level

design and therefore are not applicable in cell-based

design. On the other hand, the techniques already in

place to optimize datapath circuits for area and timing

also help improve power because smaller area means

less power and the inherent parallelism effectively re-

duces switching activity and glitching. Only few addi-

tional techniques were found that can incrementally

reduce power further. Most effective are strategies that

help lower glitching power or turn off unused blocks.

7. Outlook

For future work, we see potential for improvements

in the following areas:

 Add support for more special arithmetic opera-

tions, improve datapath extraction and include

more arithmetic optimizations.

 Have more flexible selection of number represen-

tations inside datapath blocks, such as partial bi-

nary reduction of carry-save results (i.e., propa-

gate carries only for small sections).

 Optimize CSE sharing/unsharing for given timing.

 Investigate more low-power architectures and

techniques for cell-based design, also for glitch

reduction. Investigate the use of sign-magnitude

arithmetic.

8. References

[1] R. Zimmermann and D. Q. Tran, “Optimized Synthesis

of Sum-of-Products”, 37th Asilomar Conf. on Signals,

Systems and Computers, Nov 9-12, 2003.

[2] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A Method

for Speed Optimized Partial Product Reduction and Gen-

eration of Fast Parallel Multipliers Using an Algorithmic

Approach”, IEEE Trans. on Computers, vol. 45, no. 3,

March 1996.

[3] Z. Huang and M. D. Ercegovac, “High-Performance

Low-Power Left-to-Right Array Multiplier Design”,

IEEE Trans. on Computers, vol. 54, no. 3, March 2005.

[4] K.-H. Chen, Y.-S. Chu, Y.-M. Chen, and J.-I. Guo, “A

High-Speed/Low-Power Multiplier Using an Advanced

Spurious Power Suppression Technique”, ISCAS 2007:

IEEE Intl. Symp. on Circuits and Systems, May 2007.

[5] H. Zhu, Y. Zhu, C.-K. Cheng, and D. M. Harris, “An

Interconnect-Centric Approach to Cyclic Shifter Design

Using Fanout Splitting and Cell Order Optimization”,

ASP-DAC’07, Asia and South Pacific Design Automa-

tion Conference, Jan 23-26, 2007.

[6] P.-M. Seidel, “Dynamic Operand Modification for Re-

duced Power Multiplication”, 36th Asilomar Conf. on

Signals, Systems and Computers, vol. 1, Nov 2002.

[7] K.-C. Kuo and C.-W. Chou, “Low Power Multiplier with

Bypassing and Tree Structure”, IEEE Asia Pacific Conf.

on Circuits and Systems, APCCAS 2006, Dec 2006.

[8] K. Chong, B.-H. Gwee, and J. S. Chang, “A Micropower

Low-Voltage Multiplier With Reduced Spurious Switch-

ing”, IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, vol. 13, no. 2, Feb 2005.

[9] V. G. Moshnyaga and K. Tamaru, “A Comparative

Study of Switching Activity Reduction Techniques for

Design of Low-Power Multipliers”, IEEE Intl. Symp. on

Circuits and Systems, ISCAS '95, vol. 3, May 1995.

211

