Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003

© 2003 |IEEE

Optimized Synthesis of Sum-of-Products

Reto Zimmermann and David Q. Tran
DesignWare, Solutions Group, Synopsys, Inc.
2025 NW Cornelius Pass Rd., Hillsboro, OR 97124

Abstract— In our latest approach to datapath synthesis from
RTL, datapaths are extracted into largest possible sum-of-prod-
uct (SOP) blocks, thus making extensive use of carry-save inter-
mediate results and reducing the number of expensive carry-
propagations to a minimum. The sum-of-product blocks are then
implemented by constraint- and technology-driven generation of
partial products, carry-save adder tree and carry-propagate
adder. A smart generation feature selects the best among alterna-
tive implementation variants. Special datapath library cells are
used where available and beneficial. All these measures translate
into better performing circuits for simple and complex datapaths
in cell-based design.

|I. INTRODUCTION

ment, comparison or squaring are just special cases thereof [1]-
[3]. Hardware implementations of multiplication — the most
complex of above operations — include three paptstial-
product generation (PPG)carry-save addition (CSA)and
carry-propagate addition (CPA)AIl other operations can be
implemented by the same, possibly simplified, hardware.
While the output of the carry-propagate adder (also referred to
asfinal adderin multipliers) is in irredundanbinary represen-
tation, the outputs of the partial-product generation and carry-
save adder can be regarded as intermediate results in redundant
partial-product (= arbitrary number of bits per bit position) or
carry-save representatiof¥ two bits per bit position).

It is a common technique to speed up datapaths by keeping

While current datapath synthesis tools for cell-based desigmtermediate results in a redundant representation and by per-
(i.e., automated netlist synthesis for standard-cell or gate-arrdprming a time-consuming carry-propagation only at the end
technologies) deliver satisfying performance for simple arith-and where necessary. This is possible because the addition
metic operations — like adders and multipliers — there is stilloperation is associative and can accept operands in redundant
potential for improvement in the synthesis of more complexrepresentation, which allows to implement a sum of multiple
datapaths. In order to achieve that goal, two levels have to bgroducts and addends — orsam-of-products (SOR) by one
addressed. First, more sophisticated partitioning of complekig carry-save adder followed by one single final carry-propa-
datapaths and more arithmetic optimizations have to bgate adder. Therefore, largest possible sum-of-products — and
applied. Second, datapath generators have to become manple arithmetic operations are just special cases thereof — are
advanced and flexible in order to efficiently implement theextracted from RTL and implemented as one single datapath
more complex datapath partitionings in a context-driven wayblock containing multiple parallel partial-product generators,
Context-driven means that on one hand the timing-context -ene carry-save adder and one carry-propagate adder. The same
i.e., input arrival and output required times — of a datapatican be done for magnitude and equality comparison of sum-of-
block as part of a bigger design is taken into account, and thatroducts with the only difference that the final adder provides
on the other hand the characteristics of the technology library the comparison flags instead of the sum.

i.e., the performance of individual library cells and the avail-

For datapaths that allow sharing of resources and common

ability of special cells — is considered. This paper describes ousubexpressions, hardware can be shared among multiple SOPs
latest approach on tackling the second level, the optimized syrihrough flexible datapath partitioning (i.e., the appropriate
thesis of complex datapaths, in particular of sum-of-products.choice of representations for shared results and the use and

Section Il introduces and justifies the approach of addressingrrangement of CSA and CPA blocks) in order to trade hard-
datapath synthesis at the sum-of-products level. Section INvare sharing versus duplication, or circuit area versus speed.
describes the possibilities and limitations for the implementaAs an example, consider the following datapath:

tion of product-of-sums. Sections IV-VI describe in detail the
algorithms and techniques that are used for context-driven syn-

X=AxB+C,
Y=AxB+D.

thesis of the sum-of-product building blocks: partial-productHardware for the multiplicatioAxB can be shared in different

generation, carry-save addition, and carry-propagate additiomvays, resulting in the datapath partitionings depicted in Fig. 1.
Quantitative measures for the observed performance gains aktecan be easily seen that the different partitionings result in dif-
given based on experiments with a large number of modern ceferent circuit performance: (a) implements the slowest datapath

libraries for standard-cell (down to 0.8 feature sizes) and

with two carry-propagations in series and low area require-

gate-array technologies. Section VII finally gives a quick over-ments, (c) and (d) implement the fastest datapaths with big area
view of the smart generation feature that is used to explore difrequirements due to the duplicated carry-save adder, while (b)
ferent implementation alternatives and to choose the best oneepresents a good trade-off between area and speed.

Il. SUM-OFPRODUCT SYNTHESIS

I1l. PRODUCT-OF-SUM SYNTHESIS

The elementary and most important arithmetic operations in As opposed to addition, multiplication has more restrictions
datapaths are multioperand addition and multiplication, whileon the representation of its input operands. While it is theoreti-
other operations like two-operand addition, subtraction, increeally possible to allow redundant representations with arbitrary

Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

A B (MCSD) representation by applying the replacement pattern
above only if the number of nonzero digits is actually reduced
/ PPG \ (note that this is not the case 011 — 101). The following
i] T replacement pattern is used instead:
con I\ con 0112{1}{01}1 - 100{0}{10} 1.
The benefits of a CSD over a binary representation heavily
depend on the value of the constant and can range o
CPA —75% delay reduction an@% to —90% area reduction for a
constant multiplier. Area reduction of MCSD compared to
X v CSD is only small on average but can go up-29% for cer-
€) tain constants, while delays do not change significantly.

Fig. 1._Datapath partitioning with m_ultiplier hardware bging shared up to theg Binary Non-Booth Multiplication
(a) binary, (b) carry-save, (c) partial-product, and (d) input operand level.

For unsigned multiplication of two binary operands (no
numbers of bits per bit position on operands, such multiplier8ooth recoding), the partial-products are generated in a
become slow and prohibitively large because of the large nunstraightforward way using AND gates. For 2’s complement
ber of partial-product bits that have to be generated andnultiplication, themodified Baugh-Woolescheme [2] is used,
summed up. However, there exist techniques that result in pewhich reduces the extra correction bits to constants in noncriti-
formance benefits for multiplication with one operand in carry-cal columns in a very effective way.
save and one operand in binary representation [4], [5] (se
carry-save multipliersin Section V). This allows for some
limited implementation ofproduct-of-sums (POS} e.g., an For multiplication of one carry-save with one binary operand
addition or multiplication followed by a multiplication or, (no Booth recoding), the carry-save operdAd, AS is first
more general, several SOPs in series — within one datapationverted todelayed-carryrepresentatiofC, S) by feeding it
block with one final carry-propagate adder but no intermediat¢o a row of half-adders:

g. Carry-Save Non-Booth Multiplication

carry-propagations, thus resulting in shorter delays. (Gi+1, §) =aG +as.
Due to the property of the delayed-carry representation that not
IV. PARTIAL -PRODUCT GENERATION both carry and sum outputs from a half-adder can be 1 at the

In the first step of sum-of-product synthesis, all partial-prod-same time (i.e.¢i.;5 = 0), the two partial-product bits; 10y 1
ucts are generated in parallel. While the partial-product generandsb, cannot be 1 at the same time either and therefore can
tion for addends is trivial (i.e., simply add the addend to the sebe added together by a simple OR gate and thus be reduced to a
of partial-products), this section elaborates on alternatives dfingle partial-product bit:
partial-product generation for multiplication. PPk = Ci+1Dk1 + Sbi.

Note that since all partial-product bits are generated |nde’The number of partia'_product b|ts fomaxn Carry_save multi_
pendently in parallel and in constant time, there are no optimi ly is thereby reduced fromn2nto (m+1)n at the expense of
zations necessary or possible for nonuniform input arrivainore complex generation logic. An equivalent scheme was
times. Therefore, the partial-product generators do not work ilyresented in [5] together with a scheme for both operands in
a constraint-driven way (i.e., input arrival and output reqUire‘(Earry—save representation, which however seems not to trans-
times do not influence the circuit structure). late into any significant benefits.

Compared to the alternative implementation of a carry-prop-
agate adder (to reduce the carry-save operand to binary) fol-
In constant multiplication, a common technique to reducdowed by a binary multiplier, the described carry-save
the number of partial-products — and thus to reduce circuit aremultiplier trades the slow but rather small carry-propagate
and delay for adding them up — is to reduce the number of noradder (with width-dependent delay and area-per-bit) for a
zero digits in the constant operand representation by using faster but larger partial-product generation (with constant delay
redundansigned-digit (SDyepresentation that is based on theand area-per-bit), resulting in an overall delay improvement
digitset{ 1,0, 1}, wherel represents the valu€l and results (bigger with increasing width) but a considerable area penalty
in a negative partial-product. The widely useahonic signed- (smaller with increasing width). For the simple product-of-sum
digit (CSD)representation is a minimal SD representation (i.e.(A+B)xC and operand widths between 8 and 64 bits, a delay

minimal number of nonzero digits) with no consecutive non-reduction of about-5% to —15% at area increases (%
zero digits [2]. It is obtained by applying the following replace- down to+20% are observed.
ment pattern repeatedly from right to left to the binary) o
representation of the constant operand: D. Binary Booth Multiplication

01{1}1 - 10{0} 1. Booth recoding is widely used to reduce the number of par-
Because negative digitsrequire the multiplicand to be com- tial products in multipliers [1]. The benefit is mainly an area
plemented (i.e., invert all bits and add a ‘1’), some hardwareeduction in multipliers with medium to large operand widths
can be saved by minimizing the number of negative digits a§8 or 16 bits and higher) due to the massively smaller adder
well. This is achieved in thenodified canonic signed-digit tree, while delays remain roughly in the same range. Different

A. Constant Multiplication

Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

for a faster, more complex Booth recoding logic (with constant
delay and area-per-bit), resulting in an overall delay improve-
ment (bigger with increasing width) but a potential area pen-
alty (smaller with increasing width). For the simple product-of-
sum (A+B)xC and operand widths between 8 and 64 bits, a
delay reduction of up t&16% at area increases ##0% down

to +5% are observed.

As in binary multiplication, Booth recoding proves benefi-
cial over nonrecoding in carry-save multiplication as well,
| b | reducing circuit area for medium to large operand widths by up
PPk L PPk to —30% at comparable delays.

aj | | 5) | | V. CARRY-SAVE ADDITION

Fig. 2. Binary Booth recoder (left) and selector (right) for (a) XOR-based and ~ Carry-save addition reduces all partial-products down to a
(b) mux-based implementation. carry-save number by summing them up in an adder tree [3].
The adder tree is constructed column-based by compressing all
,,,,,,,,,,,,,,,,,,,,, S . . bitsinone column (= bit position) down to two bits at a time in
aci D L ‘ a constraint- and technology-driven way that minimizes delay:
:) v ‘ 1) Column clean-upColumns are cleaned up by performing
some optimizations and simplifications, e.g., replacing dupli-
cate bits in one column by a single bit in the next higher col-
umn @ + a = 2a) and by replacing complementing bits by a
constant 1g+a=1).

2) Column compressiorAll columns are compressed from
the LSB (least-significant bit) column to the MSB (most-sig-
nificant bit) column. Intermediate carries are forwarded to the
next higher column.

A column is compressed by arranging compressor cells —
half-adders (2:2 compressor), full-adders (3:2 compressor),
and 4:2 compressors, if available — in a tree structure. A delay-
optimized tree structure, which takes into account input arrival
times (constraint-driven) and individual cell pin-to-pin delays

recodings exist resulting in different gate-level implementa-{technology-driven), is constructed by arranging all bits of a
tions and performance. In this work, two alternatives are implecolumn (inputs as well as intermediate sum and carry bits) in a
mented: the XOR-based implementation (Fig. 2a) gives lowestet of bits sorted by their arrival time, from which bits are con-
area and delay numbers in most technologies due to the sm&¥med by compressor inputs and to which new bits are added
selector size and the well-balanced signal paths, while thBY compressor outputs, as previously described in [6]:
mux-based implementation (Fig. 2b) can give best results in 1) Add all input bits of a column to its set of bits.
some multiplexer-based technologies (e.g. gate-arrays). 2) Sort the set of bits according to their arrival times.
Compared to nonrecoded multipliers, a Booth-recoded mul- 3) Instantiate a compressor cell and connect the earliest bit
tiplier saves between7% and-30% area for operand widths from the set to the slowest cell input pin. For the remaining

[1]

ac;
as;

aciy —
asj.; —

Fig. 3. Carry-save Booth recoder for XOR-based implementation.

of 8 through 64 bits while delays remain in the range386. input pins, connect the latest bits from the set that add no or
o only minimal extra delay to the cell outputs. Remove the con-
E. Carry-Save Booth Multiplication nected bits from the set. Calculate the arrival times of the bits

Booth recoding can be extended for a redundant multiplieeonnected to the cell's output pins and add the sum bit to the
operand [4]. While [4] starts with a signed-bit Booth recoderset of the current column and the carry bit(s) to the set of the
and adds a special preprocessing step in order to deal withrext higher column.
carry-save operand, the redundant Booth recoder in this work 4) Repeat steps 2) and 3) until there are only two bits left in
has been optimized for the carry-save representation aritte set of the current column. These two bits form the carry-
reduces the critical path by one XOR gate. As depicted in Figsave output of the carry-save adder for this column.

3, the right part of the carry-save Booth recoder as well as the In addition, the type of compressor cell to be used is deter-
selector are equivalent to the recoder and selector of the XORmined by the following rules:

based binary Booth implementation (Fig. 2a). The left part of 1) If the number of bits in the set is odd a8, instantiate

the recoder passes a carry to the next higher recoder slice. one single 2:2 compressor (half-adder). This reduces the num-

Compared to the alternative implementation of a carry-propber of bits in the set to an even number (multiple of 2).
agate adder followed by a binary Booth multiplier, the 2) If the number of bits in the set is a multiple of 4 and,
described carry-save Booth multiplier trades the slow carryinstantiate one single 3:2 compressor (full-adder). This reduces
propagate adder (with width-dependent delay and area-per-bithe number of bits in the set to a multiple of 4 plus 2.

Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

3) If 4:2 compressors are available/desired, instantiate 4:2 TABLE |
compressors until only 2 bits are left in the set. Each 4:2 com- ADDER ARCHITECTURECHARACTERISTICS
pressor reduces the number of bits in the current column by 4 Architect A SpeedPTefiX Sum bit | Maximum| included
(i.e., 5 inputs to 1 output). rehitecture rea Peefbased generation Fanout | in work

4) If no 4:2 compressors are available/desired, instantiatgipple-carry lowesti lowest yes - bounded yes
3:2 compressors (full-adder) until only 2 bits are left in the set|Carry-skip low | low | no - bounded no
Each 3:2 compressor reduces the number of bits in the curre|@arry-select medium medium yes selegt unbounded yes
column by 2. Carry-increment medium medium ygs lookahead unbounded yes

As elaborated in [6], the resulting reduction tree has minimalgrent-kung PP |medium medium yes lookahead bounded e
delay an_d a mlnlma_l r_1umber of compressor cells (i.e., mlnlma%klansky PP high
area). Since the minimal number of compressor cells is onl
determined by the number of bits in a column [3], no area ca
be saved by other, possibly slower tree arrangements. For t
reason always the fastest reduction tree is constructed anck parajiel-prefix adder
therefore output required times are not considered. b Indirectly through appropriate timing constraints

The usage of 4:2 compressor cells does not inherently result
in faster or smaller adder trees. The reason is that the numbepmputed by multiplexers [7]. Table | shows that all adder
of XOR levels, which dominates the overall delay, in a delay-architectures except the carry-skip adder use some kind of
optimized full-adder tree can be as low as in a tree of 4:2 comserial- or parallel-prefix structure for propagating the carries.
pressors [6]. 4:2 compressors can give somewhat better pel’fOé-
mance if implemented efficiently. However, experimental ™
results have not shown any significant benefits in cell-based There are two different schemes to calculate the sum bits
design. The decision whether to use 4:2 compressor cells fsom the carries:
made as part of the smart generation feature (see Section VII). 1) Carry-lookahead schemé&he prefix structure is used to

Compared to a Dadda adder tree [2], which simply mini-calculate (look-ahead) the final carry for each bit position,
mizes the number of full-adders on the critical path withoutwhich then computes the sum bit through an additional XOR
taking actual pin-to-pin delays in to account, adder trees genegate. All parallel-prefix adders from Table | and the carry-
ated by the described timing-driven algorithm reduce overallncrement adder use this scheme.
delay in a multiplier by-3% to —8% for operand widths 2) Carry-select scheméor each bit position the two possi-

highes{ yes| lookahead unbounded %es

[Kogge-Stone PB highest| highest yes lookahepd bounded yes
genditional-sum| highest highest yes sele¢t unboupded yes

Sum bit generation

between 8 and 64 bits. ble sum bits for a carry-in of 0 and 1 are calculated in advance
and then selected through a series of multiplexers controlled by
VI. CARRY-PROPAGATEADDITION all levels of carries from the prefix structure. Compared to the

Carry-propagate addition finally converts the redundanparry—lopkahead'scheme, this sch_eme usually results in bigger
carry-save output from the carry-save adder into irredundarfiircuit size (multiple Ievg:ls of multiplexers versus one level of
binary representation by performing a carry-propagation [1]. AXOR gates) but potentially shorter delay (no final XOR gate
variety of different schemes exist to speed up carry-propaga[lecessary)- The carry-select and conditional-sum adders from
tion that trade off area versus speed. The relevant adder archiable | use this scheme.
tectures and their characteristics are summarized in Table
Two principles have to be distinguished here: ghefix struc-
ture employed to propagate carries from lower to upper bits The relative performance of all these adder architectures var-
and thesum bit generatiorihat determines how the sum bits ies greatly among different technology libraries, so that only

!3. Architecture Performance Comparison

are calculated from the carries. qualitative characteristics regarding area and speed are summa-
. rized in Table | instead of quantitative comparison results. In
A. Prefix Structure addition, the following observations can be made:

As widely known, carry-propagation in binary addition is a * Theripple-carry adder implemented using full-adder cells
prefix problen{8], which can be calculated usimgefix struc- is always the smallest and slowest adder.
tures Besides the straightforwardserial-prefix structure * The carry-skipadder [1] massively speeds up the ripple-
(implemented by theipple-carry adder) many differerparal- ~ carry adder at a very moderate area penalty but is still slower
lel-prefix structures exist, which speed up carry-propagation athan any other architecture. However, due to its false paths it
the cost of increased area requirements [7]. They basically difcannot readily be used in synthesis-based design.
fer in terms of depth (= circuit speed), size (= circuit area) and ¢ The carry-select [1] adder is very area efficient for
maximum fanout, which can béounded (constant) or medium speeds if special carry-select adder cells are available
unboundeddependent on the operand width) and influencesn the library. Its prefix structure has the special property of
circuit speed and area in a more subtle way. The internal sicallowing maximally 2 prefix nodes per bit position[7].
nals of a prefix implementation can be coded in different ways, ¢ The carry-incrementadder [7], [9] is an optimization of
resulting in different possible logic implementations. Mostthe carry-select adder that uses the carry-lookahead scheme
common are the use @fenerate/propagatsignal pairs com- instead of the carry-select scheme for the same prefix structure.
puted by AND-OR gates anthrry-in-O/carry-in-1signal pairs It has the same delay buB@&% smaller gate count.

Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

* The Brent-Kung parallel-prefixadder [10] gives a good 3210 depth-decreasin 3210
trade-off between area and speed, lying in the rangd 8% to ptransform g
-30% area reduction at15% to +30% delay increase as com- 0

pared to the faster Sklansky parallel-prefix adder.

» The Sklansky parallel-prefiadder (uses the prefix struc-
ture first proposed by Sklansky for conditional-sum adders
[11]) has a prefix structure of minimal depth and therefore is
among the fastest adder architectures. Its unbounded-fanout Fig. 4. Depth-decreasing and size-decreasing prefix transforms.
property helps reduce circuit area (fewer prefix nodes) but adds
some extra delay for driving the high-fanout nodes. size-decreasing prefix transforms [14] (Fig. 4) in order to mini-

« TheKogge-Stone parallel-prefixdder [12] also has a min- Mize overall prefix graph size for a given maximum depth:
imal depth prefix structure. Its bounded-fanout property elimi- 1) Prefix graph compression (depth minimizatioBepth-
nates the need for driving high-fanout nodes, making it thedecreasing transforms are applied in right-to-left bottom-up
fastest adder in most technologies, but comes at the cost @faph traversal order.
much bigger area (more prefix nodes) and more wiring. Com- 2) Depth-controlled prefix graph expansion (size minimiza-
pared to the Sklansky prefix adder, it shows an area increagi®n): Size-decreasing transforms are applied in left-to-right
betweent+23% (8 bit) and+75% (128 bit) at a fairly constant top-down graph traversal order, if maximum depth constraint is
delay reduction of arouneéid% (all widths). not violated. An additional shift-down step is introduced to

« Theconditional-sunf11] adder has one less logic level on decouple high-fanout nodes from the critical path.
the critical path but higher fanouts and more cells compared to With this prefix graph optimization algorithm, prefix adders
parallel-prefix adders with the same prefix structure, and it¢hat are area-optimized under given timing constraints can be
implementation bases mainly on multiplexers instead of AND-synthesized as follows:

OR gates. This results in generally bigger area and longer 1) Translate timing constraints into prefix graph constraints.
delays for most cell libraries, but can also result in up206% 2) Generate a serial-prefix graph.

delay reduction for multiplexer-based gate-array technologies 3) Perform prefix graph compression.

as compared to the Kogge-Stone parallel-prefix adder. The tra- 4) Perform depth-controlled prefix graph expansion.
ditional conditional-sum adder [11] uses the Sklansky prefix 5) Map the prefix graph to prefix adder logic, using either
structure, but other prefix structures can be employed equallythe carry-lookahead or the carry-select scheme.

It is important to note that the high-fanout nodes in The algorithm can process input arrival times and output
unbounded-fanout architectures do not deteriorate circuit speeéquired times at the bit level and therefore can optimize
as much as is often reported, if handled properly. With approadders for arbitrary nonuniform signal arrival and required pro-
priate fanout-decoupling along the critical paths (i.e., shieldindiles. In particular, it can generate
the high fanout from a critical node by an additional buffer/ « ripple-carry adders under very loose timing constraints,
inverter), only one single high-fanout node is left on each sig- « Brent-Kung parallel-prefix adders under medium timing
nal path, which can be buffered accordingly. Furthermoreconstraints,

unbounde.d_-fanout .architectures have many signal paths that. Sklansky parallel-prefix adders under tight timing con-
are noncritical, which allows to size down many noncritical straints (see Fig. 5 with fanout-decoupling),

gates and thus decrease loads and delays on critical paths. On, carry-select and carry-increment adders by limiting the
the other hand, most signal paths in bounded-fanout archite¢ymper of prefix nodes per column to 2,

tures are critical and need bigger sized gates. The resulting . mixed ripple-carry/parallel-prefix adders under loose con-
larger input loads together with the tendentially longer wiresgiraints by generating mixed serial/parallel-prefix structures
increase average node capacitances and add some extra de?:yg_ 7, full-adder cells can be used in serial-prefix part), and
This is why bounded-fanout architectures (e.g., Kogge-Stone) ., niimized multiplier final adders that take into account the

show only slightly shorter delays but excessively larger area ag,,;c4) signal arrival profiles of adder tree outputs in multipli-
compared to unbounded-fanout architectures (€.g., Sklansky)ers (Fig. 6-8), similar but more flexible than the adders in [6].

D. Parallel-Prefix Adder Synthesis BecaL!se the prefix optimization algorithm does not take
.)) fanouts into account, no bounded-fanout parallel-prefix struc-
From the previous paragraphs it becomes obvious that aj;res (j.e., Kogge-Stone) can be generated at this time. For
relevant adder architectures for the whole range of area-delgyese prefix structures, a simple static algorithm is used.
trade-offs are based on a variety of prefix structures. But The presented constraint- and technology-driven adder syn-
instead of generating and choosing among different static prenesis generates area-optimized adders for arbitrary timing
fix structures, an algorithm has been implemented that genefynsiraints and provides a flexible one-fits-all adder architec-
ates flexible prefix grapﬁsthat are optimized for a given ture. Compared to static adder architectures, it results in better
context [7], [13]. The algorithm repeatedly applies depth- anctircuit performance for nonuniform and relaxed timing con-
1o o _ _ _ texts and helps to reduce synthesis runtime by eliminating the
Prefix structures can be visualized and manipulated using prefix graph eed for generating and evaluating different adder architectures
which use an array arrangement of black nodes (prefix operation, prefix logic,

and white nodes (no operation/feed-through, buffers/inverters) where columr® Order to find the best one. Delay of multipliers can be
denote bits and rows denote prefix levels. reduced by up te-4% using such an optimized final adder, and

size-decreasing
transform
0

W N P O
w N P O

Proceedings 3% Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

& » Booth recoding or no recoding in multipliers.

< A smart generation feature has been implemented that evalu-
Sool . . ates and selects these alternatives ad hoc during the synthesis
[X XL KK KX §e604 process. This also extends to some degree into higher levels
S 444444 EEEEEL R EELE where different datapath partitionings are evaluated and the

best one is chosen for implementation.

Fig. 5. Parallel-prefix structure for 32-bit adder optimized for delay (Sklansky)
with fanout-decoupling on critical paths.

VIII. CONCLUSIONS

Algorithms for the constraint- and technology-driven syn-
thesis of sum-of-products and product-of-sums as well as the
techniques that are employed to improve circuit area and speed
for cell-based design have been described. While the potential
for performance gains in simple arithmetic operations, like
adders and multipliers, is moderate, circuit area and delay of
complex datapaths — which, e.g., include common subexpres-
sions, product-of-sums, truncations, and comparisons — can be
significantly reduced through optimized partitioning and
implementation. The universality of the presented datapath
generators allows for more elaborate datapath partitioning and
arithmetic optimizations, and their flexibility and ability to
account for arbitrary delay profiles and library characteristics
enables the efficient implementation of the resulting datapaths.
The real performance gains heavily depend on the actual datap-
ath, but in many cases they are well beyond the gains reported
for individual operations throughout this paper. Furthermore,
smart generation allows in a runtime-efficient way to explore
various implementation alternatives at different levels and to
select the optimal ones based on the current design context.

Fig. 6. Parallel-prefix structure for final adder of 32-bit multiplier optimized
for tight timing constraints. Full-adder cells can be used for grey nodes

REFERENCES

I. Koren, Computer Arithmetic Algorithm#®rentice Hall, 1993.

B. Parhami,Computer Arithmetic: Algorithms and Hardwar®xford
University Press, 2000.

M. D. Ercegovac and T. LandDigital Arithmetic Morgan Kaufmann
Publishers, 2004.

C. N. Lyu and D. W. Matula, “Redundant Binary Booth Recodirfgrdc.
12th Symp. Computer Arithmetituly 1995, pp. 50-57.

Y. Dumonteix and H. Mehrez, “A Family of Redundant Multipliers Dedi-
cated to Fast Computation for Signal ProcessiRggc. IEEE Int. Symp.
Circuits and System#$lay 2000, pp. 325-328.

V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A Method for Speed Opti-
mized Partial Product Reduction and Generation of Fast Parallel Multi-
pliers Using an Algorithmic ApproachlEEE Trans. Computersol. 45,

no. 3, pp. 294-305, March 1996.

R. ZimmermannBinary Adder Architectures for Cell-Based VLSI and
their Synthesis Ph.D. thesis, Swiss Federal Institute of Technology
(ETH) Zurich, Hartung-Gorre Verlag, 1998.

R. E. Ladner and M. J. Fischer, “Parallel Prefix Computatidn ACM

Fig. 7. Parallel-prefix structure for final adder of 32-bit multiplier optimized [;]
for relaxed timing constraints. Full-adder cells can be used for grey nodes.[]

(3]
(4]
(5]

Fig. 8. Parallel-prefix structure for final adder of 32-bit multiplier optimized
for carry-select/carry-increment architecture. Full-adder cells (grey nodes) anéS]

carry-select adder cells (black nodes) can be used. [9]

much higher delay reductions can be obtained in complex datgzo)
paths that involve late arriving signals (e.g., from truncation).
(11]

VIl. SMART GENERATION
(12]

Despite the flexibility of the presented datapath synthesis
algorithms, there still exist several implementation alternative?1 3]
that need to be evaluate and selected. These include

« the usage of special library cells (such as 4:2 compressor,
carry-select adder, and Booth encoder cells), [14]

* bounded or unbounded fanout in parallel-prefix adders,

« carry-lookahead or carry-select scheme in adders, and

vol. 27, no. 4, pp. 831-838, Oct. 1980.

A. Tyagi, “A Reduced-Area Scheme for Carry-Select Addet&EE
Trans. Computersvol. 42, no. 10, pp. 1162-1170, Oct 1993.

R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Trans. Computeysol. 31, no. 3, pp. 260-264, Mar 1982.

J. Sklansky, “Conditional Sum Addition Logic,” IRE Trans. Electronic
Computing, vol. EC-9, no. 6, pp. 226-231, Jun 1960.

P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence EquatidB&E Trans. Com-
puters vol. 22, no. 8, pp. 786—-793, Aug 1973.

R. Zimmermann, “Non-Heuristic Optimization and Synthesis of Parallel-
Prefix Adders,” Proc. Int. Workshop on Logic and Architecture Synthe-
sis, Dec 1996, pp. 123-132.

J. P. Fishburn, “A Depth-Decreasing Heuristic for Combinational Logic;
or How to Convert a Ripple-Carry Adder into a Carry-Lookahead Adder
or Anything In-Between,” Proc. 27th Design Automation Conference,
1990, pp. 361-364.

	Optimized Synthesis of Sum-of-Products
	I. Introduction
	II. Sum-of-Product Synthesis
	III. Product-of-Sum Synthesis
	IV. Partial-Product Generation
	A. Constant Multiplication
	B. Binary Non-Booth Multiplication
	C. Carry-Save Non-Booth Multiplication
	D. Binary Booth Multiplication
	E. Carry-Save Booth Multiplication

	V. Carry-Save Addition
	VI. Carry-Propagate Addition
	A. Prefix Structure
	B. Sum bit generation
	C. Architecture Performance Comparison
	D. Parallel-Prefix Adder Synthesis

	VII. Smart Generation
	VIII. Conclusions
	References

