
Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

[1]-
t

re.
to

y-
dant

ing
er-

nd
ition
dant
le

a-
and
are

ath
s,
ame
of-
es

on
OPs
te
and
rd-
ed.

1.
if-
ath
e-
rea
(b)

s
ti-
ry
Optimized Synthesis of Sum-of-Products
Reto Zimmermann and David Q. Tran

DesignWare, Solutions Group, Synopsys, Inc.
2025 NW Cornelius Pass Rd., Hillsboro, OR 97124

Abstract – In our latest approach to datapath synthesis from
RTL, datapaths are extracted into largest possible sum-of-prod-
uct (SOP) blocks, thus making extensive use of carry-save inter-
mediate results and reducing the number of expensive carry-
propagations to a minimum. The sum-of-product blocks are then
implemented by constraint- and technology-driven generation of
partial products, carry-save adder tree and carry-propagate
adder. A smart generation feature selects the best among alterna-
tive implementation variants. Special datapath library cells are
used where available and beneficial. All these measures translate
into better performing circuits for simple and complex datapaths
in cell-based design.

I. INTRODUCTION

While current datapath synthesis tools for cell-based design
(i.e., automated netlist synthesis for standard-cell or gate-array
technologies) deliver satisfying performance for simple arith-
metic operations – like adders and multipliers – there is still
potential for improvement in the synthesis of more complex
datapaths. In order to achieve that goal, two levels have to be
addressed. First, more sophisticated partitioning of complex
datapaths and more arithmetic optimizations have to be
applied. Second, datapath generators have to become more
advanced and flexible in order to efficiently implement the
more complex datapath partitionings in a context-driven way.
Context-driven means that on one hand the timing-context –
i.e., input arrival and output required times – of a datapath
block as part of a bigger design is taken into account, and that
on the other hand the characteristics of the technology library –
i.e., the performance of individual library cells and the avail-
ability of special cells – is considered. This paper describes our
latest approach on tackling the second level, the optimized syn-
thesis of complex datapaths, in particular of sum-of-products.

Section II introduces and justifies the approach of addressing
datapath synthesis at the sum-of-products level. Section III
describes the possibilities and limitations for the implementa-
tion of product-of-sums. Sections IV-VI describe in detail the
algorithms and techniques that are used for context-driven syn-
thesis of the sum-of-product building blocks: partial-product
generation, carry-save addition, and carry-propagate addition.
Quantitative measures for the observed performance gains are
given based on experiments with a large number of modern cell
libraries for standard-cell (down to 0.13µm feature sizes) and
gate-array technologies. Section VII finally gives a quick over-
view of the smart generation feature that is used to explore dif-
ferent implementation alternatives and to choose the best one.

II. SUM-OF-PRODUCTSYNTHESIS

The elementary and most important arithmetic operations in
datapaths are multioperand addition and multiplication, while
other operations like two-operand addition, subtraction, incre-

ment, comparison or squaring are just special cases thereof
[3]. Hardware implementations of multiplication – the mos
complex of above operations – include three parts:partial-
product generation (PPG), carry-save addition (CSA), and
carry-propagate addition (CPA). All other operations can be
implemented by the same, possibly simplified, hardwa
While the output of the carry-propagate adder (also referred
asfinal adderin multipliers) is in irredundantbinary represen-
tation, the outputs of the partial-product generation and carr
save adder can be regarded as intermediate results in redun
partial-product(= arbitrary number of bits per bit position) or
carry-save representation (= two bits per bit position).

It is a common technique to speed up datapaths by keep
intermediate results in a redundant representation and by p
forming a time-consuming carry-propagation only at the e
and where necessary. This is possible because the add
operation is associative and can accept operands in redun
representation, which allows to implement a sum of multip
products and addends – or asum-of-products (SOP)– by one
big carry-save adder followed by one single final carry-prop
gate adder. Therefore, largest possible sum-of-products –
simple arithmetic operations are just special cases thereof –
extracted from RTL and implemented as one single datap
block containing multiple parallel partial-product generator
one carry-save adder and one carry-propagate adder. The s
can be done for magnitude and equality comparison of sum-
products with the only difference that the final adder provid
the comparison flags instead of the sum.

For datapaths that allow sharing of resources and comm
subexpressions, hardware can be shared among multiple S
through flexible datapath partitioning (i.e., the appropria
choice of representations for shared results and the use
arrangement of CSA and CPA blocks) in order to trade ha
ware sharing versus duplication, or circuit area versus spe
As an example, consider the following datapath:

X = A×B + C,
Y = A×B + D.

Hardware for the multiplicationA×B can be shared in different
ways, resulting in the datapath partitionings depicted in Fig.
It can be easily seen that the different partitionings result in d
ferent circuit performance: (a) implements the slowest datap
with two carry-propagations in series and low area requir
ments, (c) and (d) implement the fastest datapaths with big a
requirements due to the duplicated carry-save adder, while
represents a good trade-off between area and speed.

III. PRODUCT-OF-SUM SYNTHESIS

As opposed to addition, multiplication has more restriction
on the representation of its input operands. While it is theore
cally possible to allow redundant representations with arbitra
1

Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

rn
ed

ily

o

o
a

nt

iti-

d

not
the

an
to a

as
in
ns-

p-
fol-
e
te
a

lay
nt
lty
m
ay

r-
a
s
er
nt
numbers of bits per bit position on operands, such multipliers
become slow and prohibitively large because of the large num-
ber of partial-product bits that have to be generated and
summed up. However, there exist techniques that result in per-
formance benefits for multiplication with one operand in carry-
save and one operand in binary representation [4], [5] (see
carry-save multipliersin Section IV). This allows for some
limited implementation ofproduct-of-sums (POS)– e.g., an
addition or multiplication followed by a multiplication or,
more general, several SOPs in series – within one datapath
block with one final carry-propagate adder but no intermediate
carry-propagations, thus resulting in shorter delays.

IV. PARTIAL -PRODUCTGENERATION

In the first step of sum-of-product synthesis, all partial-prod-
ucts are generated in parallel. While the partial-product genera-
tion for addends is trivial (i.e., simply add the addend to the set
of partial-products), this section elaborates on alternatives of
partial-product generation for multiplication.

Note that since all partial-product bits are generated inde-
pendently in parallel and in constant time, there are no optimi-
zations necessary or possible for nonuniform input arrival
times. Therefore, the partial-product generators do not work in
a constraint-driven way (i.e., input arrival and output required
times do not influence the circuit structure).

A. Constant Multiplication

In constant multiplication, a common technique to reduce
the number of partial-products – and thus to reduce circuit area
and delay for adding them up – is to reduce the number of non-
zero digits in the constant operand representation by using a
redundantsigned-digit (SD)representation that is based on the
digit set{ 1, 0, 1 }, where1 represents the value−1 and results
in a negative partial-product. The widely usedcanonic signed-
digit (CSD)representation is a minimal SD representation (i.e.,
minimal number of nonzero digits) with no consecutive non-
zero digits [2]. It is obtained by applying the following replace-
ment pattern repeatedly from right to left to the binary
representation of the constant operand:

01{1}1 → 10{0}1.
Because negative digits1 require the multiplicand to be com-
plemented (i.e., invert all bits and add a ‘1’), some hardware
can be saved by minimizing the number of negative digits as
well. This is achieved in themodified canonic signed-digit

(MCSD) representation by applying the replacement patte
above only if the number of nonzero digits is actually reduc
(note that this is not the case in011 → 101). The following
replacement pattern is used instead:

011{1}{01}1 → 100{0}{10}1.
The benefits of a CSD over a binary representation heav

depend on the value of the constant and can range from0% to
−75% delay reduction and0% to −90% area reduction for a
constant multiplier. Area reduction of MCSD compared t
CSD is only small on average but can go up to−20% for cer-
tain constants, while delays do not change significantly.

B. Binary Non-Booth Multiplication

For unsigned multiplication of two binary operands (n
Booth recoding), the partial-products are generated in
straightforward way using AND gates. For 2’s compleme
multiplication, themodified Baugh-Wooleyscheme [2] is used,
which reduces the extra correction bits to constants in noncr
cal columns in a very effective way.

C. Carry-Save Non-Booth Multiplication

For multiplication of one carry-save with one binary operan
(no Booth recoding), the carry-save operand(AC, AS) is first
converted todelayed-carryrepresentation(C, S) by feeding it
to a row of half-adders:

(ci+1, si) = aci + asi.
Due to the property of the delayed-carry representation that
both carry and sum outputs from a half-adder can be 1 at
same time (i.e.,ci+1si = 0), the two partial-product bitsci+1bk-1
andsibk cannot be 1 at the same time either and therefore c
be added together by a simple OR gate and thus be reduced
single partial-product bit:

ppi,k = ci+1bk-1 + sibk.
The number of partial-product bits for am×n carry-save multi-
ply is thereby reduced from 2mn to (m+1)n at the expense of
more complex generation logic. An equivalent scheme w
presented in [5] together with a scheme for both operands
carry-save representation, which however seems not to tra
late into any significant benefits.

Compared to the alternative implementation of a carry-pro
agate adder (to reduce the carry-save operand to binary)
lowed by a binary multiplier, the described carry-sav
multiplier trades the slow but rather small carry-propaga
adder (with width-dependent delay and area-per-bit) for
faster but larger partial-product generation (with constant de
and area-per-bit), resulting in an overall delay improveme
(bigger with increasing width) but a considerable area pena
(smaller with increasing width). For the simple product-of-su
(A+B)×C and operand widths between 8 and 64 bits, a del
reduction of about−5% to −15% at area increases of+40%
down to+20% are observed.

D. Binary Booth Multiplication

Booth recoding is widely used to reduce the number of pa
tial products in multipliers [1]. The benefit is mainly an are
reduction in multipliers with medium to large operand width
(8 or 16 bits and higher) due to the massively smaller add
tree, while delays remain roughly in the same range. Differe

PPG

CSA

CSA
CPA

CPA CPA

PPG

CSA

CPA CPA

CSA

PPG

CSA

CPA CPA

CSA

PPG

CSA

CPA CPA

CSA

PPG

A B

X Y

A B

X Y

A B

X Y

A B

X Y

C D

C D

C D C D

a) b) c) d)

Fig. 1. Datapath partitioning with multiplier hardware being shared up to the
(a) binary, (b) carry-save, (c) partial-product, and (d) input operand level.
2

Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

nt
e-
n-
f-
a

-
ll,
up

a
3].
all

n
y:

g
li-
l-

a

-
he

–
r),

ay-
al
s
a
a
-

ded

bit
g
or

n-
its
the
he

in
y-

er-

m-

ces
recodings exist resulting in different gate-level implementa-
tions and performance. In this work, two alternatives are imple-
mented: the XOR-based implementation (Fig. 2a) gives lowest
area and delay numbers in most technologies due to the small
selector size and the well-balanced signal paths, while the
mux-based implementation (Fig. 2b) can give best results in
some multiplexer-based technologies (e.g. gate-arrays).

Compared to nonrecoded multipliers, a Booth-recoded mul-
tiplier saves between−7% and−30% area for operand widths
of 8 through 64 bits while delays remain in the range of±3%.

E. Carry-Save Booth Multiplication

Booth recoding can be extended for a redundant multiplier
operand [4]. While [4] starts with a signed-bit Booth recoder
and adds a special preprocessing step in order to deal with a
carry-save operand, the redundant Booth recoder in this work
has been optimized for the carry-save representation and
reduces the critical path by one XOR gate. As depicted in Fig.
3, the right part of the carry-save Booth recoder as well as the
selector are equivalent to the recoder and selector of the XOR-
based binary Booth implementation (Fig. 2a). The left part of
the recoder passes a carry to the next higher recoder slice.

Compared to the alternative implementation of a carry-prop-
agate adder followed by a binary Booth multiplier, the
described carry-save Booth multiplier trades the slow carry-
propagate adder (with width-dependent delay and area-per-bit)

for a faster, more complex Booth recoding logic (with consta
delay and area-per-bit), resulting in an overall delay improv
ment (bigger with increasing width) but a potential area pe
alty (smaller with increasing width). For the simple product-o
sum (A+B)×C and operand widths between 8 and 64 bits,
delay reduction of up to−16% at area increases of+40% down
to +5% are observed.

As in binary multiplication, Booth recoding proves benefi
cial over nonrecoding in carry-save multiplication as we
reducing circuit area for medium to large operand widths by
to −30% at comparable delays.

V. CARRY-SAVE ADDITION

Carry-save addition reduces all partial-products down to
carry-save number by summing them up in an adder tree [
The adder tree is constructed column-based by compressing
bits in one column (= bit position) down to two bits at a time i
a constraint- and technology-driven way that minimizes dela

1) Column clean-up:Columns are cleaned up by performin
some optimizations and simplifications, e.g., replacing dup
cate bits in one column by a single bit in the next higher co
umn (a + a = 2a) and by replacing complementing bits by
constant 1 (a + a = 1).

2) Column compression:All columns are compressed from
the LSB (least-significant bit) column to the MSB (most-sig
nificant bit) column. Intermediate carries are forwarded to t
next higher column.

A column is compressed by arranging compressor cells
half-adders (2:2 compressor), full-adders (3:2 compresso
and 4:2 compressors, if available – in a tree structure. A del
optimized tree structure, which takes into account input arriv
times (constraint-driven) and individual cell pin-to-pin delay
(technology-driven), is constructed by arranging all bits of
column (inputs as well as intermediate sum and carry bits) in
set of bits sorted by their arrival time, from which bits are con
sumed by compressor inputs and to which new bits are ad
by compressor outputs, as previously described in [6]:

1) Add all input bits of a column to its set of bits.
2) Sort the set of bits according to their arrival times.
3) Instantiate a compressor cell and connect the earliest

from the set to the slowest cell input pin. For the remainin
input pins, connect the latest bits from the set that add no
only minimal extra delay to the cell outputs. Remove the co
nected bits from the set. Calculate the arrival times of the b
connected to the cell’s output pins and add the sum bit to
set of the current column and the carry bit(s) to the set of t
next higher column.

4) Repeat steps 2) and 3) until there are only two bits left
the set of the current column. These two bits form the carr
save output of the carry-save adder for this column.

In addition, the type of compressor cell to be used is det
mined by the following rules:

1) If the number of bits in the set is odd and≥3, instantiate
one single 2:2 compressor (half-adder). This reduces the nu
ber of bits in the set to an even number (multiple of 2).

2) If the number of bits in the set is a multiple of 4 and≥4,
instantiate one single 3:2 compressor (full-adder). This redu
the number of bits in the set to a multiple of 4 plus 2.

ai

a)

ai-1

ai+1

bk

ppi,k

x1i

x2i

ni

ppi,k

1 0

1 0

ai

ai-1

ai+1

pi

ni

x1i

bk

b)

Fig. 2. Binary Booth recoder (left) and selector (right) for (a) XOR-based and
(b) mux-based implementation.

aci

aci-1

aci+1

bk

ppi,k

x1i

x2i

ni

asi

asi-1

asi+1

Fig. 3. Carry-save Booth recoder for XOR-based implementation.

ci+1

ci
3

Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

er
of

.

its

n,
R
-

ce
by

he
ger
f

te
om

ar-
ly
ma-
In

s

-
er

s it

ble
of

eme
ure.
3) If 4:2 compressors are available/desired, instantiate 4:2
compressors until only 2 bits are left in the set. Each 4:2 com-
pressor reduces the number of bits in the current column by 4
(i.e., 5 inputs to 1 output).

4) If no 4:2 compressors are available/desired, instantiate
3:2 compressors (full-adder) until only 2 bits are left in the set.
Each 3:2 compressor reduces the number of bits in the current
column by 2.

As elaborated in [6], the resulting reduction tree has minimal
delay and a minimal number of compressor cells (i.e., minimal
area). Since the minimal number of compressor cells is only
determined by the number of bits in a column [3], no area can
be saved by other, possibly slower tree arrangements. For that
reason always the fastest reduction tree is constructed and
therefore output required times are not considered.

The usage of 4:2 compressor cells does not inherently result
in faster or smaller adder trees. The reason is that the number
of XOR levels, which dominates the overall delay, in a delay-
optimized full-adder tree can be as low as in a tree of 4:2 com-
pressors [6]. 4:2 compressors can give somewhat better perfor-
mance if implemented efficiently. However, experimental
results have not shown any significant benefits in cell-based
design. The decision whether to use 4:2 compressor cells is
made as part of the smart generation feature (see Section VII).

Compared to a Dadda adder tree [2], which simply mini-
mizes the number of full-adders on the critical path without
taking actual pin-to-pin delays in to account, adder trees gener-
ated by the described timing-driven algorithm reduce overall
delay in a multiplier by−3% to −8% for operand widths
between 8 and 64 bits.

VI. CARRY-PROPAGATEADDITION

Carry-propagate addition finally converts the redundant
carry-save output from the carry-save adder into irredundant
binary representation by performing a carry-propagation [1]. A
variety of different schemes exist to speed up carry-propaga-
tion that trade off area versus speed. The relevant adder archi-
tectures and their characteristics are summarized in Table I.
Two principles have to be distinguished here: theprefix struc-
ture employed to propagate carries from lower to upper bits
and thesum bit generationthat determines how the sum bits
are calculated from the carries.

A. Prefix Structure

As widely known, carry-propagation in binary addition is a
prefix problem[8], which can be calculated usingprefix struc-
tures. Besides the straightforwardserial-prefix structure
(implemented by theripple-carry adder) many differentparal-
lel-prefixstructures exist, which speed up carry-propagation at
the cost of increased area requirements [7]. They basically dif-
fer in terms of depth (= circuit speed), size (= circuit area) and
maximum fanout, which can bebounded (constant) or
unbounded(dependent on the operand width) and influences
circuit speed and area in a more subtle way. The internal sig-
nals of a prefix implementation can be coded in different ways,
resulting in different possible logic implementations. Most
common are the use ofgenerate/propagatesignal pairs com-
puted by AND-OR gates andcarry-in-0/carry-in-1signal pairs

computed by multiplexers [7]. Table I shows that all add
architectures except the carry-skip adder use some kind
serial- or parallel-prefix structure for propagating the carries

B. Sum bit generation

There are two different schemes to calculate the sum b
from the carries:

1) Carry-lookahead scheme:The prefix structure is used to
calculate (look-ahead) the final carry for each bit positio
which then computes the sum bit through an additional XO
gate. All parallel-prefix adders from Table I and the carry
increment adder use this scheme.

2) Carry-select scheme:For each bit position the two possi-
ble sum bits for a carry-in of 0 and 1 are calculated in advan
and then selected through a series of multiplexers controlled
all levels of carries from the prefix structure. Compared to t
carry-lookahead scheme, this scheme usually results in big
circuit size (multiple levels of multiplexers versus one level o
XOR gates) but potentially shorter delay (no final XOR ga
necessary). The carry-select and conditional-sum adders fr
Table I use this scheme.

C. Architecture Performance Comparison

The relative performance of all these adder architectures v
ies greatly among different technology libraries, so that on
qualitative characteristics regarding area and speed are sum
rized in Table I instead of quantitative comparison results.
addition, the following observations can be made:

• Theripple-carry adder implemented using full-adder cell
is always the smallest and slowest adder.

• The carry-skipadder [1] massively speeds up the ripple
carry adder at a very moderate area penalty but is still slow
than any other architecture. However, due to its false path
cannot readily be used in synthesis-based design.

• The carry-select [1] adder is very area efficient for
medium speeds if special carry-select adder cells are availa
in the library. Its prefix structure has the special property
allowing maximally 2 prefix nodes per bit position[7].

• The carry-incrementadder [7], [9] is an optimization of
the carry-select adder that uses the carry-lookahead sch
instead of the carry-select scheme for the same prefix struct
It has the same delay but a30% smaller gate count.

TABLE I
ADDER ARCHITECTURECHARACTERISTICS

Architecture Area Speed
Prefix
based

Sum bit
generation

Maximum
Fanout

Included
in work

Ripple-carry lowest lowest yes – bounded yes

Carry-skip low low no – bounded no

Carry-select medium medium yes select unbounded yes

Carry-increment medium medium yes lookahead unbounded yes

Brent-Kung PP a medium medium yes lookahead bounded yes b

Sklansky PP a high highest yes lookahead unbounded yes b

Kogge-Stone PP a highest highest yes lookahead bounded yes

Conditional-sum highest highest yes select unbounded yes

a Parallel-prefix adder
b Indirectly through appropriate timing constraints
4

Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

i-

up

a-
ht
is
o

s
be

ts.

r

ut
ze
o-

g

-

e

n-
es

e
i-
].
ke
c-

For

yn-
ing
c-

tter
-

the
res
e
d

• The Brent-Kung parallel-prefixadder [10] gives a good
trade-off between area and speed, lying in the range of−15% to
−30% area reduction at+15% to +30% delay increase as com-
pared to the faster Sklansky parallel-prefix adder.

• The Sklansky parallel-prefixadder (uses the prefix struc-
ture first proposed by Sklansky for conditional-sum adders
[11]) has a prefix structure of minimal depth and therefore is
among the fastest adder architectures. Its unbounded-fanout
property helps reduce circuit area (fewer prefix nodes) but adds
some extra delay for driving the high-fanout nodes.

• TheKogge-Stone parallel-prefixadder [12] also has a min-
imal depth prefix structure. Its bounded-fanout property elimi-
nates the need for driving high-fanout nodes, making it the
fastest adder in most technologies, but comes at the cost of
much bigger area (more prefix nodes) and more wiring. Com-
pared to the Sklansky prefix adder, it shows an area increase
between+23% (8 bit) and+75% (128 bit) at a fairly constant
delay reduction of around−4% (all widths).

• Theconditional-sum[11] adder has one less logic level on
the critical path but higher fanouts and more cells compared to
parallel-prefix adders with the same prefix structure, and its
implementation bases mainly on multiplexers instead of AND-
OR gates. This results in generally bigger area and longer
delays for most cell libraries, but can also result in up to−20%
delay reduction for multiplexer-based gate-array technologies
as compared to the Kogge-Stone parallel-prefix adder. The tra-
ditional conditional-sum adder [11] uses the Sklansky prefix
structure, but other prefix structures can be employed equally.

It is important to note that the high-fanout nodes in
unbounded-fanout architectures do not deteriorate circuit speed
as much as is often reported, if handled properly. With appro-
priate fanout-decoupling along the critical paths (i.e., shielding
the high fanout from a critical node by an additional buffer/
inverter), only one single high-fanout node is left on each sig-
nal path, which can be buffered accordingly. Furthermore,
unbounded-fanout architectures have many signal paths that
are noncritical, which allows to size down many noncritical
gates and thus decrease loads and delays on critical paths. On
the other hand, most signal paths in bounded-fanout architec-
tures are critical and need bigger sized gates. The resulting
larger input loads together with the tendentially longer wires
increase average node capacitances and add some extra delay.
This is why bounded-fanout architectures (e.g., Kogge-Stone)
show only slightly shorter delays but excessively larger area as
compared to unbounded-fanout architectures (e.g., Sklansky).

D. Parallel-Prefix Adder Synthesis

From the previous paragraphs it becomes obvious that all
relevant adder architectures for the whole range of area-delay
trade-offs are based on a variety of prefix structures. But
instead of generating and choosing among different static pre-
fix structures, an algorithm has been implemented that gener-

ates flexible prefix graphs1 that are optimized for a given
context [7], [13]. The algorithm repeatedly applies depth- and

size-decreasing prefix transforms [14] (Fig. 4) in order to min
mize overall prefix graph size for a given maximum depth:

1) Prefix graph compression (depth minimization):Depth-
decreasing transforms are applied in right-to-left bottom-
graph traversal order.

2) Depth-controlled prefix graph expansion (size minimiz
tion): Size-decreasing transforms are applied in left-to-rig
top-down graph traversal order, if maximum depth constraint
not violated. An additional shift-down step is introduced t
decouple high-fanout nodes from the critical path.

With this prefix graph optimization algorithm, prefix adder
that are area-optimized under given timing constraints can
synthesized as follows:

1) Translate timing constraints into prefix graph constrain
2) Generate a serial-prefix graph.
3) Perform prefix graph compression.
4) Perform depth-controlled prefix graph expansion.
5) Map the prefix graph to prefix adder logic, using eithe

the carry-lookahead or the carry-select scheme.
The algorithm can process input arrival times and outp

required times at the bit level and therefore can optimi
adders for arbitrary nonuniform signal arrival and required pr
files. In particular, it can generate

• ripple-carry adders under very loose timing constraints,
• Brent-Kung parallel-prefix adders under medium timin

constraints,
• Sklansky parallel-prefix adders under tight timing con

straints (see Fig. 5 with fanout-decoupling),
• carry-select and carry-increment adders by limiting th

number of prefix nodes per column to 2,
• mixed ripple-carry/parallel-prefix adders under loose co

straints by generating mixed serial/parallel-prefix structur
(Fig. 7, full-adder cells can be used in serial-prefix part), and

• optimized multiplier final adders that take into account th
typical signal arrival profiles of adder tree outputs in multipl
ers (Fig. 6-8), similar but more flexible than the adders in [6

Because the prefix optimization algorithm does not ta
fanouts into account, no bounded-fanout parallel-prefix stru
tures (i.e., Kogge-Stone) can be generated at this time.
these prefix structures, a simple static algorithm is used.

The presented constraint- and technology-driven adder s
thesis generates area-optimized adders for arbitrary tim
constraints and provides a flexible one-fits-all adder archite
ture. Compared to static adder architectures, it results in be
circuit performance for nonuniform and relaxed timing con
texts and helps to reduce synthesis runtime by eliminating
need for generating and evaluating different adder architectu
in order to find the best one. Delay of multipliers can b
reduced by up to−4% using such an optimized final adder, an

1 Prefix structures can be visualized and manipulated using prefix graphs,
which use an array arrangement of black nodes (prefix operation, prefix logic)
and white nodes (no operation/feed-through, buffers/inverters) where columns
denote bits and rows denote prefix levels.

3 2 1 0

0

1

2

3

depth-decreasing
transform

⇒

size-decreasing
transform

⇐

3 2 1 0

0

1

2

3

Fig. 4. Depth-decreasing and size-decreasing prefix transforms.
5

Proceedings 37th Asilomar Conference on Signals, Systems, and Computers, November 2003 © 2003 IEEE

alu-
esis
els

the

-
the
eed
tial
e
of

es-
be

d
th
nd

cs
hs.
tap-
ted
e,
re
to

t.

lti-

y

”

t

l-
e-

c;
er
e,
much higher delay reductions can be obtained in complex data-
paths that involve late arriving signals (e.g., from truncation).

VII. SMART GENERATION

Despite the flexibility of the presented datapath synthesis
algorithms, there still exist several implementation alternatives
that need to be evaluate and selected. These include

• the usage of special library cells (such as 4:2 compressor,
carry-select adder, and Booth encoder cells),

• bounded or unbounded fanout in parallel-prefix adders,
• carry-lookahead or carry-select scheme in adders, and

• Booth recoding or no recoding in multipliers.
A smart generation feature has been implemented that ev

ates and selects these alternatives ad hoc during the synth
process. This also extends to some degree into higher lev
where different datapath partitionings are evaluated and
best one is chosen for implementation.

VIII. C ONCLUSIONS

Algorithms for the constraint- and technology-driven syn
thesis of sum-of-products and product-of-sums as well as
techniques that are employed to improve circuit area and sp
for cell-based design have been described. While the poten
for performance gains in simple arithmetic operations, lik
adders and multipliers, is moderate, circuit area and delay
complex datapaths – which, e.g., include common subexpr
sions, product-of-sums, truncations, and comparisons – can
significantly reduced through optimized partitioning an
implementation. The universality of the presented datapa
generators allows for more elaborate datapath partitioning a
arithmetic optimizations, and their flexibility and ability to
account for arbitrary delay profiles and library characteristi
enables the efficient implementation of the resulting datapat
The real performance gains heavily depend on the actual da
ath, but in many cases they are well beyond the gains repor
for individual operations throughout this paper. Furthermor
smart generation allows in a runtime-efficient way to explo
various implementation alternatives at different levels and
select the optimal ones based on the current design contex

REFERENCES

[1] I. Koren,Computer Arithmetic Algorithms, Prentice Hall, 1993.
[2] B. Parhami,Computer Arithmetic: Algorithms and Hardware, Oxford

University Press, 2000.
[3] M. D. Ercegovac and T. Lang,Digital Arithmetic, Morgan Kaufmann

Publishers, 2004.
[4] C. N. Lyu and D. W. Matula, “Redundant Binary Booth Recoding,”Proc.

12th Symp. Computer Arithmetic, July 1995, pp. 50–57.
[5] Y. Dumonteix and H. Mehrez, “A Family of Redundant Multipliers Dedi-

cated to Fast Computation for Signal Processing,”Proc. IEEE Int. Symp.
Circuits and Systems, May 2000, pp. 325–328.

[6] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A Method for Speed Opti-
mized Partial Product Reduction and Generation of Fast Parallel Mu
pliers Using an Algorithmic Approach,”IEEE Trans. Computers, vol. 45,
no. 3, pp. 294–305, March 1996.

[7] R. Zimmermann,Binary Adder Architectures for Cell-Based VLSI and
their Synthesis, Ph.D. thesis, Swiss Federal Institute of Technolog
(ETH) Zurich, Hartung-Gorre Verlag, 1998.

[8] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,”J. ACM,
vol. 27, no. 4, pp. 831–838, Oct. 1980.

[9] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,”IEEE
Trans. Computers, vol. 42, no. 10, pp. 1162–1170, Oct 1993.

[10] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,
IEEE Trans. Computers, vol. 31, no. 3, pp. 260–264, Mar 1982.

[11] J. Sklansky, “Conditional Sum Addition Logic,” IRE Trans. Electronic
Computing, vol. EC-9, no. 6, pp. 226-231, Jun 1960.

[12] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficien
Solution of a General Class of Recurrence Equations,”IEEE Trans. Com-
puters, vol. 22, no. 8, pp. 786–793, Aug 1973.

[13] R. Zimmermann, “Non-Heuristic Optimization and Synthesis of Paralle
Prefix Adders,” Proc. Int. Workshop on Logic and Architecture Synth
sis, Dec 1996, pp. 123-132.

[14] J. P. Fishburn, “A Depth-Decreasing Heuristic for Combinational Logi
or How to Convert a Ripple-Carry Adder into a Carry-Lookahead Add
or Anything In-Between,” Proc. 27th Design Automation Conferenc
1990, pp. 361-364.

Fig. 5. Parallel-prefix structure for 32-bit adder optimized for delay (Sklansky)
with fanout-decoupling on critical paths.

Fig. 6. Parallel-prefix structure for final adder of 32-bit multiplier optimized
for tight timing constraints. Full-adder cells can be used for grey nodes

Fig. 7. Parallel-prefix structure for final adder of 32-bit multiplier optimized
for relaxed timing constraints. Full-adder cells can be used for grey nodes.

Fig. 8. Parallel-prefix structure for final adder of 32-bit multiplier optimized
for carry-select/carry-increment architecture. Full-adder cells (grey nodes) and

carry-select adder cells (black nodes) can be used.
6

	Optimized Synthesis of Sum-of-Products
	I. Introduction
	II. Sum-of-Product Synthesis
	III. Product-of-Sum Synthesis
	IV. Partial-Product Generation
	A. Constant Multiplication
	B. Binary Non-Booth Multiplication
	C. Carry-Save Non-Booth Multiplication
	D. Binary Booth Multiplication
	E. Carry-Save Booth Multiplication

	V. Carry-Save Addition
	VI. Carry-Propagate Addition
	A. Prefix Structure
	B. Sum bit generation
	C. Architecture Performance Comparison
	D. Parallel-Prefix Adder Synthesis

	VII. Smart Generation
	VIII. Conclusions
	References

