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Design Methodology
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Levels revealed

Hierarchy Abstraction Supporting tools
level
System space-time behavior as instruction, flow-charts, diagrams,

timing & pin assignment specifications

high-level languages

Architecture

global organization of
functional entities

HDLs, floor-planning block diagrams
for clock cycle and area estimation

Register binding data flow functional modules | synthesis, simulation, verification, test
transfer and microinstructions analysis, resource use evaluation
Functional primitive operations and libraries, module generators, sche-
modules control methods matic entry, test
Logic Boolean function of Schematic entry, synthesis and simu-
gate circuits lation, verification, PLA tools
Switch electrical properties of RC extraction, timing verification,
transistor circuits electrical analysis
Layout geometric constraints layout editor/compactor, netlist extrac-

tor, DRC, placement and routing
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Synthesis levels and tasks

e System Level Synthesis
¢ Clustering
¢ Communication synthesis
* High-Level Synthesis
* Resource or time constrained scheduling
* Resource allocation
e Binding
* Register-Transfer Level Synthesis
¢ Data-path synthesis
e Controller synthesis
* Logic Level Synthesis
e Logic minimization
e Optimization, overhead removal
* Physical Level Synthesis
e Library mapping
e Placement

* Routing
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ASIC design flow
«  [Smith97]
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simulation I
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simulation :
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back-annotated TS
netlist

—_— y
Circuit < Routing H
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Waterfall vs. Spiral
* Traditional ASIC development follows so called waterfall model.
* In WF model, the project transitions from phase to phase in a step function,
never returning to the activities of the previous phase.
(“Tossing” the project over the wall from one team to the next)
But:
* Complexity increases
* Geometry shrinks
* Time-to-market pressure increases
* Inthe spiral model, the design teams work on multiple aspects of the design
simultaneously, incrementally improving in each area as the design converges
on completion.
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Waterfall model

Specification

development

RTL code | —
development

Functional
verification

[ Synthesis J S

Design
information

Timing
verification
Works well until Place and | — <
100k gates [ route J

0.5 pm Prototype
build and tes

Deliver to system integration and software test
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Embedded N
Systems =
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System-on-Chip — |
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Communication Networks
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® Parallel verification and synthesis of modules

®* Planned iteration throughput

System-on-Chip design flow

® Parallel, concurrent development of HW and SW

®* Floor-planning and place-and-route included in the synthesis

® All aspects of HW and SW design are addressed concurrently -
functionality, timing, physical design, and verification

®* Modules developed only if a predesigned hard and soft macro is not available
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System-on-Chip design flow
SYSTEM DESIGN AND VERIFICATION '-éJ
SPECIFICATIONS ~
PHYSICAL TIMING HARDWARE SOFTWARE |
(Area, power\ ) timing,\ Algorithm ) ( Application\ I
clock tree KX clock freq. K—) development{—> prototype

__Gesign | _ | _________ ___|macro decom.__ | development |
Preliminary — tl?rl%rclk — sgllggtifon/ — Aeg'ltigtatoen i
floorplan specificgtion design ptestixg i

| "Updated |, .| Block |, .| Block [ _ | Application |
floorplans (= synthesis (=) verification (= development |
| Updated | .| .| Top-level || Application | I
floorplans [N (= HDL N—|  testing I

Trial i Top-level = Top-level i Application
placement synthesis verification testing *
FINAL PLACE AND ROUTE
TAPEOUT
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Top-down

Write complete specifications for the system or subsystem being designed

Refine its architecture and algorithms, including SW design and HW/SW cosimulation

if necessary

Decompose the architecture into well-defined macros

Design or select macros (recursion here!)

Integrate macros into the top level; verify functionality and timing

Deliver the subsystem/system to the next higher level of integration;
at the top level this is tapeout

Verify all aspects of the design (functionality, timing, etc.)

... VS. Bottom-up

There exist synthesis and emulation tools, and libraries of reusable macros
The design can be started at lowest level as well!

At top level is difficult to estimate acceptable complexity of lowest level blocks ==>
let’s mix approaches to meet in the middle.

« faster & fewer iterations

/4
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System Design Process

System specification

* Functions, performance, cost, development time

Model refinement and test

* Focus on the algorithm, not the implementation!

HW/SW partitioning (decomposition)

e .. largely a manual process
* Finally, define interfaces between SW and HW, and specify communication protocol

Block specification

* Elaborate hardware specification and software specification

System behavioral model and cosimulation

* Cosimulate and refine (the cosimulation continues throughout the design process)
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Evolution of Silicon Process Technology

1997 1998 1999 2002
Process technology |0.35 0.25u 0.18 u 0.13 u
Cost of fab $1.5 - 2.0 billion | $2.0 - 3.0 billion | $3.0 - 4.0 billion | $4.0 billion +
Design cycle 18 - 12 months |12 - 10 months |10 - 8 months 8 - 6 months
Derivative cycle 8 - 6 months 6 - 4 months 4 - 2 months 3 - 2 months
Silicon complexity |0.2-0.5Mgates|1-2 M gates 4 -6 M gates 10 - 25 M gates
Applications Cellular, PDAs, | Set-top boxes, | Internet Ubiquitous
DVD wireless PDA appliances, computing,
anything portable | intelligent, inter-
connected
controllers
Primary IP sources | Intragroup Intergroup Intercompany Intercompany,

interindustry
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Evolution of Design Methodology

Historical Linchpin Technologies

Time 1988 - 1990 1991 - 1994 1995 - 1996
Design 25-50 K gates 50-100 K gates 100-200 K gates
20-15p 1.0-08u 0.6-05p
no design reuse no design reuse minimal reuse
Challenge gate-level simulation |increase productivity | managing timing

problems

Linchpin Technologies

gate-level simulation
place & route

synthesis

design planning

gate-level simulation
place & route

synthesis
gate-level simulation
place & route

O Peeter Ellervee / Kalle Tammemée

design methodology - 13

L Department of Computer Engineering L

Design Methodologies Today

Design characteristics

Timing-Driven Design

Block-Based Design

Platform-Based Design

Design complexity

5000 to 250 K gates

150 K to 1.5 M gates

300 K gates and greater

Design level RTL behavioural / RTL architecture and
VC evaluation
Design team small, focused multydisciplinary multygroup,

multydisciplinary

Primary design

custom logic

blocks in context,
custom interfaces

interfacing to system
and bus

Primary design

gates and memory

functional clusters,

VCs

granularity cores

Bus architecture none / custom custom standardized / multiple
application specific

Mixed-signal none A/D, PLL functions, interfaces

Hardware/software none HW/SW functionality | HW/SW interfaces only

co-verification

and interfaces

Partitioning focus

synthesis limitations

functions

f-ns / communications
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TTL (Si)

VLSI Physical Design
Basic gates - NAND vs. NOR

ECL (Si)

D D

cmos (si) A

—

®* Material properties

DCFL (GaAs)
Direct-coupled FET

%E&

* mobility (Si) -- p, = 1250 cm?/Vsec & Hp =480 cm?/Vsec & R~pt
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Material properties
Properties Unit Si GaAs 4H-SiC | Diamond
Electron mobility [cm?/ Vs] 1500 8500 1000 2200
Hole mobility [cm?/ V-s] 600 400 50 1600
Bandgap [eV] 1.1 143 2 2.7
Dielectric constant 11.8 12.5 9.7 55
Thermal conductivity [W/cm -°K] 15 0.46 4.9 20
Saturation electron drift velocity | [ x107 cm/s ] 1 1 2 2.7
Melting point [C] 1420 1238 2830 4000
Breakdown field [ x10° V/cm | 3 6 30 100
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CMOSs Bipolar GaAs
Power dissipation (Ppc) Low High Medium
Input impedance High Low High
Noise margin High Medium Low
Speed Medium High Very high
Packing density High Low High
Delay sensitivity to load High (0) Low (0) High (i/o)
Output drive Low High Low
Bidirectional Yes No Possible
Switching device Ideal Not ideal Reasonable
f; frequency Medium High Very high
(at low current)
Mask levels 12to 16 12to 20 6 to 10
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CMOS - why NAND?
e Mobility -- n 9
W, =1250cm?/Vsec & p,=480cm?/Vsec w
-1 -1 D
* R~pu & R ~Lw™(L-constant) source
L
A
Ronup R ~ [,l_1 w!
CL
> RollRp ~ RntRy
C
Rondown - ~Cr Ronup ~C_ Rondown Rp ~ 4R, (Wp=Wn)
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Very high speed
CMOS DCFL
Vbb
Lpw
Lo
input —{ ¢ output
. . C R
PDC =0 Iy = lDD or Ip = IDD LGW L L
Pac=CV%  Ppc=Pac="Vpplop Lecs
A CMOS
DCFL A B A
Vin 7
: Var N
> A B Voo™
frequency
0 Peeter Ellervee / Kalle Tammemae design methodology - 19
HIIIH L Department of Computer Engineering L
1]
TTU1918
Process steps
 Mask 1 - deep p-well diffusions nMOS transistors
¢ Mask 2 - thinox regions
» Mask 3 - polysilicon for “gate wires”
e Mask 4 - p-diffusion pMOS transistors, p*-mask & mask 2
¢ Mask 5 - n-diffusion nMOS transistors, inverted p™-mask & mask 2
* Mask 6 - contact cuts
e Mask 7 - metal layer
* Mask 8 - overglass layer overall passivation, access to bonding pads
7 — —— —— ——
6 ———— — — ——
5 = II——
4 S — o o
3
2 I I I
1 I
N
O)
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Process steps - variations
e Lithography masks - positive & negative
* Transistor wells - p-well, n-well, twin-tub & silicon-on-insulator
Vbbb Vin/\ Vout Vss
n-well
@
()
Vbbb Vin ~__ {’out Vss
twin-tub
epitaxial
O©) ®) layer
Q)
¢ “Educational Java Applets in Solid State Materials” - jas.eng.buffalo.edu
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Layout rules
* Featuresize- A (2pm, 0.8 um, 0.13 pm, etc.)

* lLayers-Lq,...,Ly
*  Wire width - w;

* W12, WiPWig
* Wire separation - s;

* 5473, Si=Sj4

Contact rule - layers L; & L (i<j)

Layout grid
*  SASS A=Ag, eA=e A=A > AgtAg
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Layout environments

® Cell generation
* Programmable logic arrays (PLA)
* Transistor chaining
* Weinberger arrays & gate matrices

* Sea-of-gates
* Field-Programmable Gate Arrays (FPGA)

®* Layout environments E
e Standard cells

* Gate arrays Transistor chaining

dl @

—

ke
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Layout methodologies

® Partitioning ® Partitioning
. * Weighted compatibility
* Floorplanning graph partitioning
* initial placement « hypergraphs

e Constructive approaches
e hierarchical clustering

* Placement

e fixed modules L
* |terative improvements

® CGlobal routing + Kernighan-Lin heuristic
® Detailed routing . Weights
e Layout optimization * module size

e number of connections
* Layout verification « number of I/O-s

cut-lines

BH—©
® ©

o}
/

R/
GRONGES
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Floorplanning

® Sliceable floorplan

e two slices

* templates

®* Rectangular dual graph approach ":L J:r —
e planar graph

(M;,M))LE - modules are adjacent M;, M; —

® Hierarchical approaches

|

* bottom-up approach ]

* top-down approach

® Soft-computational approaches —

ml

* simulated annealing
* genetic algorithms L
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Placement

®* Improvement of the initial floorplan

* Refined cost functions

* known ports

BN

® Constructive heuristics %j

* |terative heuristics Z;

® Soft-computing T,
23]
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Routing
* Maze running 4]3[2[3[4]5
9 9 3|2|1]2[3[4]|5
e memory usage! o[8[9] [9]8]9 2[1)1[2[3]4]5
- . bfef7[8[9[8]7[8[9 3[2|Hets45
* bidirectional search 9l8[7 6/7]8 4323
.. 9 6 4|13|4/5|6|7 5[4 4 4[3/4|5
¢ minimum cost paths [8]9] [5|&Fe+2[3] [7]8 | 151 [5]4Fsf+2(3
. . 7 3[2[1[2] [6]7] 3[2[12] [ ]
* multilayer routing 6(5[4[3[2[1 (1] [5]6] 5[4[3[2[ 11| [5] |
. . . 716[/5[4]|3[2[1|2[3[4]|5 5(4(3/2[1]2]3[4|5
¢ multiterminal routing 87]65[4[3[2[3[4]5]6 5(4[3[2[3[4]5
* Line searching
* track graph P T NHIRE I
D — — ——
Ly 1y Ly I
* Global routing FFE TP =1 F Aj:iflf4
. . F| [ H et I = A
» dividing routing task into smaller sub-tasks r T ‘:IT 1 r -1 |-
« routing channels e o s <5 m 0 B H—— = ]
_ . (I TP R I I L
° Detalled routlng (IR T I BT A B R | L o
e routing inside channels
* Layout optimization
¢ channel compaction
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Delay modelling
w
®* Delays in wires can not be neglected anymore!
h :
e Cy=fguwl/ltyy Ry=pl/wh tox“
* Standard unit of capacitance LICy -
gate-to-channel capacitance having W=L=\ - |:_R
Lc cCT
®* 1.2 um technology - =
OCy-23fF & T1-46ps distributed RC L-model
R/2 R/2 R
_ c T cel Lce
®* Elmoredelay - Tg v = ¥2R,Cw + RyWCL = -
T-model r1-model
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Delay modelling

wl 4

n2

n2 wl_3 —
4,_[>of wil_8
nl ni wl_
wl_2
wl n3 —

74"D07
n3

wl 1

wl 5

Analog (Spice) models
e transmission line based models ~ distributed RC
e approximate models - L-model, EImore delay

Digital (VHDL) models

e wire segment == assighment with delay
« back-annotation -- layout -> VHDL model

_1 <= not nl after gate_delay ps;
_2 <= wl_1 after delay_wl_1 ps;

8 <= wl_7 after delay_wl_8 ps;
<= not wl_8 after gate_del ay ps;

2B BR

wl 6
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Logic Synthesi

S

Transforming logic functions (Boolean functions) into a set of logic gates

transformations at logic level from behavioral to structural domain

Optimizations / Transformations

area
delay
power consumption

Implementation of Finite State Machines (FSM)
state encoding
generating next state and output functions
optimization of next state and output functions

O Peeter Ellervee / Kalle Tammemée
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® Data path synthesis

* Retiming
e Operator selection

® Controller synthesis

e Architecture selection

¢ State assignment / coding
* Decompaosition

RT Level Synthesis

* Maximizing the clock frequency

* FSM optimizations for area and performance

Definition: Register-Transfer level synthesis means transformation from RT-level structural
description (in terms of registers, multiplexers and operations) to Logic level description (in
terms of combinational logic blocks and storage elements)

O Peeter Ellervee / Kalle Tammemée
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Control inputs

I
l
5
-
' 85
(@]
Next-state Output
function function :

FSM with Data-Path Model

* FSMD models are used to describe digital systems on the register-transfer level.

Datapath inputs

Datapath

connected by buses.

Control outputs Datapath outputs

* Data-path consists of storage units (registers, register files, memories) and
combinational units (ALUs, multipliers, shifters, comparators etc.),

O Peeter Ellervee / Kalle Tammemée
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en

read port(A);
read:BortEB;; 0 Al A B
f A[7] = O then

elseC B:

else

begin v uX
ifA>BthenC:=B; ~-2---X-- L) :\—J
else C:= A; 3 41! S

end | | C

Data-Path Optimization

Control flow Dataflow

N
A>BthenC::A;

d

i
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Retiming

®* Retiming is a transformation of sequential circuits at the RT-level, whereby

registers are moved across combinational blocks such a way as to minimize
the clock cycle, or to minimize the number of registers

* The functionality of the circuit is not changed by register relocation process

Optimization:
control-step #1:  rqy « Cq(Vj,...)
control-step #2: 1y « Ca(ryVj....)
where rq,r, are registers; ¢,,c, combinational blocks; v;,v; variables

fmax = 1/ max( delay(c,),delay(c,) ),
delay(cq) > delay(c,) :  then c,"®W = g(fi(vj,...), fa(V;,...) )

After resynthesis, when delay(g)+delay(c,) < delay(cq) :
control-step #1:  rq « f1(vj,...); 1o « fo(vj,..)
control-step #2: 13 « Cx(g(ry.ra).vj,...)

/4
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Retiming: Digital Correlator
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Resource Allocation and Assignment

The task of operator selection is the selection of an appropriate operator
implementation from a library

Selecting the architecture of a complex operation

parallel versus sequential execution
* bit-parallel versus bit-serial

®* Example - addition

* bit-serial adder
e 1 full-adder, 1-bit register, n clock cycles
* Manchester adder - m bits in parallel (m<n)
* bit-parallel adders
* ripple-carry, carry-look-ahead, carry-skip and carry-select adders

http://ww. ecs. umass. edu/ ece/ koren/ arith/si mul at or
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Arithmetic Unit Architecture Selection

Parallel versus sequential execution

Adder/subtracter architectures

ripple-carry - sequence of full-adders, small but slow
carry-look-ahead - separate calculation of carry generation and/or propagation

carry-select adders - duplicated hardware plus selectors

e speculative calculation one case with carry and another without,
the answer will be selected when the actual carry has arrived

Multiplier architectures
sequential algorithms -- register + adder, 1/2/... bit(s) at atime
“parallel” algorithms - array multipliers -- AND gates + full-adders
Multiplication/division with constant

shift+tadd -- 5*n =4*n + n = (n<<2) +n
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Controller synthesis

Controller synthesis is also task at algorithmic level. Controller is the
implementation of the scheduling task in hardware, specified by states and
state transitions. It is called Finite State Machine (FSM).

The canonical implementation of a sequential system is based directly on its
state description. It consists of state register, and a combinational network to
implement the transition and output functions.

Sub-tasks:
Generation of the state graph;
Selecting the proper controller architecture, and
Finite state machine optimizations for area and performance.
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FSM encoding
®* Task: Encoding inputs, outputs, and states.
e Studied intensively in the sixties and seventies.
* Letz be the number of states, then minimum code length is t=ceil(log,z).
®* Current methods follow one of the two objectives:
* Improve the testability
* Minimize the area of control logic
Known tools are KISS (‘85) and NOVA (‘89)
®* Two encoding approaches:
* Minimal code length encoding
* “One-hot” encoding
0 Peeter Ellervee / Kalle Tammemae design methodology - 39
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FSM architectures
-0=2=@> — — —O=@=b=@=b=2~

|
callj/geturn C q -/start -/ncnt ready/-
} C? | E - ready’/cnt
! | push
pop

M

Stack architecture

,,,,,,,,,,,,,,,,,,, start/nent/ent
i %%@@9 i ref_idy counter
: ) O My Counter architecture

Decomposed architecture Register architecture
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