] Department of Computer Engineering u

Attributes

An attribute is a value, function, type, range, signal, or a constant that may be
associated with one or more names within a VHDL description.

Predefined attributes are divided into 5 classes:
* Value attributes: return a constant value
* Function attributes: call a function that return value
* Signal attributes: create a new implicit signal
* Type attributes: return a type
* Range attributes: return arange

* Rationale: Attributes creates code that is easier to maintain
0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 1
‘II‘I‘.I‘II‘ L] Department of Computer Engineering ®
LI
T 191
Attributes
[]

NB! Synthesis packages accept only the following attributes:
'base, ’left, ’'right, ’high, ’low,
‘range, ’'reverse_range, ’length, ’stable, and ’event.

-- type nyArray is array (9 downto 0) of any_type;
-- variable an_array : nyArray;

-- type fourval is ("0, "1, 'Z, 'X);

-- signal sig: sigtype;

-- constant T: tinme := 10 ns;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 2

] Department of Computer Engineering u

Attributes
Attribute Result type Result
myArray’high|left|low|right integer 9/9|0/0
myArray’'ascending boolean false
an_array’length|range|reverse_range integer 10| 9downto0|0to9
fourval'leftof(’0")|rightof(’1’) fourval error|’Z’
fourval’pos(’'Z’) integer 2
fourval’pred('1’)|succ(’Z)|val(3) fourval 01X X
sig’active boolean True if activity on sig
sig’'delayed(T) sigtype Copy of sig delayed by T
sig'driving_value sigtype Value of driver on sig
sig’event boolean True if event on sig
sig’last_active|last_event time Time since last (activity | event)
sig’last_value sigtype Value before last event
sig’'quiet(T)|stable(T) boolean (Activity|event) (now -T) to now
sig’transaction bit Toggles on activity on sig
O Peeter Ellervee / Kalle Tammemée vhdl - advanced - 3
T LT
VHDL’93

New keywords: allow, element, group, impure, inertial, literal, postponed, private, pure,
reject, rol, ror, shared, sla, sll, sra, srl, unaffected, xnor

Arithmetic operations: rol, ror, sla, sll, sra, srl, xnor
Function types: pure, impure

Processes: postponed

Attributes: literal

Variables: shared

Objects: private, allow

Items grouping: group

Hierarchical path names: /' and ‘.’

New attributes: foreign, ascending[(N)], image(x), value(x), driving, driving_value,
path_name, simple_name

Generalized aliases

Files as separate class of objects: file_open(), file_close()
Function ‘now’

Overloading

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 4

] Department of Computer Engineering u

VHDL timing

Signal attributes.

The “wait” statement:
e deltatime
* wait on sensitivity list
e wait until condition
* wait for time_expression

® Simulation Engine.
®* Modeling with Delta Time Delays.
* Inertial/transport delay.
[Peeter Ellervee / Kalle Tammemae vhd! - advanced - 5
HIIIH L Department of Computer Engineering L
(i
TTU1918
Timing control
® Postponing a signal assignment -- “... after T;”
® Sensitivity list
* Wait commands
e wait for asignal event -- wait on x;
e wait for a condition -- wait until x="1";
* wait certain time -- wait for 20 us;
* wait (forever) -- wait;
¢ combined use -- wait on clk until clk="1" and ready="1’ for 1 us;
* wait until sensitivity
e« wait on auntil a="1" and b="0"; -- sensitive to sighals a only
e wait until a="1" and b="0’; -- sensitive to signals aand b

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 6

IIIIIII u Department of Computer Engineering ®

Inertial and transport delays

out put <= input after 10ns; -- VHDL’ 87
output <= [inertial] input after 10ns; -- VHDL’ 93
out put <= transport input after 10ns;

A 10 ns 10 ns
| | | !
in | I
put [T [1
| | | !
output [[[I—l_
inertial ' ' '
| | | !
output | | I_I_
transport : !_l |_| : |
' ' ' | time
0 Peeter Ellervee / Kalle Tammemée vhd! - advanced - 7
‘III‘.III‘ L Department of Computer Engineering L
T LT
Structuring a Design
®* Motivation
* models are easier to read
* submodels can be reused
* design and verification are more manageable
structure_tl structural modelling unit VHDL construct
granularity
coarse entity / architecture pairing configuration
coarse primary design unit entity / architecture
coarse/medium replication of concurrent statements for / if - generate
coarse/medium grouping of concurrent statements block
medium grouping of sequential statements process
fine subprogram procedure / function

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 8

HIIIH u Department of Computer Engineering u
(i
TTU1918
Partitioning features
®* Modularity features:
e Procedures
e Functions
® Partitioning features:
e Blocks
* Packages
e Libraries
¢ Components
* Configurations
[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 9
HIIIH] Department of Computer Engineering L
(i
TTU1918

Elements of Entity / Architecture

* VHDL Entity (declarations, generic and port clauses, etc.)

®* VHDL Architecture (declarations, statements)

* Process statement

* Concurrent signal assignment

e Component instantiation statement
¢ Concurrent procedure call

* Generate statement

¢ Concurrent Assertion Statement

* Block statement

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 10

HIIIH] Department of Computer Engineering u

Process - behavioral description

® entity / architecture / component entity_declaration ::=
entity identifier is
entity_header
entity_declarative_part
[begin
entity_statenment_part]
end [entity] [identifier]

e structural elements

entity _statenent ::=
concurrent _assertion_statenent
| passive_concurrent_procedure_cal
| passive_process_statement

® process
* behavior of the model
* contains timing control

* concurrent statement (data-flow statement) == process with sensitivity list

O Peeter Ellervee / Kalle Tammemée vhdl - advanced - 11
H‘H L] Department of Computer Engineering ®
[am
LT

J

Equivalent processes

Data-flow statement
X <= a and b after 5 ns;

®* Equivalent processes
. #1 . #3
process (a, b) begin process
X <= a and b after 5 ns; vari able tnp: bit;
end process; begi n
wait on a, b;
. # tnmp := a and b;
process begin wait for 5 ns;
wait on a, b; X <= tnp;
x <= a and b after 5 ns; end process;

end process;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 12

] Department of Computer Engineering u

Process

or in the end?
process (a, b) begin
X <= a and b after 5 ns; process begin
end process; wait on a, b;

end process;
process begin

wait on a, b; process begin
X <= a and b after 5 ns;: X <= a and b after 5 ns;
end process; wait on a, b;

end process;

® Sensitivity list ®* Timing control in the beginning

X <= a and b after 5 ns;

0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 13

L Department of Computer Engineering L

Conditional statements

* if-then-else
i f conditional -expression then statenents. ..
el sif conditional -expression then statenents..
el se statenents. ..
end if;

e conditional-expression - must return boolean value

®* case
case expression is
when constant-val ue [| constant-val ue] => statenents..
when ot hers => nul
end case;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 14

] Department of Computer Engineering u

Loops

[label:] [iteration-method] |oop
Statenents. ..
end | oop [/ abel];

i teration-nethod ::=
whil e conditional -expression | for counter in range

exit [label] [when conditional-expression];
next [/ abel] [when conditional -expression];

range .= expression to expression |
expressi on downt o expressi on |
type’ range |
0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 15
HIIIH] Department of Computer Engineering L
1]
TTU1918
Loops
e for-loop
for I in ny_array’ range |oop

next when I<lower |imt;

exit when |>upper_limt;

sum:= sum+ ny_array(l);
end | oop;

* while-loop
whi l e a<10 | oop
a:=a+ 1;
end | oop;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 16

H] Department of Computer Engineering u
Il

Behavioral hierarchy

®* Functions & procedures

e function
* used as an expression
* can not have timing control statements
* input parameters only (as constants)

® procedure
* used as a statement (both sequential and concurrent)
* can contain timing control statements
* input parameters (constants)
e output parameters (variables/signals)

O Peeter Ellervee / Kalle Tammemée vhdl - advanced - 17
HIIIH L] Department of Computer Engineering ®
ILLL
TTU1918

Functions & procedures

® Declaration (prototype)
* package
* declarative part of architecture, process, function, procedure, etc.

* Content (body)

* package body

* declarative part of architecture, process, function, procedure, etc.
(together with declaration)

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 18

HIIIH] Department of Computer Engineering u
LT
9

Functions

function conv_bool ean (a: signed) return boolean is begin
if to_bit(a(a’'low))="1 then return TRUE, el se return FALSE, end if;
end conv_bool ean;

function "and” (I,r: signed) return signed is begin
return signed(std_|l ogic_vector(l) and std_| ogic_vector(r));
end;

signal a, b, x: signed (7 downto 0);
signal y: bool ean

X <= a and b;

y <= conv_bool ean(a);

0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 19
HIIIH L] Department of Computer Engineering ®
T LT
TTU1918
Procedures

PACKAGE adder_elenments IS

-- full_adder : 1-bit full adder (declaration)

PROCEDURE ful | _adder (CONSTANT a0, b0, cO: IN bit; VAR ABLE 00, cl1: OUT bit);
END adder _el enment s;

PACKAGE BODY adder _el enents IS
PROCEDURE hal f _adder (CONSTANT a0, bO: IN bit; VAR ABLE 00, cl1l: QUT bit) IS
BEG N
00 := a0 XOR bO; cl := a0 AND bO
END hal f _adder

PROCEDURE ful | _adder (CONSTANT aO, b0, cO: IN bit; VAR ABLE 00, cl1l: QUT bit) IS
VARl ABLE ¢_1, c¢_2, o_1: bit;

BEG N
hal f _adder (a0, b0, o 1, c_1)
hal f _adder (o_1, c0, 00, c_2);
cl :=c_1 or c_2;

END ful | _adder

END adder _el enment s;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 20

HIIIH] Department of Computer Engineering u

[TH
Blocks
®* The blocks are used for enhancing readability
* Blocks can be nested
* Block can define local declarations
* hiding same names declared outside of block
BLOCK1: bl ock
signal a,b: std_| ogic;
begin
end bl ock BLOCK1;
0 Peeter Ellervee / Kalle Tammeméae vhdl - advanced - 21
‘II‘I‘.I‘II‘ L Department of Computer Engineering L
11 HI

Guarded blocks

® Special form of block declarations that include an additional expression
known as guard expression

®* Used for describing latches and output enables in dataflow style

architecture nylatch of latch is

begin
L1: block (LE="1")
begi n

Q <= guarded D after 5 ns;
Bar <= guarded not (D) after 7 ns;
end bl ock L1;
end nyl at ch;

®* Remark: Guarded blocks are not supported by all synthesis tools

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 22

] Department of Computer Engineering u

[
Packages
®* Package declaration
®* Package body (necessary in case of subprograms)
* Deferred constant (declared in package, assigned in package body)
® The“use” clause
® Signals in packages (global signals)
®* Resolution function in packages
® Subprograms in packages
®* Package TEXTIO
0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 23
III.III L Department of Computer Engineering L

Library and use clauses

A design library is an implementation-dependent storage facility for previously
analyzed design units

i brary | EEE;

use | EEE. std_|logic_1164.all;

use | EEE. std_logic_arith.all;

library clause | | — »
use clause [T~ 1™ package
entity declaration
declaration “logic”
‘iinV”

hitect package
architecture body “logic”

body “inv”

/4

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 24

] Department of Computer Engineering u

Components

® Components are used to connect multiple VHDL design units (entity/
architecture pairs) together to form a lager, hierarchical design

® The subcomponents of current design unit have to be declared in a declarative
part of the architecture

* The components are instantiated in body part of architecture

architecture toparch of topunit is
conmponent chil dl
port(...);
end conponent;
conmponent child2 ...
begin
COWP1l: childl port map(...);
COMP2: child2 port map(...);
end toparch

/4

0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 25

III.III B Department of Computer Engineering ®

Structural replication

®* A generate statement provides a mechanism for iterative or conditional
elaboration of a portion of a description

® Typical application - instantiation and connecting of multiple identical
components (half adders to make up full adder, trees of components etc.)

UK. for Ki in O to 3 generate
UKO : if Ki = 0 generate
UXOR : XOR_Nty port map(A => Ainl(K.i),
B => Ainl(K. +1),
Z => Tenp_s(K_.i)); end generate UKO;
UKL _3: if Ki > 0 generate
UXOR : XOR Nty port map(A => Tenp_s(K.i-1),
B => Ainl(K.i +1),
Z => Tenp_s(K_.i)); end generate UK1_3;
end generate UK;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 26

HIIIH] Department of Computer Engineering u
LT
9

Using generate statement

entity XOR_ Nty is
A port (A: in Std_Logic;
B%Z B: in Std_Logic;
Z : out Std_Logic);
end XOR Ntvy;

Ain1(0) Temp_s(0)

Ain1(1)

Temp_s(1)

Ain1(2) Temp_s(2)
Ain1(3)
. Temp_s(3
Ain1(4) p_s(3)
0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 27
HIIIH L] Department of Computer Engineering ®
T LT
TTU1918

Subprograms

® Subprogram definition

® Subprogram overloading
®* Functions

® Resolution functions

® Operator overloading

* Concurrent procedure

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 28

] Department of Computer Engineering u

Drivers

® Resolution Function enl
al _y

en2
a2 _$_

en3
a3_$_
type tri_value is (0,1 ,'2");

type tri_val _vector is array (natural range <>) of tri_val ue;
function resolve_tri (b:tri_val _vector) return tri_value is

I— bus

signal bus : resolve_tri tri_val ue;

® Drivers - a sequence of pairs: (value,time)

* Ports
O Peeter Ellervee / Kalle Tammemée vhdl - advanced - 29
H‘H L] Department of Computer Engineering ®
[
LT
U1

Resolution function -- 12C

package |2C _defs is
type 12C bit is ('0", "Z, "H);
type 12C bit_vector is array (integer range <>) of 12C bit;
function resolved (v: 12C bit_vector) return |2C bit;
end | 2C defs;
package body |2C defs is
function resolved (v: 12C bit_vector) return |12Cbit is
variable r: 12Cbit :="'2";
type 12C 1d is array (12C bit) of 12C bit;
type 12C 2d is array (12C_bit) of 12C_1d;

constant resolution_table: 12C 2d := (
-~ "0 'Z 'H
('o, "0, "0), --'0
("o, "z, H), -- 'z
('0, "H, "H)); --"H
begin
for i in v'range |oop r :=resolution_table (r) (v(i)); end | oop;
return r;

end resol ved;

end | 2C defs;

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 30

] Department of Computer Engineering u

(RN
1] [
1]
[TU1
Configuration declaration
® Configuration is a separate design unit which allows different architecture and
component bindings to be specified after a model has been analyzed and
compiled
* Two types
e Configuration declaration
* binds the entity to particular architecture body
* binds components, used in the specified architecture to a particular entity
* binds component statements, used in the specified architecture, to particular configuration
statements
* Configuration specification
¢ used to specify the binding of component instances to a particular entity-architecture pair
0 Peeter Ellervee / Kalle Tammemée vhdl - advanced - 31
‘II‘I‘.I‘II‘] Department of Computer Engineering u
1]

Using configuration - #1

decl:| component X ... decl:| component X ...
end component; end component;
architecture ... architecture ... architecture ... architecture ...
Ul: X port ... u2: X port ... Ul: X port ... u2: X port ...
conf: | for U1,U2: X use conf:| for Ul: X use for U2: X use
entity work.A(A); entity work.A(A); entity work.B(B);
entity Ais ... entity Ais ... entity B is ...
end A; end A; end B;
one component -- one entity one component -- two entities

[Peeter Ellervee / Kalle Tammemae vhdl - advanced - 32

Department of Computer Engineering

decl:

conf:

Using configuration - #2

component X ...
end component;

component ...
end component;

|

architecture ...

architecture ...

Ul: X port ... u2:Y port ...
for Ul: X use for U2: Y use
entity work.A(A); entity work.A(A);
entity Ais ...
end A;

two components -- one entity

O Peeter Ellervee / Kalle Tammemée

vhdl - advanced - 33

Department of Computer Engineering

for GENER

for

end for;
end for;
end MEMO_BHYV;

for GENER

for

for
for

end for;
end for;
end for;
end for;
end MEMO_STR;

BFF: TEST_BUFF
use entity work. TEST_BUFF(BEHAVI OUR) ;

BFF: TEST_BUFF

use entity work. TEST_BUFF(STRUCTURE) ;
STRUCTURE
BFF_STR: TEST_BUFF_syn
use entity work. TEST_BUFF_syn(BEHAVI QUR_syn) ;

Using configuration - #3

configurati on MEMO BHV of TEST_TEST is

configuration MEMO_STR of TEST_TEST is

TEST TEST (GENER)
BFF: TEST BUFF (BEHAVIOUR)

TEST_TEST (GENER)
BFF: TEST BUFF (STRUCTURE)
BFF_STR: TEST BUFF_syn (BEHAVIOUR_ syn)

O Peeter Ellervee / Kalle Tammemée

vhdl - advanced - 34

] Department of Computer Engineering u

sequential

Sequential and concurrent structures

concurrent

if, case

loop, next, exit
null

wait

return

assertion
procedure-call
signal assignment

concurrent assertion
concurrent procedure-call
concurrent signal assignment
component instantiation
generate

process

O Peeter Ellervee / Kalle Tammemée

vhdl - advanced - 35

ARCHITECTURE

HIIIH L Department of Computer Engineering L
LT
9

Concurrent elements in architecture

SW black box
block process concurrent concurrent
procedure assertion
N\
L, X
I 7\ 1 7\
1]\ I]\
= | = |
component concurrent signal association lists,
signal sensibility lists, or
assignment signals visible to elements
HW black box

signals
&
ports

O Peeter Ellervee / Kalle Tammemée

vhdl - advanced - 36

