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About This Manual

This manual describes the VHDL portion of Synopsys FPGA 
Compiler II / FPGA Express, part of the Synopsys suite of synthesis 
tools. FPGA Compiler II / FPGA Express reads an RTL VHDL model 
of a discrete electronic system and synthesizes this description into 
a gate-level netlist. 

VHDL is defined by IEEE Standard 1076 and the United States 
Department of Defense Standard MIL-STD-454L. Appendix B and 
Appendix C summarize the level of Synopsys support for all VHDL 
packages and constructs.

Audience

This manual is written for logic designers and electronic engineers 
who are familiar with Synopsys synthesis products. A basic 
knowledge of VHDL or other high-level programming language is also 
necessary. 
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Other Sources of Information

The resources in the following sections provide additional information:

• Related publications

• SolvNET online help

• Customer support

Related Publications

These Synopsys documents supply additional information:

• FPGA Compiler II / FPGA Express Getting Started Manual

• Design Compiler Command-Line Interface Guide

• Design Compiler Reference Manual: Constraints and Timing

• Design Compiler Reference Manual: Optimization and Timing 
Analysis

• Design Compiler Tutorial

• Design Compiler User Guide

• DesignWare Developer Guide

• VSS User Guide
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For more information about VHDL and its use, see the following 
publications:

• IEEE Standard VHDL Language Reference Manual, 
IEEE Std 1076-1987.

• Introduction to HDL-Based Design Using VHDL. Steve Carlson. 
Synopsys, Inc., 1990.

• VHDL. Douglas L. Perry. McGraw-Hill, Inc., 1991.

Man Pages

You can view man pages from fc2_shell / fe_shell environment. From 
the shell prompt, enter:

fc2_shell> help command_name

or

fe_shell> help command_name

SolvNET Online Help 

SOLV-IT! is the Synopsys electronic knowledge base. It contains 
information about Synopsys and its tools and is updated daily.

Access SOLV-IT! through e-mail or through the World Wide Web. For 
more information about SOLV-IT!, send e-mail to

solvitfb@synopsys.com

or view the Synopsys Web page at

http://www.synopsys.com
v



Customer Support

If you have problems, questions, or suggestions, contact the 
Synopsys Technical Support Center in one of the following ways:

• Send e-mail to

support_center@synopsys.com

• Call (650) 584-4200 outside the continental United States, or call 
(800) 245-8005 inside the continental United States, from 7 a.m. 
to 5:30 p.m. Pacific Time, Monday through Friday.

• Send a fax to (650) 594-2539.
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Conventions

The following conventions are used in Synopsys documentation.

Convention Description
courier Indicates command syntax.

In command syntax and examples, shows 
system prompts, text from files, error 
messages, and reports printed by the 
system.

courier italic Indicates a user specification, such as 
object_name

courier bold In command syntax and examples, indicates 
user input (text the user types verbatim).

[  ] Denotes optional parameters, such as pin1 
[pin2, . . , pinN]

| Indicates a choice among alternatives, such 
as 

low | medium | high

This example indicates that you can enter 
one of three possible values for an option: 
low, medium, or high.

_ Connects two terms that are read as a single 
term by the system. For example, 
design_space.

(Control-c) Indicates a keyboard combination, such as 
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Edit > Copy Shows a menu selection. Edit is the menu 

name, and Copy is the item on the menu.
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Using FPGA Compiler II / FPGA Express with 
VHDL 1

FPGA Compiler II / FPGA Express translates a VHDL description to 
an internal gate-level equivalent format. This format is then optimized 
for a given FPGA technology. 

This chapter contains the following sections:

• Hardware Description Languages

• About VHDL

• FPGA Compiler II / FPGA Express Design Process

• Using FPGA Compiler II / FPGA Express to Compile a VHDL 
Design

• Design Methodology
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The United States Department of Defense, as part of its Very High 
Speed Integrated Circuit (VHSIC) program, developed VHSIC HDL 
(VHDL) in 1982. VHDL describes the behavior, function, inputs, and 
outputs of a digital circuit design. VHDL is similar in style and syntax 
to modern programing languages, but includes many hardware-
specific constructs.

FPGA Compiler II / FPGA Express reads and parses the supported 
VHDL syntax. Appendix C, "VHDL Constructs”, lists all VHDL 
constructs and includes the level of Synopsys support provided for 
each construct.

Hardware Description Languages

Hardware description languages (HDLs) are used to describe the 
architecture and behavior of discrete electronic systems.

HDLs were developed to deal with increasingly complex designs. An 
analogy is often made to the development of software description 
languages, from machine code (transistors and solder), to assembly 
language (netlists), to high-level languages (HDLs). 

Top-down, HDL-based system design is most useful in large projects, 
where several designers or teams of designers are working 
concurrently. HDLs provide structured development. After major 
architectural decisions have been made, and major components and 
their connections have been identified, work can proceed 
independently on subprojects.
1-2

Using FPGA Compiler II / FPGA Express with VHDL



Typical uses for HDLs

HDLs typically support a mixed-level description, where structural or 
netlist constructs can be mixed with behavioral or algorithmic 
descriptions. With this mixed-level capability, you can describe 
system architectures at a high level of abstraction; then incrementally 
refine a design into a particular component-level or gate-level 
implementation. Alternatively, you can read an HDL design 
description into FPGA Compiler II / FPGA Express, then direct the 
compiler to synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDLs has several fundamental 
advantages over a traditional gate-level design methodology. Among 
the advantages are the following:

• You can verify design functionality early in the design process and 
immediately simulate a design written as an HDL description. 
Design simulation at this higher level, before implementation at 
the gate level, allows you to test architectural and design 
decisions. 

• FPGA Compiler II / FPGA Express provides logic synthesis and 
optimization, so you can automatically convert a VHDL description 
to a gate-level implementation in a given technology. This 
methodology eliminates the former gate-level design bottleneck 
and reduces circuit design time and errors introduced when hand-
translating a VHDL specification to gates. 
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With FPGA Compiler II / FPGA Express logic optimization, you 
can automatically transform a synthesized design to a smaller and 
faster circuit. You can apply information gained from the 
synthesized and optimized circuits back to the VHDL description, 
perhaps to fine-tune architectural decisions.

• HDL descriptions provide technology-independent 
documentation of a design and its functionality. An HDL 
description is more easily read and understood than a netlist or 
schematic description. Because the initial HDL design description 
is technology-independent, you can later reuse it to generate the 
design in a different technology, without having to translate from 
the original technology. 

• VHDL, like most high-level software languages, provides strong 
type checking. A component that expects a four-bit-wide signal 
type cannot be connected to a three- or five-bit-wide signal; this 
mismatch causes an error when the HDL description is compiled. 
If a variable’s range is defined as 1 to 15, an error results from 
assigning it a value of 0. Incorrect use of types has been shown 
to be a major source of errors in descriptions. Type checking 
catches this kind of error in the HDL description even before a 
design is generated. 

About VHDL

VHDL is one of a few HDLs in widespread use today. VHDL is 
recognized as a standard HDL by the Institute of Electrical and 
Electronics Engineers (IEEE Standard 1076, ratified in 1987) and by 
the United States Department of Defense (MIL-STD-454L). 
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VHDL divides entities (components, circuits, or systems) into an 
external or visible part (entity name and connections) and an internal 
or hidden part (entity algorithm and implementation). After you define 
the external interface to an entity, other entities can use that entity 
when they all are being developed. This concept of internal and 
external views is central to a VHDL view of system design. An entity 
is defined, relative to other entities, by its connections and behavior. 
You can explore alternate implementations (architectures) of an entity 
without changing the rest of the design.

After you define an entity for one design, you can reuse it in other 
designs as needed. You can develop libraries of entities for use by 
many designs or for a family of designs.

The VHDL hardware model is shown in Figure 1-1.

Figure 1-1 VHDL Hardware Model
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A VHDL entity (design) has one or more input, output, or inout ports 
that are connected (wired) to neighboring systems. An entity is 
composed of interconnected entities, processes, and components, 
all of which operate concurrently. Each entity is defined by a particular 
architecture, which is composed of VHDL constructs such as 
arithmetic, signal assignment, or component instantiation 
statements. 

In VHDL independent processes model sequential (clocked) circuits, 
using flip-flops and latches, and combinational (unclocked) circuits, 
using only logic gates. Processes can define and call (instantiate) 
subprograms (subdesigns). Processes communicate with each other 
by signals (wires). 

A signal has a source (driver), one or more destinations (receivers), 
and a user-defined type, such as “color” or “number between 0 and 
15”.

VHDL provides a broad set of constructs. With VHDL, you can 
describe discrete electronic systems of varying complexity (systems, 
boards, chips, or modules) with varying levels of abstraction. 

VHDL language constructs are divided into three categories by their 
level of abstraction: behavioral, dataflow, and structural. These 
categories are described as follows:

behavioral
The functional or algorithmic aspects of a design, expressed in a 
sequential VHDL process.

dataflow
The view of data as flowing through a design, from input to output. 
An operation is defined in terms of a collection of data 
transformations, expressed as concurrent statements. 
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structural
The view closest to hardware; a model where the components of 
a design are interconnected. This view is expressed by 
component instantiations. 

FPGA Compiler II / FPGA Express Design Process

FPGA Compiler II / FPGA Express performs three functions:

• Translates VHDL to an internal format

• Optimizes the block-level representation through various 
optimization methods

• Maps the design’s logical structure for a specific FPGA technology 
library

FPGA Compiler II / FPGA Express synthesizes VHDL descriptions 
according to the VHDL synthesis policy defined in Chapter 2, "Design 
Descriptions”. The Synopsys VHDL synthesis policy has three parts: 
design methodology, design style, and language constructs. You use 
the VHDL synthesis policy to produce high quality VHDL-based 
designs.
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Using FPGA Compiler II / FPGA Express to Compile a 
VHDL Design

When a VDL design is read into FPGA Compiler II / FPGA Express, 
it is converted to an internal database format so FPGA Compiler II / 
FPGA Express can synthesize and optimize the design. 

When FPGA Compiler II / FPGA Express optimizes a design, it can 
restructure part or all of the design. You can control the degree of 
restructuring. Options include: 

• Fully preserving the design’s hierarchy

• Allowing full modules to be moved up or down in the hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening 
the design) if it is beneficial to do so

The following section describes the design process that uses FPGA 
Compiler II / FPGA Express with a VHDL simulator.
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Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Compiler 
II / FPGA Express and a VHDL simulator.

Figure 1-2 Design Flow

VHDL Driver

Synopsys 
FPGA Compiler II / 

VHDL Simulator

Simulation Output
Compare
Output

VHDL Simulator

1.

2.

3.

4.

5.

6.

7.

(Test Vectors)

VHDL Description

FPGA Vendor
Development System

FPGA Express

Simulation Output
1-9

Using FPGA Compiler II / FPGA Express with VHDL



Figure 1-2 illustrates the following steps:

1. Write a design description in VHDL. This description can be a 
combination of structural and functional elements (as shown in 
Chapter 2, "Design Descriptions”). This description is used with 
both FPGA Compiler II / FPGA Express and the VHDL simulator.

2. Provide VHDL test drivers for the simulator. For information on 
writing these drivers, see the appropriate simulator manual. The 
drivers supply test vectors for simulation and other output data.

3. Simulate the design by using a VHDL simulator. Verify that the 
description is correct.

4. Use FPGA Compiler II / FPGA Express to synthesize and optimize 
the VHDL design description into a gate-level netlist. FPGA 
Compiler II / FPGA Express generates optimized netlists to satisfy 
timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-
specific version of the design to the VHDL simulator. The 
development system includes simulation models and interfaces 
required for the design flow.

6. Simulate the technology-specific version of the design with the 
VHDL simulator. You can use the original VHDL simulation drivers 
from step 3because module and port definitions are preserved 
through the translation and optimization processes.

7. Compare the output of the gate-level simulation (step 6) against 
the original VHDL description simulation (step 3) to verify that the 
implementation is correct.
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2
Design Descriptions 2

Each VHDL structural design can have four parts, which this chapter 
discusses in the following major sections:

• Entities

• Architecture

• Configurations

• Packages

This chapter also contains the section “Resolution Functions” on 
page 2-40.
2-1

Design Descriptions



Entities

An entity defines the input and output ports of a design. A design can 
contain more than one entity. Each entity has its own architecture 
statement.

The syntax is

entity entity_name is [ generic ( generic_declarations );]
             [ port ( port_declarations ) ;]
end [ entity_name ] ;

entity_name
The name of the entity.

- generic_declarations determine local constants used for sizing 
or timing the entity.

- port_declarations determine the number and type of input and 
output ports.

You cannot use the declaration of other in the entity specification.

An entity serves as an interface to other designs, by defining entity 
characteristics that must be known to FPGA Compiler II / FPGA 
Express before it can connect the entity to other entities and 
components.

For example, before you can connect a counter to other entities, you 
must specify the number and types of its input and output ports, as 
shown in Example 2-1.
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Example 2-1 VHDL Entity Specification
entity NAND2 is 
  port(A, B: in BIT;    -- Two inputs, A and B
       Z: out BIT);     -- One output, Z = (A and B)’
end NAND2;

Entity Generic Specifications

Generic specifications are entity parameters. Generics can specify 
the bit-widths of components—such as adders—or can provide 
internal timing values.

A generic can have a default value. It receives a nondefault value only 
when the entity is instantiated (see “Component Instantiation 
Statements” on page 2-13) or configured (see “Configurations” on 
page 2-34). Inside an entity, a generic is a constant value. 

The syntax is   

generic(
constant_name : type [ := value ]
 { ; constant_name : type [ := value ] }
);

constant_name
The name of a generic constant.

- type is a previously defined data type.

- Optional value is the default value of constant_name.
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Entity Port Specifications

Port specifications define the number and type of ports in the entity.

The syntax is

port(
port_name :  mode port_type
 { ; port_name :  mode port_type}
); 

port_name
The name of the port.

mode
Any of these four values: 

in
Can only be read. 

out
Can only be assigned a value. 

inout
Can be read and assigned a value. The value read is that of 
the port’s incoming value, not the assigned value (if any). 

buffer
Similar to out but can be read. The value read is the assigned 
value. It can have only one driver. For more information about 
drivers, see “Driving Signals” on page 6-8.

port_type
A previously defined data type.
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Example 2-2 shows an entity specification for a 2-input N-bit 
comparator with a default bit-width of 8. 

Example 2-2 Interface for an N-Bit Counter
-- Define an entity (design) called COMP
-- that has 2 N-bit inputs and one output.

entity COMP is
  generic(N:  INTEGER := 8);      -- default is 8 bits

  port(X, Y:  in  BIT_VECTOR(0 to N-1);
       EQUAL: out BOOLEAN);
end COMP;

Architecture

Architecture, which determines the implementation of an entity, can 
range in abstraction from an algorithm (a set of sequential statements 
within a process) to a structural netlist (a set of component 
instantiations). 

The syntax is 

architecture architecture_name of entity_name is
  { block_declarative_item }
begin
  { concurrent_statement }
end [ architecture_name ] ; 

architecture_name
 The name of the architecture.

entity_name
The name of the entity being implemented. 
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block_declarative_item
Any of the following statements: 

- use statement (see “Package Uses” on page 2-35)

- subprogram declaration (“Subprogram Declarations” on 
page 2-23)

- subprogram body (“Subprogram Body” on page 2-26)

- type declaration (see “Types” on page 2-31)

- subtype declaration (see “Subtypes” on page 2-32)

- constant declaration (see “Constants” on page 2-18)

- signal declaration (see “Signals” on page 2-21)

- component declaration (see “Subtypes” on page 2-32)

- concurrent statement
Defines a unit of computation that reads signals, performs 
computations, and assigns values to signals (see “Concurrent 
Statements” on page 2-17).

Example 2-3 shows a description for a 3-bit counter that contains an 
entity specification and an architecture statement:

• Entity specification for COUNTER3 

• Architecture statement, MY_ARCH

Figure 2-1 shows a schematic of the design.
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Example 2-3 An Implementation of a 3-Bit Counter
entity COUNTER3 is
port ( CLK :  in bit;
       RESET: in bit;
       COUNT: out integer range 0 to 7);
end COUNTER3;
architecture MY_ARCH of COUNTER3 is
signal COUNT_tmp : integer range 0 to 7;

begin
  process
  begin
     wait until (CLK’event and CLK = ’1’);
                     -- wait for the clock
     if RESET = ’1’ or COUNT_tmp = 7 then
                     -- Check for RESET or max. count
          COUNT_tmp <= 0;
     else COUNT_tmp <= COUNT_tmp + 1;
                     -- Keep counting
     end if;
  end process;
  COUNT <= COUNT_tmp;
end MY_ARCH;
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Figure 2-1 3-Bit Counter Synthesized Circuit

Note:
In an architecture, you must not give constants or signals the same 
name as any of the entity’s ports in the entity specification. 

If you declare a constant or signal with a port’s name, the new 
declaration hides that port name. If the new declaration lies 
directly in the architecture declaration (as shown in Example 2-4) 
and not in an inner block, FPGA Compiler II / FPGA Express 
reports an error. 
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Example 2-4 Incorrect Use of a Port Name in Declaring Signals or Constants
entity X is 
  port(SIG, CONST: in  BIT;
       OUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
  signal   SIG  : BIT;
  constant CONST: BIT := ’1’;
begin
...
end EXAMPLE;

The error messages generated for Example 2-4 are

  signal   SIG  : BIT;
           ^
Error:  (VHDL-1872) line 13
    Illegal redeclaration of SIG.

  constant CONST: BIT := ’1’;
           ^
Error:  (VHDL-1872) line 14

    Illegal redeclaration of CONST.
2-9

Design Descriptions



Declarations

An architecture consists of a declaration section where you declare

• Components

• Concurrent statements

• Constants

• Processes

• Signals

• Subprograms

• Types

Components

If your design consists only of VHDL entity statements, every 
component declaration in the architecture or package statement has 
to correspond to an entity. 

Components declared in an architecture are local to that architecture.

The syntax is 

component identifier
  [ generic( generic_declarations ); ]
  [ port( port_declarations ); ]
end component ;
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identifier
The name of the component.

You cannot use names preceded by GTECH_ for components 
other than ones provided by Synopsys. However, you can use 
GTECH to precede a name if it is used without an underscore, as 
in GTECHBUSTBUF.

generic_declaration
Determines local constants used for sizing or timing the 
component.

port_declaration
Determines the number and type of input and output ports.

Example 2-5 shows a simple component declaration statement.

Example 2-5 Component Declaration of a 2-Input AND Gate
component AND2
  port(I1, I2: in BIT;
       O1:     out BIT);
end component;

Example 2-6 shows a component declaration statement that uses a 
generic parameter.    

Example 2-6 Component Declaration of an N-Bit Adder
component ADD
  generic(N: POSITIVE);

  port(X, Y:   in  BIT_VECTOR(N-1 downto 0);
       Z:      out BIT_VECTOR(N-1 downto 0);
       CARRY:  out BIT);
end component;
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The component declaration makes a design entity (AND2 in Example 
2-5, ADD in Example 2-6) usable within an architecture. You must 
declare a component in an architecture or package before you can 
instantiate it. 

Sources of Components

A declared component can come from

• The same VHDL source file

• A different VHDL source file

• Another format, such as EDIF or XNF

• A component from a technology library 

Consistency of Component Ports

FPGA Compiler II / FPGA Express checks for consistency among its 
VHDL entities. For other entities, the port names are taken from the 
original design description, as follows:

• For components in a technology library, the port names are the 
input and output pin names.

• For EDIF designs, the port names are the EDIF port names. 

The bit-widths of each port must match. 

• For VHDL components, FPGA Compiler II / FPGA Express verifies 
matching. 

• For components from other sources, FPGA Compiler II / FPGA 
Express checks when linking the component to the VHDL 
description. 
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Component Instantiation Statements

You use a component instantiation statement to define a design 
hierarchy or build a netlist in VHDL. A netlist is a structural description 
of a design.

To form a netlist, use component instantiation statements to 
instantiate and connect components. A component instantiation 
statement create a new level of design hierarchy.       

The syntax of the component instantiation statement is   

instance_name : component_name 
[ generic map (
   generic_name => expression 
   { , generic_name => expression } 
) ]
port map (
   [ port_name => ] expression 
   { , [ port_name => ] expression } 
);

instance_name
The name of this instance of component type component_name, 
as in

U1 : ADD

generic map (optional)
Maps nondefault values onto generics. Each generic_name is the 
name of a generic exactly as declared in the corresponding 
component declaration statement. Each expression evaluates to 
an appropriate value. 

U1 : ADD generic map (N => 4)
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port map
Maps the component’s ports onto connections. Each port_name 
is the name of a port, exactly as declared in the corresponding 
component declaration statement. Each expression evaluates to 
a signal value.

U1 : ADD generic map (N => 4)
       port map (X, Y, Z, CARRY) ;

FPGA Compiler II / FPGA Express uses the following two rules to 
select which entity and architecture to associate with a component 
instantiation:

1. Each component declaration must have an entity—a VHDL entity, 
a design entity from another source or format, or a library 
component—with the same name. This entity is used for each 
component instantiation associated with the component 
declaration. 

2. A VHDL entity may have only one architecture associated with it. 
If multiple architectures are available, add only one of these files 
to the Design Sources window. 

Mapping Generic Values

When you instantiate a component with generics, you can map 
generics to values. A generic without a default value must be 
instantiated with a generic map value. 

For example, a 4-bit instantiation of the component ADD from 
Example 2-6 on page 2-11 might use the following generic map:

U1:  ADD generic map (N => 4) 
         port map (X, Y, Z, CARRY); 
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Mapping Port Connections

The port map maps component ports to actual signals.

Use named or positional association to specify port connections in 
component instantiation statements, as follows:

• To identify the specific ports of the component, use named 
association. The port_name => construction identifies the ports.

• To list the component port expressions in the declared port order, 
use positional association. 

Example 2-7 shows named and positional association for the U5 
component instantiation statement in Example 2-8.

Example 2-7 Equivalent Named and Positional Association
U5: or2 port map (O => n6, I1 => n3, I2 => n1);
  -- Named association

U5: or2 port map (n3, n1, n6);
  -- Positional association

Note:
When you use positional association, the instantiated port 
expressions (signals) must be in the same order as the ports in 
the component declaration statement.

Example 2-8 shows a structural netlist description for the COUNTER3 
design entity from Example 2-3 on page 2-7. 

Example 2-8 Structural Description of a 3-Bit Counter
architecture STRUCTURE of COUNTER3 is
  component DFF
    port(CLK, DATA: in BIT;
         Q: out BIT);
  end component;
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  component AND2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component OR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component NAND2 
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component XNOR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component INV
    port(I: in BIT;
         O: out BIT);
  end component;

  signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin
  u1: DFF port map(CLK, N1, N2);
  u2: DFF port map(CLK, N5, N3);
  u3: DFF port map(CLK, N9, N4);
  u4: INV port map(N2, N1);
  u5: OR2 port map(N3, N1, N6);
  u6: NAND2 port map(N1, N3, N7);
  u7: NAND2 port map(N6, N7, N5);
  u8: XNOR2 port map(N8, N4, N9);
  u9: NAND2 port map(N2, N3, N8);
  COUNT(0) <= N2;
  COUNT(1) <= N3;
  COUNT(2) <= N4;
end STRUCTURE;
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Concurrent Statements

Each concurrent statement in an architecture defines a unit of 
computation that 

• Reads signals

• Performs a computation that is based on the values of the signals

• Assigns the computed values to the signals

Concurrent statements all compute their values at the same time. 
Although the order of concurrent statements has no effect on the 
order in which FPGA Compiler II / FPGA Express executes them, 
concurrent statements coordinate their processing by communicating 
with each other through signals. 

The five kinds of concurrent statements are

Block
Groups a set of concurrent statements.     

Component instantiation
Creates an instance of an entity, connecting its interface ports to 
signals or interface ports of the entity being defined. See 
“Component Instantiation Statements” on page 2-13.     

Procedure call
Calls algorithms that compute and assign values to signals. 

Process
Defines sequential algorithms that read the values of signals and 
compute new values to assign to other signals. For a discussion 
of processes, see “Processes” on page 2-19.” 
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Signal assignments
Assign computed values to signals or interface ports. 

Concurrent statements are described further in Chapter 6, 
"Concurrent Statements”.

Constants

Constant declarations create named values of a given type. The value 
of a constant can be read but not changed.     

Constant declarations are allowed in architectures, packages, 
entities, blocks, processes, and subprograms.   

Constants declared in an architecture are local to that architecture.

Example 2-9 shows some constant declarations.

Example 2-9 Constant Declarations
constant WIDTH: INTEGER := 8;
constant X    : NEW_BIT := ’X’;

You can use constants in expressions, as described in “Identifiers” 
on page 4-23 and “Literals” on page 4-26, and as source values in 
assignment statements, as described in “Assignment Statements and 
Targets” on page 5-2. 
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Processes 

A process, which is declared within an architecture, is a concurrent 
statement. But it is made up of sequentially executed statements that 
define algorithms. The sequential statements can be any of the 
following, all of which are discussed in Chapter 5, "Sequential 
Statements”:

• case statement

• exit statement

• if statement

• loop statement

• next statement

• null statement

• Procedure call

• Signal assignment

• Variable assignment

• wait statement

Processes, like all other concurrent statements, read and write 
signals and the values of interface ports to communicate with the rest 
of the architecture and with the enclosing system.       

Processes are unique in that they behave like concurrent statements 
to the rest of the design, but they are internally sequential. In addition, 
only processes can define variables to hold intermediate values in a 
sequence of computations. 
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Because the statements in a process are sequentially executed, 
several constructs, such as if and loop statements, are provided to 
control the order of execution.

Variable Declarations

Variable declarations define a named value of a given type. 

Example 2-10 shows some variable declarations.

Example 2-10 Variable Declarations
variable A, B: BIT;
variable INIT: NEW_BIT;

You can use variables in expressions, as described in Chapter 4, 
"Expressions”.

You assign values to variables by using variable assignment 
statements, as described in “Variable Assignment Statements” on 
page 5-11. 

FPGA Compiler II / FPGA Express does not support variable 
initialization. If you try to initialize a variable, FPGA Compiler II / FPGA 
Express generates the following message: 

Warning: Initial values for signals are not supported for 
synthesis. They are ignored on line %n (VHDL-2022)

Note:
Variables are declared and used only in processes and 
subprograms, because processes and subprograms cannot 
declare signals for internal use.
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Signals

Signals connect the separate concurrent statements of an 
architecture to each other, and to other parts of a design, through 
interface ports. 

Signal declarations create new named signals (wires) of a given type. 
Signals can be given default (initial) values, but these initial values 
are ignored for synthesis.   

Signals with multiple drivers (signals driven by wired logic) can have 
associated resolution functions, as described in “Resolution 
Functions” on page 2-40.

Example 2-11 shows two signal declarations.

Example 2-11 Signal Declarations
signal A, B: BIT;
signal INIT: INTEGER := -1;

Note:
Ports are also signals, with the restriction that out ports cannot be 
read and in ports cannot be assigned a value. You create signals 
either with port declarations or with signal declarations. You create 
ports only with port declarations. 

You can declare signals in architectures, entities, and blocks and can 
use them in processes and subprograms. Processes and 
subprograms cannot declare signals for internal use.

You can use signals in expressions, as described in Chapter 5, 
"Sequential Statements”. Signals are assigned values by signal 
assignment statements, as described in “Signal Assignment 
Statements” on page 5-12.
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Subprograms

Subprograms use sequential statements to define algorithms and are 
useful for performing repeated calculations, often in different parts of 
an architecture (see “Subprograms” on page 5-35). Subprograms 
declared in an architecture are local to that architecture.

Subprograms differ from processes, in that subprograms cannot 
directly read or write signals from the rest of the architecture. All 
communication is through the subprogram’s interface. Each 
subprogram call has its own set of interface signals.

Signal declarations create new named signals (wires) of a given type. 
Signals can be given default (initial) values, but these initial values 
are ignored for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have 
associated resolution functions, as described in “Resolution 
Functions” on page 2-40.

Subprograms also differ from component instantiation statements, in 
that the use of a subprogram by an entity or another subprogram does 
not create a new level of design hierarchy. 

There are two types of subprograms, which can have zero or more 
parameters:

Procedure Subprogram
A procedure returns zero or more values through its interface.   

Function Subprogram
A function returns a single value directly.    
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A subprogram has two parts:

• Declaration

• Body 

Note:
When you declare a subprogram in a package, the subprogram 
declaration must be in the package declaration and the 
subprogram body must be in the package body. 

When you declare a subprogram in an architecture, the program 
body must be in the architecture body but there is no 
corresponding subprogram declaration.

Subprogram Declarations

A declaration lists the names and types of the subprogram’s 
parameters and, for functions, the type of the subprogram’s return 
value.

Procedure Declaration Syntax

The syntax of a procedure declaration is     

procedure proc_name [ ( parameter_declarations ) ] ; 

proc_name
The name of the procedure.

parameter_declarations
Specify the number and type of input and output ports. The syntax 
is

[ parameter_name    :  mode parameter_type
 { ; parameter_name :  mode parameter_type}]
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parameter_name
The name of a parameter.

mode
Procedure parameters can be any of these four modes: 

in
Can only be read. 

out
Can only be assigned a value. 

inout
Can be read and assigned a value. The value read is that of 
the port’s incoming value, not the assigned value (if any). 

buffer
Similar to out but can be read. The value read is the assigned 
value. A buffer can have only one driver. For more information 
about drivers, see “Driving Signals” on page 6-8.

parameter_type
A previously defined data type.

Function Declaration Syntax

The syntax of a function declaration is     

function func_name [ ( parameter_declarations )
    return type_name ; 

func_name
The name of the function.

type_name
The type of the function’s returned value. Signal parameters of 
type range cannot be passed to a subprogram.
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parameter_declarations
Specify the number and type of input and output ports. The syntax 
is

[ parameter_name    :  mode parameter_type
 { ; parameter_name :  mode parameter_type}]

parameter_name
The name of a parameter.

mode
Function parameters can only use the in mode:

in
Can only be read. 

parameter_type
A previously defined data type.

Declaration Examples

Example 2-12 shows sample subprogram declarations for a function 
and a procedure.

Example 2-12 Two Subprogram Declarations
type BYTE   is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;
  -- Returns TRUE if NUM is even. 

procedure BYTE_TO_NIBBLES(B: in BYTE;
                          UPPER, LOWER: out NIBBLE);
  -- Splits a BYTE into UPPER and LOWER halves.

When FPGA Compiler II / FPGA Express calls a subprogram, it 
substitutes actual parameters for the declared formal parameters. 
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Actual parameters are

• Constant values

• Names of signals, variables, constants, or ports

An actual parameter must support the type and mode of the formal 
parameter. For example, FPGA Compiler II / FPGA Express does not 
accept an input port as an out actual parameter and uses a constant 
only as an in actual parameter.     

Example 2-13 shows some calls to the subprogram declarations from 
Example 2-12.

Example 2-13 Two Subprogram Calls
signal INT : INTEGER;
variable EVEN : BOOLEAN;
. . .
INT <= 7;
EVEN := IS_EVEN(INT);
. . .

variable TOP, BOT: NIBBLE;
. . .
BYTE_TO_NIBBLES(”00101101”, TOP, BOT);

Subprogram Body

A subprogram body defines an implementation of a subprogram’s 
algorithm. 
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Procedure Body Syntax

The syntax of a procedure body is 

procedure procedure_name [ (parameter_declarations) ] is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ procedure_name ] ;

procedure_name
Name of the procedure

subprogram_declarative_item
A subprogram_declarative_item can be any of the following 
statements:

- use clause

- type declaration

- subtype declaration

- constant declaration

- variable declaration

- attribute declaration

- attribute specification

- subprogram declaration (for local or nested subprograms)

- subprogram body (for locally declared subprograms)
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Function Body Syntax

The syntax of a function body is 

function function_name [  (parameter_declarations) ]
    return type_name is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ function_name ] ;

function_name
Name of the function

subprogram_declarative_item
A subprogram_declarative_item can be any of the following 
statements:

- use clause

- type declaration

- subtype declaration

- constant declaration

- variable declaration

- attribute declaration

- attribute specification

- subprogram declaration (for local or nested subprograms)

- subprogram body (for locally declared subprograms)

Example 2-14 shows subprogram bodies for the sample subprogram 
declarations in Example 2-12 on page 2-25.
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Example 2-14 Two Subprogram Bodies
function IS_EVEN(NUM: in INTEGER) 
    return BOOLEAN is
begin
  return ((NUM rem 2) = 0);
end IS_EVEN;
procedure BYTE_TO_NIBBLES(B: in BYTE;
                          UPPER, LOWER: out NIBBLE) is
begin
  UPPER := NIBBLE(B(7 downto 4));
  LOWER := NIBBLE(B(3 downto 0));
end BYTE_TO_NIBBLES;

Subprogram Overloading

You can overload subprograms, which means that one or more 
subprograms can have the same name. Each subprogram that uses 
a given name must have a different parameter profile. 

A parameter profile specifies a subprogram’s number and type of 
parameters. This information determines which subprogram is called 
when more than one subprogram has the same name. Overloaded 
functions are also distinguished by the type of their return values.

Example 2-15 shows two subprograms with the same name 
(IS_ODD) but different parameter profiles.

Example 2-15 Subprogram Overloading
type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;
function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;
signal B: BOOLEAN;
. . .
B <= IS_ODD(A_NUMBER); -- Will call the first function above
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Operator Overloading

You can overload predefined operators such as +, and, and mod. By 
using overloading, you can adapt predefined operators to work with 
your own data types. 

For example, you can declare new logic types rather than use the 
predefined types BIT and INTEGER. However, you cannot use 
predefined operators with these new types unless you overload the 
operators for the types.

Example 2-16 shows how some predefined operators are overloaded 
for a new logic type.

Example 2-16 Operator Overloading
type NEW_BIT is (’0’, ’1’, ’X’);
  -- New logic type

function ”and”(I1, I2: in NEW_BIT) return NEW_BIT;
function ”or” (I1, I2: in NEW_BIT) return NEW_BIT;
  -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;

VHDL requires that overloaded operator declarations enclose the 
operator name or symbol in double quotation marks, because 
operator name and symbol are infix operators (they are used between 
operands). If you declare the overloaded operators without quotation 
marks, a VHDL tool considers them functions rather than operators.
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Variable Declarations

Variable declarations define a named value of a given type. 

You can use variables in expressions, as described in “Identifiers” on 
page 4-23 and “Literals” on page 4-26. You assign values to variables 
by using variable assignment statements, as described in “Variable 
Assignment Statements” on page 5-11.” 

FPGA Compiler II / FPGA Express does not support variable 
initialization. If you try to initialize a variable, FPGA Compiler II / FPGA 
Express generates the following message: 

Warning: Initial values for signals are not supported for 
synthesis. They are ignored on line %n (VHDL-2022)

Example 2-17 shows some variable declarations.

Example 2-17 Variable Declarations
variable A, B: BIT;
variable INIT: NEW_BIT;

Note:
Variables are declared and used only in processes and 
subprograms, because processes and subprograms cannot 
declare signals for internal use.

To use these declarations in more than one entity or architecture, 
place them in a package, as described in “Packages” on page 2-35.

Types

You declare each signal with a type that determines the kind of data 
it carries. Types declared in an architecture are local to that 
architecture. 
2-31

Design Descriptions



You can use type declarations in architectures, packages, entities, 
blocks, processes, and subprograms.      

Type declarations define the name and characteristics of a type. 
Types and type declarations are fully described in Chapter 3, "Data 
Types”. A type is a named set of values, such as the set of integers 
or the set of colors (red, green, and blue). An object of a given type, 
such as a signal, can have any value of that type. 

You can see an example of a type declaration for type NEW_BIT in 
Example 2-16 on page 2-30.

Subtypes

Use subtype declarations to define the name and characteristics of 
a constrained subset of another type or subtype. A subtype is fully 
compatible with its parent type, but only over the subtype’s range. 

The following subtype declaration (NEW_LOGIC) is a subrange of 
the type declaration in Example 2-16 on page 2-30. 

subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’; 

You can use subtype declarations wherever you use type 
declarations: in architectures, packages, entities, blocks, processes, 
and subprograms. 
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Examples of Architectures for NAND2 Entity

Example 2-18, Example 2-19, and Example 2-20 show three different 
architectures for the entity NAND2. The three examples define 
equivalent implementations of NAND2. After optimization and 
synthesis, they all produce the same circuit, a 2-input NAND gate in 
the target technology. The architecture description style you use for 
this entity depends on your own preferences.

Example 2-18 shows how the entity NAND2 can be implemented by 
using two components from a technology library. The entity inputs A 
and B are connected to AND gate U0, producing an intermediate 
I signal. Signal I is then connected to inverter U1, producing the entity 
output Z.

Example 2-18 Structural Architecture for Entity NAND2
architecture STRUCTURAL of NAND2 is
  signal I:  BIT;

  component AND_2           -- From a technology library
      port(I1, I2: in BIT;
           O1: out BIT);
  end component;

  component INVERT          -- From a technology library
      port(I1: in BIT;
           O1: out BIT);
  end component;

begin
  U0: AND_2  port map (I1 => A, I2 => B, O1 => I);
  U1: INVERT port map (I1 => I, O1 => Z);
end STRUCTURAL;

Example 2-19 shows how you can define the entity NAND2 by its 
logical function.
2-33

Design Descriptions



Example 2-19 Data Flow Architecture for Entity NAND2
architecture DATAFLOW of NAND2 is
begin
  Z <= A nand B;
end DATAFLOW;

Example 2-20 shows another implementation of NAND2.

Example 2-20 RTL Architecture for Entity NAND2
architecture RTL of NAND2 is
begin
  process(A, B)
  begin
    if (A = ’1’) and (B = ’1’) then
      Z <= ’0’;
    else 
      Z <= ’1’;
    end if;
  end process;
end RTL;

Configurations

Configurations are not currently supported by FPGA Compiler II / 
FPGA Express. 
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Packages

A package is a collection of declarations that more than one design 
can use. 

You can collect constants, data types, component declarations, and 
subprograms into a VHDL package that can then be used by more 
than one design or entity. 

A package must contain at least one of the following constructs:

Constant
Declares systemwide parameters, such as data-path widths.

VHDL data type declaration
Defines data types used throughout a design. All entities in a 
design must use common interface types, such as common 
address bus types.

Component declaration
Specifies the interfaces to entities that can be instantiated in the 
design.

Subprogram
Defines algorithms that can be called anywhere in a design.

Packages are often sufficiently general that they are usable in many 
different designs. For example, the std_logic_1164 package defines 
data types std_logic and std_logic_vector. 

Package Uses

The use statement allow an entity to use the declarations in a 
package. 
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The syntax is      

use LIBRARY_NAME.PACKAGE_NAME.ALL;

LIBRARY_NAME
The name of a VHDL library.

PACKAGE_NAME
The name of the included package. 

A use statement is usually the first statement in a package or entity 
specification source file. 

Note:
Synopsys does not support different packages with the same 
name when they exist in different libraries. No two packages can 
have the same name.

Package Structure

Packages have two parts: the declaration and the body.

Package declaration 
Holds public information, including constant, type, and 
subprogram declarations.

Package body 
Holds private information, including local types and subprogram 
implementations (bodies).

Note:
When a package declaration contains subprogram declarations, 
a corresponding package body must define the subprogram 
bodies.
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Package Declarations

Package declarations collect information that are needed by one or 
more entities in a design. This information includes data type 
declarations, signal declarations, subprogram declarations, and 
component declarations.

Note:
Signals declared in packages cannot be shared across entities. 
If two entities both use a signal from a given package, each entity 
has its own copy of that signal. 

Although you can declare all this information explicitly in each design 
entity or architecture in a system, it is often easier to declare system 
information in a separate package. Each design entity in the system 
can then use the system’s package.

The syntax of a package declaration is 

package package_name is 
        { package_declarative_item }
end [ package_name ] ;

package_name
The name of this package. 

package_declarative_item
Any of the following statements:

- use clause (to include other packages)

- type declaration

- subtype declaration

- constant declaration
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- signal declaration 

- subprogram declaration

- component declaration

Example 2-21 shows some package declarations. 

Example 2-21 Sample Package Declarations
package EXAMPLE is

  type BYTE is range 0 to 255;
  subtype NIBBLE is BYTE range 0 to 15;

  constant BYTE_FF: BYTE := 255;

  signal ADDEND: NIBBLE;

  component BYTE_ADDER
    port(A, B:      in BYTE;
         C:        out BYTE;
         OVERFLOW: out BOOLEAN);
  end component;

  function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the previous example declarations, add a use statement at 
the beginning of your design description as follows: 

use WORK.EXAMPLE.ALL;
entity . . .
architecture . . .

Appendix B, "Synopsys Packages”, contains more examples of 
packages and their declarations.
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Package Body

A package body includes

• The implementations (bodies) of subprograms declared in the 
package declaration

• Internal support subprograms

But designs or entities that use the package never see this 
information. 

The syntax of a package body is 

package body package_name is {
             { package_body_declarative_item }
end [ package_name ] ;

package_name
The name of the associated package. 

package_body_declarative_item
Any of the following statements:

- use clause

- subprogram declaration

- subprogram body

- type declaration

- subtype declaration

- constant declaration

Appendix B, "Synopsys Packages”, shows a package declaration and 
body example that comes with FPGA Compiler II / FPGA Express.
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Resolution Functions

Resolution functions are used with signals that can be connected 
(wired together). For example, if two drivers directly connect to a 
signal, the resolution function determines whether the signal value is 
the AND, OR, or three-state function of the driving values.     

Use resolution functions to assign the driving values when there are 
multiple drivers. For simulation, you can write an arbitrary function to 
resolve bus conflicts. 

Note:
A resolution function might change the value of a resolved signal 
even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype 
declaration. You create a resolved signal in four steps:    

1. Declare the signal’s base type.

type SIGNAL_TYPE is ...
-- signal’s base type is SIGNAL_TYPE 

2. Declare the resolution function.

function res_function (DATA: ARRAY_TYPE)  
  return SIGNAL_TYPE is
-- declaration of the resolution function
-- ARRAY_TYPE must be an unconstrained array of
-- SIGNAL_TYPE   
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3. Declare the resolved signal’s subtype as a subtype of the base 
type, which includes the name of the resolution function.

subtype res_type is res_function SIGNAL_TYPE;
-- name of the subtype is res_type
-- name of function is res_function
-- signal type is res_type (a subtype of SIGNAL_TYPE) 

4. Declare resolved signals as resolved subtypes. 

signal resolved_signal_name:res_type;
-- resolved_signal_name is a resolved signal

FPGA Compiler II / FPGA Express does not support arbitrary 
resolution functions. Only wired AND, wired OR, and three-state 
functions are allowed. FPGA Compiler II / FPGA Express requires 
that you mark all resolution functions with a special directive indicating 
the kind of resolution being performed.      

FPGA Compiler II / FPGA Express considers the directive only when 
creating hardware. The body of the resolution function is parsed but 
ignored; using unsupported VHDL constructs generates errors (see 
Appendix C, "VHDL Constructs”).

Do not connect signals that use different resolution functions. FPGA 
Compiler II / FPGA Express supports only one resolution function per 
network.

The three resolution function directives are 

• synopsys resolution_method wired_and   

• synopsys resolution_method wired_or 

• synopsys resolution_method three_state 
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Pre-synthesis and post-synthesis simulation results might not match 
if the body of the resolution function the simulator uses does not match 
the directive the synthesizer uses.

Example 2-22 shows how to create and use a resolved signal and 
how to use compiler directives for resolution functions. The signal’s 
base type is the predefined type BIT. Figure 2-2 shows the design.

Example 2-22 Resolved Signal and Its Resolution Function
package RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
  subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT is
  -- synopsys resolution_method wired_and
  begin
  -- The code in this function is ignored by the program
  -- but parsed for correct VHDL syntax

    for I in DATA’range loop
      if DATA(I) = ’0’ then
         return ’0’;
      end if;
    end loop;
    return ’1’;
  end;
end;
use work.RES_PACK.all;
entity WAND_VHDL is
  port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
  Z <= X;
  Z <= Y;
end WAND_VHDL;
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Figure 2-2 Design Using Resolved Signal
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3
Data Types 3

VHDL is a strongly typed language. Every constant, signal, variable, 
function, and parameter is declared with a type, such as BOOLEAN 
or INTEGER, and can hold or return only a value of that type. 

VHDL predefines abstract data types such as BOOLEAN, which are 
part of most programming languages, and hardware-related types, 
such as BIT, which are found in most hardware languages. VHDL 
predefined types are declared in the STANDARD package supplied 
with all VHDL implementations (see Example 3-17 on page 3-17). 
This chapter includes information about    

• Enumeration Types

• Integer Types

• Array Types

• Record Types
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• Predefined VHDL Data Types

• Unsupported Data Types

• Synopsys Data Types

• Subtypes

The advantage of strong typing is that VHDL tools can detect many 
common design errors, such as assigning an 8-bit value to a 
4-bit-wide signal, or detect incrementing of an array index out of its 
range. 

The following code shows the definition of a new type, BYTE, as an 
array of 8 bits and a variable declaration, ADDEND, which uses this 
type.

type BYTE is array(7 downto 0) of BIT; 

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data 
types. Some VHDL types, such as REAL and FILE, are not supported 
for synthesis.

The examples in this chapter show type definitions and associated 
object declarations. Although each constant, signal, variable, 
function, and parameter is declared with a type, only variable and 
signal declarations are shown in the examples. For more information 
about constant, function, and parameter declarations, see 
“Declarations” on page 2-10.
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VHDL also provides subtypes, which are defined as subsets of other 
types. Anywhere a type definition can appear, a subtype definition 
can also appear. The difference between a type and a subtype is that 
a subtype is a subset of a previously defined parent (or base) type or 
subtype. Overlapping subtypes of a given base type can be compared 
against and assigned to each other. All integer types, for example, 
are technically subtypes of the built-in integer base type (see “Integer 
Types” on page 3-8 and “Subtypes” on page 3-21). 

Enumeration Types

You define an enumeration type by listing (enumerating) all possible 
values of that type.

The syntax of an enumeration type definition is       

type type_name is ( enumeration_literal {, enumeration_literal} );

type_name
An identifier.

Each enumeration_literal is either an identifier (enum_6) or a 
character literal (’A’). 

An identifier is a sequence of letters, underscores, and numbers. 
It must start with a letter and cannot be a VHDL reserved word, 
such as TYPE. All VHDL reserved words are listed in “VHDL 
Reserved Words” on page C-17.

A character literal is any value of type CHARACTER, in single 
quotation marks. 

Example 3-1 shows two enumeration type definitions and 
corresponding variable and signal declarations.
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Example 3-1 Enumeration Type Definitions
type COLOR is (BLUE, GREEN, YELLOW, RED);
type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);
variable HUE: COLOR;
signal SIG: MY_LOGIC;
. . .
HUE := BLUE;
SIG <= ’Z’;

Enumeration Overloading

You can overload an enumeration literal by including it in the definition 
of two or more enumeration types. When you use such an overloaded 
enumeration literal, FPGA Compiler II / FPGA Express is usually able 
to determine the literal’s type. However, under certain circumstances 
determination might be impossible. In these cases, you must qualify 
the literal by explicitly stating its type. (See “Enumeration Literals” on 
page 4-27.) Example 3-2 shows how you can qualify an overloaded 
enumeration literal.   

Example 3-2 Enumeration Literal Overloading
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
...
A <= COLOR’(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the 
first enumeration literal is assigned the value 0, the next enumeration 
literal is assigned the value 1, and so forth. 
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FPGA Compiler II / FPGA Express automatically encodes 
enumeration values into bit vectors that are based on each value’s 
position. The length of the encoding bit vector is the minimum number 
of bits required to encode the number of enumerated values. For 
example, an enumeration type with five values would have a 3-bit 
encoding vector. 

Example 3-3 shows the default encoding of an enumeration type with 
five values.

Example 3-3 Automatic Enumeration Encoding
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED    = ”000”
GREEN  = ”001”
YELLOW = ”010”
BLUE   = ”011”
VIOLET = ”100”

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify 
your own enumeration encodings with the ENUM_ENCODING 
attribute. This interpretation is specific to FPGA Compiler II / FPGA 
Express.   

A VHDL attribute is defined by its name and type and is then declared 
with a value for the attributed type, as shown in Example 3-4. 

Several VHDL synthesis-related attributes are declared in the 
ATTRIBUTES package supplied with FPGA Compiler II / FPGA 
Express. For more information about this package, see 
“ATTRIBUTES Package” on page B-31. 
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The ENUM_ENCODING attribute must be a string containing a series 
of vectors, one for each enumeration literal in the associated type. 
The encoding vector is specified by ’0’s, ’1’s, ’D’s, ’U’s, and ’Z’s, 
separated by blank spaces. The meaning of these encoding vectors 
is described in the next section. The first vector in the attribute string 
specifies the encoding for the first enumeration literal, the second 
vector specifies the encoding for the second enumeration literal, and 
so on. The ENUM_ENCODING attribute must immediately follow the 
type declaration. 

Example 3-4 illustrates how the default encodings from Example 3-3 
can be changed with the ENUM_ENCODING attribute.

Example 3-4 Using the ENUM_ENCODING Attribute
attribute ENUM_ENCODING: STRING;
  -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of 
  COLOR: type is ”010 000 011 100 001”;
  -- Attribute declaration

The enumeration values are encoded as follows:

RED    = ”010”
GREEN  = ”000”
YELLOW = ”011”
BLUE   = ”100”
VIOLET = ”001”

The result is GREEN < VIOLET < RED < YELLOW < BLUE. 

Note:
The interpretation of the ENUM_ENCODING attribute is specific 
to FPGA Compiler II / FPGA Express. Other VHDL tools, such as 
simulators, use the standard encoding (ordering).
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Enumeration Encoding Values

The possible encoding values for the ENUM_ENCODING attribute 
are ’0’, ’1’, ’D’, ’U’, and ’Z’:     

’0’
Bit value ’0’.

’1’
Bit value ’1’.

’D’
Don’t care (can be either ’0’ or ’1’). To use don’t care information, 
see “Don’t Care Inference” on page 8-29.

’U’
Unknown. If ’U’ appears in the encoding vector for an 
enumeration, you cannot use that enumeration literal except as 
an operand to the = and /= operators. You can read an 
enumeration literal encoded with a ’U’ from a variable or signal, 
but you cannot assign it. 

For synthesis, the = operator returns false and /= returns true 
when either of the operands is an enumeration literal whose 
encoding contains ’U’.

’Z’
High impedance. See “Three-State Inference” on page 7-59 for 
more information.
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Integer Types

The maximum range of a VHDL integer type is

–(231–1) to 231–1 (–2_147_483_647 ... 2_147_483_647). 
Integer types are defined as subranges of this anonymous built-in 
type. Multidigit numbers in VHDL can include underscores (_) to make 
them easier to read.    

FPGA Compiler II / FPGA Express encodes an integer value as a bit 
vector whose length is the minimum necessary to hold the defined 
range. FPGA Compiler II / FPGA Express encodes integer ranges 
that include negative numbers as 
2’s-complement bit vectors. 

The syntax of an integer type definition is      

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range 
is a subrange of the anonymous integer type.

Example 3-5 shows some integer type definitions.

Example 3-5 Integer Type Definitions
type PERCENT is range -100 to 100;
  -- Represented as an 8-bit vector
  --   (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;
  -- Represented as a 32-bit vector
  --   This is the definition of the INTEGER type
3-8

Data Types



You cannot directly access the bits of an INTEGER or explicitly state 
the bit-width of the type. For these reasons, Synopsys provides 
overloaded functions for arithmetic. These functions are defined in 
the std_logic_signed and std_logic_unsigned packages, described 
in “std_logic_arith Package” on page B-3. 

Array Types

An array is an object that is a collection of elements of the same type. 
VHDL supports N-dimensional arrays, but FPGA Compiler II / FPGA 
Express supports only one-dimensional arrays. Array elements can 
be of any type. An array has an index whose value selects each 
element. The index range determines how many elements are in the 
array and their ordering (low to high or high downto low). An index 
can be of any integer type. 

You can declare multidimensional arrays by building one-dimensional 
arrays where the element type is another one-dimensional array, as 
shown in Example 3-6.

Example 3-6 Declaration of Array of Arrays
type BYTE   is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides constrained as well as unconstrained arrays. The 
difference between the two comes from the index range in the array 
type definition. 
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Constrained Arrays

A constrained array’s index range is explicitly defined; an example is 
the integer range (1 to 4). When you declare a variable or signal of 
the type constrained array, the variable or signal has the same index 
range as the constrained array. 

The syntax of a constrained array type definition is      

type array_type_name is array ( integer_range ) of type_name;

array_type_name
The name of the new constrained array type.

integer_range
A subrange of another integer type.

type_name
The type of each array element. 

Example 3-7 shows a constrained array type definition.

Example 3-7 Constrained Array Type Definition
type BYTE is array (7 downto 0) of BIT;
  -- A constrained array whose index range is
  -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Arrays

You define an unconstrained array’s index range as a type; for 
example, INTEGER. This definition implies that the index range can 
be any contiguous subset of that type’s values. When you declare an 
array variable or signal of this type, you also define its actual index 
range. Different declarations can have different index ranges.
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The syntax of an unconstrained array type definition is   

type array_type_name is 
    array (range_type_name range <>) 
        of element_type_name ;

array_type_name
The name of the new unconstrained array type. 

range_type_name
The name of a range type or subtype. 

element_type_name
The type of each array element. 

Example 3-8 shows an unconstrained array type definition and a 
declaration that uses it. 

Example 3-8 Unconstrained Array Type Definition
type BIT_VECTOR is array(INTEGER range <>) of BIT;
  -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool can 
recall the index range of each declaration. You can use array attributes 
to determine the range (bounds) of a signal or variable of an 
unconstrained array type. With this information, you can write routines 
that use variables or signals of an unconstrained array type, 
independent of any one array variable’s or signal’s bounds. The next 
section describes array attributes and how they are used. 
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Array Attributes

FPGA Compiler II / FPGA Express supports the following predefined 
VHDL attributes for use with arrays:   

• left   

• right   

• high   

• low   

• length   

• range   

• reverse_range   

These attributes all return a value corresponding to part of an array’s 
range. Table 3-1 shows the values of the array attributes for the 
variable MY_VECTOR in Example 3-8.

Table 3-1 Array Index Attributes

Example 3-9 shows the use of array attributes in a function that ORs 
together all elements of a given bit vector (declared in Example 3-8) 
and returns that value. 

Attribute Expression Value

MY_VECTOR’left      5

MY_VECTOR’right    –5

MY_VECTOR’high      5

MY_VECTOR’low    –5

MY_VECTOR’length     11

MY_VECTOR’range (5 downto –5)

MY_VECTOR’reverse_range (–5 to 5)
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Example 3-9 Use of Array Attributes
function OR_ALL (X: in BIT_VECTOR) return BIT is
  variable OR_BIT: BIT;
  begin
    OR_BIT := ’0’; 
    for I in X’range loop
      OR_BIT := OR_BIT or X(I);
    end loop;

    return OR_BIT;
  end;

Note:
This function works for a bit vector of any size.

Record Types

A record is a set of named fields of various types, unlike an array, 
which is composed of identical anonymous entries. A record’s field 
can be of any previously defined type, including another record type. 

Example 3-10 shows a record type declaration (BYTE_AND_IX), 
three signals of that type, and some assignments.

Example 3-10 Record Type Declaration and Use
constant LEN: INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is 
  record
    BYTE: BYTE_VEC;
    IX:   INTEGER range 0 to LEN;
  end record;
 
signal X, Y, Z: BYTE_AND_IX;
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signal DATA: BYTE_VEC;
signal NUM:  INTEGER;
. . .

X.BYTE <= "11110000";
X.IX   <= 2;

DATA <= Y.BYTE;
NUM  <= Y.IX;

Z <= X;

As shown in Example 3-10, you can read values from or assign values 
to records in two ways:

• By individual field name

X.BYTE <= DATA;
X.IX   <= LEN;

• From another record object of the same type

Z <= X;

A record type object’s individual fields are accessed by the object 
name, a period, and a field name: X.BYTE or X.IX. To access an 
element of the BYTE field’s array, use array notation: X.BYTE(2). 

Record Aggregates

Record aggregates (constants) have the same syntax as array 
aggregates (see “Aggregates” on page 4-18). They can appear 
anywhere records appear.
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The following line illustrates a named record aggregate in a 
description:    

X <= (BYTE => "11110000", IX => 2);

The following line illustrates a positional record aggregate in a 
description:

X <= ("11110000", 2);

You can use the others construct in a named or positional record 
aggregate, just as you can in an array aggregate (see “Aggregates” 
on page 4-18). 

You can mix named and positional aggregates in a description, with 
the positional items listed first.

You cannot have a named item that refers to a field covered in the 
positional aggregate. The following four examples illustrate this 
caveat.

Example 3-11 Simple Record Type
type rec is

record
a: integer;
b: integer;
c: integer;
d: integer;
e: integer;

end record
end

Example 3-12 Named Aggregate for Example 3-11
(a => 1, b => 2, c => 0, d => 3, e => 0)

In a named aggregate, the items can appear in any order.
3-15

Data Types



Example 3-13 Use of others in an Aggregate
(1, 2, d => 3, others => 0)

Example 3-13 is equivalent to Example 3-12 or Example 3-14.

Example 3-14 Positional Aggregate
(1, 2, 0, 3, 0)

You can supply a set of choices in a description of a record aggregate, 
but a choice cannot be a range. See Example 3-15 and Example 3-16.

Example 3-15 Record Aggregate Equivalent to Example 3-16
(b => 2, c => 2, d => 2, a => 1, e => 3)

Example 3-16 Record Aggregate With Set of Choices
(b | c | d => 2, a => 1, e =>3)

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a 
standard set of types and operations: the STANDARD package and 
the TEXTIO package. 

The STANDARD package of data types is included in all VHDL source 
files by an implicit use clause. The TEXTIO package defines types 
and operations for communication with a standard programming 
environment (terminal and file I/O). This package is not needed for 
synthesis; therefore, FPGA Compiler II / FPGA Express does not 
support it.   
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The FPGA Compiler II / FPGA Express implementation of the 
STANDARD package is listed in Example 3-17. This STANDARD 
package is a subset of the IEEE VHDL STANDARD package. 
Differences are described in “Unsupported Data Types” on 
page 3-20.

Example 3-17 FPGA Compiler II / FPGA Express STANDARD Package
package STANDARD is
  type BOOLEAN is (FALSE, TRUE);
  type BIT is (’0’, ’1’);
  type CHARACTER is (
    NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
    BS,  HT,  LF,  VT,  FF,  CR,  SO,  SI, 
    DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
    CAN, EM,  SUB, ESC, FSP, GSP, RSP, USP,

    ’ ’, ’!’, ’”’, ’#’, ’$’, ’%’, ’&’, ’’’,
    ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
    ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
    ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

    ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
    ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
    ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
    ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

    ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, 
    ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
    ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, 
    ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

  type INTEGER is range -2147483647 to 2147483647;
  subtype NATURAL is INTEGER range 0 to 2147483647;
  subtype POSITIVE is INTEGER range 1 to 2147483647;
  type STRING is array (POSITIVE range <>) 
       of CHARACTER;
  type BIT_VECTOR is array (NATURAL range <>) 
       of BIT;
end STANDARD;
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Data Type BOOLEAN

The BOOLEAN data type is actually an enumerated type with two 
values, false and true, where false < true. Logical functions, such as 
equality (=) and comparison (<) functions, return a BOOLEAN value. 

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT

The BIT data type represents a binary value as one of two characters, 
’0’ or ’1’. Logical operations such as “and” can take and return BIT 
values. 

Convert a BOOLEAN value to a BIT value as follows:

if (BOOLEAN_VAR) then
  BIT_VAR := ’1’;
else 
  BIT_VAR := ’0’;
end if;

Data Type CHARACTER

The CHARACTER data type enumerates the ASCII character set. 
Nonprinting characters are represented by a three-letter name, such 
as NUL for the null character. Printable characters are represented 
by themselves, in single quotation marks, as follows: 

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;
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Data Type INTEGER

The INTEGER data type represents positive and negative whole 
numbers. 

Data Type NATURAL

The NATURAL data type is a subtype of INTEGER that is used for 
representing natural (nonnegative) numbers. 

Data Type POSITIVE

The POSITIVE data type is a subtype of INTEGER that is used for 
representing positive (nonzero, nonnegative) numbers. 

Data Type STRING

The STRING data type is an unconstrained array of characters. A 
STRING value is enclosed in double quotation marks as follows: 

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := ”Rosebud”;

Data Type BIT_VECTOR

The BIT_VECTOR data type represents an array of BIT values. 
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Unsupported Data Types

Some data types are either not useful for synthesis or are not 
supported. The following sections list and describe these 
unsupported data types.

Appendix C, "VHDL Constructs” describes the level of FPGA 
Compiler II / FPGA Express support for each VHDL construct.

Physical Types

FPGA Compiler II / FPGA Express does not support physical types, 
such as units of measure (for example, ns). 

Floating-Point Types

FPGA Compiler II / FPGA Express does not support floating-point 
types, such as REAL. 

Access Types

FPGA Compiler II / FPGA Express does not support access (pointer) 
types because no equivalent hardware construct exists. 

File Types

FPGA Compiler II / FPGA Express does not support file (disk file) 
types, such as a hardware file type RAM or ROM. 
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Synopsys Data Types

The std_logic_arith package provides arithmetic operations and 
numeric comparisons on array data types. The package also defines 
two major data types: UNSIGNED and SIGNED. These data types, 
unlike the predefined INTEGER type, provide access to the individual 
bits (wires) of a numeric value. For more information, see 
“std_logic_arith Package” on page B-3.

Subtypes

A subtype is defined as a subset of a previously defined type or 
subtype. A subtype definition can appear anywhere a type definition 
is allowed. 

Using subtypes is a powerful way to use VHDL type checking to 
ensure valid assignments and meaningful data handling. Subtypes 
inherit all operators and subprograms defined for their parent (base) 
types.

Subtypes are also used for resolved signals to associate a resolution 
function with the signal type (see “Subtypes” on page 2-32, for more 
information).

For example, note in Example 3-17 that NATURAL and POSITIVE 
are subtypes of INTEGER and that they can be used with any 
INTEGER function. They can be added, multiplied, compared, and 
assigned to each other if the values are within the appropriate 
subtype’s range. All INTEGER types and subtypes are actually 
subtypes of an anonymous predefined numeric type.
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Example 3-18 shows some valid and invalid assignments between 
NATURAL and POSITIVE values.

Example 3-18 Valid and Invalid Assignments Between INTEGER Subtypes
variable NAT: NATURAL;
variable POS: POSITIVE;
. . .
POS := 5;
NAT := POS + 2;
. . .
NAT := 0;
POS := NAT;      -- Invalid; out of range

For example, the type BIT_VECTOR is defined as

type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype 
MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 3-19 shows that all functions and attributes that operate on 
BIT_VECTOR also operate on MY_VECTOR.
3-22

Data Types



Example 3-19 Attributes and Functions Operating on a Subtype
type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(0 to 15);
. . .
signal   VEC1, VEC2: MY_VECTOR;
signal   S_BIT: BIT;
variable UPPER_BOUND: INTEGER;
. . .
if (VEC1 = VEC2)
. . .
VEC1(4) <= S_BIT;
VEC2 <= ”0000111100001111”;
. . .
RIGHT_INDEX := VEC1’high;
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4
Expressions 4

In VHDL, expressions perform arithmetic or logical computations by 
applying an operator to one or more operands. Operators specify the 
computation to perform. Operands are the data for the computation.   

In the following VHDL fragment, A and B are operands, + is an 
operator, and A + B is an expression.

C := A + B;  -- Computes the sum of two values

You can use expressions in many places in a design description. You 
can

• Assign them to variables or signals or use them as the initial values 
of constants

• Use them as operands to other operators

• Use them for the return value of functions
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• Use them for the IN parameters in a subprogram call

• Assign them to the OUT parameters in a procedure body

• Use them to control the actions of statements such as if, loop, and 
case

This chapter discusses the use of expressions in a design description, 
in the following major sections:

• Operators

• Operands

Operators

A VHDL operator is characterized by 

• Name

• Computation (function)

• Number of operands

• Type of operands (such as Boolean or character)

• Type of result value

You can define new operators, like functions, for any type of operand 
and result value. The predefined VHDL operators are listed in Table 
4-1. 
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Table 4-1 Predefined VHDL Operators

Each line in the table lists operators with the same precedence. Each 
line’s operators have greater precedence than those on the previous 
line. An operator’s precedence determines whether it is applied before 
or after adjoining operators. 

Example 4-1 shows some expressions and how they are interpreted. 

Example 4-1 Operator Precedence
A + B * C               =  A + (B * C)
not BOOL and (NUM = 4)  =  (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded—that is, applied to 
new types of operands. The logical operator called and, for example, 
can be overloaded to work with a new logic type. For more information, 
see “Operator Overloading” on page 2-30.

Logical Operators

Operands of a logical operator must be of the same type. The logical 
operators—and, or, nand, nor, xor, xnor, not—accept operands of 
type BIT or type BOOLEAN and one-dimensional arrays of BIT or 
BOOLEAN. Array operands must be the same size. A logical operator 
applied to two array operands is applied to pairs of the two arrays’ 
elements. 

Type Operators Precedence
Logical and or nand nor xor xnor Lowest
Relational = /= < <= > >=
Adding + - &
Unary (sign) + -
Multiplying * / mod rem
Miscellaneous ** abs not Highest
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Example 4-2 shows some logical signal declarations and logical 
operations on them. Figure 4-1 illustrates the resulting design.

Example 4-2 Logical Operators
signal A, B, C:       BIT_VECTOR(3 downto 0);
signal D, E, F, G:    BIT_VECTOR(1 downto 0);
signal H, I, J, K:    BIT;
signal L, M, N, O, P: BOOLEAN;

A <= B and C;
D <= E or F or G;
H <= (I nand J) nand K;
L <= (M xor N) and (O xor P);

Figure 4-1 Design Schematic for Logical Operators
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Normally, to use more than two operands in an expression, you must 
use parentheses to group the operands. An exception is that you can 
combine, without parentheses, a sequence that uses only one of the 
following operators:

- and

- or

- xor

- xnor

The following expression uses the same operator—and—in the 
sequence:

A and B and C and D

However, a sequence that contains more than one of these operators 
requires parentheses to indicate which two operands are to be paired. 
In the following sequence, and is the first operator, or is the second.

A and B or C

Parentheses should be used in one of two ways, as shown:

(A and B) or C or A and (B or C)

Relational Operators

Relational operators, such as = or >, compare two operands of the 
same base type and return a Boolean value.   
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IEEE VHDL defines the equality (=) and inequality (/=) operators for 
all types. Two operands are equal if they represent the same value. 
For array and record types, IEEE VHDL compares corresponding 
elements of the operands.     

IEEE VHDL defines the ordering operators (<, <=, >, and >=) for all 
enumerated types, integer types, and one-dimensional arrays of 
enumeration or integer types.    

The internal order of a type’s values determines the result of the 
ordering operators. Integer values are ordered from negative infinity 
to positive infinity. Enumerated values are in the same order as they 
were declared, unless you have changed the encoding.

Note:
If you set the encoding of your enumerated types (see 
“Enumeration Encoding” on page 3-4), the ordering operators 
compare your encoded value ordering, not the declaration 
ordering. Because this interpretation is specific to FPGA Compiler 
II / FPGA Express, a VHDL simulator still uses the declaration’s 
order of enumerated types. 

Arrays are ordered alphabetically. FPGA Compiler II / FPGA Express 
determines the relative order of two array values by comparing each 
pair of elements in turn, beginning from the left bound of each array’s 
index range. If a pair of array elements is not equal, the order of the 
different elements determines the order of the arrays. For example, 
bit vector ”101011” is less than ”1011”, because the fourth bit of each 
vector is different, and ’0’ is less than ’1’.   

If the two arrays have different lengths and the shorter one matches 
the first part of the longer one, the shorter comes before the longer. 
Thus, the bit vector ”101” is less than ”101000”. Arrays are compared 
from left to right, regardless of their index ranges (to or downto).
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Example 4-3 shows several expressions that evaluate to true.

Example 4-3 True Relational Expressions
 ’1’  =  ’1’
”101” = ”101”
 ”1”  > ”011”   -- Array comparison
”101” < ”110”

To interpret bit vectors such as ”011” as signed or unsigned binary 
numbers, use the relational operators defined in the std_logic_arith 
package (listed in Appendix B, "Synopsys Packages”). The third line 
in Example 4-3 evaluates false if the operands are of type UNSIGNED. 

UNSIGNED’”1”  < UNSIGNED’”011”   -- Numeric comparison

Example 4-4 shows some relational expressions. Figure 4-2 
illustrates the resulting synthesized circuits.

Example 4-4 Relational Operators
signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);
H <= (C < D);
I <= (C >= D);
J <= (E > F);
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Figure 4-2 Relational Operators Design Illustrating Example 4-4

Adding Operators

Adding operators include arithmetic and concatenation operators.    

The arithmetic operators + and – are predefined for all integer 
operands. These addition and subtraction operators perform 
conventional arithmetic. Example 4-5 uses the + operator. 

The concatenation operator & is predefined for all one-dimensional 
array operands. The concatenation operator builds arrays by 
combining the operands. Each operand of & can be an array or an 
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element of an array. Use & to add a single element to the beginning 
or end of an array, to combine two arrays, or to build an array out of 
elements, as shown in Example 4-5 and Figure 4-3.     

Example 4-5 Adding Operators
signal A, D:    BIT_VECTOR(3 downto 0);
signal B, C, G: BIT_VECTOR(1 downto 0);
signal E:       BIT_VECTOR(2 downto 0);
signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C;  -- Array & array
D <= not E & not F;  -- Array & element
G <= not H & not I;  -- Element & element 
J <= K + L;          -- Simple addition 

Figure 4-3 Design Array Illustrating Example 4-5
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Unary (Signed) Operators

A unary operator has only one operand. FPGA Compiler II / FPGA 
Express predefines unary operators + and – for all integer types. The 
+ operator has no effect. The – operator negates its operand. For 
example,       

5 = +5
5 = -(-5)

Example 4-6 shows how unary negation is synthesized, and Figure 
4-4 illustrates the resulting design.

Example 4-6 Unary (Signed) Operators
signal A, B: INTEGER range -8 to 7;

A <= -B;

Figure 4-4 Design Illustrating Unary Negation From Example 4-6
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Multiplying Operators

FPGA Compiler II / FPGA Express predefines the multiplying 
operators (*, /, mod, and rem) for all integer types.        

FPGA Compiler II / FPGA Express places some restrictions on the 
supported values for the right-hand operands of the multiplying 
operators, as follows: 

*
Integer multiplication: no restrictions. 

/
Integer division: The right-hand operand must be a computable 
power of 2 and cannot be negative (see“Computable Operands” 
on page 4-16). This operator is implemented as a bit shift.

mod
Modulus: same as /.

rem
Remainder: same as /. 

Example 4-7 shows some uses of the multiplying operators whose 
right-hand operands are all powers of 2. Figure 4-5 illustrates the 
resulting synthesized circuit design.

Example 4-7 Multiplying Operators With Powers of 2
signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

  A <= B * 4;
  C <= D / 4;
  E <= F mod 4;
  G <= H rem 4;
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Figure 4-5 Design Illustrating Multiplying Operators From Example 4-7

Miscellaneous Arithmetic Operators

FPGA Compiler II / FPGA Express predefines the absolute value 
(abs) and exponentiation (**) operators for all integer types. There is 
one restriction placed on the ** operator: When you’re using ** 
exponentiation, the left operand must be the computable value 2 (see 
“Computable Operands” on page 4-16).
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Example 4-8 shows how these operators are used. Figure 4-6 
illustrates the synthesized design.

Example 4-8 Miscellaneous Arithmetic Operators
signal A, B: INTEGER range -8 to 7;
signal C:    INTEGER range  0 to 15;
signal D:    INTEGER range  0 to 3;
A <= abs(B);
C <= 2 ** D;

Figure 4-6 Design With Arithmetic Operators From Example 4-8
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Operands

The operands specify the data used by the operator to compute its 
value. An operand returns its value to the operator. 

There are many categories of operands. The simplest operand is a 
literal, such as the number 7, or an identifier, such as a variable or 
signal name. Operands can themselves be expressions. You create 
expression operands by surrounding an expression with parentheses.

The operand categories are

Aggregates
my_array_type’(others => 1)

Attributes
my_array’range

Expressions
(A nand B)

Function calls
LOOKUP_VAL(my_var_1, my_var_2)

Identifiers
my_var, my_sig

Indexed names
my_array(7)

Literals
’0’, ”101”, 435, 16#FF3E#

Qualified expressions
BIT_VECTOR’(’1’ & ’0’)
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Records and fields
my_record.a_field

Slice names
my_array(7 to 11)

Type conversions
THREE_STATE(’0’)

The next two sections discuss operand bit-widths and explain 
computable operands. The sections following them describe the 
operand categories listed here.

Operand Bit-Width

FPGA Compiler II / FPGA Express uses the bit-width of the largest 
operand to determine the bit-width needed to implement an operator 
in a circuit. For example, an INTEGER operand is 32 bits wide by 
default. An addition of two INTEGER operands causes FPGA 
Compiler II / FPGA Express to build a 32-bit adder. 

To use hardware resources efficiently, always indicate the bit-width 
of numeric operands. For example, use a subrange of INTEGER 
when declaring types, variables, or signals.

type     ENOUGH:  INTEGER range 0 to 255; 
variable WIDE:    INTEGER range -1024 to 1023; 
signal   NARROW:  INTEGER range 0 to 7; 

Note:
During optimization, FPGA Compiler II / FPGA Express removes 
hardware for unused bits. 
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Computable Operands

Some operators, such as the division operator, restrict their operands 
to be computable. A computable operand is one whose value can be 
determined by FPGA Compiler II / FPGA Express. Computability is 
important because noncomputable expressions can require logic 
gates to determine their value. 

Following are examples of computable operands:

• Literal values

• for...loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions

• Function calls whose return value is computable

• Expressions with computable operands

• Qualified expressions when the expression is computable

• Type conversions when the expression is computable

• The value of the and or nand operators when one of the operands 
is a computable ’0’

• The value of the or operator or the nor operator when one of the 
operands is a computable ’1’

Additionally, a variable is given a computable value if it is an OUT or 
INOUT parameter of a procedure that assigns it a computable value. 

Following are examples of noncomputable operands: 

• Signals
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• Ports

• Variables assigned different computable values that depend on a 
noncomputable condition

• Variables assigned noncomputable values

Example 4-9 shows some definitions and declarations, followed by 
several computable and noncomputable expressions.

Example 4-9 Computable and Noncomputable Expressions
signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
  if (C = ’1’) then 
    return(A);
  else 
    return(B);
  end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
  B := not A;
end;

process(S)
  variable V0, V1, V2: BIT;
  variable V_INT:      INTEGER;
subtype MY_ARRAY is BIT_VECTOR(0 to 3);
  variable V_ARRAY:    MY_ARRAY;
begin
  V0 := ’1’;             -- Computable (value is ’1’)
  V1 := V0;              -- Computable (value is ’1’)
  V2 := not V1;          -- Computable (value is ’0’)

  for I in 0 to 3 loop
    V_INT := I;          -- Computable (value depends on iteration)
  end loop;
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  V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
                         -- Computable (”1000”)
  V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
  COMP(V1, V2);
  V1 := V2;              -- Computable (value is ’0’)
  V0 := S and ’0’;       -- Computable (value is ’0’)
  V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
  V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

  if (S = ’1’) then
    V2 := ’0’;           -- Computable (value is ’0’)
  else
    V2 := ’1’;           -- Computable (value is ’1’)
  end if;
  V0 := V2;            -- Non-computable; V2 depends on S
  V1 := S;             -- Non-computable; S is signal 
  V2 := V1;            -- Non-computable; V1 is no longer 
computable
end process;

Aggregates

Aggregates create array literals, by giving a value to each element of 
an instance of an array type. Aggregates can also be considered array 
literals, because they specify an array type and the value of each 
array element. The syntax is    

type_name’( [choice => ] expression{,  [choice =>] expression})

type_name
A constrained array type (as required by FPGA Compiler II / FPGA 
Express in the previous example), an element index, a sequence 
of indexes, or the others expression. Each expression provides a 
value for the chosen elements and must evaluate to a value of the 
element’s type.
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Example 4-10 shows an array type definition and an aggregate 
representing a literal of that array type. The two sets of assignments 
have the same result.

Example 4-10 Simple Aggregate
subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X:      MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B) -- Aggregate
-- assignment

X(1) <= ’1’;           -- Element assignment
X(2) <= A nand B;
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index by using either positional or 
named notation. With positional notation, each element receives the 
value of its expression in order, as shown in Example 4-10. 

By using named notation, the choice => construct specifies one or 
more elements of the array. The choice can contain an expression, 
such as (I mod 2) =>, to indicate a single element index or a range, 
such as 3 to 5 => or 7 downto 0 =>, to indicate a sequence of element 
indexes.

An aggregate can use both positional and named notation.

It is not necessary to specify all element indexes in an aggregate. All 
unassigned values are given a value by inclusion of the others => 
expression as the last element of the list.

Example 4-11 shows several aggregates representing the same 
value.
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Example 4-11 Equivalent Aggregates
subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);
MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);
MY_VECTOR’(’1’, ’1’, others => ’0’);
MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);
MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);
MY_VECTOR’(3 to 4 => ’0’, others => ’1’);

The others expression can be the only expression in the aggregate. 
Example 4-12 shows two equivalent aggregates.

Example 4-12 Equivalent Aggregates Using the others Expression
MY_VECTOR’(others => ’1’);
MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

For information on using an aggregate as the target of an assignment 
statement, see “Assignment Statements and Targets” on page 5-2.

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a 
variable or signal of a given type and returns a value. The syntax of 
an attribute is

object’ attribute

FPGA Compiler II / FPGA Express supports the following predefined 
VHDL attributes for use with arrays, as described in “Array Types” on 
page 3-9.

• left

• right
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• high

• low

• length

• range

• reverse_range

FPGA Compiler II / FPGA Express also supports the following 
predefined VHDL attributes for use with wait and if statements, as 
described in Chapter 7, "Register and Three-State Inference".

• event 

• stable

In addition to supporting the previous predefined VHDL attributes, 
FPGA Compiler II / FPGA Express has a defined set of synthesis-
related attributes. You can include these FPGA Compiler II / FPGA 
Express-specific attributes in your VHDL design description to direct 
FPGA Compiler II / FPGA Express during optimization. 

Expressions

Operands can themselves be expressions. You create expression 
operands by surrounding an expression with parentheses, such as 
(A nand B).
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Function Calls

A function call executes a named function with the given parameter 
values. The value returned to an operator is the function’s return 
value. The syntax of a function call is 

function_name ( [parameter_name =>] expression
                      {, [parameter_name =>] expression }) ;

function_name
Name of a defined function. The optional parameter_names are 
the names of formal parameters as defined by the function. Each 
expression provides a value for its parameter and must evaluate 
to a type appropriate for that parameter.

You can specify parameters in positional or named notation, as 
you can with aggregate values.

In positional notation, the parameter_name => construct is 
omitted. The first expression provides a value for the function’s 
first parameter, the second expression is for the second 
parameter, and so on. 

In named notation, parameter_name => is specified before an 
expression; the named parameter gets the value of that 
expression.

You can mix positional and named expressions in the same 
function call if you put all positional expressions before named 
parameter expressions. 

Example 4-13 shows a function declaration and several equivalent 
function calls.
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Example 4-13 Function Calls
function FUNC(A, B, C: INTEGER) return BIT;
. . .
FUNC(1, 2, 3)
FUNC(B => 2, A => 1, C => 7 mod 4)
FUNC(1, 2, C => -3+6)

Identifiers

Identifiers are probably the most common operand. An identifier is 
the name of a constant, variable, function, signal, entity, port, 
subprogram, or parameter and returns that object’s value to an 
operand.   

Identifiers that contain special characters, begin with numbers, or 
have the same name as a keyword can be specified as an extended 
identifier. An extended identifier starts with a backslash character (\), 
followed by a sequence of characters, followed by another backslash 
character (\). 

Example 4-14 shows some extended identifiers.

Example 4-14 Sample Extended Identifiers
\a+b\  \3state\
\type\  \(a&b)|c\

Example 4-15 shows several kinds of identifiers and their usages. All 
identifiers appear in bold type.
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Example 4-15 Identifiers
entity EXAMPLE is
  port (INT_PORT:   in INTEGER;
        BIT_PORT:  out BIT);
end;
. . .
signal   BIT_SIG: BIT;
signal   INT_SIG: INTEGER;
. . .
INT_SIG  <= INT_PORT;   -- Signal assignment from port
BIT_PORT <= BIT_SIG;    -- Signal assignment to port

function FUNC(INT_PARAM:  INTEGER)
    return INTEGER;
end function;
. . .
constant CONST:   INTEGER := 2;
variable VAR:     INTEGER;
. . .
VAR := FUNC(INT_PARAM => CONST);  -- Function call

Indexed Names

An indexed name identifies one element of an array variable or signal. 
The syntax of an indexed name is

identifier (expression)

identifier
Name of a signal or variable of an array type. The expression must 
return a value within the array’s index range. The value returned 
to an operator is the specified array element.

If the expression is computable (see “Computable Operands” on 
page 4-16), the operand is synthesized directly. If the expression 
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is noncomputable, a circuit is synthesized that extracts the 
specified element from the array. 

Example 4-16 shows two indexed names, one computable and one 
not. Figure 4-7 illustrates the resulting synthesized circuit design.

Example 4-16 Indexed Name Operands
signal A, B: BIT_VECTOR(0 to 3);
signal I:    INTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(I);  -- Noncomputable index expression
Z <= B(3);  -- Computable index expression

Figure 4-7 Design Illustrating Use of Indexed Names From Example 4-16

You can also use indexed names as assignment targets; see 
“Assignment Statements and Targets” on page 5-2.
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Literals

A literal (constant) operand can be a numeric literal, a character literal, 
an enumeration literal, or a string literal. The following sections 
describe these four kinds of literals.   

Numeric Literals

Numeric literals are constant integer values. The two kinds of numeric 
literals are decimal and based. A decimal literal is written in base 10. 
A based literal can be written in a base from 2 to 16 and is composed 
of the base number, an octothorpe (#), the value in the given base, 
and another octothorpe (#). For example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by 
underscores. Example 4-17 shows several different numeric literals, 
all representing the same value, which is 170.

Example 4-17 Numeric Literals
170
1_7_0
10#170#
2#1010_1010#
16#AA# 

Character Literals

Character literals are single characters enclosed in single quotation 
marks—for example, ’A’. Character literals are used both as values 
for operators and in defining enumerated types, such as 
CHARACTER and BIT. See “Enumeration Types” on page 3-3 for the 
valid character types.
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Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds 
of enumeration literals are character literals and identifiers. Character 
literals are described earlier. Enumeration identifiers are those listed 
in an enumeration type definition. For example,     

type SOME_ENUM is (ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are 
overloaded. You must qualify overloaded enumeration literals when 
you use them in an expression, unless their type can be determined 
from context (see “Qualified Expressions” on page 4-29). For more 
information, see “Enumeration Types” on page 3-3. 

Example 4-18 defines two enumerated types and shows some 
enumeration literal values.

Example 4-18 Enumeration Literals
type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);
type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA           -- Enumeration identifier of type ENUM_1
’B’           -- Character literal of type ENUM_1
CCC           -- Enumeration identifier of type ENUM_2
’D’           -- Character literal of type ENUM_2
ENUM_1’(ZZZ)  -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters enclosed in 
double quotation marks (” ”). The two kinds are 

• Character strings, which are sequences of characters in double 
quotation marks, for example, ”ABCD”. 
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• Bit strings, which are similar to character strings but represent 
binary, octal, or hexadecimal values. For example, B”1101”, 
O”15”, and X”D” all represent the decimal value 13.    

A string literal’s type is a one-dimensional array of an enumerated 
type. Each of the characters in the string represents one element of 
the array. 

Example 4-19 shows some character string literals.   

Example 4-19 Character String Literals
”10101”
”ABCDEF”

Note:
Null string literals (””) are not supported.

Bit strings, like based numeric literals, are composed of a base 
specifier character, a double quotation mark, a sequence of numbers 
in the given base, and another double quotation mark. For example, 
B”0101” represents the bit vector 0101. A bit string literal consists of 
the base specifier B, O, or X, followed by a string literal. It is interpreted 
as a bit vector, a one-dimensional array of the predefined type BIT. 
The base specifier determines the interpretation of the bit string as 
follows:    

B (binary) 
The value is in binary digits (bits 0 or 1). Each bit in the string 
represents one BIT in the generated bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string 
represents three BITs in the generated bit vector (array).
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X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each 
hexadecimal digit in the string represents four BITs in the 
generated bit vector (array).

You can separate the digits in a bit string literal value with underscores 
(_) for readability. Example 4-20 shows three bit string literals 
representing the value AAA.

Example 4-20 Bit String Literals
X”AAA”
B”1010_1010_1010”
O”5252”

Qualified Expressions

Qualified expressions state the type of an ambiguous operand. You 
cannot use qualified expressions for type conversion (see “Type 
Conversions” on page 4-34).    

The syntax of a qualified expression is

type_name’( expression)

type_name
The name of a defined type. The expression must evaluate to a 
value of an appropriate type. 

Note:
FPGA Compiler II / FPGA Express requires a single quotation 
mark (tick) between type_name and (expression). If the single 
quotation mark is not there, the construction is intepreted as a 
type conversion (described in the next section). 
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Example 4-21 shows a qualified expression that resolves an 
overloaded function by qualifying the type of a decimal literal 
parameter. 

Example 4-21 A Qualified Decimal Literal
type R_1 is range 0 to 10;  -- Integer 0 to 10
type R_2 is range 0 to 20;  -- Integer 0 to 20

function FUNC(A: R_1) return BIT;
function FUNC(A: R_2) return BIT;

FUNC(5) -- Ambiguous; could be of type R_1, R_2, or INTEGER

FUNC(R_1’(5))   -- Unambiguous

Example 4-22 shows how qualified expressions resolve ambiguities 
in aggregates and enumeration literals.

Example 4-22 Qualified Aggregates and Enumeration Literals
type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;
. . .
(others => ’0’)        -- Ambiguous; could be of type ARR_1 or ARR_2

ARR_1’(others => ’0’)  -- Qualified; unambiguous
------------------------------------------------------
type ENUM_1 is (A, B);
type ENUM_2 is (B, C);
. . .
B    -- Ambiguous; could be of type ENUM_1 or ENUM_2

ENUM_1’(B) -- Qualified; unambiguous

Records and Fields

Records are composed of named fields of any type. For more 
information, see “Record Types” on page 3-13. 
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In an expression, you can refer to a whole record or to a single field. 
The syntax of field names is

record_name.field_name

record_name
Name of the record variable or signal. A record_name is different 
for each variable or signal of that record type.

field_name
Name of a field in that record type. A field_name is separated from 
the record_name by a period (.). A field_name is the field name 
defined for that record type.

Example 4-23 shows a record type definition and record and field 
access.

Example 4-23 Record and Field Access
type BYTE_AND_IX is 
  record
    BYTE: BIT_VECTOR(7 downto 0);
    IX:   INTEGER range 0 to 7;
  end record;
 
signal X: BYTE_AND_IX;
. . .
X           -- record
X.BYTE      -- field: 8-bit array
X.IX        -- field: integer

A field can be of any type, including an array, record, or aggregate 
type. Refer to an element of a field by using that type’s notation; for 
example,

X.BYTE(2)           -- one element from array field BYTE
X.BYTE(3 downto 0)  -- 4-element slice of array field BYTE
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Slice Names

Slice names identify a sequence of elements of an array variable or 
signal. The syntax is 

identifier (expression direction expression)

identifier
Name of a signal or variable of an array type. Each expression 
must return a value within the array’s index range and must be 
computable (see “Computable Operands” on page 4-16).

The direction must be either to or downto. The direction of a slice 
must be the same as the direction of an identifier’s array type. If the 
left and right expressions are equal, they define a single element.

The value returned to an operator is a subarray containing the 
specified array elements.

Example 4-24 uses slices to assign an 8-bit input to an 8-bit output, 
exchanging the lower and upper 4 bits. Figure 4-8 illustrates the 
resulting synthesized circuit design. Slices are also used as 
assignment targets. This usage is described in “Assignment 
Statements and Targets” on page 5-2.

Example 4-24 Slice Name Operands
signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);
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Figure 4-8 Design Illustrating Use of Slices From Example 4-24

Limitations on Null Slices

Synthesis does not support null slices, which are indicated by

• A null range, such as (4 to 3)

• A range with the wrong direction, such as UP_VAR(3 downto 2) 
when the UP_VAR declared range is ascending (Example 4-25)   

Example 4-25 shows three null slices and one noncomputable slice.
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Example 4-25 Null and Noncomputable Slices
subtype DOWN is BIT_VECTOR(4 downto 0); 
subtype UP   is BIT_VECTOR(0 to 7);
. . .
variable UP_VAR:   UP;
variable DOWN_VAR: DOWN;
. . .
UP_VAR(4 to 3)       -- Null slice (null range)
UP_VAR(4 downto 0)   -- Null slice (wrong direction)
DOWN_VAR(0 to 1)     -- Null slice (wrong direction)
variable I: INTEGER range 0 to 7;
. . .
UP_VAR(I to I+1)     -- Noncomputable slice

Limitations on Noncomputable Slices

Synthesis does not allow noncomputable slices—slices whose range 
contains a noncomputable expression.

Type Conversions

Type conversions change an expression’s type.

The syntax of a type conversion is

type_name(expression)

type_name
The name of a defined type. The expression must evaluate to a 
value of a type that is convertible into type type_name.

- Type conversions can convert between integer types or 
between similar array types. 

- Two array types are similar if they have the same length and 
have convertible or identical element types. 
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- Enumerated types are not convertible. 

Example 4-26 shows some type definitions and associated signal 
declarations, followed by valid and invalid type conversions.

Example 4-26 Valid and Invalid Type Conversions
type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;
type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(11 to 20) of BIT;
type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT:      INT_1;
signal S_ARRAY:    ARRAY_1;
signal S_BIT_VEC:  MY_BIT_VECTOR;
signal S_BIT:      BIT;
  -- Legal type conversions

INT_2(S_INT)   
  -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)
  -- Similar array type conversion 
  -- Illegal type conversions

BOOLEAN(S_BIT); 
  -- Can’t convert between enumerated types

INT_1(S_BIT);
  -- Can’t convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC); 
  -- Array lengths not equal

ARRAY_1(S_BIT_VEC); 
  -- Element types are not convertible  
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5
Sequential Statements 5

FPGA Compiler II / FPGA Express interprets sequential statements, 
such as A := 3, in the order in which they appear in the code. VHDL 
sequential statements can appear only in processes and 
subprograms. This chapter discusses the different types of sequential 
statements, in the following sections:

• Assignment Statements and Targets

• Variable Assignment Statements

• Signal Assignment Statements

• if Statements

• case Statements

• loop Statements

• next Statements
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• exit Statements

• Subprograms

• return Statement

• wait Statements

• null Statements

Assignment Statements and Targets

Use an assignment statement to assign a value to a variable or signal. 
The syntax is     

target := expression; -- Variable assignment 

target <= expression; -- Signal assignment 

target
The target can be a variable or a signal (or part of a variable or a 
signal, such as a subarray) that receives the value of the 
expression. The expression must evaluate to the same type as 
the target. See Chapter 4, "Expressions” for more information.

There are five kinds of targets:

- Simple names, such as my_var

- Indexed names, such as my_array_var(3)

- Slices, such as my_array_var(3 to 6)

- Field names, such as my_record.a_field

- Aggregates, such as (my_var1, my_var2)
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The difference in syntax between variable assignments and signal 
assignments is that 

• Variables use the := operator

Variables are local to a process or subprogram, and their 
assignments take effect immediately. 

• Signals use the <= operator

Signals need to be global in a process or subprogram, and their 
assignments take effect at the end of a process. 

Signals are the only means of communication between 
processes. For more information on semantic differences, see 
“Signal Assignment Statements” on page 5-12.

The following descriptions refer to variable as well as signal targets.

Simple Name Targets

The syntax for an assignment to a simple name (identifier) target is 

identifier := expression; -- Variable assignment 

identifier <= expression; -- Signal assignment 

identifier
The name of a signal or variable. The assigned expression must 
have the same type as the signal or variable. For array types, all 
elements of the array are assigned values. 

Example 5-1 shows some assignments to simple name targets. 
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Example 5-1 Simple Name Targets
variable A, B: BIT;
signal      C: BIT_VECTOR(1 to 4);

-- Target       Expression
  A  :=   ’1’; -- Variable A is assigned ’1’
  B  :=   ’0’; -- Variable B is assigned ’0’
  C  <= ”1100”; -- Signal array C is assigned bit value "1100"

Indexed Name Targets

The syntax for an assignment to an indexed name (identifier) target is   

identifier(index_expression) := expression; -- Variable assignment
identifier(index_expression) <= expression; -- Signal assignment

identifier
The name of an array type signal or variable. The 
index_expression must evaluate to an index value for the identifier 
array’s index type and bounds. It does not have to be computable 
(see Chapter 4, "Expressions”), but more hardware is synthesized 
if it is not. 

The assigned expression must have the array’s element type.

In Example 5-2, the array variable A elements are assigned values 
as indexed names.

Example 5-3 shows two indexed name targets. One is computable, 
the other is not. Figure 5-1 illustrates the corresponding design.
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Example 5-2 Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target    Expression;
   A(1)   := ’1’;    -- Assigns ’1’ to the first element of array A.
   A(2)   := ’1’;    -- Assigns ’1’ to the second element of array A
   A(3)   := ’0’;    -- Assigns ’0’ to the third element of array A
   A(4)   := ’0’;    -- Assigns ’0’ to the fourth element of array A

Example 5-3 Computable and Noncomputable Indexed Name Targets
entity example5_3 is

port (
signal A, B: out BIT_VECTOR(0 to 3);
signal I: in INTEGER range 0 to 3;
signal Y, Z: in BIT
);

end example5_3;

architecture behave of example5_3 is

begin
process (I,Y,Z)
begin

A    <= ”0000”;
B    <= ”0000”;
A(I) <= Y;  -- Noncomputable index expression
B(3) <= Z;  -- Computable index expression

end process;
end behave;
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Figure 5-1 Design Illustrating Indexed Name Targets From Example 5-3
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Slice Targets

The syntax for an assignment to a slice target is   

identifier(index_expr_1 direction index_expr_2) 

identifier
The name of an array type signal or variable. Each index_expr 
expression must evaluate to an index value for the identifier array’s 
index type and bounds. Both index_expr expressions must be 
computable (see Chapter 4, "Expressions") and must lie within 
the bounds of the array. The direction must match the identifier 
array type’s direction, either to or downto.

The assigned expression must have the array’s element type.

In Example 5-4, array variables A and B are assigned the same value.

Example 5-4 Slice Targets
variable A, B: BIT_VECTOR(1 to 4);
-- Target       Expression
   A(1 to 2) := ”11”;   
      -- Assigns ”11” to the first two elements of array A
   A(3 to 4) := ”00”;   
      -- Assigns ”00” to the last two elements of array A
   B(1 to 4) := ”1100”;   
      -- Assigns ”1100” to array B
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Field Targets

The syntax for an assignment to a field target is   

identifier.field_name 

identifier
The name of a record type signal or variable. field_name is the 
name of a field in that record type, preceded by a period (.). The 
assigned expression must have the identified field’s type. A field 
can be of any type, including an array, record, or aggregate type. 

Example 5-5 assigns values to the fields of record variables A and B.

Example 5-5 Field Targets
type REC is 
    record
        NUM_FIELD:   INTEGER range -16 to 15;
        ARRAY_FIELD: BIT_VECTOR(3 to 0);
    end record;

variable A, B: REC;

-- Target           Expression
   A.NUM_FIELD      := -12;    
      -- Assigns -12 to record A’s field NUM_FIELD 
   A.ARRAY_FIELD    := ”0011”; 
      -- Assigns ”0011” to record A’s field ARRAY_FIELD
   A.ARRAY_FIELD(3) := ’1’; 
      -- Assigns ’1’ to the most significant bit of
      -- record A’s field ARRAY_FIELD
   B                := A;       
      -- Assigns values of record A to corresponding fields of B

For more information, see “Record Types” on page 3-13.
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Aggregate Targets

The syntax for an assignment to an aggregate target is   

([choice =>] identifier 
 {,[choice =>] identifier}) := array_expression;
  -- Variable assignment

([choice =>] identifier 
 {,[choice =>] identifier}) <= array_expression;
  -- Signal assignment

aggregate assignment
Assigns the array_expression element values to one or more 
variable or signal identifiers.

Each (optional) choice is an index expression selecting an element 
or a slice of the assigned array_expression. Each identifier must have 
the array_expression element type. An identifier can be an array type.

You can assign array element values to the identifiers by position or 
by name. In positional notation, the choice => construct is not used. 
Identifiers are assigned array element values in order, from the left 
array bound to the right array bound. 

In named notation, the choice => construct identifies specific 
elements of the assigned array. A choice index expression indicates 
a single element (such as 3). The identifier’s type must match the 
assigned expression’s element type.

Positional and named notation can be mixed, but positional 
associations must come before named associations, as in Example 
5-6.
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Example 5-6 Aggregate Targets
signal A, B, C, D: BIT;
signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F: BIT;
variable G: BIT_VECTOR(1 to 2);
variable H: BIT_VECTOR(1 to 4);

-- Positional notation 
S <= (’0’, ’1’, ’0’, ’0’);
(A, B, C, D) <= S; -- Assigns ’0’ to A

-- Assigns ’1’ to B
-- Assigns ’0’ to C
-- Assigns ’0’ to D

-- Named notation
(3 => E,    4 => F, 
 2 => G(1), 1 => G(2)) := H; -- Assigns H(1) to G(2)

-- Assigns H(2) to G(1)
-- Assigns H(3) to E
-- Assigns H(4) to F
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Variable Assignment Statements

A variable assignment changes the value of a variable. The syntax is    

target := expression;

target
Names the variables that receive the value of expression. 

See “Assignment Statements and Targets” on page 5-2 for a 
description of variable assignment targets.

expression
Determines the assigned value; its type must be compatible with 
the target. 

For more information about expressions, see Chapter 4, 
"Expressions”.

When a variable is assigned a value, the assignment takes place 
immediately. A variable keeps its assigned value until another 
assignment takes place.

Example 5-7 on page 5-14 shows the different effects of variable and 
signal assignments. 
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Signal Assignment Statements

A signal assignment changes the value being driven on a signal by 
the current process. The syntax is   

target <= expression;

target
Names the signals that receive the value of expression. 

See “Assignment Statements and Targets” on page 5-2 for a 
description of variable assignment targets.

expression
Determines the assigned value; its type must be compatible with 
target. 

For more information about expressions, see Chapter 4, 
"Expressions”.

Signals and variables act in different ways when they receive 
assigned values. The differences lie in the way the two kinds of 
assignments take effect and how that influences the value FPGA 
Compiler II / FPGA Express reads from either variables or signals.

variable assignment
When a variable receives an assigned value, the assignment 
changes the value of the variable from that point on. That value 
is kept until the variable is assigned a different value.
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signal assignment
When a signal receives an assigned value, the assignment does 
not necessarily take effect, because the value of a signal is 
determined by the processes (or other concurrent statements) 
that drive the signal.

- If several values are assigned to a given signal in one process, 
only the last assignment is effective. Even if a signal in a process 
is assigned, then read, and then assigned again, the value read 
(either inside or outside the process) is the last assignment 
value. 

- If several processes (or other concurrent statements) assign 
values to one signal, the drivers are wired together. The 
resulting circuit depends on the expressions and the target 
technology. It might be invalid, wired AND, wired OR, or a three-
state bus. For more information on this topic, see Chapter 6, 
"Concurrent Statements”.

Example 5-7 shows the different effects of variable and signal 
assignments. 
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Example 5-7 Variable and Signal Assignments
signal S1, S2: BIT; 
signal S_OUT : BIT_VECTOR(1 to 8); 
. . . 
process( S1, S2 ) 
  variable V1, V2: BIT;
begin
  V1 := ’1’;   -- This sets the value of V1
  V2 := ’1’;   -- This sets the value of V2
  S1 <= ’1’;   -- This assignment is the driver for S1
  S2 <= ’1’;   -- This has no effect because of the
               -- assignment later in this process

  S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
  S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
  S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below
  

  V1 := ’0’;   -- This sets the new value of V1
  V2 := ’0’;   -- This sets the new value of V2
  S2 <= ’0’;   -- This assignment overrides the previous
               -- one since it is the last assignment to
               -- this signal in this process

  S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
  S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
  S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;
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if Statements

The if statement executes a sequence of statements. The sequence 
depends on the value of one or more conditions. The syntax is   

if condition then 
[    { sequential_statement }
  elsif condition then ]
     { sequential_statement } 
[ else
     { sequential_statement } ]
end if;

Each condition must be a Boolean expression. Each branch of an if 
statement can have one or more sequential_statements.

Evaluating Conditions

An if statement evaluates each condition in order. Only the first true 
condition causes the execution of the if statement’s branch 
statements. The remainder of the if statement is skipped. 

If none of the conditions is true and the else clause is present, those 
statements are executed. If none of the conditions is true and no else 
clause is present, none of the statements is executed. 

Example 5-8 shows an if statement. Figure 5-2 illustrates the 
corresponding circuit. 
5-15

Sequential Statements



Example 5-8 if Statement
signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then
  Z <= A;
elsif (P2 = ’0’) then
  Z <= B;
else
  Z <= C;
end if; 

Figure 5-2 Schematic Design From Example 5-8

Using the if Statement to Infer Registers and Latches

Some forms of the if statement can be used like the wait statement, 
to test for signal edges and therefore imply synchronous logic. This 
usage causes FPGA Compiler II / FPGA Express to infer registers or 
latches, as described in Chapter 7, "Register and Three-State 
Inference”.
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case Statements

The case statement executes one of several sequences of 
statements, depending on the value of a single expression. The 
syntax is    

case expression is
     when choices =>
          { sequential_statement }
   { when choices =>
          { sequential_statement } }
end case;

expression
Must evaluate to an INTEGER, an enumerated type, or an array 
of enumerated types such as BIT_VECTOR. Each of the choices 
must be of the form

choice { | choice }

choice
Each choice can be either a static expression (such as 3) or a 
static range (such as 1 to 3). The type of choice_expression 
determines the type of each choice. Each value in the range of 
choice_expression’s type must be covered by one choice. 

The final choice can be others, as in Example 5-10 on 
page 5-20, which matches all remaining (unchosen) values in 
the range of expression’s type. The others choice, if present, 
matches expression only if no other choices match.
 

The case statement evaluates expression and compares that 
value with each choice value. The when clause with the matching 
choice value has its statements executed.
5-17

Sequential Statements



The following restrictions are placed on choices:

• No two choices can overlap.

• If an others choice is not present, all possible values of expression 
must be covered by the set of choices.

Using Different Expression Types

Example 5-9 shows a case statement that selects one of four signal 
assignment statements by using an enumerated expression type. 
Figure 5-3 illustrates the corresponding design with binary encoding 
specified.

Example 5-9 case Statement With Enumerated Type
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package case_enum is 
type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);
end case_enum;

library work;
use work.case_enum.all;

entity example5_9 is
   port (
      signal A, B, C, D:  in BIT;
      signal VALUE: ENUM;
      signal Z: out BIT
   );
end example5_9;

architecture behave of example5_9 is

begin
process (VALUE)
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begin
   case VALUE is
      when PICK_A =>
         Z <= A;
      when PICK_B =>
         Z <= B;
      when PICK_C =>
         Z <= C;
      when PICK_D =>
         Z <= D;
   end case;
end process;
end behave;

Figure 5-3 Schematic Design From Example 5-9

Example 5-10 shows a case statement again used to select one of 
four signal assignment statements, this time by using an integer 
expression type with multiple choices. Figure 5-4 illustrates the 
corresponding design.
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Example 5-10 case Statement With Integers
entity example5_10 is

port (
signal VALUE: in INTEGER range 0 to 15;
signal Z1, Z2, Z3, Z4:  out BIT
);

end example5_10;
architecture behave of example5_10 is
begin

process (VALUE)
begin
Z1 <= ’0’;
Z2 <= ’0’;
Z3 <= ’0’;
Z4 <= ’0’;
case VALUE is

when 0 => -- Matches 0
Z1 <= ’1’;

when 1 | 3 => -- Matches 1 or 3
Z2 <= ’1’;

when 4 to 7 | 2 =>-- Matches 2, 4, 5, 6, or 7
Z3 <= ’1’;

when others => -- Matches remaining values, 8 through 15
Z4 <= ’1’;

end case;
end process;
end behave;

Figure 5-4 Schematic Design From Example 5-10
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Invalid case Statements

Example 5-11 shows invalid case statements with explanatory 
comments. 

Example 5-11 Invalid case Statements
signal VALUE:  INTEGER range 0 to 15;
signal OUT_1:  BIT;

case VALUE is -- Must have at least one when clause
end case;

case VALUE is -- Values 2 to 15 are not covered by choices
  when 0 =>
    OUT_1 <= ’1’;
  when 1 =>
    OUT_1 <= ’0’;
end case;

case VALUE is -- Choices 5 to 10 overlap
  when 0 to 10 =>
    OUT_1 <= ’1’;
  when 5 to 15 =>    
    OUT_1 <= ’0’;
end case;
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loop Statements

A loop statement repeatedly executes a sequence of statements. The 
syntax is   

[label :] [iteration_scheme] loop
    { sequential_statement }
    { next [ label ] [ when condition ] ; }
    { exit [ label ] [ when condition ] ; }
end loop [label];

label
The label, which is optional, names the loop and is useful for 
building nested loops. 

iteration_scheme
There are three types of iteration_scheme: loop, while...loop, and 
for...loop. They are described in the next three sections.

next and exit statements
Sequential statements used only within loops.

next statement
Skips the remainder of the current loop and continues with the 
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the 
next statement after the exited loop. 

See “next Statements” on page 5-30 and “exit Statements” on 
page 5-33.
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Basic loop Statements

The basic loop statement has no iteration scheme. FPGA Compiler 
II / FPGA Express executes enclosed statements repeatedly until it 
encounters an exit or next statement. The syntax statement is     

[label :] loop
    { sequential_statement }
end loop [label];

loop
The label, which is optional, names this loop.

sequential_statement
Any statement described in this chapter. 

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the 
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the 
next statement after the exited loop. 

See “next Statements” on page 5-30 and “exit Statements” on 
page 5-33.

Note:
Noncomputable loops (loop and while...loop statements) must 
have at least one wait statement in each enclosed logic branch. 
Otherwise, a combinational feedback loop is created. See “wait 
Statements” on page 5-50 for more information. Conversely, 
computable loops (for...loop statements) must not contain wait 
statements. Otherwise, a race condition may result.
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while...loop Statements

The while...loop statement has a Boolean iteration scheme. If the 
iteration condition evaluates true, FPGA Compiler II / FPGA Express 
executes the enclosed statements once. The iteration condition is 
then reevaluated. As long as the iteration condition remains true, the 
loop is repeatedly executed. When the iteration condition evaluates 
false, the loop is skipped and execution continues with the next loop 
iteration. The syntax for a while...loop statement is   

[label :] while condition loop
    { sequential_statement }
end loop [label];

label
The label, which is optional, names this loop. 

condition
Any Boolean expression, such as ((A = ’1’) or (X < Y)).

sequential_statement
Any statement described in this chapter. 

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the 
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the 
next statement after the exited loop. 

See “next Statements” on page 5-30 and “exit Statements” on 
page 5-33.
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Note:
Noncomputable loops (loop and while...loop statements) must 
have at least one wait statement in each enclosed logic branch. 
Otherwise, a combinational feedback loop is created. See “wait 
Statements” on page 5-50 for more information. 

for...loop Statements

The for...loop statement has an integer iteration scheme. The integer 
range determines the number of repetitions. The syntax for a 
for...loop statement is

[label :] for identifier in range loop
    { sequential_statement }
end loop [label];

label
The label, which is optional, names this loop.

identifier
Specific to the for...loop statement: 

- Identifier is not declared elsewhere. It is automatically declared 
by the loop itself and is local to the loop. A loop identifier 
overrides any other identifier with the same name, but only 
within the loop. 

- The identifier value can be read only inside its loop (identifier 
does not exist outside the loop). You cannot assign a value to 
a loop identifier.
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range
Must be a computable integer range in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer.

For more information, see Chapter 4, "Expressions”

sequential_statement
Any statement described in this chapter. 

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the 
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the 
next statement after the exited loop. 

See “next Statements” on page 5-30 and “exit Statements” on 
page 5-33.

Note:
Computable loops (for...loop statements) must not contain wait 
statements. Otherwise, a race condition may result. 
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Steps in the Execution of a for...loop Statement

A for...loop statement executes as follows:

1. A new integer variable, which is local to the loop, is declared with 
the identifier.

2. The identifier receives the first value of range, and the sequence 
of statements executes once.

3. The identifier receives the next value of range, and the sequence 
of statements executes once more.

4. Step 3 repeats until identifier receives the last value in range. The 
sequence of statements then executes for the last time. Execution 
continues with the statement following the end loop. The loop is 
then inaccessible.

Example 5-12 shows two equivalent code fragments. Figure 5-5 
illustrates the corresponding design.

Example 5-12 for...loop Statement With Equivalent Code Fragments
variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement
for I in 1 to 3 loop
  A(I) <= B(I);
end loop;

-- Second fragment is three statements
A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3); 
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Figure 5-5 Schematic Design From Example 5-12

for...loop Statements and Arrays

You can use a loop statement to operate on all elements of an array, 
without explicitly depending on the size of the array. Example 5-13 
shows how to use the VHDL array attribute ’range to invert each 
element of bit vector A. Figure 5-6 illustrates the corresponding 
design. For more information about unconstrained arrays and array 
attributes, see “Array Types” on page 3-9.

Example 5-13 for...loop Statement Operating on an Entire Array
entity example5_13 is

port(
A: out BIT_VECTOR(1 to 10);
B: in BIT_VECTOR(1 to 10)
);

end example5_13;

architecture behave of example5_13 is
begin

process (B)
begin

for I in A’range loop
A(I) <= not B(I);

end loop;

end process;
end behave;

[ 1 ]
[ 2 ]

B

B
[ 3 ]

A [ 1 ]
A [ 2 ]
A [ 3 ]B
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Figure 5-6 Schematic Design of Array From Example 5-13
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next Statements

The next statement skips execution to the next iteration of an 
enclosing loop statement, called label in the syntax, as follows:

next [ label ] [ when condition ] ;

label
A next statement with no label terminates the current iteration of 
the innermost enclosing loop. When you specify a loop label, the 
current iteration of that named loop is terminated.

when
An optional clause that executes its next statement when its 
condition (a Boolean expression) evaluates true.

Example 5-14 uses the next statement to copy bits conditionally from 
bit vector B to bit vector A only when the next condition evaluates 
true. Figure 5-7 illustrates the corresponding design.

Example 5-14 next Statement
entity example5_14 is

port(
signal B, COPY_ENABLE: in BIT_VECTOR (1 to 8);
signal A: out BIT_VECTOR (1 to 8)
);

end example5_14;

architecture behave of example5_14 is

begin
process (B, COPY_ENABLE)
begin

A <= ”00000000”;
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for I in 1 to 8 loop
next when COPY_ENABLE(I) = ’0’;
A(I) <= B(I);

end loop; 

end process;
end behave;

Figure 5-7 Schematic Design From Example 5-14
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Example 5-15 shows the use of nested next statements in named 
loops. This example processes

• The first element of vector X against the first element of vector Y

• The second element of X against each of the first two elements 
of Y

• The third element of X against each of the first three elements of Y

The processing continues in this fashion until it is completed.

Example 5-15 Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop
. . .
  B_LOOP: for J in Y’range loop
    . . .
    next A_LOOP when I < J;
    . . .
  end loop B_LOOP;
. . .
end loop A_LOOP;
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exit Statements

The exit statement completes execution of an enclosing loop 
statement, called label in the syntax. The completion is conditional if 
the statement includes a condition, such as the when condition in the 
following syntax:

exit [ label ] [ when condition ] ;

label
An exit statement with no label terminates the current iteration of 
the innermost enclosing loop. When you specify a loop label, the 
current iteration of that named loop is terminated, as shown 
previously in Example 5-15.

when
An optional clause that executes its next statement when its 
condition (a Boolean expression) evaluates true.

Note:
The exit statement and the next statement have identical syntax, 
and they both skip the remainder of the enclosing (or named) loop. 
The difference between them is that exit terminates its loop and 
next continues with the next loop iteration (if any).

Example 5-16 compares two bit vectors. An exit statement exits the 
comparison loop when a difference is found. Figure 5-8 illustrates the 
corresponding design.
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Example 5-16 Comparator That Uses the exit Statement
entity example5_16 is

port(
signal A, B: in BIT_VECTOR(1 downto 0);
signal A_LESS_THAN_B: out BOOLEAN;
);

end example5_16;

architecture behave of example5_16 is

begin
process(A,B)
begin

A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop
if (A(I) = ’1’ and B(I) = ’0’) then

A_LESS_THAN_B <= FALSE;
exit;

elsif (A(I) = ’0’ and B(I) = ’1’) then
A_LESS_THAN_B <= TRUE;
exit;

else
null;      -- Continue comparing

end if;
end loop;
end process;
end behave;

Figure 5-8 Schematic Design From Example 5-16
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Subprograms

Subprograms are independent, named algorithms. A subprogram is 
either a procedure (zero or more in, inout, or out parameters) or a 
function (zero or more in parameters and one return value). 
Subprograms are called by name from anywhere within a VHDL 
architecture or a package body. Subprograms can be called 
sequentially (as described later in this chapter in “Combinational 
Versus Sequential Processes” on page 5-55) or concurrently (as 
described in Chapter 6, "Concurrent Statements”). 

Subprogram Always a Combinational Circuit

In hardware terms, a subprogram call is similar to module 
instantiation, except that a subprogram call becomes part of the 
current circuit. A module instantiation adds a level of hierarchy to the 
design. A synthesized subprogram is always a combinational circuit. 
(Use a process to create a sequential circuit.)

Subprogram Declaration and Body

Subprograms, like packages, have declarations and bodies. A 
subprogram declaration specifies the subprogram’s name, 
parameters, and return value (for functions). The subprogram body 
then implements the operation you want. 

Often a package contains only type and subprogram declarations for 
use by other packages. The bodies of the declared subprograms are 
then implemented in the bodies of the declaring packages. 
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The advantage of the separation between declarations and bodies is 
that subprogram interfaces can be declared in public packages during 
system development. One group of developers can use the public 
subprograms as another group develops the corresponding bodies. 
You can modify package bodies, including subprogram bodies, 
without affecting existing users of that package’s declarations.

You can also define subprograms locally inside an entity, block, 
or process. 

FPGA Compiler II / FPGA Express implements procedure and 
function calls with combinational logic, unless you use the 
map_to_entity compiler directive (see “Procedures and Functions as 
Design Components” on page 5-45.) FPGA Compiler II / FPGA 
Express does not allow inference of sequential devices, such as 
latches or flip-flops, in subprograms.

Example 5-17 shows a package containing some procedure and 
function declarations and bodies. The example itself is not 
synthesizable; it just creates a template. Designs that instantiate 
procedure P, however, compile normally. 

For more information about subprograms, see “Subprograms” on 
page 2-22.
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Example 5-17 Subprogram Declarations and Bodies
package EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER);
    -- Declaration of procedure P

  function INVERT (A: BIT) return BIT;
    -- Declaration of function INVERT
end EXAMPLE;

package body EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER) is
    -- Body of procedure P
  begin
    B := A + B;
  end; 

  function INVERT (A: BIT) return BIT is
    -- Body of function INVERT
  begin
    return (not A);
  end;
end EXAMPLE;

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram 
declaration defines each parameter’s name, mode, and type. These 
are a subprogram’s formal parameters. When the subprogram is 
called, each formal parameter receives a value, termed the “actual” 
parameter. Each actual parameter’s value (of an appropriate type) 
might come from an expression, a variable, or a signal.
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The mode of a parameter specifies whether the actual parameter can 
be 

• read from (mode in)

• written to (mode out)

• both read from and written to (mode inout)

Actual parameters that use mode out and mode inout must be 
variables or signals and include indexed names (A(1)) and slices 
(A(1 to 3)). They cannot be constants or expressions.

The two kinds of subprograms are procedures and functions: 

Procedures
A procedure can have multiple parameters that use modes in, 
inout, and out, but a procedure does not itself return a value.

Procedures are used when you want to update some parameters 
(modes out and inout) or when you do not need a return value. 
An example could be a procedure with one inout bit vector 
parameter that inverted each bit in place.

Functions
A function can have multiple parameters but only parameters that 
use mode in. A function returns its own function value. Part of a 
function definition specifies its return value type (also called the 
function type).

Use functions when you do not need to update the parameters 
and you want a single return value. For example, the arithmetic 
function ABS returns the absolute value of its parameter.
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Procedure Calls

A procedure call executes the named procedure with the given 
parameter values. The syntax is 

procedure_name [ ( [ name => ] expression
                 { , [ name => ] expression } ) ] ;

expression
Each expression is called an actual parameter; expression is often 
just an identifier. If a name is present (positional notation), it is a 
formal parameter name associated with the actual parameter’s 
expression. 

Formal parameters are matched to actual parameters by a positional 
or named notation. A notation can mix positional and named notation, 
but positional parameters must precede named parameters.

A procedure call occurs in three steps:

1. FPGA Compiler II / FPGA Express assigns the values of the in 
and inout actual parameters to their associated formal 
parameters. 

2. The procedure executes. 

3. FPGA Compiler II / FPGA Express assigns the values of the inout 
and out formal parameters to the actual parameters.

In the synthesized circuit, the procedure’s actual inputs and outputs 
are wired to the procedure’s internal logic.

Example 5-18 shows a local procedure named SWAP that compares 
two elements of an array and exchanges them if they are out of order. 
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SWAP is called repeatedly to sort an array of three numbers. Figure 
5-8 illustrates the corresponding design.

Example 5-18 Procedure Call to Sort an Array
library IEEE;
use IEEE.std_logic_1164.all;

package DATA_TYPES is 
   type DATA_ELEMENT is range 0 to 1;
   type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;
end DATA_TYPES;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.DATA_TYPES.ALL;

entity SORT is
   port(IN_ARRAY: in DATA_ARRAY;
      OUT_ARRAY: out DATA_ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begin
   process(IN_ARRAY)
      procedure SWAP(DATA: inout DATA_ARRAY;
               LOW, HIGH: in INTEGER) is
         variable TEMP: DATA_ELEMENT;
         begin
            if(DATA(LOW) > DATA(HIGH)) then  -- Check data
               TEMP := DATA(LOW);       
               DATA(LOW) := DATA(HIGH); -- Swap data
               DATA(HIGH) := TEMP;
            end if;
      end SWAP;

      variable MY_ARRAY: DATA_ARRAY;

      begin
         MY_ARRAY := IN_ARRAY;   -- Read input to variable
         -- Pair-wise sort
         SWAP(MY_ARRAY, 1, 2);   -- Swap first and second
         SWAP(MY_ARRAY, 2, 3);   -- Swap second and third
         SWAP(MY_ARRAY, 1, 2);   -- Swap 1st and 2nd again
         OUT_ARRAY <= MY_ARRAY;  -- Write result to output
   end process;
end EXAMPLE;
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Figure 5-9 Schematic Design From Example 5-18

Function Calls

A function call executes a named function with the given parameter 
values. The value returned to an operator is the function’s return 
value. The syntax is 

function_name ( [parameter_name =>] expression
                      {, [parameter_name =>] expression }) ;

function_name
Name of a defined function. The parameter_name, which is 
optional, is the name of a formal parameter as defined by the 
function. Each expression provides a value for its parameter and 
must evaluate to a type appropriate for that parameter.

You can specify parameter values in positional or named notation, 
as you can aggregate values.

In positional notation, the parameter_name => construct is 
omitted. The first expression provides a value for the function’s 
first parameter, the second expression is for the second 
parameter, and so on. 
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In named notation, parameter_name => is specified before an 
expression; the named parameter gets the value of that 
expression.

You can mix positional and named expressions in the same 
function call if you put all positional expressions before named 
parameter expressions. 

Example 5-19 shows a simple function definition and two calls to 
that function. 

Example 5-19 Function Definition With Two Calls
function INVERT (A : BIT) return BIT is
  begin
    return (not A);
  end;
...
process
  variable V1, V2, V3: BIT;
begin
  V1 := ’1’;
  V2 := INVERT(V1) xor 1;   
  V3 := INVERT(’0’); 
end process;
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return Statement

The return statement terminates a subprogram. A function definition 
requires a return statement. In a procedure definition, a return 
statement is optional. The syntax is

return expression ;      -- Functions
return ;                 -- Procedures

expression
Provides the return value of a function. Every function must have 
at least one return statement and can have more than one. The 
expression type must match the declared function type. Only one 
return statement is reached by a given function call.

procedure
Can have one or more return statements but no expression. A 
return statement, if present, is the last statement executed in a 
procedure. 

In Example 5-20, the function OPERATE returns either the and logical 
operator or the or logical operator of its parameters A and B. The 
return depends on the value of the parameter OPERATION. Figure 
5-10 illustrates the corresponding design.
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Example 5-20 Use of Multiple return Statements
package test is

function OPERATE(A, B, OPERATION: BIT) return BIT;
end test;

package body test is

function OPERATE(A, B, OPERATION: BIT) return BIT is
begin

if (OPERATION = ’1’) then
return (A and B);

else
return (A or B);

end if;
end OPERATE;
end test;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.test.all;

entity example5_20 is
port(

signal A, B, OPERATION: in BIT;
signal RETURNED_VALUE: out BIT
);

end example5_20;

architecture behave of example5_20 is

begin

RETURNED_VALUE <= OPERATE(A, B, OPERATION);
end behave;
5-44

Sequential Statements



Figure 5-10 Schematic Design From Example 5-20

Procedures and Functions as Design Components

In VHDL, entities cannot be invoked from within behavioral code. 
Procedures and functions cannot exist as entities (components) but 
must be represented by gates.

You can overcome this limitation with the compiler directive 
map_to_entity, which causes FPGA Compiler II / FPGA Express to 
implement a function or procedure as a component instantiation. 
Procedures and functions that use map_to_entity are represented as 
components in designs where they are called.     

When you add a map_to_entity directive to a subprogram definition, 
FPGA Compiler II / FPGA Express assumes the existence of an entity 
with the identified name and the same interface.

FPGA Compiler II / FPGA Express does not check this assumption 
until it links the parent design. The matching entity must have the 
same input and output port names. If the subprogram is a function, 
you must also provide a return_port_name directive where the 
matching entity has an output port of the same name.
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These two directives are called component implication directives:

-- pragma map_to_entity    entity_name
-- pragma return_port_name port_name 

Insert these directives after the function or procedure definition, as in 
the following example:

   function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
      return TWO_BIT is

-- pragma map_to_entity MUX_ENTITY
-- pragma return_port_name Z
...

When FPGA Compiler II / FPGA Express encounters the 
map_to_entity directive, it parses but ignores the contents of the 
subprogram definition. 

Use --pragma synthesis_off and --pragma synthesis_on to hide 
simulation-specific constructs in a map_to_entity subprogram (see 
“Translation Stop and Start Pragma Directives” on page 9-3 for more 
information about synthesis_off and synthesis_on). 

The matching entity (entity_name) does not need to be written in 
VHDL. It can be in any format that FPGA Compiler II / FPGA Express 
supports. 

Note:
Be aware that the behavioral description of the subprogram is not 
checked against the functionality of the entity overloading it. Pre-
synthesis and post-synthesis simulation results might not match 
if differences in functionality exist between the VHDL subprogram 
and the overloaded entity.
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Example With Component Implication Directives

Example 5-21 shows a function that uses component implication 
directives. Figure 5-11 illustrates the corresponding design.

Example 5-21 Using Component Implication Directives on a Function
package MY_PACK is
   subtype TWO_BIT is BIT_VECTOR(1 to 2);
   function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
      TWO_BIT;
end;

package body MY_PACK is

   function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
      TWO_BIT is

   -- pragma map_to_entity MUX_ENTITY
   -- pragma return_port_name Z

   -- contents of this function are ignored but should match the
   -- functionality of the module MUX_ENTITY, so pre- and post
   -- simulation will match
   begin
      if(C = ’1’) then
         return(A);
      else 
         return(B);
      end if;
   end;
end;

use WORK.MY_PACK.ALL;
entity TEST is
   port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
   process
   begin
      TEST_OUT <= MUX_FUNC(not A, A, C);
                                -- Component implication call
   end process;
end ARCH;

use WORK.MY_PACK.ALL;
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-- the following entity ’overloads’ the function MUX_FUNC above

entity MUX_ENTITY is
   port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
   process
   begin
      case C is
         when ’1’ => Z <= A;
         when ’0’ => Z <= B;
      end case;
   end process;
end ARCH;

Figure 5-11 Schematic Design With Component Implication Directives
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Example Without Component Implication Directives

Example 5-22 shows the same design as Example 5-21, but without 
the creation of an entity for the function. The component implication 
directives have been removed. Figure 5-12 illustrates the 
corresponding design.

Example 5-22 Using Gates to Implement a Function
package MY_PACK is
   subtype TWO_BIT is BIT_VECTOR(1 to 2);
   function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT;
end;

package body MY_PACK is
   function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT is
   begin
      if(C = ’1’) then
         return(A);
      else 
         return(B);
      end if;
   end;
end;

use WORK.MY_PACK.ALL;
entity TEST is
   port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
   process
   begin
      Z <= MUX_FUNC(not A, A, C); 
   end process;
end ARCH;
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Figure 5-12 Schematic Design Without Component Implication Directives

wait Statements

A wait statement suspends a process until FPGA Compiler II / FPGA 
Express detects a positive-going or negative-going edge on a signal. 
The syntax is    

wait until signal = value ;

wait until signal’event and signal = value ;

wait until not signal’stable  
           and signal = value ;

signal
The name of a single-bit signal—a signal of an enumerated type 
encoded with 1 bit (see Chapter 3, "Data Types”). The value must 
be one of the literals of the enumerated type. If the signal type is 
BIT, the awaited value is either ’1’, for a positive-going edge, or 
’0’, for a negative-going edge.
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Note:
Three forms of the wait statement (a subset of IEEE VHDL), shown 
in the syntax above and in Example 5-23, are specific to the current 
implementation of FPGA Compiler II / FPGA Express.

Inferring Synchronous Logic

A wait statement implies synchronous logic where signal is usually a 
clock signal. “Combinational Versus Sequential Processes” on 
page 5-55, describes how FPGA Compiler II / FPGA Express infers 
and implements this logic. 

Example 5-23 shows three equivalent wait statements (all positive 
edge-triggered).

Example 5-23 Equivalent wait Statements
wait until CLK = ’1’;
wait until CLK’event and CLK = ’1’;
wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait 
statements does not differ. 

Example 5-24 shows a wait statement that suspends a process until 
the next positive edge (a 0-to-1 transition) on signal CLK.

Example 5-24 wait for a Positive Edge
signal CLK: BIT;
...
process
begin
  wait until CLK’event and CLK = ’1’; 
    -- Wait for positive transition (edge)
  ...
end process;
5-51

Sequential Statements



Note:
IEEE VHDL specifies that a process containing a wait statement 
must not have a sensitivity list. For more information, see “process 
Statements” on page 6-2.

Example 5-25 shows the use of a wait statement to describe a circuit 
where a value is incremented on each positive clock edge.

Example 5-26 shows the use of multiple wait statements to describe 
a multicycle circuit. The circuit provides an average value of its input 
A over four clock cycles.

Example 5-27 shows two equivalent descriptions, the first with implicit 
state logic and the second with explicit state logic. 

Example 5-25 Loop That Uses a wait Statement
process
begin
   y <= 0;
   wait until (clk’event and clk = ’1’);
   while (y < MAX) loop
   wait until (clk’event and clk = ’1’);
   x <= y ;
   y <= y + 1;
   end loop;
end process;

Example 5-26 Multiple wait Statements
process
begin
  wait until CLK’event and CLK = ’1’; 
  AVE <= A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= (AVE + A)/4;
end process;
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Example 5-27 wait Statements and State Logic
--Implicit State Logic
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  if (CONDITION) then 
    X <= A;
  else 
    wait until CLOCK’event and CLOCK = ’1’;
  end if;
end process;

-- Explicit State Logic
type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;
...
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  case STATE is
    when S0 =>
      if (CONDITION) then
         X <= A;
         STATE := S0; 
      else
         STATE := S1;
      end if;
    when S1 =>
      STATE := S0;
  end case;
end process;

Note:
You can use wait statements anywhere in a process except in 
for...loop statements and subprograms. However, if any path 
through the logic has one or more wait statements, all the paths 
must have at least one wait statement.

Example 5-28 shows how to describe a circuit with synchronous reset, 
using wait statements in an infinite loop. FPGA Compiler II / FPGA 
Express checks the reset signal immediately after each wait 
statement. The assignment statements in Example 5-28 (X <= A; and 
Y <= B;) represent the sequential statements that implement the 
circuit.
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Example 5-29 shows two invalid uses of wait statements. These 
limitations are specific to FPGA Compiler II / FPGA Express. 

Example 5-28 Synchronous Reset That Uses wait Statements
process 
begin
  RESET_LOOP: loop
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    X <= A; 
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    Y <= B;
  end loop RESET_LOOP;
end process;

Example 5-29 Invalid Uses of wait Statements
...
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is ”100 010 001”;
signal CLK : COLOR;
...
process
  begin
    wait until CLK’event and CLK = RED; 
       -- Illegal: clock type is not encoded with 1 bit 
    ...
  end;
...

process
  begin 
    if (X = Y) then
       wait until CLK’event and CLK = ’1’; 
       ...
    end if;
       -- Illegal: not all paths contain wait statements
    ...
  end;
5-54

Sequential Statements



Combinational Versus Sequential Processes

Synthesis of a process that contains no wait statements uses 
combinational logic. The computations the process performs react 
immediately to changes in input signals. 

Synthesis of a process that contains one or more wait statements 
uses sequential logic. The process performs computations only one 
time for each specified clock edge (positive or negative) and saves 
the results of these computations until the next clock edge by storing 
them in flip-flops.

The following values are stored in flip-flops:

• Signals driven by the process; see “Signal Assignment 
Statements” on page 5-12

• State vector values, where the state vector can be implicit or 
explicit (as in Example 5-27)

• Variables that might be read before they are set

Note:
As with the wait statement, some uses of the if statement can 
imply synchronous logic, causing FPGA Compiler II / FPGA 
Express to infer registers or latches. These methods are 
described in Chapter 7, "Register and Three-State Inference”.

Example 5-30 uses a wait statement to store values across clock 
cycles. The example code compares the parity of a data value with 
a stored value. The stored value (called CORRECT_PARITY) is set 
from the NEW_CORRECT_PARITY signal if the SET_PARITY signal 
is true. Figure 5-13 illustrates the corresponding design.
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Example 5-30 Parity Tester That Uses the wait Statement
entity example5_30 is
   port(
   signal CLOCK: in BIT;
   signal SET_PARITY: in BOOLEAN;
   signal PARITY_OK: out BOOLEAN;
   signal NEW_CORRECT_PARITY: in BIT;
   signal DATA: in BIT_VECTOR(0 to 3);
   );
end example5_30;

architecture behave of example5_30 is

begin
process
   variable CORRECT_PARITY, TEMP: BIT;
begin
   wait until CLOCK’event and CLOCK = ’1’;

   -- Set new correct parity value if requested
   if (SET_PARITY) then
      CORRECT_PARITY := NEW_CORRECT_PARITY;
   end if;

   -- Compute parity of DATA
   TEMP := ’0’;
   for I in DATA’range loop
      TEMP := TEMP xor DATA(I);
   end loop;

   -- Compare computed parity with the correct value
   PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;
end behave;
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Figure 5-13 Schematic Design From Example 5-30

Figure 5-13 shows two flip-flops in the synthesized schematic for 
Example 5-30. The first (input) flip-flop holds the value of 
CORRECT_PARITY. A flip-flop is needed here because 
CORRECT_PARITY is read (when it is compared to TEMP) before it 
is set (if SET_PARITY is false). The second (output) flip-flop holds 
the value of PARITY_OK between clock cycles. The variable TEMP 
is not given a flip-flop because it is always set before it is read.
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null Statements

The null statement explicitly states that no action is required. It is often 
used in case statements because all choices must be covered, even 
if some of the choices are ignored. The syntax is 

null;

Example 5-31 shows a typical usage. Figure 5-14 illustrates the 
corresponding design.

Example 5-31 null Statement
entity example5_31 is

port(
signal CONTROL: in INTEGER range 0 to 7;
signal A: in BIT; 
signal Z: out BIT
);

end example5_31;

architecture behave of example 5_31 is

begin

process (CONTROL, A)
begin

Z <= A;
case CONTROL is

when 0 | 7 => -- If 0 or 7, then invert A
Z <= not A;

when others =>
null; -- If not 0 or 7, then do nothing

end case;
end process;
end behave;
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Figure 5-14 Schematic Design From Example 5-31
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6
Concurrent Statements 6

A VHDL architecture construct comprises a set of interconnected 
concurrent statements, such as processes and blocks, that describe 
an overall design in terms of behavior or structure. Concurrent 
statements in a design execute simultaneously, unlike sequential 
statements, which execute one after another. 

This chapter describes concurrent statements, in the following order:

• The two main concurrent statements

- process Statements

- block Statements

• Concurrent Versions of Sequential Statements

- Concurrent Procedure Calls

- Concurrent Signal Assignments
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• Component Instantiation Statements

• Direct Instantiation

• generate Statements

process Statements

A process statement (which is concurrent) contains a set of sequential 
statements. Although all processes in a design execute concurrently, 
FPGA Compiler II / FPGA Express interprets the sequential 
statements within each process one at a time.

A process communicates with the rest of the design by reading values 
from or writing them to signals or ports outside the process.

The syntax of a process statement is 

[ label: ] process [ ( sensitivity_list ) ]
     { process_declarative_item }
begin
     { sequential_statement }
end process [ label ] ;

label
A label, which is optional, names the process. 
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sensitivity_list
A list of all signals (including ports) read by the process. The 
syntax is

signal_name {, signal_name}

The circuit FPGA Compiler II / FPGA Express synthesizes is 
sensitive to all signals the process reads. To guarantee the same 
results from a VHDL simulator and the synthesized circuit, a 
process sensitivity list has to contain all signals whose changes 
require resimulation of that process. 

Follow these guidelines when developing the sensitivity list:

- Synchronous processes (processes that compute values only 
on clock edges) must be sensitive to the clock signal. 

- Asynchronous processes (processes that compute values on 
clock edges and when asynchronous conditions are true) must 
be sensitive to the clock signal (if any) and to inputs that affect 
asynchronous behavior. 

FPGA Compiler II / FPGA Express checks sensitivity lists for 
completeness and issues warning messages for any signals that 
are read inside a process but are not in the sensitivity list. An error 
message is issued if a clock signal is read as data in a process.    

Note:
IEEE VHDL does not allow a sensitivity list if the process has a 
wait statement. 

process_declarative_item
Declares subprograms, types, constants, and variables local to 
the process. These items can be any of the following, all of which 
are discussed in Chapter 2, "Design Descriptions”:

- use clause

- Subprogram declaration
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- Subprogram body

- Type declaration

- Subtype declaration

- Constant declaration

- Variable declaration

The sequence of statements in a process defines the behavior of the 
process. After executing all the statements in a process, FPGA 
Compiler II / FPGA Express executes them all again. 

The only exception is during simulation: If a process has a sensitivity 
list, the process is suspended (after its last statement) until a change 
occurs in one of the signals in the sensitivity list. 

If a process has one or more wait statements (and, therefore, no 
sensitivity list), the process is suspended at the first wait statement 
whose wait condition is false.

The circuit synthesized for a process is either combinational (not 
clocked) or sequential (clocked). If a process includes a wait or if 
signal’event statement, its circuit contains sequential components. 
The wait and if statements are described in Chapter 5, "Sequential 
Statements”.

Process statements provide a natural means of describing sequential 
algorithms. If the values computed in a process are inherently parallel, 
consider using concurrent signal assignment statements (see 
“Concurrent Signal Assignments” on page 6-17).
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Combinational Process Example

Example 6-1 shows a process (with no wait statements) that 
implements a simple modulo-10 counter. The process 

• Reads two signals: CLEAR and IN_COUNT

• Drives one signal, OUT_COUNT

If CLEAR is ’1’ or IN_COUNT is 9, OUT_COUNT is set to 0 (zero). 
Otherwise, OUT_COUNT is set to the value of IN_COUNT plus 
1 (one). 

Figure 6-1 illustrates the resulting circuit design.

Example 6-1 Modulo-10 Counter Process
entity COUNTER is 
   port (CLEAR:      in BIT;
         IN_COUNT:   in INTEGER range 0 to 9;
         OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;
architecture EXAMPLE of COUNTER is
begin
  process(IN_COUNT, CLEAR)
  begin
     if (CLEAR = ’1’ or IN_COUNT = 9) then
        OUT_COUNT <= 0;
     else
        OUT_COUNT <= IN_COUNT + 1;
     end if;
  end process;
end EXAMPLE;
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Figure 6-1 Modulo-10 Counter Process Design 

Sequential Process Example

Another way to implement the counter in Example 6-1 is to use a wait 
statement to contain the count value internally in the process.   

The process in Example 6-2 implements the counter as a sequential 
(clocked) process.

• On each 0-to-1 CLOCK transition, if CLEAR is ’1’ or COUNT is 9, 
COUNT is set to 0 (zero).

• Otherwise, FPGA Compiler II / FPGA Express increments the 
value of COUNT by 1.
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• The value of the variable COUNT is stored in four flip-flops, which 
FPGA Compiler II / FPGA Express generates because COUNT 
can be read before it is set. Thus, the value of COUNT has to be 
maintained from the previous clock cycle. For more information 
on using wait statements and count values, see “wait Statements” 
on page 5-50.

Figure 6-2 illustrates the resulting circuit design.

Example 6-2 Modulo-10 Counter Process With wait Statement
entity COUNTER is 
   port (CLEAR: in BIT;
         CLOCK: in BIT;
         COUNT: buffer INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
  process
  begin
     wait until CLOCK’event and CLOCK = ’1’;

     if (CLEAR = ’1’ or COUNT >= 9) then
        COUNT <= 0;
     else
        COUNT <= COUNT + 1;
     end if;
  end process;
end EXAMPLE;
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Figure 6-2 Modulo-10 Counter Process With wait Statement Design

Driving Signals

If a process assigns a value to a signal, the process is a driver of that 
signal. If more than one process or other concurrent statement drives 
a signal, that signal has multiple drivers.    

In the code fragment in Example 6-3, two three-state buffers drive the 
same signal (SIG). To learn to infer three-state devices in VHDL, see 
“Three-State Inference” on page 7-59.

Figure 6-3 shows the schematic design.
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Example 6-3 Multiple Drivers of a Signal
A_OUT <= A when ENABLE_A else ’Z’;
B_OUT <= B when ENABLE_B else ’Z’;
process(A_OUT)
begin
   SIG <= A_OUT;
end process;
process(B_OUT)
begin
   SIG <= B_OUT;
end process;

Figure 6-3 Two Three-State Buffers Driving the Same Signal

Bus resolution functions assign the value for a signal with multiple 
drivers. For more information, see “Resolution Functions” on 
page 2-40.
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block Statements

A block statement (which is concurrent) contains a set of concurrent 
statements. The order of the concurrent statements does not matter, 
because all statements are always executing.

Note:
FPGA Compiler II / FPGA Express does not create a new level of 
design hierarchy from a block statement.

The syntax of a block statement is

label: block [ (expression) ]
  { block_declarative_item }
begin
  { concurrent_statement }
end block [ label ];

label
The label, which is required, names the block. 

expression
The guard condition for the block. When this optional expression 
is present, FPGA Compiler II / FPGA Express evaluates the 
expression and creates a Boolean signal called GUARD.

block_declarative_item
Declares objects local to the block, which can be any of the 
following items:

- use clause

- subprogram declaration

- subprogram body

- type declaration
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- subtype declaration

- constant declaration

- signal declaration

- component declaration

Objects declared in a block are visible to that block and to all blocks 
nested within it. When a child block (nested inside a parent block) 
declares an object with the same name as an object in the parent 
block, the child block’s declaration overrides that of the parent.

Nested Blocks

The description in Example 6-4 uses nested blocks. Figure 6-4 shows 
the schematic.

Example 6-4 Nested Blocks
B1: block
   signal S: BIT;  -- Declaration of ”S” in block B1
begin
   S <= A and B;   -- ”S” from B1

   B2: block
      signal S: BIT; -- Declaration of ”S”, block B2
   begin
      S <= C and D;  -- ”S” from B2

      B3: block
      begin
         Z <= S;     -- ”S” from B2
      end block B3;
   end block B2;
  Y <= S;            -- ”S” from B1
end block B1; 
6-11

Concurrent Statements



Figure 6-4 Schematic of Nested Blocks

Guarded Blocks

The description in Example 6-5 uses guarded blocks. In the example, 
z has the same value as a.

Example 6-5 Guarded Blocks
entity EG1 is 
   port (a: in BIT; z: out BIT);
end;

architecture RTL of EG1 is
begin

guarded_block: block (a = ’1’)
begin

z <= ’1’ when guard else ’0’;
end block;

end RTL;

A concurrent assignment within a block statement can use the 
guarded keyword. In such a case, the guard expression conditions 
the signal assignment. The description in Example 6-6 produces a 
level-sensitive latch.
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Example 6-6 Level-Sensitive Latch Using Guarded Blocks
entity EG2 is 
   port (d, g: in BIT; q: out BIT);
end;

architecture RTL of EG2 is
begin

guarded_block: block (g = ’1’)
begin

q <= guarded d;
end block;

end RTL;

Note:
Do not use the ’event or ’stable attributes with the guard 
expression if you want to produce an edge-triggered latch using 
a guarded block. The presence of either attribute prevents it.

Concurrent Versions of Sequential Statements

This section describes concurrent versions of sequential statements 
in the form of 

• Concurrent Procedure Calls

• Concurrent Signal Assignments

- Simple Concurrent Signal Assignments

- Conditional Signal Assignments

- Selected Signal Assignments
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Concurrent Procedure Calls

A concurrent procedure call, which is used in an architecture 
construct or a block statement, is equivalent to a process with a single 
sequential procedure call in it (see Example 6-7). The syntax is the 
same as that of a sequential procedure call:   

procedure_name [  ( [ name => ] expression
                  { , [ name => ] expression } ) ] ;

The equivalent process reads all the in and inout parameters of the 
procedure. Example 6-7 shows a procedure declaration and a 
concurrent procedure call and its equivalent process.

Example 6-7 Concurrent Procedure Call and Equivalent Process
procedure ADD(signal A, B: in BIT; 
              signal SUM: out BIT);
...
ADD(A, B, SUM);    -- Concurrent procedure call
...
process(A, B)      -- The equivalent process
begin
   ADD(A, B, SUM); -- Sequential procedure call
end process;

FPGA Compiler II / FPGA Express implements procedure calls (and 
function calls) with logic unless you use the map_to_entity compiler 
directive (see “Procedures and Functions as Design Components” 
on page 5-45.)
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A common use for concurrent procedure calls is to obtain many copies 
of a procedure. For example, assume that a class of BIT_VECTOR 
signals must have just 1 bit with value ’1’ and the rest of the bits with 
value ’0’ (as in Example 6-8). Suppose you have several signals of 
varying widths that you want monitored at the same time (as in 
Example 6-9). One approach is to write a procedure to detect the 
error in a bit vector signal and then make a concurrent call to that 
procedure for each signal. 

Example 6-8 shows a procedure, CHECK, that determines whether 
a given bit vector has exactly one element with value ’1’. If this is not 
the case, CHECK sets its out parameter ERROR to true, as the 
example shows.

Example 6-8 Procedure Definition for Example 6-9
procedure CHECK(signal A:      in BIT_VECTOR; 
                signal ERROR: out BOOLEAN) is

  variable FOUND_ONE: BOOLEAN := FALSE;
  -- Set TRUE when a ’1’ is seen
begin
   for I in A’range loop    -- Loop across all bits in the vector
      if A(I) = ’1’ then    -- Found a ’1’
         if FOUND_ONE then  -- Have we already found one?
            ERROR <= TRUE;  -- Found two ’1’s
            return;         -- Terminate procedure
         end if;

         FOUND_ONE := TRUE; 
      end if;
   end loop;

   ERROR <= not FOUND_ONE; -- Error will be TRUE if no ’1’ seen
end;

Example 6-9 shows the CHECK procedure called concurrently for 
four bit vector signals that are different sizes. Figure 6-5 illustrates 
the resulting circuit design.
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Example 6-9 Concurrent Procedure Calls
BLK: block
  signal S1: BIT_VECTOR(0 to 0);
  signal S2: BIT_VECTOR(0 to 1);
  signal S3: BIT_VECTOR(0 to 2);
  signal S4: BIT_VECTOR(0 to 3);

  signal E1, E2, E3, E4: BOOLEAN;

begin
  CHECK(S1, E1);  -- Concurrent procedure call
  CHECK(S2, E2);
  CHECK(S3, E3);
  CHECK(S4, E4);
end block BLK;

Figure 6-5 Concurrent CHECK Procedure Design
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Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing 
a sequential assignment. Thus, each concurrent signal assignment 
defines a new driver for the assigned signal. This section discusses 
the three forms of concurrent signal assignment.

Simple Concurrent Signal Assignments

The syntax of the simplest form of the concurrent signal assignment is 

target <= expression;

target
A signal that receives the value of an expression. Example 6-10 
shows the value of expressions A and B concurrently assigned to 
signal Z.

Example 6-10 Concurrent Signal Assignment
BLK: block
  signal A, B, Z: BIT;
begin
  Z <= A and B;
end block BLK;
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Conditional Signal Assignment

The syntax of the conditional signal assignment is   

target <= { expression when condition else }
           expression;

target
A signal that receives the value of an expression. The expression 
used is the first one whose Boolean condition is true.

When FPGA Compiler II / FPGA Express executes a conditional 
signal assignment statement, it tests each condition in the order 
written. 

• FPGA Compiler II / FPGA Express assigns to the target the 
expression of the first condition that evaluates to true. 

• If no condition evaluates to true, FPGA Compiler II / FPGA 
Express assigns the final expression to the target. 

• If two or more conditions are true, FPGA Compiler II / FPGA 
Express assigns only the first one to the target.

Example 6-11 shows a conditional signal assignment. The target is 
the signal Z, which is assigned from one of the signals A, B, or C. The 
signal depends on the value of the expressions ASSIGN_A and 
ASSIGN_B. Figure 6-6 illustrates the resulting design.

Note:
The A assignment takes precedence over B, and B takes 
precedence over C, because the first true condition controls the 
assignment.
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Example 6-11 Conditional Signal Assignment
  Z <= A when ASSIGN_A = ’1’ else
       B when ASSIGN_B = ’1’ else
       C; 

Figure 6-6 Conditional Signal Assignment Design

The process in Example 6-12 is equivalent to the conditional signal 
assignment in Example 6-11. 

Example 6-12 Process Equivalent to Conditional Signal Assignment
process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
   if ASSIGN_A = ’1’ then
      Z <= A;
   elsif ASSIGN_B = ’1’ then
      Z <= B;
   else
      Z <= C;
   end if;
end process;
6-19

Concurrent Statements



Selected Signal Assignments

The syntax of the selected signal assignment is   

with choice_expression select
      target <= { expression when choices, }
                       expression when choices;

target
A signal that receives the value of an expression. The expression 
selected is the first one whose choices include the value of 
choice_expression. 

Each choice can be either

- A static expression (such as 3)

- A static range (such as 1 to 3)

The value of each choice the target signal receives has to match 
the value or values of choice_expression.

If the value of choice_expression is a static range, each value in 
the range must be covered by one choice in the expression. 

The final choice can be others, which matches all remaining 
(unchosen) values in the range of the choice_expression type. 
The others choice, if present, matches choice_expression only if 
none of the other choices match.You can use others as the final 
choice only if the value of choice_expression is a range.

The with...select statement evaluates choice_expression and 
compares that value with each choice value. The when clause with 
the matching choice value has its expression assigned to target.
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The use of choices has the following restrictions:

• No two choices can overlap.

• If no others choice is present, all possible values of 
choice_expression must be covered by the set of choices.

Example 6-13 shows target Z assigned from A, B, C, or D. The 
assignment depends on the current value of CONTROL. Figure 6-7 
illustrates the resulting design.

Example 6-13 Selected Signal Assignment
signal A, B, C, D, Z: BIT;
signal CONTROL:  bit_vector(1 down to 0);
. . .
with CONTROL select
   Z <= A when ”00”,
        B when ”01”,
        C when ”10”,
        D when ”11”; 

Figure 6-7 Selected Signal Assignment Design
6-21

Concurrent Statements



Example 6-14 shows the process equivalent to the selected signal 
assignment statement in Example 6-13. 

Example 6-14 Process Equivalent to Selected Signal Assignment
process(CONTROL, A, B, C, D)
begin
   case CONTROL is
      when 0 =>
         Z <= A;
      when 1 =>
         Z <= B;
      when 2 =>
         Z <= C;
      when 3 =>
         Z <= D;
    end case;
end process;

Component Instantiation Statements

The purpose of a component instantiation statement is to define a 
design hierarchy or build a netlist in VHDL by

• Referencing a previously defined hardware component in the 
current design, at the current level of hierarchy

• Referencing components not defined in VHDL, such as

- Components from a technology library (FPGA vendor-specific)

- Components defined in the Verilog hardware description 
language 
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The syntax is

instance_name : component_name port map (
                       [ port_name => ] expression
                       {, [ port_name => ] expression } );

instance_name
Name of this instance of the component.

component_name
Name of the component port map, which connects each port of 
this instance of component_name to a signal-valued expression 
in the current entity.

port_name
Name of port.

expression
Name of a signal, indexed name, slice name, or aggregate, to 
indicate the connection method for the component’s ports.

If expression is the VHDL reserved word open, the 
corresponding port is left unconnected. 

You can map ports to signals by named or positional notation. You 
can include named as well as positional connections in the port map, 
but you must put all positional connections before any named 
connections. 

Note:
For named association, the component port names must match 
exactly the declared component’s port names. For positional 
association, the actual port expressions must be in the same order 
as the declared component’s port order.

Example 6-15 shows a component declaration (a 2-input NAND gate) 
followed by three equivalent component instantiation statements. 
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Example 6-15 Component Declaration and Instantiations
component ND2
   port(A, B: in BIT; C: out BIT);
end component;
. . .
signal X, Y, Z:  BIT;
. . .
U1: ND2 port map(X, Y, Z);               -- positional
U2: ND2 port map(A => X, C => Z, B => Y);-- named
U3: ND2 port map(X, Y, C => Z);          -- mixed

Example 6-16 shows the component instantiation statement defining 
a simple netlist. The three instances—U1, U2, and U3—are 
instantiations of the 2-input NAND gate component declared in 
Example 6-15.

Figure 6-8 illustrates the resulting design.

Example 6-16 A Simple Netlist
signal TEMP_1, TEMP2: BIT;
. . .
  U1: ND2 port map(A, B, TEMP_1);
  U2: ND2 port map(C, D, TEMP_2);
  U3: ND2 port map(TEMP_1, TEMP_2, Z);

Figure 6-8 A Simple Netlist Design
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Direct Instantiation

A component instantiation statement 

• Defines a subcomponent of the design entity in which it appears

• Associates signals or values with the ports of that subcomponent

• Associates values with generics of that subcomponent

Example 6-17 and Example 6-18 show the difference between a 
component instantiation statement and the more concise direct 
component instantiation statement. 

Example 6-17 Component Instantiation Statement
ARCHITECTURE struct OF root IS
   COMPONENT leaf
      PORT (
         clk,data : in std_logic;
         Qout : out std_logic);
   END COMPONENT;
BEGIN
   u1 : leaf
      PORT MAP (
         clk => clk,
         data => d_in(0),
         Qout => q_out(0));

Example 6-18 shows how you can express the information in Example 
6-17 in a direct component instantiation statement.
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Example 6-18 Direct Component Instantiation Statement
ARCHITECTURE struct OF root IS
BEGIN
   u1 : entity work.leaf(rtl)
      port map (
         clk => clk,
         data => d_in(0),
         Qout => q_out(0));

generate Statements

A generate statement creates zero or more copies of an enclosed set 
of concurrent statements. The two kinds of generate statements are   

for...generate

The number of copies is determined by a discrete range.

if...generate

Zero or one copy is made, conditionally.

for...generate Statement

The syntax is

label: for identifier in range generate
      { concurrent_statement }
end generate [ label ] ; 

label
The label, which is required, names this statement and is useful 
for building nested generate statements.
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identifier
Specific to the for...generate statement: 

- Identifier is not declared elsewhere. It is automatically declared 
by the generate statement itself and is local to the statement. 
A for ... generate identifier overrides any other identifier with the 
same name, but only within the for...generate statement.

- The value of identifier can be read only inside its for...generate 
statement (identifier does not exist outside the statement). You 
cannot assign a value to a for...generate identifier.

- The value of identifier cannot be assigned to any parameter 
whose mode is out or inout.

range
Must be a computable integer range, in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

integer_expression
Each integer_expression evaluates to an integer. Each 
concurrent_statement can be any of the statements described in 
this chapter, including other generate statements. 

Steps in the Execution of a for...generate Statement

A for...generate statement executes as follows:

1. A new local integer variable is declared with the name identifier. 

2. The identifier receives the first value of range, and each 
concurrent statement executes once.
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3. The identifier receives the next value of range, and each 
concurrent statement executes once more.

4. Step 3 repeats until the identifier receives the last value in the 
range and each concurrent statement executes for the last time. 
Execution continues with the statement following end generate. 
The loop identifier is deleted.

Example 6-19 shows a code fragment that combines and interleaves 
two 4-bit arrays, A and B, into an 8-bit array, C. Figure 6-9 illustrates 
the resulting design.

Example 6-19 for...generate Statement
signal A, B : bit_vector(3 downto 0);
signal C    : bit_vector(7 downto 0);
signal X    : bit;
. . .
GEN_LABEL: for I in 3 downto 0 generate
  C(2*I + 1) <= A(I) nor X;
  C(2*I)     <= B(I) nor X;
end generate GEN_LABEL; 
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Figure 6-9 An 8-Bit Array Design

Common Usage of a for...generate Statement

The most common usage of the generate statement is to create 
multiple copies of components, processes, or blocks. Example 6-20  
and Figure 6-10 show this usage with components. (Example 6-21 
on page 6-32 and Figure 6-11 on page 6-33 show this usage with 
processes.)

Example 6-20 shows VHDL array attribute ’range used with the 
for...generate statement to instantiate a set of COMP components 
that connect corresponding elements of bit vectors A and B. Figure 
6-10 illustrates the resulting design.
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Example 6-20 for...generate Statement Operating on an Entire Array
component COMP
  port (X :  in bit;
        Y : out bit);
end component;
. . .
signal A, B: BIT_VECTOR(0 to 7);
. . .
GEN: for I in A’range generate
  U: COMP port map (X => A(I), 
                    Y => B(I));
end generate GEN;

Figure 6-10 Design of COMP Components Connecting Bit Vectors A and B

For more information about arrays, see “Array Types” on page 3-9.
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if...generate Statements

The syntax is

label: if expression generate
       { concurrent_statement }
end generate [ label ] ; 

label
The label identifies (names) this statement. 

expression
Any expression that evaluates to a Boolean value.

concurrent_statement
Any of the statements described in this chapter, including other 
generate statements.

Note:
Unlike the if statement described in “if Statements” on page 5-15, 
the if...generate statement has no else or elsif branches.

You can use the if...generate statement to generate a regular structure 
that has different circuitry at its ends. Use a for...generate statement 
to iterate over the desired width of a design, and use a set of 
if...generate statements to define the beginning, middle, and ending 
sets of connections. 

Example 6-21 shows a technology-independent description of an 
N-bit serial-to-parallel converter. Data is clocked into an N-bit buffer 
from right to left. On each clock cycle, each bit in an N-bit buffer is 
shifted up 1 bit and the incoming DATA bit is moved into the low-order 
bit. Figure 6-11 illustrates the resulting design.
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Example 6-21 Typical Use of if...generate Statements
entity CONVERTER is
  generic(N: INTEGER := 8);

  port(CLK, DATA:   in BIT;
       CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER;

architecture BEHAVIOR of CONVERTER is
  signal S : BIT_VECTOR(CONVERT’range);
begin

  G: for I in CONVERT’range generate

    G1:  -- Shift (N-1) data bit into high-order bit 
      if (I = CONVERT’left) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process; 
    end generate G1;

    G2: -- Shift middle bits up
      if (I > CONVERT’right and 
          I < CONVERT’left) generate

        S(I) <= S(I-1) and CONVERT(I);

        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process;
    end generate G2;

    G3:  -- Move DATA into low-order bit
      if (I = CONVERT’right) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= DATA;
        end process;
        S(I) <= CONVERT(I);
    end generate G3;
  end generate G;
end BEHAVIOR;
6-32

Concurrent Statements



Figure 6-11 Design of N-Bit Serial-to-Parallel Converter
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7
Register and Three-State Inference 7

FPGA Compiler II / FPGA Express can infer registers (latches and 
flip-flops) and three-state cells. This chapter explains inference 
behavior and results, in the following sections:

• Register Inference

• Three-State Inference

Register Inference

Register inference allows you to use sequential logic in your designs 
and keep your designs technology-independent. A register is a 
simple, 1-bit memory device, either a latch or a flip-flop. A latch is a 
level-sensitive memory device. A flip-flop is an edge-triggered 
memory device. 
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The register inference capability can support coding styles other than 
those described in this chapter. However, for best results,
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• Restrict each always block to a single type of memory-element 
inferencing: latch, latch with asynchronous set or reset, flip-flop, 
flip-flop with asynchronous reset, or flip-flop with synchronous 
reset.

• Use the templates provided in “Inferring Latches” on page 7-8 and 
“Inferring Flip-Flops” on page 7-21. 

The inference Report

FPGA Compiler II / FPGA Express generates a general inference 
report when building a design. It provides the asynchronous set or 
reset, synchronous set or reset, and synchronous toggle conditions 
of each latch or flip-flop, expressed as Boolean formulas. Example 
7-1 shows the inference report for a JK flip-flop.

Example 7-1 Inference Report for a JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

In the inference reports in Example 7-1,

• Y indicates that the flip-flop has a synchronous reset (SR) and a 
synchronous set (SS)

• N indicates that the flip-flop does not have an asynchronous reset 
(AR), an asynchronous set (AS), or a synchronous toggle (ST)

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y Y N
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In the inference report (Example 7-1), the last part of the report lists 
the objects that control the synchronous reset and set conditions. In 
this example, a synchronous reset occurs when J is low (logic 0) and 
K is high (logic 1). The last line of the report indicates the register 
output when both set and reset are active:

zero (0)
Indicates that the reset has priority and that the output goes to
logic 0.

one (1)
Indicates that the set has priority and that the output goes to logic 
1.

X
Indicates that there is no priority and the output is unstable.

“Inferring Latches” on page 7-8and “Inferring Flip-Flops” on 
page 7-21 provide inference reports for each register template. After 
you read a description in FPGA Compiler II / FPGA Express, check 
the inference report.

Latch Inference Warnings

FPGA Compiler II / FPGA Express generates a warning message 
when it infers a latch. This is useful for verifying that a combinational 
design does not contain memory components. 

Controlling Register Inference

Use directives to direct the type of sequential device you want inferred. 
The default is to implement the type of latch described in the HDL 
code. These attributes override this behavior. 
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Attributes That Control Register Inference

The ATTRIBUTES package in the Synopsys VHDL library defines the 
following attributes for controlling register inference:

• async_set_reset 

When this is set to true on a signal, FPGA Compiler II / FPGA 
Express searches for a branch that uses the signal as a condition. 
FPGA Compiler II / FPGA Express then checks whether the 
branch contains an assignment to a constant value, in which case 
the signal becomes an asynchronous reset or set.

Attach this attribute to 1-bit signals by using the following syntax:

attribute async_set_reset of signal_name_list : signal 
is ”true”;

• async_set_reset_local

FPGA Compiler II / FPGA Express treats listed signals in the 
specified process as if they have the async_set_reset attribute 
set to true. 

Attach this attribute to a process label by using the following 
syntax:

attribute async_set_reset_local of process_label : label 
is ”signal_name_list” ;

• async_set_reset_local_all 

FPGA Compiler II / FPGA Express treats all signals in the 
specified processes as if they have the async_set_reset attribute 
set to true. 
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Attach this attribute to process labels by using the following 
syntax:

attribute async_set_reset_local_all of 
process_label_list : label is ” true” ;

• sync_set_reset 

When this is set to true on a signal, FPGA Compiler II / FPGA 
Express checks the signal to determine whether it synchronously 
sets or resets a register in the design.

Attach this attribute to 1-bit signals by using the following syntax:

attribute sync_set_reset of signal_name_list :  signal 
is ”true”;

• sync_set_reset_local 

FPGA Compiler II / FPGA Express treats listed signals in the 
specified process as if they have the sync_set_reset attribute set 
to true.

Attach this attribute to a process label by using the following 
syntax:

attribute sync_set_reset_local of process_label : label 
is ”signal_name_list” ;

• sync_set_reset_local_all 

FPGA Compiler II / FPGA Express treats all signals in the 
specified processes as if they have the sync_set_reset attribute 
set to true.
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Attach this attribute to process labels by using the following 
syntax:

attribute sync_set_reset_local_all of process_label_list 
: label is ” true” ;

• one_cold

A one_cold implementation means that all signals in a group are 
active low and that only one signal can be active at a given time. 
The one_cold attribute prevents FPGA Compiler II / FPGA 
Express from implementing priority encoding logic for the set and 
reset signals. 

Add an assertion to the VHDL code to ensure that the group of 
signals has a one_cold implementation. FPGA Compiler II / FPGA 
Express does not produce any logic to check this assertion.

Attach this attribute to set or reset signals on sequential devices 
by using the following syntax:

attribute one_cold signal_name_list : signal is ”true”;

• one_hot

A one_hot implementation means that all signals in a group are 
active high and that only one signal can be active at a given time. 
The one_hot attribute prevents FPGA Compiler II / FPGA Express 
from implementing priority encoding logic for the set and reset 
signals.

Add an assertion to the VHDL code to ensure that the group of 
signals has a one_hot implementation. FPGA Compiler II / FPGA 
Express does not produce any logic to check this assertion.
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Attach this attribute to set or reset signals on sequential devices 
by using the following syntax:

attribute one_hot signal_name_list : signal is ”true”;

Inferring Latches

In simulation, a signal or variable holds its value until that output is 
reassigned. In a circuit, a latch implements this holding-of-state 
capability. FPGA Compiler II / FPGA Express supports inference of 
the following types of latches:

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring Set/Reset (SR) Latches

Use SR latches with caution, because they are difficult to test. If you 
decide to use SR latches, you must verify that the inputs are hazard-
free (do not glitch). FPGA Compiler II / FPGA Express does not 
ensure that the logic driving the inputs is hazard-free.

Example 7-2 provides the VHDL code that implements the SR latch 
described in the truth table in Table 7-1. Example 7-3 shows the 
inference report generated by FPGA Compiler II / FPGA Express. 
Figure 7-1 shows the schematic for the latch.
7-8

Register and Three-State Inference



Table 7-1 SR Latch Truth Table (NAND Type)

Example 7-2 SR Latch
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity sr_latch is
  port (SET, RESET : in std_logic;
        Q : out std_logic );
  attribute async_set_reset of SET, RESET :
    signal is ”true”;
end sr_latch;

architecture rtl of sr_latch is
begin

infer: process (SET, RESET) begin
  if (SET = ’0’) then
    Q <= ’1’;
  elsif (RESET = ’0’) then
    Q <= ’0’;
  end if;
end process infer;

end rtl;

set reset y
0 0 Not stable

0 1 1

1 0 0

1 1 y
7-9

Register and Three-State Inference



Example 7-3 Inference Report for an SR Latch

y_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Figure 7-1 SR Latch

Inferring D Latches

When you do not specify the resulting value for an output under all 
conditions, as in an incompletely specified if statement, FPGA 
Compiler II / FPGA Express infers a D latch.

For example, the if statement in Example 7-4 infers a D latch, because 
there is no else clause. The resulting value for output Q is specified 
only when input enable has a logic 1 value. As a result, output Q 
becomes a latched value.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y Y - - -
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Example 7-4 Latch Inference
process(DATA, GATE) begin
  if (GATE = ’1’) then
    Q <= DATA;
  end if;
end process;

To avoid latch inference, assign a value to the signal under all 
conditions, as shown in Example 7-5.

Example 7-5 Fully Specified Signal: No Latch Inference
process(DATA, GATE) begin
  if (GATE = ’1’) then
    Q <= DATA;
  else
    Q <= ’0’;
  end if;
end process;

Variables declared locally within a subprogram do not hold their value 
over time, because each time a subprogram is called, its variables 
are reinitialized. Therefore, FPGA Compiler II / FPGA Express does 
not infer latches for variables declared in subprograms. In Example 
7-6, FPGA Compiler II / FPGA Express does not infer a latch for output 
Q. 

Example 7-6 Function: No Latch Inference
function MY_FUNC(DATA, GATE : std_logic) return std_logic is
     variable STATE: std_logic;
begin
  if (GATE = ’1’) then
    STATE <= DATA;
  end if;
  return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);
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The following sections provide code examples, inference reports, and 
figures for these types of D latches:

• Simple D latch

• D latch with asynchronous set

• D latch with asynchronous reset

• D latch with asynchronous set and reset

Simple D Latch

When you infer a D latch, make sure that you can control the gate 
and data signals from the top-level design ports or through 
combinational logic. Controllable gate and data signals ensure that 
simulation can initialize the design.

Example 7-7 provides the VHDL template for a D latch. FPGA 
Compiler II / FPGA Express generates the inference report shown in 
Example 7-8. Figure 7-2 shows the inferred latch.
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Example 7-7 D Latch
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
  port (GATE, DATA: in std_logic;
        Q : out std_logic );
end d_latch;

architecture rtl of d_latch is
begin

infer: process (GATE, DATA) begin
  if (GATE = ’1’) then
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-8 Inference Report for a D Latch

Q_reg
reset/set: none

Figure 7-2 D Latch

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N N - - -
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D Latch With Asynchronous Set

The template in this section uses the async_set_reset attribute to 
direct FPGA Compiler II / FPGA Express to the asynchronous set 
(AS) pins of the inferred latch.

Example 7-9 provides the VHDL template for a D latch with an 
asynchronous set. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 7-10. Figure 7-3 shows the 
inferred latch.

Example 7-9 D Latch With Asynchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_set is
  port (GATE, DATA, SET : in std_logic;
        Q : out std_logic );
  attribute async_set_reset of SET : 
    signal is ”true”;
end d_latch_async_set;

architecture rtl of d_latch_async_set is
begin

infer: process (GATE, DATA, SET) begin
  if (SET = ’0’) then 
    Q <= ’1’;
  elsif (GATE = ’1’) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;
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Example 7-10 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-set: SET’

Figure 7-3 D Latch With Asynchronous Set

Note:
Because the target technology library does not contain a latch 
with an asynchronous set, FPGA Compiler II / FPGA Express 
synthesizes the set logic by using combinational logic.

D Latch With Asynchronous Reset

The template in this section uses the async_set_reset attribute to 
direct FPGA Compiler II / FPGA Express to the asynchronous reset 
(AR) pins of the inferred latch.

Example 7-11 provides the VHDL template for a D latch with an 
asynchronous reset. FPGA Compiler II / FPGA Express generates 

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N Y - - -
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the inference report shown in Example 7-12. Figure 7-4 shows the 
inferred latch.

Example 7-11 D Latch With Asynchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_reset is
  port (GATE, DATA, RESET : in std_logic;
        Q : out std_logic );
  attribute async_set_reset of RESET : 
    signal is ”true”;
end d_latch_async_reset;

architecture rtl of d_latch_async_reset is
begin

infer : process (GATE, DATA, RESET) begin
  if (RESET = ’0’) then 
    Q <= ’0’;
  elsif (GATE = ’1’) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-12 Inference Report for D Latch With Asynchronous Reset

Q_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y N - - -
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Figure 7-4 D Latch With Asynchronous Reset

D Latch With Asynchronous Set and Reset

Example 7-13 provides the VHDL template for a D latch with an active 
low asynchronous set and reset. This template uses the 
async_set_reset_local attribute to direct FPGA Compiler II / FPGA 
Express to the asynchronous signals in the infer process. 

The template in Example 7-13 uses the one_cold attribute to prevent 
priority encoding of the set and reset signals. If you do not specify the 
one_cold attribute, the set signal has priority, because it is used as 
the condition for the if clause. Example 7-14 shows the inference 
report. Figure 7-5 shows the inferred latch.
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Example 7-13 D Latch With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async is
  port (GATE, DATA, SET, RESET :in  std_logic;
        Q : out std_logic );
attribute one_cold of SET, RESET : 
    signal is ”true”;
end d_latch_async;

architecture rtl of d_latch_async is
  attribute async_set_reset_local of infer : 
    label is ”SET, RESET”;
begin

infer : process (GATE, DATA, SET, RESET) begin
  if (SET = ’0’) then 
    Q <= ’1’;
  elsif (RESET = ’0’) then 
    Q <= ’0’;
  elsif (GATE = ’1’) then 
    Q <= DATA;
  end if;
end process infer;
end rtl;

Example 7-14 Inference Report for D Latch With Asynchronous Set and 
Reset

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y Y - - -
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Figure 7-5 D Latch With Asynchronous Set and Reset

Understanding the Limitations of D Latch Inference

A variable must always have a value before it is read. As a result, you 
cannot read a conditionally assigned variable after the if statement 
in which it is assigned. A conditionally assigned variable is assigned 
a new value under some, but not all, conditions. Example 7-15 shows 
an invalid use of the conditionally assigned variable VALUE. 

Example 7-15 Invalid Use of a Conditionally Assigned Variable
signal X, Y : std_logic;
. . .
process
  variable VALUE : std_logic;
begin
  if (condition) then
    VALUE <= X;
  end if;
  Y <= VALUE;  -- Invalid read of variable VALUE
end process;  
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Inferring Master-Slave Latches

You can infer two-phase systems using D latches. Example 7-16 
shows a simple two-phase system with clocks MCK and SCK. 
Example 7-17 shows the inference reports. Figure 7-6 shows the 
inferred latch. 

Example 7-16 Two-Phase Clocks
library IEEE;
use IEEE.std_Logic_1164.all;

entity LATCH_VHDL is
  port(MCK, SCK, DATA: in std_logic; 
       Q : out std_logic );
end LATCH_VHDL;

architecture rtl of LATCH_VHDL is
  signal TEMP : std_logic;
begin

process (MCK, DATA) begin
  if (MCK = ’1’) then
    TEMP <= DATA;
  end if;
end process;

process (SCK, TEMP) begin
  if (SCK = ’1’) then
    Q <= TEMP;
  end if;
end process;

end rtl;
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Example 7-17 Inference Reports for Two-Phase Clocks

TEMP_reg
reset/set: none

Q_reg
reset/set: none

Figure 7-6 Two-Phase Clocks

Inferring Flip-Flops

FPGA Compiler II / FPGA Express can infer D flip-flops, JK flip-flops, 
and toggle flip-flops. The following sections give details about each.

Many FPGA devices have a dedicated global set/reset hardware 
resource that may be used. For this reason, you should infer 
asynchronous set/reset signals for all flip-flops in the design. FPGA 
Compiler II / FPGA Express will then use the global set/reset lines. 

Register Name Type Width Bus MB AR AS SR SS ST
TEMP_reg Latch 1 - - N N - - -

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N N - - -
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Inferring D Flip-Flops

FPGA Compiler II / FPGA Express infers a D flip-flop whenever the 
condition of a wait or if statement uses an edge expression (a test for 
the rising or falling edge of a signal). Use the following syntax to 
describe a rising edge:    

SIGNAL’event and SIGNAL = ’1’

Use the following syntax to describe a falling edge:

SIGNAL’event and SIGNAL = ’0’

If you are using the IEEE std_logic_1164 package, you can use the 
following syntax to describe a rising edge and a falling edge:

if (rising_edge (CLK)) then

if (falling_edge (CLK)) then

If you are using the IEEE std_logic_1164 package, you can use the 
following syntax for a bused clock. You can also use a member of a 
bus as a signal.

sig(3)’event and sig(3) = ’1’

rising_edge (sig(3))

A wait statement containing an edge expression causes FPGA 
Compiler II / FPGA Express to create flip-flops for all signals, and 
some variables are assigned values in the process. Example 7-18 
shows the most common usage of the wait statement to infer a flip-
flop. 
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Example 7-18 Using a wait Statement to Infer a Flip-Flop
process
begin
  wait until (edge); 
  ...
end process;

An if statement implies flip-flops for signals and variables in the 
branches of the if statement. Example 7-19 shows the most-common 
usages of the if statement to infer a flip-flop. 

Example 7-19 Using an if Statement to Infer a Flip-Flop
process (sensitivity_list)
begin
  if (edge) 
    ...
  end if;
end process;

process (sensitivity_list)
begin
  if (...) then
    ...
  elsif (...)
    ...
  elsif (edge) then
    ...
  end if;
end process;

You can sometimes use wait and if statements interchangeably. If 
possible, use the if statement, because it provides greater control 
over the inferred registers. 
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The following sections provide code examples, inference reports, and 
figures for these types of D flip-flops:

• Positive edge-triggered D flip-flop

• Positive edge-triggered D flip-flop using rising_edge

• Negative edge-triggered D flip-flop

• Negative edge-triggered D flip-flop using falling_edge

• D flip-flop with asynchronous set

• D flip-flop with asynchronous reset

• D flip-flop with asynchronous set and reset

• D flip-flop with synchronous set

• D flip-flop with synchronous reset

• D flip-flop with synchronous and asynchronous load

• Multiple flip-flops with asynchronous and synchronous controls

Positive Edge-Triggered D Flip-Flop

When you infer a D flip-flop, make sure that you can control the clock 
and data signals from the top-level design ports or through 
combinational logic. Controllable clock and data signals ensure that 
simulation can initialize the design. If you cannot control the clock and 
data signals, infer a D flip-flop with asynchronous reset or set, or with 
synchronous reset or set.

Example 7-20 provides the VHDL template for a positive edge-
triggered D flip-flop. Example 7-21 shows the inference report. Figure 
7-7 shows the inferred flip-flop.
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Example 7-20 Positive Edge-Triggered D Flip-Flop
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
  port (DATA, CLK : in std_logic;
        Q : out std_logic );
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
  if (CLK’event and CLK = ’1’) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-21 Inference Report for Positive Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Figure 7-7 Positive Edge-Triggered D Flip-Flop

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
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Positive Edge-Triggered D Flip-Flop Using rising_edge

Example 7-22 provides the VHDL template for a positive edge-
triggered D flip-flop using the IEEE_std_logic_1164 package and 
rising_edge.

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-23.

Figure 7-8 shows the inferred flip-flop.

Example 7-22 Positive Edge-Triggered D Flip-Flop Using rising_edge
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
  port (DATA, CLK : in std_logic;
        Q : out std_logic );
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
  if (rising_edge (CLK)) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-23 Inference Report for a Positive Edge-Triggered D Flip-Flop 
Using rising_edge

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
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Figure 7-8 Positive Edge-Triggered D Flip-Flop Using rising_edge

Negative Edge-Triggered D Flip-Flop

Example 7-24 provides the VHDL template for a negative edge-
triggered D flip-flop. 

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-25. Figure 7-9 shows the inferred flip-flop.

Example 7-24 Negative Edge-Triggered D Flip-Flop
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
  port (DATA, CLK : in std_logic;
        Q : out std_logic );
end dff_neg;

architecture rtl of dff_neg is
begin

infer : process (CLK) begin
  if (CLK’event and CLK = ’0’) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;
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Example 7-25 Inference Report for Negative Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Figure 7-9 Negative Edge-Triggered D Flip-Flop

Negative Edge-Triggered D Flip-Flop Using falling_edge

Example 7-26 provides the VHDL template for a negative edge-
triggered D flip-flop using the IEEE_std_logic_1164 package and 
falling_edge.

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-27. Figure 7-10 shows the inferred flip-flop.

Example 7-26 Negative Edge-Triggered D Flip-Flop Using falling_edge
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
  port (DATA, CLK : in std_logic;
        Q : out std_logic );
end dff_neg;

architecture rtl of dff_neg is
begin

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
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infer : process (CLK) begin
  if (falling_edge (CLK)) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-27 Inference Report for a Negative Edge-Triggered D Flip-Flop 
Using falling_edge

Q_reg
set/reset/toggle: none

Figure 7-10 Negative Edge-Triggered D Flip-Flop Using falling_edge

D Flip-Flop With Asynchronous Set

Example 7-28 provides the VHDL template for a D flip-flop with an 
asynchronous set. 

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-29. Figure 7-11 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
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Example 7-28 D Flip-Flop With Asynchronous Set
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_set is
  port (DATA, CLK, SET : in std_logic;
        Q : out std_logic );
end dff_async_set;

architecture rtl of dff_async_set is
begin

infer : process (CLK, SET) begin
  if (SET = ’0’) then 
    Q <= ’1’;
  elsif (CLK’event and CLK = ’1’) then 
    Q <= DATA;
  end if;
end process infer;
end rtl;

Example 7-29 Inference Report for a D Flip-Flop With Asynchronous Set

Q_reg
Async-set: SET’

Figure 7-11 D Flip-Flop With Asynchronous Set

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N Y N N N
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D Flip-Flop With Asynchronous Reset

Example 7-30 provides the VHDL template for a D flip-flop with an 
asynchronous reset. 

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-31. Figure 7-12 shows the inferred flip-flop.

Example 7-30 D Flip-Flop With Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_reset is
  port (DATA, CLK, RESET : in std_logic;
        Q : out std_logic );
end dff_async_reset;

architecture rtl of dff_async_reset is
begin

infer : process ( CLK, RESET) begin
  if (RESET = ’1’) then 
    Q <= ’0’;
  elsif (CLK’event and CLK = ’1’) then 
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-31 Inference Report for a D Flip-Flop With Asynchronous Reset

Q_reg
Async-reset: RESET

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y N N N N
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Figure 7-12 D Flip-Flop With Asynchronous Reset

D Flip-Flop With Asynchronous Set and Reset

Example 7-32 provides the VHDL template for a D flip-flop with active 
high asynchronous set and reset pins. 

The template in Example 7-32 uses the one_hot attribute to prevent 
priority encoding of the set and reset signals. If you do not specify the 
one_hot attribute, the reset signal has priority, because it is used as 
the condition for the if clause. FPGA Compiler II / FPGA Express 
generates the inference report shown in Example 7-33. Figure 7-13 
shows the inferred flip-flop.

Note:
Most FPGA architectures do not have a register with an 
asynchronous set AND asynchronous reset cell available. For this 
reason you should avoid this construct.
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Example 7-32 D Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_async is
  port (DATA, CLK, SET, RESET : in std_logic;
        Q : out std_logic );
  attribute one_hot of SET, RESET : signal is ”true”;
end dff_async;

architecture rtl of dff_async is
begin
infer : process (CLK, SET, RESET) begin
  if (RESET = ’1’) then 
    Q <= ’0’;
  elsif (SET = ’1’) then
    Q <= ’1’;
  elsif (CLK’event and CLK = ’1’) then
    Q <= DATA;
  end if;
end process infer;

end rtl;

Example 7-33 Inference Report for a D Flip-Flop With Asynchronous Set 
and Reset

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y Y N N N
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Figure 7-13 D Flip-Flop With Asynchronous Set and Reset

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrate how to infer a D flip-flop with 
asynchronous controls—one way to initialize or control the state of a 
sequential device. You can also synchronously reset or set the flip-
flop (see Example 7-34 and Example 7-36). The sync_set_reset 
attribute directs FPGA Compiler II / FPGA Express to the 
synchronous controls of the sequential device.

When the target technology library does not have a D flip-flop with 
synchronous reset, FPGA Compiler II / FPGA Express infers a D flip-
flop with synchronous reset logic as the input to the D pin of the flip-
flop. If the reset (or set) logic is not directly in front of the D pin of the 
flip-flop, initialization problems can occur during gate-level simulation 
of the design. 

D Flip-Flop With Synchronous Set

Example 7-34 provides the VHDL template for a D flip-flop with 
synchronous set. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 7-35. Figure 7-14 shows the 
inferred flip-flop.
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Example 7-34 D Flip-Flop With Synchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;
entity dff_sync_set is
  port (DATA, CLK, SET : in std_logic;
        Q : out std_logic );
  attribute sync_set_reset of SET : signal is ”true”;
end dff_sync_set;

architecture rtl of dff_sync_set is
begin

infer : process (CLK) begin
  if (CLK’event and CLK = ’1’) then 
    if (SET = ’1’) then 
      Q <= ’1’;
    else 
      Q <= DATA;
    end if;
  end if;
end process infer;

end rtl;

Example 7-35 Inference Report for a D Flip-Flop With Synchronous Set

Q_reg
Sync-set: SET

Figure 7-14 D Flip-Flop With Synchronous Set

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N Y N
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D Flip-Flop With Synchronous Reset

Example 7-36 provides the VHDL template for a D flip-flop with 
synchronous reset. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 7-37. Figure 7-15 shows the 
inferred flip-flop.

Example 7-36 D Flip-Flop With Synchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_reset is
  port (DATA, CLK, RESET : in std_logic;
        Q : out std_logic );
  attribute sync_set_reset of RESET : 
    signal is ”true”;
end dff_sync_reset;

architecture rtl of dff_sync_reset is
begin

infer : process (CLK) begin
  if (CLK’event and CLK = ’1’) then 
    if (RESET = ’0’) then 
      Q <= ’0’;
    else 
      Q <= DATA;
    end if;
  end if;
end process infer;

end rtl;

Example 7-37 Inference Report for a D Flip-Flop With Synchronous Reset

Q_reg
Sync-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y N N
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Figure 7-15 D Flip-Flop With Synchronous Reset

D Flip-Flop With Synchronous and Asynchronous Load

D flip-flops can have asynchronous or synchronous controls. To infer 
a component with both synchronous and asynchronous controls, you 
must check the asynchronous conditions before you check the 
synchronous conditions.

Example 7-38 provides the VHDL template for a D flip-flop with a 
synchronous load (called SLOAD) and an asynchronous load (called 
ALOAD). FPGA Compiler II / FPGA Express generates the inference 
report shown in Example 7-39. Figure 7-16 shows the inferred flip-
flop.

Example 7-38 D Flip-Flop With Synchronous and Asynchronous Load
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_a_s_load is
  port(SLOAD, ALOAD, ADATA, SDATA, 
       CLK : in std_logic;
       Q : out std_logic );
end dff_a_s_load;
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architecture rtl of dff_a_s_load is
begin

infer: process (CLK, ALOAD) begin
  if (ALOAD = ’1’) then 
    Q <= ADATA;
  elsif (CLK’event and CLK = ’1’) then 
    if (SLOAD = ’1’) then 
      Q <= SDATA;
    end if;
  end if;
end process infer;

end rtl;

Example 7-39 Inference Report for a D Flip-Flop With Synchronous and 
Asynchronous Load

Q_reg
set/reset/toggle: none

Figure 7-16 D Flip-Flop With Synchronous and Asynchronous Load

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
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Multiple Flip-Flops: Asynchronous and Synchronous Controls

If a signal is synchronous in one process but asynchronous in another, 
use the sync_set_reset_local and async_set_reset_local attributes 
to direct FPGA Compiler II / FPGA Express to the correct 
implementation.

In Example 7-40, the process infer_sync uses the reset signal as a 
synchronous reset, and the process infer_async uses the reset signal 
as an asynchronous reset. Example 7-41 shows the inference report. 
Figure 7-17 shows the resulting design.

Example 7-40 Multiple Flip-Flops: Asynchronous and Synchronous 
Controls

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity multi_attr is
  port (DATA1, DATA2, CLK, RESET, SLOAD : in std_logic;
        Q1, Q2 : out std_logic );
end multi_attr;
    

architecture rtl of multi_attr is
  attribute async_set_reset_local of infer_async : 
    label is ”RESET”;
  attribute sync_set_reset_local of infer_sync : 
    label is ”RESET”;
begin

infer_sync: process (CLK) begin
  if (CLK’event and CLK = ’1’) then
    if (RESET = ’0’) then
      Q1 <= ’0’;
    elsif (SLOAD = ’1’) then
      Q1 <= DATA1;
    end if;
  end if;
end process infer_sync;
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infer_async: process (CLK, RESET) begin
  if (RESET = ’0’) then
    Q2 <= ’0’;
  elsif (CLK’event and CLK = ’1’) then
    if (SLOAD = ’1’) then
      Q2 <= DATA2;
    end if;
  end if;
end process infer_async;

end rtl;

Example 7-41 Inference Reports for Example 7-40

Q1_reg

Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Figure 7-17 Multiple Flip-Flops with Asynchronous and Synchronous 
Controls

Register Name Type Width Bus MB AR AS SR SS ST
Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST
Q2_reg Flip-flop 1 - - Y N N N N
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A flip-flop inference has specific limitations. See “Understanding 
Limitations of Register Inference” on page 7-57.

Inferring JK Flip-Flops

When you infer a JK flip-flop, make sure you can control the J, K, and 
clock signals from the top-level design ports to ensure that simulation 
can initialize the design.

The following sections provide code examples, inference reports, and 
figures for these types of JK flip-flops:

• JK flip-flop

• JK flip-flop with asynchronous set and reset

JK Flip-Flop

When you infer a JK flip-flop, make sure you can control the J, K, and 
clock signals from the top-level design ports to ensure that simulation 
can initialize the design.

Example 7-42 provides the VHDL code that implements the JK 
flip-flop described in the truth table in Table 7-2. 

In the JK flip-flop, the J and K signals act as active high synchronous 
set and reset. Use the sync_set_reset attribute to indicate that the J 
and K signals are the synchronous set and reset for the design. 

Example 7-43 shows the inference report generated by FPGA 
Compiler II / FPGA Express. Figure 7-18 shows the inferred flip-flop.
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Table 7-2 Truth Table for JK Flip-Flop

Example 7-42 JK Flip-Flop
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk is
  port(J, K, CLK : in std_logic; 
       Q_out : out std_logic );
  attribute sync_set_reset of J, K : 
    signal is ”true”;
end jk;

architecture rtl of jk is
  signal Q : std_logic;
begin
infer: process 
  variable JK : std_logic_vector ( 1 downto 0);
begin
  wait until (CLK’event and CLK = ’1’);
  JK <= (J & K);
  case JK is
    when ”01” => Q <= ’0’;
    when ”10” => Q <= ’1’;
    when ”11” => Q <= not (Q);
    when ”00” => Q <= Q;
    when others => Q <= ’X’;
  end case;
end process infer;

Q_out <= Q;
end rtl;

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn
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Example 7-43 Inference Report for JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Figure 7-18 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset

Example 7-44 provides the VHDL template for a JK flip-flop with 
asynchronous set and reset. Use the sync_set_reset attribute to 
indicate the JK function. Use the one_hot attribute to prevent priority 
encoding of the J and K signals. 

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-45. Figure 7-19 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y Y N
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Example 7-44 JK Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk_async_sr is
  port (SET, RESET, J, K, CLK : in std_logic;
        Q_out : out std_logic );
  attribute sync_set_reset of J, K : 
    signal is ”true”;
  attribute one_hot of SET,RESET : signal is ”true”;
end jk_async_sr;

architecture rtl of jk_async_sr is
  signal Q : std_logic;
begin

infer : process (CLK, SET, RESET) 
  variable JK : std_logic_vector (1 downto 0);
begin
  if (RESET = ’1’) then 
    Q <= ’0’;
  elsif (SET = ’1’) then 
    Q <= ’1’;
  elsif (CLK’event and CLK = ’1’) then 
    JK <= (J & K);
    case JK is
      when ”01” => Q <= ’0’;
      when ”10” => Q <= ’1’;
      when ”11” => Q <= not(Q);
      when ”00” => Q <= Q;
      when others => Q <= ’X’;
    end case;
  end if;
end process infer;

Q_out <= Q;

end rtl;
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Example 7-45 Inference Report for JK Flip-Flop With Asynchronous Set and 
Reset

Q_reg
    Async-reset: RESET
    Async-set: SET
    Sync-reset: J’ K
    Sync-set: J K’
    Sync-toggle: J K
    Async-set and Async-reset ==> Q: X
    Sync-set and Sync-reset ==> Q: X

Figure 7-19 JK Flip-Flop With Asynchronous Set and Reset

Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style given in the following 
examples. You must include asynchronous controls in the toggle flip-
flop description. Without asynchronous controls, you cannot initialize 
toggle flip-flops to a known state.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y Y Y Y N
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The following sections provide code examples, inference reports, and 
figures for these types of toggle flip-flops:

• Toggle flip-flop with asynchronous set

• Toggle flip-flop with asynchronous reset

• Toggle flip-flop with enable and asynchronous reset

Toggle Flip-Flop With Asynchronous Set

Example 7-46 provides the VHDL template for a toggle flip-flop with 
asynchronous set. Example 7-47 shows the inference report. Figure 
7-20 shows the inferred flip-flop.

Example 7-46 Toggle Flip-Flop With Asynchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity t_async_set is
  port(SET, CLK : in std_logic;
       Q : out std_logic );
end t_async_set;
architecture rtl of t_async_set is
  signal TMP_Q : std_logic;
begin

infer: process (CLK, SET) begin
  if (SET = ’1’) then 
    TMP_Q <= ’1’;
  elsif (CLK’event and CLK = ’1’) then 
    TMP_Q <= not (TMP_Q);
  end if;  
  Q <= TMP_Q;
end process infer;

end rtl;
7-46

Register and Three-State Inference



Example 7-47 Inference Report for Toggle Flip-Flop With Asynchronous Set

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Figure 7-20 Toggle Flip-Flop With Asynchronous Set

Toggle Flip-Flop With Asynchronous Reset

Example 7-48 provides the VHDL template for a toggle flip-flop with 
asynchronous reset. FPGA Compiler II / FPGA Express generates 
the inference report shown in Example 7-49. Figure 7-21 shows the 
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - N Y N N Y
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Example 7-48 Toggle Flip-Flop With Asynchronous Reset
library IEEE ;
use IEEE.std_logic_1164.all;

entity t_async_reset is
  port(RESET, CLK : in std_logic;
       Q : out std_logic );
end t_async_reset;

architecture rtl of t_async_reset is
  signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
  if (RESET = ’1’) then 
    TMP_Q <= ’0’;
  elsif (CLK’event and CLK = ’1’) then 
    TMP_Q <= not (TMP_Q);
  end if;  
  Q <= TMP_Q;
end process infer;

end rtl;

Example 7-49 Inference Report for a Toggle Flip-Flop With Asynchronous 
Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - Y N N N Y
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Figure 7-21 Toggle Flip-Flop With Asynchronous Reset

Toggle Flip-Flop With Enable and Asynchronous Reset

Example 7-50 provides the VHDL template for a toggle flip-flop with 
an enable and an asynchronous reset. The flip-flop toggles only when 
the enable (TOGGLE signal) has a logic 1 value. 

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 7-51. Figure 7-22 shows the inferred flip-flop.
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Example 7-50 Toggle Flip-Flop With Enable and Asynchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity t_async_en_r is
  port(RESET, TOGGLE, CLK : in std_logic; 
       Q : out std_logic );
end t_async_en_r;

architecture rtl of t_async_en_r is
  signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
  if (RESET = ’1’) then 
    TMP_Q <= ’0’;
  elsif (CLK’event and CLK = ’1’) then 
    if (TOGGLE = ’1’) then 
      TMP_Q <= not (TMP_Q);
    end if;
  end if;  
end process infer;

Q <= TMP_Q;

end rtl;

Example 7-51 Inference Report for Toggle Flip-Flop With Enable and 
Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - Y N N N Y
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Figure 7-22 Toggle Flip-Flop With Enable and Asynchronous Reset

Getting the Best Results

This section provides tips for improving the results you achieve during 
flip-flop inference. Topics include

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Minimizing Flip-Flop Count

HDL descriptions should build only as many flip-flops as a design 
requires.
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Circuit Description Inferring Too Many Flip-Flops

Example 7-52 shows a description that infers too many flip-flops. The 
inference report is shown in Example 7-53. Figure 7-23 shows the 
inferred flip-flops.

Example 7-52 Circuit With Six Inferred Flip-Flops
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
  port (CLK, RESET : in std_logic;
        AND_BITS, OR_BITS, 
        XOR_BITS : out std_logic );
end count;

architecture rtl of count is
begin

process
  variable COUNT : std_logic_vector (2 downto 0);
begin
  wait until (CLK’EVENT and CLK = ’1’);
  if (RESET = ’1’) then
    COUNT <= ”000”;
  else 
    COUNT <= COUNT + 1;
  end if;
  AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
  OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
  XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process;

end rtl;
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Example 7-52 has only one process, which contains a wait statement 
and six output signals. FPGA Compiler II / FPGA Express infers six 
flip-flops, one for each output signal in the process:

• COUNT(2:0) (three inferred flip-flops)

• AND_BITS (one inferred flip-flop)

• OR_BITS (one inferred flip-flop)

• XOR_BITS (one inferred flip-flop)

However, because the outputs AND_BITS, OR_BITS, and 
XOR_BITS depend solely on the value of variable COUNT, and 
variable COUNT is registered, these three outputs do not need to be 
registered. Therefore, assign AND_BITS, OR_BITS, and XOR_BITS 
within a process that does not have a wait statement (see the next 
section, “Circuit Description Inferring Correct Number of Flip-Flops” 
on page 7-54).

Example 7-53 Inference Report for Circuit With Six Inferred Flip-Flops
Register Name Type Width Bus MB AR AS SR SS ST
AND_BITS_reg Flip-flop 1 - - N N N N N
COUNT_reg Flip-flop 3 Y N N N N N N
OR_BITS_reg Flip-flop 1 - - N N N N N
XOR_BITS_reg Flip-flop 1 - - N N N N N
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Figure 7-23 Circuit With Six Inferred Flip-Flops

Circuit Description Inferring Correct Number of Flip-Flops

To avoid inferring extra flip-flops, assign the output signals from within 
a process that does not have a wait statement.

Example 7-54 shows a description with two processes, one with a 
wait statement and one without. The registered (synchronous) 
assignments are in the first process, which contains the wait 
statement. The other (asynchronous) assignments are in the second 
process. Signals communicate between the two processes.

This description style lets you choose the signals that are registered 
and those that are not. The inference report is shown in Example 
7-55. Figure 7-24 shows the resulting circuit.

RESET

CLK
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Example 7-54 Circuit With Three Inferred Flip-Flops
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
  port(CLK, RESET : in std_logic; 
       AND_BITS, OR_BITS, XOR_BITS : out std_logic);
end count;

architecture rtl of count is
  signal COUNT : std_logic_vector (2 downto 0);
begin

reg : process begin
  wait until (CLK’event and CLK = ’1’);
  if (RESET = ’1’) then
    COUNT <= ”000”;
  else
    COUNT <= COUNT + 1;
  end if;
end process reg;
combine : process(count) begin
  AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
  OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
  XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process combine;

end rtl;

Example 7-55 Inference Report for Circuit With Three Inferred Flip-Flops

COUNT_reg (width 3)
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
COUNT_reg Flip-flop 3 Y N N N N N N
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Figure 7-24 Circuit With Three Inferred Flip-Flops

This technique of separating combinational logic from registered or 
sequential logic in your design is useful when describing finite state 
machines. See these in Appendix A, "Examples:

• “Moore Machine” on page A-2

• “Mealy Machine” on page A-5

• “Count Zeros—Sequential Version” on page A-22

• “Soft Drink Machine—State Machine Version” on page A-24

Correlating Synthesis Results With Simulation Results

Using delay specifications with registered values can cause the 
simulation to behave differently from the logic synthesized by FPGA 
Compiler II / FPGA Express. For example, the description in Example 
7-56 contains delay information that causes FPGA Compiler II / FPGA 
Express to synthesize a circuit that behaves unexpectedly (the post-
synthesis simulation results do not match pre-synthesis simulation 
results).

RESET

CLK

AND_BITS

OR_BITS

XOR_BITS
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Example 7-56 Delays in Registers
component flip_flop (D, CLK : in std_logic;
                     Q : out std_logic );
end component;

process (A, CLK);
  signal B: std_logic;
begin
  B <= A after 100ns;

  F1: flip_flop port map (A, CLK, C),

  F2: flip_flop port map (B, CLK, D);
end process;

In Example 7-56, B changes 100 nanoseconds after A changes. If 
the clock period is less than 100 nanoseconds, output D is one or 
more clock cycles behind output C during simulation of the design. 
However, because FPGA Compiler II / FPGA Express ignores the 
delay information, A and B change values at the same time and so 
do C and D. This behavior is not the same as in the post-synthesis 
simulation.

When using delay information in your designs, make sure that the 
delays do not affect registered values. In general, you can safely 
include delay information in your description if it does not change the 
value that gets clocked into a flip-flop.

Understanding Limitations of Register Inference

FPGA Compiler II / FPGA Express cannot infer the following 
components. You must instantiate these components in your VHDL 
description.

• Flip-flops and latches with three-state outputs
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• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:
Although you can instantiate flip-flops with bidirectional pins, 
FPGA Compiler II / FPGA Express interprets these cells as black 
boxes.

If you use an if statement to infer D flip-flops, your design must meet 
the following requirements:

• An edge expression must be the only condition of an if or an elsif 
clause. 

The following if statement is invalid because it has multiple 
conditions in the if clause:

if (edge and RST = ’1’) 

• You can have only one edge expression in an if clause, and the if 
clause must not have an else clause. 

The following if statement is invalid, because you cannot include 
an else clause when using an edge expression as the if or elsif 
condition:

if X > 5 then
  sequential_statement;
elsif edge then
  sequential_statement;
else
  sequential_statement;
end if;
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• An edge expression cannot be part of another logical expression 
or be used as an argument.

The following function call is invalid, because you cannot use the 
edge expression as an argument:

any_function(edge);

Three-State Inference

FPGA Compiler II / FPGA Express infers a three-state driver when 
you assign the value of Z to a signal or variable. The Z value 
represents the high-impedance state. FPGA Compiler II / FPGA 
Express infers one three-state driver per process. You can assign 
high-impedance values to single-bit or bused signals (or variables).    

Reporting Three-State Inference

Example 7-57 shows a three-state inference report. 

Example 7-57 Three-State Inference Report

The first column of the report indicates the name of the inferred three-
state device. The second column indicates the type of three-state 
device FPGA Compiler II / FPGA Express inferred. The third column 
indicates whether the three-state device has multiple bits.

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
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Controlling Three-State Inference

FPGA Compiler II / FPGA Express always infers a three-state driver 
when you assign the value of Z to a signal or variable. FPGA Compiler 
II / FPGA Express does not provide any means of controlling the 
inference.

Inferring Three-State Drivers

The following sections contain VHDL examples that infer the following 
types of three-state drivers:

• Simple three-state driver

• Three-state driver with registered enable

• Three-state driver without registered enable

Inferring a Simple Three-State Driver

The following section provides a template for a simple three-state 
driver. In addition, this section provides examples of how allocating 
high-impedance assignments to different processes affects three-
state inference.

Example 7-58 provides the VHDL template for a simple three-state 
driver. FPGA Compiler II / FPGA Express generates the inference 
report shown in Example 7-59. Figure 7-25 shows the inferred three-
state driver.
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Example 7-58 Simple Three-State Driver
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity three_state is
port(IN1, ENABLE : in std_logic;
     OUT1 : out std_logic );
end;

architecture rtl of three_state is
begin

process (IN1, ENABLE) begin
  if (ENABLE = ’1’) then
    OUT1 <= IN1;
  else
    OUT1 <= ’Z’;   -- assigns high-impedance state
  end if;
end process;

end rtl;

Example 7-59 Inference Report for Simple Three-State Driver

Figure 7-25 Schematic of Simple Three-State Driver

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
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Inferring One Three-State Driver From a Single Process

Example 7-60 provides an example of placing all high-impedance 
assignments in a single process. In this case, the data is gated and 
FPGA Compiler II / FPGA Express infers a single three-state driver. 

Example 7-61 shows the inference report. Figure 7-26 shows the 
three-state driver.

Example 7-60 Inferring One Three-State Driver From a Single Process

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
  port ( A, B, SELA, SELB : in std_logic ;
         T : out std_logic );
end three_state;

architecture rtl of three_state is
begin
infer : process (SELA, A, SELB, B) begin
  T <= ’Z’;
  if (SELA = ’1’) then 
    T <= A;
  elsif (SELB = ’1’) then
    T <= B;
  end if;
end process infer;

end rtl;

Example 7-61 Single Process Inference Report
Three-State Device Name Type MB
T_tri Three-State Buffer N
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Figure 7-26 One Three-State Driver Inferred From a Single Process

Inferring Three-State Drivers From Separate Processes

Example 7-62 provides an example of placing each high-impedance 
assignment in a separate process. In this case, FPGA Compiler II / 
FPGA Express infers multiple three-state drivers. 

Example 7-63 shows the inference report. Figure 7-27 shows the 
design.

TRI
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Example 7-62 Inferring Two Three-State Drivers From Separate Processes

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
  port ( A, B, SELA, SELB : in std_logic ;
         T : out std_logic );
end three_state;

architecture rtl of three_state is
begin
infer1 : process (SELA, A) begin
  if (SELA = ’1’) then
    T <= A;
  else
    T <= ’Z’;
  end if;
end process infer1;

infer2 : process (SELB, B) begin
  if (SELB = ’1’) then
    T <= B;
  else
    T <= ’Z’;
  end if;
end process infer2;

end rtl;

Example 7-63 Inference Report for Two Three-State Drivers From Separate 
Processes
Three-State Device Name Type MB
T_tri Three-State Buffer N

Three-State Device Name Type MB
T_tri2 Three-State Buffer N
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Figure 7-27 Two Three-State Drivers Inferred From Separate Processes

Three-State Driver With Registered Enable

When a variable, such as THREE_STATE in Example 7-64, is 
assigned to a register and defined as a three-state gate within the 
same process, FPGA Compiler II / FPGA Express also registers the 
enable pin of the three-state gate. 

Example 7-64 shows an example of this type of code, and Example 
7-65 shows the inference report. Figure 7-28 shows the schematic 
generated by the code, a three-state gate with a register on its enable 
pin.
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Example 7-64 Inferring a Three-State Driver With Registered Enable

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
   port ( DATA, CLK, THREE_STATE : in std_logic ;
          OUT1 : out std_logic );
end three_state;

architecture rtl of three_state is
begin
infer : process (THREE_STATE, CLK) begin
   if (THREE_STATE = ’0’) then 
      OUT1 <= ’Z’;
   elsif (CLK’event and CLK = ’1’) then
      OUT1 <= DATA; 
   end if;
end process infer;

end rtl;

Example 7-65 Inference Report for Three-State Driver With Registered 
Enable

OUT1_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
OUT1_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB
OUT1_tri
OUT1_tri_enable_reg

Three-State Buffer
Flip-Flop (width 1)

N
N
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Figure 7-28 Three-State Driver With Registered Enable

Three-State Driver Without Registered Enable

Example 7-66 uses two processes to instantiate a three-state gate, 
with a flip-flop on the input pin. 

Example 7-67 shows the inference report. Figure 7-29 shows the 
schematic generated by the code.   
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Example 7-66 Three-State Driver Without Registered Enable
library IEEE;
use IEEE.std_logic_1164.all;
 
entity ff_3state2 is
   port ( DATA, CLK, THREE_STATE : in std_logic ;
          OUT1 : out std_logic );
end ff_3state2;
 
architecture rtl of ff_3state2 is
   signal TEMP : std_logic;
begin
 
process (CLK) begin
   if (CLK’event and CLK = ’1’) then
      TEMP <= DATA;
   end if;
end process;
 
process (THREE_STATE, TEMP) begin
   if (THREE_STATE = ’0’) then
      OUT1 <= ’Z’;
   else
      OUT1 <= TEMP;
   end if;
end process;
 
end rtl;

Example 7-67 Inference Report for Three-State Driver Without Registered 
Enable

TEMP_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
TEMP_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
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Figure 7-29 Three-State Driver Without Registered Enable

Understanding the Limitations of Three-State Inference

You can use the Z value as

• A signal assignment

• A variable assignment

• A function call argument

• A return value

• An aggregate definition

You cannot use the Z value in an expression, except for comparison 
with Z. Be careful when using expressions that compare with the Z 
value. FPGA Compiler II / FPGA Express always evaluates such 
expressions to false, and the pre- and post-synthesis simulation 
results might differ. For this reason, FPGA Compiler II / FPGA Express 
issues a warning when it synthesizes such comparisons.
7-69

Register and Three-State Inference



Example 7-68 shows an incorrect use of the Z value. Example 7-69 
shows a correct use of the Z value.

Example 7-68 Incorrect Use of the Z Value in an Expression
OUT_VAL <= (’Z’ and IN_VAL);

Example 7-69 Correct Use of the Z Value in an Expression
if (IN_VAL = ’Z’) then
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8
Writing Circuit Descriptions 8

To understand FPGA Compiler II / FPGA Express and to write VHDL 
descriptions that produce efficient synthesized circuits, study the 
information presented in the following sections of this chapter:

• How Statements Are Mapped to Logic 

• Design Structure 

• Asynchronous Designs 

• Don’t Care Inference 

• Synthesis Issues 

Some general guidelines for writing efficient circuit descriptions are

• Restructure a design that makes repeated use of several large 
components to minimize the number of instantiations.
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• In a design that needs some, but not all, of its variables or signals 
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more-efficient synthesis.

How Statements Are Mapped to Logic

VHDL descriptions are mapped to combinational logic by creation of 
blocks of logic. A statement or an operator in a VHDL function can 
represent a block of combinational logic or, in some cases, a latch or 
register.  

The statements shown in Example 8-1 represent four logic blocks:

• A comparator that compares the value of B with 10

• An adder that has A and B as inputs

• An adder that has A and 10 as inputs

• A multiplexer (implied by the if statement) that controls the final 
value of Y

Example 8-1 Four Logic Blocks
if (B < 10) then
   Y = A + B; 
else 
   Y = A + 10; 
end if;

The logic blocks created by FPGA Compiler II / FPGA Express are 
custom-built for their environment. If A and B are 4-bit quantities, a 
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4-bit adder is built. If A and B are 9-bit quantities, a 9-bit adder is built. 
Because FPGA Compiler II / FPGA Express incorporates a large set 
of these customized logic blocks, it can translate most VHDL 
statements and operators.

Design Structure

A design’s structure influences the size and complexity of the resulting 
synthesized circuit. These sections help you understand the 
concepts:

• Adding Structure

• Using Design Knowledge

• Optimizing Arithmetic Expressions

• Changing an Operator Bit-Width

• Using State Information

• Propagating Constants

• Sharing Complex Operators

Adding Structure

FPGA Compiler II / FPGA Express gives you significant control over 
the preoptimization structure, or organization of components, in your 
design. Whether or not your design structure is preserved after 
optimization depends on the options you select. 
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Using Variables and Signals

You control design structure with your ordering of assignment 
statements and your use of variables. Each VHDL signal assignment, 
process, or component instantiation implies a piece of logic. Each 
variable or signal implies a wire. By using these constructs, you can 
connect entities in any configuration. 

Example 8-2 and Example 8-3 show two possible descriptions of an 
adder’s carry chain. Figure 8-1 illustrates the resulting design.

Example 8-2 Ripple Carry Chain
-- A is the addend
-- B is the augend
-- C is the carry
-- Cin is the carry in
C0 <= (A0 and B0) or
      ((A0 or B0) and Cin);
C1 <= (A1 and B1) or
      ((A1 or B1) and C0);

Example 8-3 Carry-Lookahead Chain
-- Ps are propagate
-- Gs are generate
p0 <= a0 or b0;
g0 <= a0 and b0;
p1 <= a1 or b1;
g1 <= a1 and b1;
c0 <= g0 or (p0 and cin);
c1 <= g1 or (p1 and g0) or
      (p1 and p0 and cin);
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Figure 8-1 Ripple Carry and Carry-Lookahead Chain Design

Using Parentheses

Another way to control the structure of a design is to use parentheses 
to define logic groupings. Example 8-4 describes a 4-input adder 
grouping. Figure 8-2 illustrates the resulting design.

Example 8-4 4-Input Adder
Z <= (A + B) + C + D;

Figure 8-2 Diagram of 4-Input Adder
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Example 8-5 describes a 4-input adder grouping that is structured 
with parentheses. Figure 8-3 illustrates the design.

Example 8-5 4-Input Adder Structured With Parentheses
Z <= (A + B) + (C + D);

Figure 8-3 Diagram of 4-Input Adder With Parentheses

Using Design Knowledge

In many circumstances, you can improve the quality of synthesized 
circuits by describing your high-level knowledge of a circuit better. 
FPGA Compiler II / FPGA Express cannot always derive details of a 
circuit architecture. Any additional architectural information you can 
provide to FPGA Compiler II / FPGA Express can result in a more 
efficient circuit. 

Optimizing Arithmetic Expressions

FPGA Compiler II / FPGA Express uses the properties of arithmetic 
operators (such as the associative and commutative properties of 
addition) to rearrange an expression so that it results in an optimized 
implementation. You can also use arithmetic properties to control the 

   +

   +

   +

 Z

A  B C  D
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choice of implementation for an expression. Two forms of arithmetic 
optimization are discussed in this section: 

• Arranging Expression Trees for Minimum Delay

• Sharing Common Subexpressions

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can 
minimize the delay through an expression tree by rearranging the 
sequence of the operations. Consider the statement in Example 8-6.

Example 8-6 Simple Arithmetic Expression
Z <= A + B + C + D;

The parser performs each addition in order, as though parentheses 
were placed within the expression as follows:

Z <= ((A + B) + C) + D;

The parser constructs the expression tree shown in Figure 8-4.

Figure 8-4 Default Expression Tree

A B

C

D

Z
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Considering Signal Arrival Times

To figure out the delay through an expression tree, FPGA Compiler 
II / FPGA Express considers the arrival times of each signal in the 
expression. If the arrival times of all the signals are the same, the 
length of the critical path of the expression in Example 8-6 equals 
three adder delays. The critical path delay can be reduced to two 
adder delays if you insert parentheses as follows:  

Z <= (A + B) + (C + D);

The parser constructs the subexpression tree shown in Figure 8-5:

Figure 8-5 Balanced Adder Tree (Same Arrival Times for All Signals)

Suppose signals B, C, and D arrive at the same time and signal A 
arrives last. The expression tree that produces the minimum delay is: 
shown in Figure 8-6.

A B C D

Z
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Figure 8-6 Expression Tree With Minimum Delay (Signal A Arrives Last)

Using Parentheses

You can use parentheses in expressions to exercise more control over 
the way expression trees are constructed. Parentheses are regarded 
as user directives that force an expression tree to use the groupings 
inside the parentheses. The expression tree cannot be rearranged in 
a way that violates these groupings. 

To see the effect of parentheses on the construction of an expression 
tree, consider Example 8-7.

Example 8-7 Parentheses in an Arithmetic Expression
Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in Example 8-7 define the following 
subexpressions:

1 (B + C) 
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The 
default expression tree for Example 8-7 is shown in Figure 8-7.  

A

B C

D

Z

8-9

Writing Circuit Descriptions



Figure 8-7 Expression Tree With Subexpressions Dictated by Parentheses

Considering Overflow Characteristics

When FPGA Compiler II / FPGA Express performs arithmetic 
optimization, it determines how to handle the overflow from carry bits 
during addition. 

The optimized structure of an expression tree is affected by the bit-
widths you declare for storing intermediate results. For example, 
suppose you write an expression that adds two 4-bit numbers and 
stores the result in a 4-bit register. If the result of the addition overflows 
the 4-bit output, the most-significant bits are truncated. Example 8-8 
shows how FPGA Compiler II / FPGA Express handles overflow 
characteristics.

A

B C

D

Q
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F
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Example 8-8 Adding Numbers of Different Bit-Widths
t <= a + b;  -- a and b are 4-bit numbers
z <= t + c;  -- c is a 6-bit number

In Example 8-8, three variables (a + b + c) are added. A temporary 
variable, t, holds the intermediate result of a + b. If t is declared as a 
4-bit variable, the overflow bits from the addition of a + b are truncated. 
The parser determines the default structure of the expression tree, 
which is shown in Figure 8-8.

Figure 8-8 Default Expression Tree With 4-Bit Temporary Variable

Now suppose the addition is performed without a temporary variable 
(z = a + b + c). FPGA Compiler II / FPGA Express determines that 5 
bits are needed to store the intermediate result of the addition, so no 
overflow condition exists. The results of the final addition can be 
different from those of the first case, where a 4-bit temporary variable 
is declared that truncates the result of the intermediate addition. 
Therefore, these two expression trees do not always yield the same 
result. The expression tree for the second case is shown in Figure 8-9.

a[4] b[4]

c[6]

z[6]

t[4]
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Figure 8-9 Expression Tree With 5-Bit Intermediate Result

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If 
the same subexpression appears in more than one equation, you 
might want to share these operations to reduce the area of your circuit. 

You can force common subexpressions to be shared, by declaring a 
temporary variable to store the subexpression, and then use the 
temporary variable wherever you want to repeat the subexpression. 
Example 8-9 shows a group of simple additions that use the common 
subexpression (a + b).

Example 8-9 Simple Additions With a Common Subexpression
temp <= a + b;
x <= temp;
y <= temp + c;

Instead of manually forcing common subexpressions to be shared, 
you can let FPGA Compiler II / FPGA Express automatically 
determine whether sharing common subexpressions improves your 
circuit. You do not need to declare a temporary variable to hold the 
common subexpression in this case.

a[4] b[4]

c[6]

z[6]

[5]
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In some cases, sharing common subexpressions results in the 
building of more adders. Consider Example 8-10, where A + B is a 
common subexpression.

Example 8-10 Sharing Common Subexpressions—Increases Area
if cond1

Y <= A + B;
else

Y <= C + D;
end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B is shared, three adders are 
necessary to implement this section of code.

(A + B)
(C + D)
(E + F)

If the common subexpression is not shared, only two adders are 
necessary: one to implement the additions A + B and C + D, and one 
to implement the additions E + F and A + B.

FPGA Compiler II / FPGA Express analyzes common subexpressions 
during the resource sharing phase of the compile process and 
considers area costs and timing characteristics. To turn off the sharing 
of common subexpressions for the current design, use the constraint 
manager. The default is true.
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Example 8-11 Common Subexpressions
Y <= A + B + C;
Z <= D + A + B;

The parser does not recognize A + B as a common subexpression, 
because it parses the second equation as (D + A) + B. You can force 
the parser to recognize the common subexpression by rewriting the 
second assignment statement as

Z <= A + B + D;

or

Z <= D + (A + B);

Note:
You do not have to rewrite the assignment statement, because 
FPGA Compiler II / FPGA Express recognizes common 
subexpressions automatically.

Changing an Operator Bit-Width

The adder in Example 8-12 sums the 8-bit value of A (a BYTE) with 
the 8-bit value of TEMP. TEMP’s value is either B, which is used only 
when it is less than 16, or C, which is a 4-bit value (a 
NIBBLE).Therefore, the upper 4 bits of TEMP are always 0. FPGA 
Compiler II / FPGA Express cannot derive this fact, because TEMP 
is declared with type BYTE. 

You can simplify the synthesized circuit by changing the declared type 
of TEMP to NIBBLE (a 4-bit value). With this modification, half adders, 
rather than full adders, are required to implement the top 4 bits of the 
adder circuit, which Figure 8-10 illustrates.
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Example 8-12 Function With One Adder
function ADD_IT_16 (A, B: BYTE; C: NIBBLE) return BYTE is
   variable TEMP: BYTE;
begin 
   if B < 16 then 
      TEMP <= B;
   else 
      TEMP <= C;
    end if;
  return A + TEMP;
end;

Figure 8-10 Function With One Adder Schematic

Example 8-13 shows how this change in TEMP’s declaration can yield 
a significant savings in circuit area, which Figure 8-11 illustrates.
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Example 8-13 Using Design Knowledge to Simplify an Adder
function ADD_IT_16 (A, B: BYTE; C: NIBBLE)
    return BYTE is
  variable TEMP: NIBBLE;   -- Now only 4 bits
begin
  if B < 16 then
    TEMP <= NIBBLE(B);     -- Cast BYTE to NIBBLE
  else 
    TEMP <= C;
  end if;
  return A + TEMP;         -- Single adder
end;

Figure 8-11 Using TEMP Declaration to Save Circuit Area
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Using State Information

You can also apply design knowledge in sequential designs. Often 
you can make strong assertions about the value of a signal in a 
particular state of a finite-state machine. You can describe this 
information to FPGA Compiler II / FPGA Express. Example 8-14 
shows the VHDL description of a simple state machine that uses two 
processes. Figure 8-12 illustrates the design.

Example 8-14 A Simple State Machine
package STATES is
  type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;

use work.STATES.all;

entity MACHINE is
  port(X, CLOCK: in BIT;
       CURRENT_STATE: buffer STATE_TYPE;
       Z: buffer BIT);
end MACHINE;

architecture BEHAVIOR of MACHINE is
  signal NEXT_STATE: STATE_TYPE;
  signal PREVIOUS_Z: BIT;
begin

  -- Process to hold combinational logic.
  COMBIN: process(CURRENT_STATE, X, PREVIOUS_Z)
  begin
    case CURRENT_STATE is
      when SET0 =>           
        Z <= ’0’;                 -- Set Z to ’0’
        NEXT_STATE <= HOLD0;

      when HOLD0 =>     
        Z <= PREVIOUS_Z;          -- Hold value of Z
        if X = ’0’ then
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          NEXT_STATE <= HOLD0;
        else
          NEXT_STATE <= SET1;
        end if;

      when SET1 =>                -- Set Z to ’1’
        Z <= ’1’;
        NEXT_STATE <= SET0;
    end case;
  end process COMBIN;

  -- Process to hold synchronous elements (flip-flops).
  SYNCH: process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
    PREVIOUS_Z <= Z;
  end process SYNCH;
end BEHAVIOR;
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Figure 8-12 Schematic of Simple State Machine With Two Processes

In the state HOLD0, output Z retains its value from the previous state. 
To accomplish this, you insert a flip-flop to hold PREVIOUS_Z. 
However, you can make some assertions about the value of Z. In 
state HOLD0, the value of Z is always 0. You can deduce this from 
the fact that state HOLD0 is entered only from state SET0, where Z 
is always assigned ’0’. 

Example 8-15 shows how you can change the VHDL description to 
use this assertion, resulting in a simpler circuit. Figure 8-13 illustrates 
the circuit.
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Example 8-15 A Better Implementation of a State Machine
package STATES is
  type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;
use work.STATES.all;

entity MACHINE is
  port(X, CLOCK: in BIT;
        CURRENT_STATE: buffer STATE_TYPE;
        Z: buffer BIT);
end MACHINE;

architecture BEHAVIOR of MACHINE is
  signal NEXT_STATE: STATE_TYPE;
begin
  -- Combinational logic.
  COMBIN: process(CURRENT_STATE, X)
  begin
    case CURRENT_STATE is
      when SET0 =>
        Z <= ’0’;                 -- Set Z to ’0’
        NEXT_STATE <= HOLD0;
      when HOLD0 =>
        Z <= ’0’;                 -- Hold Z at ’0’
        if X = ’0’ then
          NEXT_STATE <= HOLD0;
        else
          NEXT_STATE <= SET1;
        end if;
      when SET1 =>                -- Set Z to ’1’
        Z <= ’1’;
        NEXT_STATE <= SET0;
    end case;
  end process COMBIN;
  -- Process to hold synchronous elements (flip-flops)
  SYNCH: process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
  end process SYNCH;
end BEHAVIOR;
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Figure 8-13 Schematic of an Improved State Machine

Propagating Constants

Constant propagation is the compile-time evaluation of expressions 
containing constants. FPGA Compiler II / FPGA Express uses 
constant propagation to reduce the amount of hardware required to 
implement operators. For example, a + operator with a constant 1 as 
one of its arguments causes an incrementer to be built, rather than 
a general adder. If both arguments of + or any other operator are 
constants, no hardware is constructed, because the expression’s 
value is calculated by FPGA Compiler II / FPGA Express and inserted 
directly in the circuit. 

Other operators that benefit from constant propagation include 
comparators and shifters. Shifting a vector by a constant amount 
requires no logic to implement; it requires only a reshuffling (rewiring) 
of bits. 
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Sharing Complex Operators

The efficiency of a synthesized design depends primarily on how you 
describe its component structure. The optimization of individual 
components, especially those made from random logic, produces 
similar results from two very different descriptions. Therefore, 
concentrate the majority of your design effort on the implied 
component hierarchy (as discussed in the preceding sections) rather 
than on the logical descriptions. Chapter 2, "Design Descriptions”, 
discusses how to define a VHDL design hierarchy. 

FPGA Compiler II / FPGA Express supports many shorthand VHDL 
expressions. There is no benefit to using a verbose syntax when a 
shorter description is adequate. Example 8-16 shows four equivalent 
groups of statements. 

Example 8-16 Equivalent Statements
  signal A, B, C: BIT_VECTOR(3 downto 0);
  . . .
  C <= A and B;
------------------------------------
  C(3 downto 0) <= A(3 downto 0) and B(3 downto 0); 
------------------------------------
  C(3) <= A(3) and B(3); 
  C(2) <= A(2) and B(2); 
  C(1) <= A(1) and B(1); 
  C(0) <= A(0) and B(0); 
------------------------------------
  for I in 3 downto 0 loop
    C(I) <= A(I) and B(I);
  end loop;
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Asynchronous Designs

In a synchronous design, all flip-flops use a single clock that is a 
primary input to the design and there are no combinational feedback 
paths. Synchronous designs perform the same function regardless 
of the clock rate if all signals can propagate through the design’s 
combinational logic during the clock’s cycle time. 

FPGA Compiler II / FPGA Express treats all designs as synchronous. 
It can therefore change the timing behavior of the combinational logic 
if the maximum and minimum delay requirements are met.

FPGA Compiler II / FPGA Express always preserves the Boolean 
function computed by logic, assuming that the clock arrives after all 
signals have propagated. FPGA Compiler II / FPGA Express’s built-
in timing verifier helps determine the slowest path (critical path) 
through the logic, which determines how fast the clock can run.

FPGA Compiler II / FPGA Express provides some support for 
asynchronous designs, but you must assume a greater responsibility 
for the accuracy of your circuits. Although fully synchronous circuits 
usually agree with their simulation models, asynchronous circuits 
might not. FPGA Compiler II / FPGA Express might not warn you 
when a design is not fully synchronous. Be aware of the possibility of 
asynchronous timing problems. 

The most common way to produce asynchronous logic in VHDL is to 
use gated clocks on latches or flip-flops. Example 8-17 shows a fully 
synchronous design, a counter with synchronous ENABLE and 
RESET inputs. Because it is synchronous, this counter works if the 
clock speed is slower than the critical path. Figure 8-14 illustrates the 
design.  
8-23

Writing Circuit Descriptions



Example 8-17 Fully Synchronous Counter With Reset and Enable
entity COUNT is
  port(RESET, ENABLE, CLK: in     BIT;
       Z:                  buffer INTEGER range 0 to 7);
end;
architecture ARCH of COUNT is
begin
  process(RESET, ENABLE, CLK, Z)
  begin
    if (CLK’event and CLK = ’1’) then
      if (RESET = ’1’) then       -- occurs on clock edge
         Z <= 0;
      elsif (ENABLE = ’1’) then   -- occurs on clock edge
        if (Z = 7) then
          Z <= 0;
        else
          Z <= Z + 1;
        end if;
      end if;
    end if;
  end process;
end ARCH; 

Figure 8-14 Schematic of Synchronous Counter With Reset and Enable
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Example 8-18 shows an asynchronous version of the design in 
Example 8-17. The version in Example 8-18 uses two common 
asynchronous design techniques:

• The first technique, shown in Example 8-15, enables the counter 
by using an AND gate on the clock and enable signals.

• The second technique, shown in Figure 8-16, uses an 
asynchronous reset. 

These techniques work only when the proper timing relationships 
exist between the reset signal (RESET) and the clock signal (CLK) 
and there are no glitches in these signals.

Example 8-18 Design With Gated Clock and Asynchronous Reset
entity COUNT is
  port(RESET, ENABLE, CLK: in     BIT;
       Z:                  buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is
  signal GATED_CLK: BIT;
begin
  GATED_CLK <= CLK and ENABLE; -- clock gated by ENABLE

  process(RESET, GATED_CLK, Z)
  begin
    if (RESET = ’1’) then      -- asynchronous reset
      Z <= 0;
    elsif (GATED_CLK’event and GATED_CLK = ’1’) then
      if (Z = 7) then
        Z <= 0;
      else
        Z <= Z + 1;
      end if;
    end if;
  end process;
end ARCH;
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Figure 8-15 Design With AND Gate on Clock and Enable Signals

Figure 8-16 Design With Asynchronous Reset
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Example 8-19 shows an asynchronous design that might not work, 
because FPGA Compiler II / FPGA Express does not guarantee that 
the combinational logic it builds has no hazards (glitches). 

Example 8-19 Incorrect Design (Counter With Asynchronous Load)
entity COUNT is
  port(LOAD_ENABLE, CLK: in     BIT;
       LOAD_DATA:        in     INTEGER range 0 to 7;
       Z:                buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is

begin
  process(LOAD_ENABLE, LOAD_DATA, CLK, Z)
  begin
    if (LOAD_ENABLE = ’1’) then
      Z <= LOAD_DATA;
    elsif (CLK’event and CLK = ’1’) then
      if (Z = 7) then
        Z <= 0;
      else
        Z <= Z + 1;
      end if;
    end if;
  end process;
end ARCH; 

The design in Example 8-19 works only when the logic driving the 
preset and clear pins of the flip-flops that hold Z is faster than the 
clock speed. If you use this design style, you must simulate the 
synthesized circuit thoroughly. You also need to inspect the 
synthesized logic, because potential glitches might not appear in 
simulation. For a safer design, use a synchronous LOAD_ENABLE.

A design synthesized with complex logic driving the gate of a latch 
rarely works. Example 8-20 describes an asynchronous design that 
never works. Figure 8-17 shows the resulting schematic. 
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Example 8-20 Incorrect Asynchronous Design With Gated Clock
entity COMP is
  port(A, B: in     INTEGER range 0 to 7;
       Z:    buffer INTEGER range 0 to 7);
end;
architecture ARCH of COMP is
begin
  process(A, B)
  begin
    if (A = B) then
      Z <= A;
    end if;
  end process;
end ARCH;

Figure 8-17 Schematic of Incorrect Asynchronous Design With Gated Clock

In Example 8-20 and Figure 8-17, the comparator’s output latches 
the value A onto the value Z. This design might work under behavioral 
simulation where the comparison happens instantly. However, the 
hardware comparator generates glitches that cause the latches to 
store new data when they should not.
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Don’t Care Inference

You can greatly reduce circuit area by using don’t care inference. To 
use a don’t care value in your design, create an enumerated type for 
the don’t care value (the standard VHDL BIT type does not include 
don’t care values).

don’t care values are best used as default assignments to variables. 
You can assign a don’t care value to a variable at the beginning of a 
process, in the default section of a case statement, or in the else 
section of an if statement. 

Example 8-21 shows don’t care encoding for a seven-segment LED 
decoder. Enumeration encoding ’D’ represents the don’t care state. 
Figure 8-18 illustrates the design.    

Example 8-21 Using don’t care Type for Seven-Segment LED Decoder
package P is
  type MULTI is (’0’, ’1’, ’D’, ’Z’);
  attribute ENUM_ENCODING: STRING;
  attribute ENUM_ENCODING of MULTI : type is ”0 1 D Z”;
  type MULTI_VECTOR is array (INTEGER range <>) of MULTI;
end P;

use work.P.all;

entity CONVERTER is  
  port(BCD: in MULTI_VECTOR(3 downto 0);
       LED: out MULTI_VECTOR(6 downto 0));

  -- pragma dc_script_begin
  -- set_flatten true
  -- pragma dc_script_end

end CONVERTER;
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architecture BEHAVIORAL of CONVERTER is
begin
CONV: process(BCD)
  begin
     case BCD is
       when ”0000” => LED <= ”1111110”;
       when ”0001” => LED <= ”1100000”;
       when ”0010” => LED <= ”1011011”;
       when ”0011” => LED <= ”1110011”;
       when ”0100” => LED <= ”1100101”;
       when ”0101” => LED <= ”0110111”;
       when ”0110” => LED <= ”0111111”;
       when ”0111” => LED <= ”1100010”;
       when ”1000” => LED <= ”1111111”;
       when ”1001” => LED <= ”1110111”;
       when others => LED <= ”DDDDDDD”;
     end case;
  end process CONV;
end BEHAVIORAL;

Figure 8-18 Seven-Segment LED Decoder With Don’t Care Type
8-30

Writing Circuit Descriptions



Example 8-22 shows the seven-segment decoder used in Example 
8-21, but the default assignment to LED is 0 instead of don’t care. 
Note the larger gate count in the circuit without don’t care values. 
Figure 8-19 illustrates the design.

Example 8-22 Seven-Segment Decoder Without Don’t Care Type
entity CONVERTER is 
  port (BCD: in BIT_VECTOR(3 downto 0);
        LED: out BIT_VECTOR(6 downto 0));
  -- pragma dc_script_begin
  -- set_flatten true
  -- pragma dc_script_end
end CONVERTER;

architecture BEHAVIORAL of CONVERTER is
begin
CONV: process(BCD)
  begin
     case BCD is
       when ”0000” => LED <= ”1111110”;
       when ”0001” => LED <= ”1100000”;
       when ”0010” => LED <= ”1011011”;
       when ”0011” => LED <= ”1110011”;
       when ”0100” => LED <= ”1100101”;
       when ”0101” => LED <= ”0110111”;
       when ”0110” => LED <= ”0111111”;
       when ”0111” => LED <= ”1100010”;
       when ”1000” => LED <= ”1111111”;
       when ”1001” => LED <= ”1110111”;
       when others => LED <= ”0000000”;
     end case;
  end process CONV;
end BEHAVIORAL;
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Figure 8-19 Seven-Segment LED Decoder With 0 LED Default

Using don’t care Default Values

You do not always want to assign a default value of don’t care, 
although it can be beneficial in some cases, as the seven-segment 
decoder in Example 8-22 shows.

The reasons for not always defaulting to don’t care are these:

• The potential for mismatches between simulation and synthesis 
is greater.

• Defaults for variables can hide mistakes in the VHDL code.
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For example, if you assign a default don’t care value to VAR and later 
assign a value to VAR, expecting VAR to be a don’t care, you might 
have overlooked an intervening condition under which VAR is 
assigned. 

Therefore, when you assign a value to a variable (or signal) containing 
a don’t care value, make sure that the variable (or signal) is really a 
don’t care type under those conditions. 

Differences Between Simulation and Synthesis

Don’t care types are treated differently in simulation than they are in 
synthesis, and there can be a mismatch between the two. To a 
simulator, a don’t care is a distinct value, different from a 1 or a 0. In 
synthesis, however, a don’t care value becomes a 0 or a 1 (and the 
hardware built treats it as either a 0 or a 1).  

Whenever a comparison is made to a variable whose value is don’t 
care, simulation and synthesis can differ. The safest way to use don’t 
care types is to

• Assign don’t care values only to output ports

• Make sure the design never reads output ports

These guidelines guarantee that when you simulate in the scope of 
the design itself, the only difference between simulation and synthesis 
occurs when the simulator defines an output as a don’t care. 

Note:
If you use don’t care values internally to a design, expressions 
compared with don’t care (’D’) are synthesized as though their 
values are not equal to ’D’. 
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For example,

if X = ’D’ then
...

is synthesized as

if FALSE then

If you use expressions comparing values with ’D’, there might be a 
difference between pre- and post-synthesis simulation results. For 
this reason, FPGA Compiler II / FPGA Express issues a warning when 
it synthesizes such comparisons.

Warning: A partial don’t-care value was read in routine test 
line 24 in file ’test.vhdl’ This may cause simulation to 
disagree with synthesis. (HDL-171) 

Synthesis Issues

Feedback paths and latches result from ambiguities in signal or 
variable assignments and language supersets, or the differences 
between a VHDL simulator view and the Synopsys use of VHDL.

Feedback Paths and Latches

Implied combinational feedback paths or latches in synthesized logic 
can occur when a signal or variable in a combinational process (one 
without a wait or if signal’event statement) is not fully specified in the 
VHDL description. A variable or signal is fully specified when it is 
assigned under all possible conditions. A variable or signal is not fully 
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specified when a condition exists under which the variable is not 
assigned.     

Fully Specified Variables

Example 8-23 shows several variables. A, B, and C are fully specified; 
X is not.

Example 8-23 Fully Specified Variables
process (COND1)
  variable A, B, C, X : BIT;
begin
  A <= ’0’     -- A is hereby fully specified
  C <= ’0’     -- C is hereby fully specified

  if (COND1) then
    B <= ’1’;    -- B is assigned when COND1 is TRUE
    C <= ’1’;    -- C is already fully specified
    X <= ’1’;    -- X is assigned when COND1 is TRUE
  else
    B <= ’0’;    -- B is assigned when COND1 is FALSE
  end if;
  -- A is assigned regardless of COND1, so A is fully
  --   specified.

  -- B is assigned under all branches of if (COND1),
  --   that is, both when COND1 is TRUE and when
  --   COND1 is FALSE, so B is fully specified.

  -- C is assigned regardless of COND1, so C is fully
  -- specified.  (The second assignment to C does 
  -- not change this.)

  -- X is not assigned under all branches of 
  --    if (COND1), namely, when COND1 is FALSE, 
  --   so X is not fully specified.
end process;
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The conditions of each if and else statement are considered 
independent in Example 8-23. A is considered not fully specified in 
the following fragment:

if (COND1) then
  A <= ’1’;
end if;

if (not COND1) then
  A <= ’0’;
end if;

A variable or signal that is not fully specified in a combinational 
process is considered conditionally specified. In this case a flow-
through latch is implied. You can conditionally assign a variable, but 
you cannot read a conditionally specified variable. You can, however, 
both conditionally assign and read a signal. 

If a fully specified variable is read before its assignment statements, 
combinational feedback might exist. For example, the following 
fragment synthesizes combinational feedback for VAL.

process(NEW, LOAD)
  variable VAL: BIT;
begin
  if (LOAD) then
    VAL <= NEW;
  else 
    VAL <= VAL;
  end if;

  VAL_OUT <= VAL;
end process;
8-36

Writing Circuit Descriptions



In a combinational process, you can ensure that a variable or signal 
is fully specified by providing an initial (default) assignment to the 
variable at the beginning of the process. This default assignment 
assures that the variable is always assigned a value, regardless of 
conditions. Subsequent assignment statements can override the 
default. A default assignment is made to variables A and C in Example 
8-23.

Another way to ensure that you do not imply combinational feedback 
is to use a sequential process (one with a wait or if signal’event 
statement). In such a case, variables and signals are registered. The 
registers break the combinational feedback loop.

See Chapter 7, "Register and Three-State Inference”, for more 
information about sequential processes and the conditions under 
which FPGA Compiler II / FPGA Express infers registers and latches.

Asynchronous Behavior

Some forms of asynchronous behavior are not supported. An 
example is a circuit description of a one-shot signal generator of the 
form

X <= A nand (not(not(not A)));

You might expect this circuit description to generate three inverters 
(an inverting delay line) and a NAND gate, but it is optimized to

X <= A nand (not A);

then

X <= 1;
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Understanding Superset Issues and Error Checking

The Synopsys VHDL Analyzer is a full IEEE 1076 VHDL analyzer, 
described in the VSS User Guide. 

When FPGA Compiler II / FPGA Express reads in a VHDL design, it 
first calls the Synopsys VHDL Analyzer to check the VHDL source 
for errors and then calls FPGA Compiler II / FPGA Express to translate 
the VHDL source to an intermediate form for synthesis. If an error is 
in the VHDL source, you get a VHDL Analyzer message and possibly 
a VHDL Compiler message.  

VHDL Compiler allows globally static objects where only locally static 
objects are allowed, without issuing an error message. However, the 
Synopsys VSS Expert and VSS Professional tools detect and flag 
this error.
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9
FPGA Compiler II / FPGA Express 

Directives 9

Synopsys has defined several methods of providing circuit design 
information directly in your VHDL source code.

Using FPGA Compiler II / FPGA Express directives, you can direct 
translation from VHDL to components with special VHDL comments. 
These synthetic comments turn translation on or off, specify one of 
several hard-wired resolution methods, and provide a means to map 
subprograms to hardware components.

To familiarize yourself with FPGA Compiler II / FPGA Express 
directives, consider the following topics presented in this chapter:

• Notation for FPGA Compiler II / FPGA Express Directives

• FPGA Compiler II / FPGA Express Directives
9-1
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Notation for FPGA Compiler II / FPGA Express Directives

FPGA Compiler II / FPGA Express directives are special (synthetic) 
VHDL comments that affect the actions of FPGA Compiler II / FPGA 
Express. These comments are just a special case of regular VHDL 
comments, so they are ignored by other VHDL tools. Synthetic 
comments are used only to direct the actions of FPGA Compiler II / 
FPGA Express. 

Synthetic comments begin just as regular comments do, with two 
hyphens (--). If the word following these characters is pragma or 
synopsys, FPGA Compiler II / FPGA Express treats the remaining 
comment text as a directive. 

Note:
FPGA Compiler II / FPGA Express displays a syntax error if an 
unrecognized directive is encountered after -- synopsys or 
-- pragma.

FPGA Compiler II / FPGA Express Directives

The three types of directives are:

• Translation stop and start directives

-- pragma synthesis_off
-- pragma synthesis_on

-- pragma translate_off Use not recommended.
-- pragma translate_on Use not recommended.
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• Resolution function directives 

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

• Component implication directives

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Translation Stop and Start Pragma Directives

FPGA Compiler II / FPGA Express supports the synthesis_off and 
synthesis_on pragma directives.

Note:
It is recommended that you not use the following directives:

-- pragma translate_off 
-- pragma translate_on

The use of these directives in FPGA Compiler II / FPGA Express 
can lead to errors in your design.

synthesis_off and synthesis_on Directives

The synthesis_off and synthesis_on directives are the recommended 
mechanisms for hiding simulation-only constructs from synthesis. 
Any text between these directives is checked for syntax, but no 
corresponding hardware is synthesized. 

Example 9-1 shows how you can use the directives to protect a 
simulation driver. 
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Example 9-1 Using synthesis_on and synthesis_off Directives
-- The following test driver for entity EXAMPLE
-- should not be translated:
-- pragma synthesis_off
-- Translation stops

entity DRIVER is
end DRIVER;
architecture VHDL of DRIVER is
    signal A, B : INTEGER range 0 to 255;
    signal SUM  : INTEGER range 0 to 511;

    component EXAMPLE 
        port (A, B: in INTEGER range 0 to 255;
              SUM: out INTEGER range 0 to 511);
    end component;
begin
    U1: EXAMPLE port map(A, B, SUM);
    process
    begin
        for I in 0 to 255 loop
            for J in 0 to 255 loop
                A <= I;
                B <= J;
                wait for 10 ns;
                assert SUM = A + B;
            end loop;
        end loop;
    end process;
end VHDL;

-- pragma synthesis_on
-- Code from here on is translated

entity EXAMPLE is
    port (A, B: in INTEGER range 0 to 255;
          SUM: out INTEGER range 0 to 511);
end EXAMPLE;

architecture VHDL of EXAMPLE is
begin
    SUM <= A + B;
end VHDL;
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Resolution Function Directives

Resolution function directives determine the resolution function 
associated with resolved signals (see “Resolution Functions” on 
page 2-40). FPGA Compiler II / FPGA Express does not support 
arbitrary resolution functions. It does support the following three 
methods:

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

Note:
Do not connect signals that use different resolution functions. 
FPGA Compiler II / FPGA Express supports only one resolution 
function per network.

Component Implication Directives

Component implication directives map VHDL subprograms onto 
existing components or VHDL entities. “Procedures and Functions 
as Design Components” on page 5-45 describes these directives:

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name
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A
Examples A

This appendix presents examples that demonstrate basic concepts 
of Synopsys FPGA Compiler II / FPGA Express:

• Moore Machine

• Mealy Machine

• Read-Only Memory

• Waveform Generator

• Smart Waveform Generator

• Definable-Width Adder-Subtracter

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Soft Drink Machine—State Machine Version
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• Soft Drink Machine—Count Nickels Version

• Carry-Lookahead Adder

• Serial-to-Parallel Converter—Counting Bits

• Serial-to-Parallel Converter—Shifting Bits

• Programmable Logic Arrays

Moore Machine

Figure A-1 is a diagram of a simple Moore finite state machine. It has 
one input (X), four internal states (S0 to S3), and one output (Z).   

Figure A-1 Moore Machine Specification

The VHDL code implementing this finite state machine is shown in 
Example A-1, which includes a schematic of the synthesized circuit. 
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The machine description includes two processes. One process 
defines the synchronous elements of the design (state registers); the 
other process defines the combinational part of the design (state 
assignment case statement). For more details on using the two 
processes, see “Combinational Versus Sequential Processes” on 
page 5-55.

Example A-1 Implementation of a Moore Machine
entity MOORE is               -- Moore machine
  port(X, CLOCK: in BIT;
       Z: out BIT);
end MOORE;

architecture BEHAVIOR of MOORE is
  type STATE_TYPE is (S0, S1, S2, S3);
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

  -- Process to hold combinational logic
  COMBIN: process(CURRENT_STATE, X)
  begin
    case CURRENT_STATE is
      when S0 =>
        Z <= ’0’;
        if X = ’0’ then
          NEXT_STATE <= S0;
        else
          NEXT_STATE <= S2;
        end if;
      when S1 =>
        Z <= ’1’;
        if X = ’0’ then
          NEXT_STATE <= S0;
        else
          NEXT_STATE <= S2;
        end if;
      when S2 =>
        Z <= ’1’;
        if X = ’0’ then
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          NEXT_STATE <= S2;
        else
          NEXT_STATE <= S3;
        end if;
      when S3 =>
        Z <= ’0’;
        if X = ’0’ then
          NEXT_STATE <= S3;
        else
          NEXT_STATE <= S1;
        end if;
    end case;
  end process COMBIN;

  -- Process to hold synchronous elements (flip-flops)
  SYNCH: process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
  end process SYNCH;
end BEHAVIOR;

Figure A-2 Moore Machine Schematic
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Mealy Machine

Figure A-3 is a diagram of a simple Mealy finite state machine. The 
VHDL code for implementing this finite state machine is shown in 
Example A-2. The machine description includes two processes, as 
in the previous Moore machine example.   

Figure A-3 Mealy Machine Specification

Example A-2 Implementation of a Mealy Machine
entity MEALY is            -- Mealy machine
  port(X, CLOCK: in BIT;
       Z: out BIT);
end MEALY;

architecture BEHAVIOR of MEALY is
  type STATE_TYPE is (S0, S1, S2, S3);
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
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begin

  -- Process to hold combinational logic.
  COMBIN: process(CURRENT_STATE, X)
  begin
    case CURRENT_STATE is
      when S0 =>
        if X = ’0’ then
          Z <= ’0’;
          NEXT_STATE <= S0;
        else
          Z <= ’1’;
          NEXT_STATE <= S2;
        end if;
      when S1 =>
        if X = ’0’ then
          Z <= ’0’;
          NEXT_STATE <= S0;
        else
          Z <= ’0’;
          NEXT_STATE <= S2;
        end if;
      when S2 =>
        if X = ’0’ then
          Z <= ’1’;
          NEXT_STATE <= S2;
        else
          Z <= ’0’;
          NEXT_STATE <= S3;
        end if;
      when S3 =>
        if X = ’0’ then
          Z <= ’0’;
          NEXT_STATE <= S3;
        else
          Z <= ’1’;
          NEXT_STATE <= S1;
        end if;
    end case;
  end process COMBIN;
  -- Process to hold synchronous elements (flip-flops)
  SYNCH: process
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  begin
    wait until CLOCK’event and CLOCK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
  end process SYNCH;
end BEHAVIOR; 

Figure A-4 Mealy Machine Schematic

Read-Only Memory

Example A-3 shows how you can define a read-only memory in VHDL. 
The ROM is defined as an array constant, ROM. Each line of the 
constant array specification defines the contents of one ROM 
address. To read from the ROM, index into the array. 

The number of ROM storage locations and bit-width is easy to change. 
The subtype ROM_RANGE specifies that the ROM contains storage 
locations 0 to 7. The constant ROM_WIDTH specifies that the ROM 
is 5 bits wide.
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After you define a ROM constant, you can index into that constant 
many times to read many values from the ROM. If the ROM address 
is computable (see “Computable Operands” on page 4-16), no logic 
is built and the appropriate data value is inserted. If the ROM address 
is not computable, logic is built for each index into the value. In 
Example A-3, ADDR is not computable, so logic is synthesized to 
compute the value.

FPGA Compiler II / FPGA Express does not actually instantiate a 
typical array-logic ROM, such as those available from ASIC vendors. 
Instead, it creates the ROM from random logic gates (AND, OR, NOT, 
and so on). This type of implementation is preferable for small ROMs 
and for ROMs that are regular. For very large ROMs, consider using 
an array-logic implementation supplied by your ASIC vendor.

Example A-3 shows the VHDL source code and the synthesized 
circuit schematic.

Example A-3 Implementation of a ROM in Random Logic
package ROMS is
  -- declare a 5x8 ROM called ROM
  constant ROM_WIDTH: INTEGER := 5;
  subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
  subtype ROM_RANGE is INTEGER range 0 to 7;
  type ROM_TABLE is array (0 to 7) of ROM_WORD;
  constant ROM: ROM_TABLE := ROM_TABLE’(
      ROM_WORD’(”10101”),              -- ROM contents
      ROM_WORD’(”10000”),
      ROM_WORD’(”11111”),
      ROM_WORD’(”11111”),
      ROM_WORD’(”10000”),
      ROM_WORD’(”10101”),
      ROM_WORD’(”11111”),
      ROM_WORD’(”11111”));
end ROMS;
use work.ROMS.all;   -- Entity that uses ROM
entity ROM_5x8 is
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  port(ADDR: in ROM_RANGE;
       DATA: out ROM_WORD);
end ROM_5x8;
architecture BEHAVIOR of ROM_5x8 is
begin
  DATA <= ROM(ADDR);      -- Read from the ROM
end BEHAVIOR;

Figure A-5 ROM Schematic
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Waveform Generator

The waveform generator example shows how to use the previous 
ROM example to implement a waveform generator. 

Assume that you want to produce the waveform output shown in 
Figure A-6.

1. First, declare a ROM wide enough to hold the output signals 
(4 bits) and deep enough to hold all time steps (0 to 12, for a total 
of 13). 

2. Next, define the ROM so that each time step is represented by an 
entry in the ROM. 

3. Finally, create a counter that cycles through the time steps (ROM 
addresses), generating the waveform at each time step.

Figure A-6 Waveform Example
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Example A-4 shows an implementation for the waveform generator. 
It consists of a ROM, a counter, and some simple reset logic.

Example A-4 Implementation of a Waveform Generator
package ROMS is
  -- a 4x13 ROM called ROM that contains the waveform
  constant ROM_WIDTH: INTEGER := 4;
  subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
  subtype ROM_RANGE is INTEGER range 0 to 12;
  type ROM_TABLE is array (0 to 12) of ROM_WORD;
  constant ROM: ROM_TABLE := ROM_TABLE’(
      ”1100”,   -- time step 0
      ”1100”,   -- time step 1
      ”0100”,   -- time step 2
      ”0000”,   -- time step 3
      ”0110”,   -- time step 4
      ”0101”,   -- time step 5
      ”0111”,   -- time step 6
      ”1100”,   -- time step 7
      ”0100”,   -- time step 8
      ”0000”,   -- time step 9
      ”0110”,   -- time step 10
      ”0101”,   -- time step 11
      ”0111”);  -- time step 12
end ROMS;

use work.ROMS.all;
entity WAVEFORM is            -- Waveform generator
  port(CLOCK: in BIT;
       RESET: in BOOLEAN;
       WAVES: out ROM_WORD);
end WAVEFORM;
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architecture BEHAVIOR of WAVEFORM is
  signal STEP: ROM_RANGE;
begin

  TIMESTEP_COUNTER: process   -- Time stepping process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    if RESET then             -- Detect reset
      STEP <= ROM_RANGE’low;  -- Restart
    elsif STEP = ROM_RANGE’high then  -- Finished?
      STEP <= ROM_RANGE’high;  -- Hold at last value
   -- STEP <= ROM_RANGE’low;   -- Continuous wave
    else
      STEP <= STEP + 1;        -- Continue stepping
    end if;
  end process TIMESTEP_COUNTER;

  WAVES <= ROM(STEP);
end BEHAVIOR;

Figure A-7 Waveform Generator Schematic

 

A-12

Examples



When the counter STEP reaches the end of the ROM, STEP stops, 
generates the last value, then waits until a reset. To make the 
sequence automatically repeat, remove the following statement:

STEP <= ROM_RANGE’high;  -- Hold at last value

Use the following statement instead (commented out in Example A-4):

STEP <= ROM_RANGE’low;   -- Continuous wave

Smart Waveform Generator

The smart waveform generator in Figure A-8 is an extension of the 
waveform generator in Figure A-6 on page A-10. But this smart 
waveform generator is capable of holding the waveform at any time 
step for several clock cycles. 

Figure A-8 Waveform for Smart Waveform Generator Example
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The implementation of the smart waveform generator is shown in 
Example A-5. It is similar to the waveform generator in Example A-4 
on page A-11, but has two additions. A new ROM, D_ROM, has been 
added to hold the length of each time step. A value of 1 specifies that 
the corresponding time step should be one clock cycle long; a value 
of 80 specifies that the time step should be 80 clock cycles long. The 
second addition to the previous waveform generator is a delay counter 
that counts the clock cycles between time steps.

In the architecture of this example, a selected signal assignment 
determines the value of the NEXT_STEP counter.

Example A-5 Implementation of a Smart Waveform Generator
package ROMS is

  -- a 4x13 ROM called W_ROM containing the waveform
  constant W_ROM_WIDTH: INTEGER := 4;
  subtype W_ROM_WORD is BIT_VECTOR (1 to W_ROM_WIDTH);
  subtype W_ROM_RANGE is INTEGER range 0 to 12;
  type W_ROM_TABLE is array (0 to 12) of W_ROM_WORD;
  constant W_ROM: W_ROM_TABLE := W_ROM_TABLE’(
    ”1100”,   -- time step 0
    ”1100”,   -- time step 1
    ”0100”,   -- time step 2
    ”0000”,   -- time step 3
    ”0110”,   -- time step 4
    ”0101”,   -- time step 5
    ”0111”,   -- time step 6
    ”1100”,   -- time step 7
    ”0100”,   -- time step 8
    ”0000”,   -- time step 9
    ”0110”,   -- time step 10
    ”0101”,   -- time step 11
    ”0111”);  -- time step 12

  -- a 7x13 ROM called D_ROM containing the delays
  subtype D_ROM_WORD is INTEGER range 0 to 100;
  subtype D_ROM_RANGE is INTEGER range 0 to 12;
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  type D_ROM_TABLE is array (0 to 12) of D_ROM_WORD;
  constant D_ROM: D_ROM_TABLE := D_ROM_TABLE’(
      1,80,5,1,1,1,1,20,5,1,1,1,1);
end ROMS;

use work.ROMS.all;  
entity WAVEFORM is        -- Smart Waveform Generator
  port(CLOCK: in BIT;
       RESET: in BOOLEAN;
       WAVES: out W_ROM_WORD);
end WAVEFORM;

architecture BEHAVIOR of WAVEFORM is
  signal STEP, NEXT_STEP: W_ROM_RANGE;
  signal DELAY: D_ROM_WORD;
begin

  -- Determine the value of the next time step
  NEXT_STEP <= W_ROM_RANGE’high when
                    STEP = W_ROM_RANGE’high 
               else 
                 STEP + 1;
  -- Keep track of which time step we are in
  TIMESTEP_COUNTER: process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    if RESET then             -- Detect reset
      STEP <= 0;              -- Restart waveform
    elsif DELAY = 1 then
      STEP <= NEXT_STEP;      -- Continue stepping
    else
      null;          -- Wait for DELAY to count down;
    end if;          -- do nothing here
  end process TIMESTEP_COUNTER;

   -- Count the delay between time steps
  DELAY_COUNTER: process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    if RESET then             -- Detect reset
      DELAY <= D_ROM(0);      -- Restart
    elsif DELAY = 1 then      -- Have we counted down?
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      DELAY <= D_ROM(NEXT_STEP);  -- Next delay value
    else
      DELAY <= DELAY - 1;   -- decrement DELAY counter
    end if;
  end process DELAY_COUNTER;

  WAVES <= W_ROM(STEP);     -- Output waveform value
end BEHAVIOR;

Figure A-9 Smart Waveform Generator Schematic

Definable-Width Adder-Subtracter

VHDL lets you create functions for use with array operands of any 
size. This example shows an adder-subtracter circuit that, when 
called, is adjusted to fit the size of its operands.
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Example A-6 shows an adder-subtracter defined for two 
unconstrained arrays of bits (type BIT_VECTOR) in a package named 
MATH. When an unconstrained array type is used for an argument to 
a subprogram, the actual constraints of the array are taken from the 
actual parameter values in a subprogram call.   

Example A-6 MATH Package for Example A-7
package MATH is
  function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
      return BIT_VECTOR;
    -- Add or subtract two BIT_VECTORs of equal length
end MATH;

package body MATH is
    function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
        return BIT_VECTOR is
      variable CARRY: BIT;
      variable A, B, SUM: 
          BIT_VECTOR(L’length-1 downto 0);
    begin
      if ADD then
          -- Prepare for an ”add” operation
          A := L;
          B := R;
          CARRY := ’0’;
      else

          -- Prepare for a ”subtract” operation
          A := L;
          B := not R;
          CARRY := ’1’;
      end if;

      -- Create a ripple carry chain; sum up bits
      for i in 0 to A’left loop
        SUM(i) := A(i) xor B(i) xor CARRY;
        CARRY := (A(i) and B(i)) or
                 (A(i) and CARRY) or
                 (CARRY and B(i));
      end loop;
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      return SUM;        -- Result
    end;
end MATH;

Within the function ADD_SUB, two temporary variables, A and B, are 
declared. These variables are declared to be the same length as L 
(and necessarily, R) but have their index constraints normalized to 
L’length-1 downto 0. After the arguments are normalized, you can 
create a ripple carry adder by using a for loop. 

No explicit references to a fixed array length are in the function 
ADD_SUB. Instead, the VHDL array attributes ’left and ’length are 
used. These attributes allow the function to work on arrays of any 
length.

Example A-7 shows how to use the adder-subtracter defined in the 
MATH package. In this example, the vector arguments to functions 
ARG1 and ARG2 are declared as BIT_VECTOR(1 to 6). This 
declaration causes ADD_SUB to work with 6-bit arrays. A schematic 
of the synthesized circuit follows Example A-7.

Example A-7 Implementation of a 6-Bit Adder-Subtracter
use work.MATH.all;

entity EXAMPLE is
    port(ARG1, ARG2: in BIT_VECTOR(1 to 6);
         ADD: in BOOLEAN;
         RESULT : out BIT_VECTOR(1 to 6));
end EXAMPLE;

architecture BEHAVIOR of EXAMPLE is
begin
  RESULT <= ADD_SUB(ARG1, ARG2, ADD);
end BEHAVIOR;
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Figure A-10 6-Bit Adder-Subtracter Schematic

Count Zeros—Combinational Version

The count zeros—combinational example illustrates a design 
problem in which an 8-bit-wide value is given and the circuit 
determines two things: 

• That no more than one sequence of zeros is in the value.

• The number of zeros in that sequence (if any). This computation 
must be completed in a single clock cycle. 

The circuit produces two outputs: the number of zeros found and an 
error indication.

A valid input value can have at most one consecutive series of zeros. 
A value consisting entirely of ones is defined as a valid value. If a 
value is invalid, the zero counter resets to 0. For example, the value 
00000000 is valid and has eight zeros; value 11000111 is valid and 
has three zeros; value 00111100 is invalid.
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Example A-8 shows the VHDL description for the circuit. It consists 
of a single process with a for loop that iterates across each bit in the 
given value. At each iteration, a temporary INTEGER variable 
(TEMP_COUNT) counts the number of zeros encountered. Two 
temporary Boolean variables (SEEN_ZERO and SEEN_TRAILING), 
initially false, are set to true when the beginning and end of the first 
sequence of zeros is detected.

If a zero is detected after the end of the first sequence of zeros (after 
SEEN_TRAILING is true), the zero count is reset (to 0), ERROR is 
set to true, and the for loop is exited.

Example A-8 shows a combinational (parallel) approach to counting 
the zeros. The next example shows a sequential (serial) approach.

Example A-8 Count Zeros—Combinational
entity COUNT_COMB_VHDL is
  port(DATA:  in  BIT_VECTOR(7 downto 0);
       COUNT: out INTEGER range 0 to 8;
       ERROR: out BOOLEAN);
end COUNT_COMB_VHDL;

architecture BEHAVIOR of COUNT_COMB_VHDL is
begin
  process(DATA)
    variable TEMP_COUNT : INTEGER range 0 to 8;
    variable SEEN_ZERO, SEEN_TRAILING : BOOLEAN;
  begin
    ERROR <= FALSE;
    SEEN_ZERO <= FALSE;
    SEEN_TRAILING <= FALSE;
    TEMP_COUNT <= 0;
    for I in 0 to 7 loop
      if (SEEN_TRAILING and DATA(I) = ’0’) then
        TEMP_COUNT <= 0;
        ERROR <= TRUE;
        exit;
      elsif (SEEN_ZERO and DATA(I) = ’1’) then
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        SEEN_TRAILING <= TRUE;
      elsif (DATA(I) = ’0’) then
        SEEN_ZERO <= TRUE;
        TEMP_COUNT <= TEMP_COUNT + 1;
      end if;
    end loop;

    COUNT <= TEMP_COUNT;
  end process;

end BEHAVIOR;

Figure A-11 Count Zeros—Combinational Schematic
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Count Zeros—Sequential Version

The count zeros—sequential example shows a sequential (clocked) 
variant of the preceding design (Count Zeros—Combinational 
Version).

The circuit now accepts the 8-bit data value serially, 1 bit per clock 
cycle, by using the DATA and CLK inputs. The other two inputs are

• RESET, which resets the circuit

• READ, which causes the circuit to begin accepting data bits

The circuit’s three outputs are

• IS_LEGAL, which is true if the data was a valid value

• COUNT_READY, which is true at the first invalid bit or when all 8 
bits have been processed

• COUNT, the number of zeros (if IS_LEGAL is true)

Note:
The output port COUNT is declared with mode BUFFER so that 
it can be read inside the process. OUT ports can only be written 
to, not read in.

Example A-9 Count Zeros—Sequential
entity COUNT_SEQ_VHDL is
  port(DATA, CLK: in BIT;
       RESET, READ: in BOOLEAN;
       COUNT: buffer INTEGER range 0 to 8;
       IS_LEGAL: out BOOLEAN;
       COUNT_READY: out BOOLEAN);
end COUNT_SEQ_VHDL;
architecture BEHAVIOR of COUNT_SEQ_VHDL is
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begin
  process
    variable SEEN_ZERO, SEEN_TRAILING: BOOLEAN;
    variable BITS_SEEN: INTEGER range 0 to 7;
  begin
    wait until CLK’event and CLK = ’1’;
 
    if(RESET) then
      COUNT_READY <= FALSE;
      IS_LEGAL <= TRUE; -- signal assignment
      SEEN_ZERO <= FALSE; -- variable assignment
      SEEN_TRAILING <= FALSE;
      COUNT <= 0;
      BITS_SEEN <= 0;
    else
      if (READ) then
        if (SEEN_TRAILING and DATA = ’0’) then
          IS_LEGAL <= FALSE;
          COUNT <= 0;
          COUNT_READY <= TRUE;
        elsif (SEEN_ZERO and DATA = ’1’) then
          SEEN_TRAILING := TRUE;
        elsif (DATA = ’0’) then
          SEEN_ZERO <= TRUE;
          COUNT <= COUNT + 1;
        end if;

        if (BITS_SEEN = 7) then
          COUNT_READY <= TRUE;
        else
          BITS_SEEN <=  BITS_SEEN + 1;
        end if;

      end if;    -- if (READ)
    end if;      -- if (RESET)
  end process;
end BEHAVIOR;
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Figure A-12 Count Zeros—Sequential Schematic

Soft Drink Machine—State Machine Version

The soft drink machine—state machine example is a control unit for 
a soft drink vending machine.   

The circuit reads signals from a coin input unit and sends outputs to 
a change dispensing unit and a drink dispensing unit. 

Here are the design parameters for Example A-10 and Example A-11:

• This example assumes that only one kind of soft drink is 
dispensed.

• This is a clocked design with CLK and RESET input signals.

• The price of the drink is 35 cents. 

• The input signals from the coin input unit are NICKEL_IN (nickel 
deposited), DIME_IN (dime deposited), and QUARTER_IN 
(quarter deposited). 
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• The output signals to the change dispensing unit are 
NICKEL_OUT and DIME_OUT. 

• The output signal to the drink dispensing unit is DISPENSE 
(dispense drink).

• The first VHDL description for this design uses a state machine 
description style. The second VHDL description is in Example 
A-11.

Example A-10 Soft Drink Machine—State Machine
library synopsys; use synopsys.attributes.all;

entity DRINK_STATE_VHDL is
  port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
       CLK: BIT;
       NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_STATE_VHDL;

architecture BEHAVIOR of DRINK_STATE_VHDL is
  type STATE_TYPE is (IDLE, FIVE, TEN, FIFTEEN,
                  TWENTY, TWENTY_FIVE, THIRTY, OWE_DIME);
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
  attribute STATE_VECTOR : STRING;
  attribute STATE_VECTOR of BEHAVIOR : architecture is

 ”CURRENT_STATE”;

attribute sync_set_reset of reset : signal is ”true”;
begin

  process(NICKEL_IN, DIME_IN, QUARTER_IN, 
          CURRENT_STATE, RESET, CLK) 
  begin
    -- Default assignments
    NEXT_STATE <= CURRENT_STATE;
    NICKEL_OUT <= FALSE;
    DIME_OUT <= FALSE;
    DISPENSE <= FALSE;

    -- Synchronous reset
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    if(RESET) then
      NEXT_STATE <= IDLE;
    else

      -- State transitions and output logic
      case CURRENT_STATE is
        when IDLE =>
          if(NICKEL_IN) then
            NEXT_STATE <= FIVE;
          elsif(DIME_IN) then
            NEXT_STATE <= TEN;
          elsif(QUARTER_IN) then
            NEXT_STATE <= TWENTY_FIVE;
          end if;

        when FIVE =>
          if(NICKEL_IN) then
            NEXT_STATE <= TEN;
          elsif(DIME_IN) then
            NEXT_STATE <= FIFTEEN;
          elsif(QUARTER_IN) then
            NEXT_STATE <= THIRTY;
          end if;
        when TEN =>
          if(NICKEL_IN) then
            NEXT_STATE <= FIFTEEN;
          elsif(DIME_IN) then
            NEXT_STATE <= TWENTY;
          elsif(QUARTER_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
          end if;
        when FIFTEEN =>
          if(NICKEL_IN) then
            NEXT_STATE <= TWENTY;
          elsif(DIME_IN) then
            NEXT_STATE <= TWENTY_FIVE;
          elsif(QUARTER_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
            NICKEL_OUT <= TRUE;
          end if;
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        when TWENTY =>
          if(NICKEL_IN) then
            NEXT_STATE <= TWENTY_FIVE;
          elsif(DIME_IN) then
            NEXT_STATE <= THIRTY;
          elsif(QUARTER_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
            DIME_OUT <= TRUE;
          end if;

        when TWENTY_FIVE =>
          if(NICKEL_IN) then
            NEXT_STATE <= THIRTY;
          elsif(DIME_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
          elsif(QUARTER_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
            DIME_OUT <= TRUE;
            NICKEL_OUT <= TRUE;
          end if;

        when THIRTY =>
          if(NICKEL_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
          elsif(DIME_IN) then
            NEXT_STATE <= IDLE;
            DISPENSE <= TRUE;
            NICKEL_OUT <= TRUE;
          elsif(QUARTER_IN) then
            NEXT_STATE <= OWE_DIME;
            DISPENSE <= TRUE;
            DIME_OUT <= TRUE;
          end if;

        when OWE_DIME =>
          NEXT_STATE <= IDLE;
          DIME_OUT <= TRUE;
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      end case;
    end if;
  end process;

  -- Synchronize state value with clock
  -- This causes it to be stored in flip-flops
  process
  begin
    wait until CLK’event and CLK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
  end process;
end BEHAVIOR;

Figure A-13 Soft Drink Machine—State Machine Schematic
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Soft Drink Machine—Count Nickels Version

The soft drink machine—count nickels example uses the same design 
parameters as the preceding Example A-10 (Soft Drink Machine—
State Machine), with the same input and output signals. In this 
version, a counter counts the number of nickels deposited. This 
counter is incremented by 1 if the deposit is a nickel, by 2 if it is a 
dime, and by 5 if it is a quarter.  

Example A-11 Soft Drink Machine—Count Nickels
entity DRINK_COUNT_VHDL is
  port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
       CLK: BIT;
       NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_COUNT_VHDL;

architecture BEHAVIOR of DRINK_COUNT_VHDL is
  signal CURRENT_NICKEL_COUNT,
         NEXT_NICKEL_COUNT: INTEGER range 0 to 7;
  signal CURRENT_RETURN_CHANGE, NEXT_RETURN_CHANGE : BOOLEAN;
begin

  process(NICKEL_IN, DIME_IN, QUARTER_IN, RESET, CLK, 
          CURRENT_NICKEL_COUNT, CURRENT_RETURN_CHANGE) 
    variable TEMP_NICKEL_COUNT: INTEGER range 0 to 12;
  begin
    -- Default assignments
    NICKEL_OUT <= FALSE;
    DIME_OUT <= FALSE;
    DISPENSE <= FALSE;
    NEXT_NICKEL_COUNT <= 0;
    NEXT_RETURN_CHANGE <= FALSE;

    -- Synchronous reset
    if (not RESET) then
      TEMP_NICKEL_COUNT <= CURRENT_NICKEL_COUNT;

      -- Check whether money has come in
      if (NICKEL_IN) then
        -- NOTE:  This design will be flattened, so
        --   these multiple adders will be optimized
        TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 1;
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      elsif(DIME_IN) then
        TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 2;
      elsif(QUARTER_IN) then
        TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 5;
      end if;

      -- Enough deposited so far?
      if(TEMP_NICKEL_COUNT >= 7) then
        TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 7;
        DISPENSE <= TRUE;
      end if;

      -- Return change
      if(TEMP_NICKEL_COUNT >= 1 or 
         CURRENT_RETURN_CHANGE) then
        if(TEMP_NICKEL_COUNT >= 2) then
          DIME_OUT <= TRUE;
          TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 2;
          NEXT_RETURN_CHANGE <= TRUE;
        end if;
        if(TEMP_NICKEL_COUNT = 1) then
          NICKEL_OUT <= TRUE;
          TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 1;
        end if;
      end if;

      NEXT_NICKEL_COUNT <= TEMP_NICKEL_COUNT;
    end if;
  end process;

  -- Remember the return-change flag and 
  -- the nickel count for the next cycle
  process
  begin
    wait until CLK’event and CLK = ’1’;
    CURRENT_RETURN_CHANGE <= NEXT_RETURN_CHANGE;
    CURRENT_NICKEL_COUNT <= NEXT_NICKEL_COUNT;
  end process;

end BEHAVIOR;
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Figure A-14 Soft Drink Machine—Count Nickels Version Schematic
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Carry-Lookahead Adder

This example uses concurrent procedure calls to build a 32-bit carry-
lookahead adder. The adder is built by partitioning of the 32-bit input 
into eight slices of 4 bits each. Each of the eight slices computes 
propagate and generate values by using the PG procedure.

Propagate (output P from PG) is ’1’ for a bit position if that position 
propagates a carry from the next-lower position to the next-higher 
position. Generate (output G) is ’1’ for a bit position if that position 
generates a carry to the next-higher position, regardless of the carry-
in from the next lower position. The carry-lookahead logic reads the 
carry-in, propagate, and generate information computed from the 
inputs. The logic computes the carry value for each bit position and 
makes the addition operation an XOR of the inputs and the carry 
values. 

Carry Value Computations

The carry values are computed by a three-level tree of 4-bit carry-
lookahead blocks.

• The first level of the tree computes the 32 carry values and the 
eight group-propagate and generate values. Each of the first-level 
group-propagate and generate values tells if that 4-bit slice 
propagates and generates carry values from the next-lower group 
to the next-higher group. The first-level lookahead blocks read the 
group carry computed at the second level.
A-32

Examples



• The second-level lookahead blocks read the group-propagate and 
generate information from the four first-level blocks and then 
compute their own group-propagate and generate information. 
The second-level lookahead blocks also read group carry 
information computed at the third level to compute the carries for 
each of the third-level blocks.

• The third-level block reads the propagate and generate 
information of the second level to compute a propagate and 
generate value for the entire adder. It also reads the external carry 
to compute each second-level carry. The carry-out for the adder 
is ’1’ if the third-level generate is ’1’ or if the third-level propagate 
is ’1’ and the external carry is ’1’.

The third-level carry-lookahead block is capable of processing 
four second-level blocks. But because there are only two second-
level blocks, the high-order 2 bits of the computed carry are 
ignored; the high-order two bits of the generate input to the third-
level are set to zero, ”00”; and the propagate high-order bits are 
set to ”11”. These settings cause the unused portion to propagate 
carries but not to generate them. Figure A-15 shows the overall 
structure for the carry-lookahead adder.
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Figure A-15 Carry-Lookahead Adder Block Diagram
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The VHDL implementation of the design in Figure A-15 is 
accomplished with four procedures:

CLA
Names a 4-bit carry-lookahead block.

PG
Computes first-level propagate and generate information.

SUM
Computes the sum by adding the XOR values to the inputs with 
the carry values computed by CLA.

BITSLICE
Collects the first-level CLA blocks, the PG computations, and the 
SUM. This procedure performs all the work for a 4-bit value except 
for the second- and third-level lookaheads.

Example A-12 shows a VHDL description of the adder.

Example A-12 Carry-Lookahead Adder
package LOCAL is
  constant N:   INTEGER := 4;

  procedure BITSLICE(
      A, B: in BIT_VECTOR(3 downto 0);
      CIN: in BIT;
      signal S: out BIT_VECTOR(3 downto 0);
      signal GP, GG: out BIT);
  procedure PG(
      A, B: in BIT_VECTOR(3 downto 0);
      P, G: out BIT_VECTOR(3 downto 0));
  function SUM(A, B, C: BIT_VECTOR(3 downto 0)) 
      return BIT_VECTOR;
  procedure CLA(
      P, G: in BIT_VECTOR(3 downto 0); 
      CIN: in BIT;
      C: out BIT_VECTOR(3 downto 0); 
      signal GP, GG: out BIT);
end LOCAL;
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package body LOCAL is
  -----------------------------------------------
  -- Compute sum and group outputs from a, b, cin
  -----------------------------------------------

  procedure BITSLICE(
      A, B: in BIT_VECTOR(3 downto 0);
      CIN: in BIT;
      signal S: out BIT_VECTOR(3 downto 0);
      signal GP, GG: out BIT) is

    variable P, G, C: BIT_VECTOR(3 downto 0);
  begin
    PG(A, B, P, G);
    CLA(P, G, CIN, C, GP, GG);
    S <= SUM(A, B, C);
  end;

  -------------------------------------------------
  -- Compute propagate and generate from input bits
  -------------------------------------------------

  procedure PG(A, B: in BIT_VECTOR(3 downto 0);
               P, G: out BIT_VECTOR(3 downto 0)) is

  begin
    P <= A or B;
    G <= A and B;
  end;

  --------------------------------------------------
  -- Compute sum from the input bits and the carries
  --------------------------------------------------

  function SUM(A, B, C: BIT_VECTOR(3 downto 0))
      return BIT_VECTOR is

  begin
    return(A xor B xor C);
  end;

  ------------------------------
  -- 4-bit carry-lookahead block
  ------------------------------

  procedure CLA(
      P, G: in BIT_VECTOR(3 downto 0);
      CIN: in BIT;
      C: out BIT_VECTOR(3 downto 0);
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      signal GP, GG: out BIT) is
    variable TEMP_GP, TEMP_GG, LAST_C: BIT;
  begin
    TEMP_GP <= P(0);
    TEMP_GG <= G(0);
    LAST_C <= CIN;
    C(0) <= CIN;

    for I in 1 to N-1 loop
      TEMP_GP <= TEMP_GP and P(I);
      TEMP_GG <= (TEMP_GG and P(I)) or G(I);
      LAST_C <= (LAST_C and P(I-1)) or G(I-1);
      C(I) <= LAST_C;
    end loop;

    GP <= TEMP_GP;
    GG <= TEMP_GG;
  end;
end LOCAL;

use WORK.LOCAL.ALL;

---------------------------------
-- A 32-bit carry-lookahead adder
---------------------------------

entity ADDER is
  port(A, B: in BIT_VECTOR(31 downto 0); 
       CIN: in BIT;
       S: out BIT_VECTOR(31 downto 0); 
       COUT: out BIT);
end ADDER;
architecture BEHAVIOR of ADDER is

  signal GG,GP,GC: BIT_VECTOR(7 downto 0); 
    -- First-level generate, propagate, carry
  signal GGG, GGP, GGC: BIT_VECTOR(3 downto 0); 
    -- Second-level gen, prop, carry
  signal GGGG, GGGP: BIT;
    -- Third-level gen, prop

begin
  -- Compute Sum and 1st-level Generate and Propagate
  -- Use input data and the 1st-level Carries computed
  -- later.
  BITSLICE(A( 3 downto  0),B( 3 downto  0),GC(0),
           S( 3 downto  0),GP(0), GG(0));
  BITSLICE(A( 7 downto  4),B( 7 downto  4),GC(1),
           S( 7 downto  4),GP(1), GG(1));
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  BITSLICE(A(11 downto  8),B(11 downto  8),GC(2),
           S(11 downto  8),GP(2), GG(2));
  BITSLICE(A(15 downto 12),B(15 downto 12),GC(3),
           S(15 downto 12),GP(3), GG(3));
  BITSLICE(A(19 downto 16),B(19 downto 16),GC(4),
           S(19 downto 16),GP(4), GG(4));
  BITSLICE(A(23 downto 20),B(23 downto 20),GC(5),
           S(23 downto 20),GP(5), GG(5));
  BITSLICE(A(27 downto 24),B(27 downto 24),GC(6),
           S(27 downto 24),GP(6), GG(6));
  BITSLICE(A(31 downto 28),B(31 downto 28),GC(7),
           S(31 downto 28),GP(7), GG(7));

  -- Compute first-level Carries and second-level
  -- generate and propagate.
  -- Use first-level Generate, Propagate, and 
  -- second-level carry.
  process(GP, GG, GGC)
    variable TEMP: BIT_VECTOR(3 downto 0);
  begin
    CLA(GP(3 downto 0), GG(3 downto 0), GGC(0), TEMP,
        GGP(0), GGG(0));
    GC(3 downto 0) <= TEMP;
  end process;

  process(GP, GG, GGC)
    variable TEMP: BIT_VECTOR(3 downto 0);
  begin
    CLA(GP(7 downto 4), GG(7 downto 4), GGC(1), TEMP,
        GGP(1), GGG(1));
    GC(7 downto 4) <= TEMP;
  end process;

  -- Compute second-level Carry and third-level
  --   Generate and Propagate
  -- Use second-level Generate, Propagate and Carry-in
  --   (CIN)
  process(GGP, GGG, CIN)
    variable TEMP: BIT_VECTOR(3 downto 0);
  begin
    CLA(GGP, GGG, CIN, TEMP, GGGP, GGGG);
    GGC <= TEMP;
  end process;

  -- Assign unused bits of second-level Generate and
  --   Propagate
  GGP(3 downto 2) <= ”11”;
  GGG(3 downto 2) <= ”00”;
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  -- Compute Carry-out (COUT)
  -- Use third-level Generate and Propagate and 
  --   Carry-in (CIN).
  COUT <= GGGG or (GGGP and CIN);
end BEHAVIOR;

Implementation

In the carry-lookahead adder implementation, procedures perform 
the computation of the design. The procedures can also be in the 
form of separate entities and used by component instantiation, 
producing a hierarchical design. FPGA Compiler II / FPGA Express 
does not collapse a hierarchy of entities, but it does collapse the 
procedure call hierarchy into one design.

The keyword signal is included before some of the interface parameter 
declarations. This keyword is required for the out formal parameters 
when the actual parameters must be signals.

The output parameter C from the CLA procedure is not declared as 
a signal; thus, it is not allowed in a concurrent procedure call. Only 
signals can be used in such calls. To overcome this problem, 
subprocesses are used, declaring a temporary variable TEMP. TEMP 
receives the value of the C parameter and assigns it to the appropriate 
signal (a generally useful technique).
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Serial-to-Parallel Converter—Counting Bits

This example shows the design of a serial-to-parallel converter that 
reads a serial, bit-stream input and produces an 8-bit output.

The design reads the following inputs:

SERIAL_IN
The serial input data.

RESET
The input that, when it is ’1’, causes the converter to reset. All 
outputs are set to 0, and the converter is prepared to read the 
next serial word.

CLOCK
The value of RESET and SERIAL_IN, which is read on the positive 
transition of this clock. Outputs of the converter are also valid only 
on positive transitions.

The design produces the following outputs:

PARALLEL_OUT
The 8-bit value read from the SERIAL_IN port. 

READ_ENABLE
The output that, when it is ’1’ on the positive transition of CLOCK, 
causes the data on PARALLEL_OUT to be read.

PARITY_ERROR
The output that, when it is ’1’ on the positive transition of CLOCK, 
indicates that a parity error has been detected on the SERIAL_IN 
port. When a parity error is detected, the converter halts until 
restarted by the RESET port.
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Input Format

When no data is being transmitted to the serial port, keep it at a value 
of ’0’. Each 8-bit value requires ten clock cycles to read it. On the 
eleventh clock cycle, the parallel output value can be read.

In the first cycle, a ’1’ is placed on the serial input. This assignment 
indicates that an 8-bit value follows. The next eight cycles transmit 
each bit of the value. The most significant bit is transmitted first. The 
tenth cycle transmits the parity of the 8-bit value. It must be ’0’ if an 
even number of ’1’ values are in the 8-bit data, and ’1’ otherwise. If 
the converter detects a parity error, it sets the PARITY_ERROR output 
to ’1’ and waits until the value is reset.

On the eleventh cycle, the READ_ENABLE output is set to ’1’ and 
the 8-bit value can be read from the PARALLEL_OUT port. If the 
SERIAL_IN port has a ’1’ on the eleventh cycle, another 8-bit value 
is read immediately; otherwise, the converter waits until SERIAL_IN 
goes to ’1’.

Figure A-16 shows the timing of this design.
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Figure A-16 Sample Waveform Through the Converter

Implementation Details

The implementation of the converter is as a four-state finite-state 
machine with synchronous reset. When a reset is detected, the 
converter enters a WAIT_FOR_START state. The description of each 
state follows

WAIT_FOR_START
Stay in this state until a ’1’ is detected on the serial input. When 
a ’1’ is detected, clear the PARALLEL_OUT registers and go to 
the READ_BITS state.

READ_BITS
If the value of the current_bit_position counter is 8, all 8 bits have 
been read. Check the computed parity with the transmitted parity. 
If it is correct, go to the ALLOW_READ state; otherwise, go to the 
PARITY_ERROR state. 

CLOCK

SERIAL_IN

RESET

PARALLEL_OUT

READ_ENABLE

PARITY_ERROR

XX 2D XX
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If all 8 bits have not yet been read, set the appropriate bit in the 
PARALLEL_OUT buffer to the SERIAL_IN value, compute the 
parity of the bits read so far, and increment the 
current_bit_position.

ALLOW_READ
This is the state where the outside world reads the 
PARALLEL_OUT value. When that value is read, the design 
returns to the WAIT_FOR_START state.

PARITY_ERROR_DETECTED
In this state, the PARITY_ERROR output is set to ’1’ and nothing 
else is done.

This design has four values stored in registers: 

CURRENT_STATE
Remembers the state as of the last clock edge.

CURRENT_BIT_POSITION
Remembers how many bits have been read so far.

CURRENT_PARITY
Keeps a running XOR of the bits read.

CURRENT_PARALLEL_OUT
Stores each parallel bit as it is found.

The design has two processes: the combinational NEXT_ST 
containing the combinational logic and the sequential SYNCH that is 
clocked.
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NEXT_ST performs all the computations and state assignments. The 
NEXT_ST process starts by assigning default values to all the signals 
it drives. This assignment guarantees that all signals are driven under 
all conditions. Next, the RESET input is processed. If RESET is not 
active, a case statement determines the current state and its 
computations. State transitions are performed by assigning the next 
state’s value you want to the NEXT_STATE signal.

The serial-to-parallel conversion itself is performed by these two 
statements in the NEXT_ST process:

NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <= SERIAL_IN;
NEXT_BIT_POSITION <= CURRENT_BIT_POSITION + 1;

The first statement assigns the current serial input bit to a particular 
bit of the parallel output. The second statement increments the next 
bit position to be assigned.

SYNCH registers and updates the stored values previously 
described. Each registered signal has two parts, NEXT_... and 
CURRENT_... :

NEXT_...
Signals hold values computed by the NEXT_ST process. 

CURRENT_...
Signals hold the values driven by the SYNCH process. The 
CURRENT_... signals hold the values of the NEXT_... signals as 
of the last clock edge.

Example A-13 shows a VHDL description of the converter.
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Example A-13 Serial-to-Parallel Converter—Counting Bits
-- Serial-to-Parallel Converter, counting bits

package TYPES is
  -- Declares types used in the rest of the design
  type STATE_TYPE is (WAIT_FOR_START, 
                      READ_BITS,
                      PARITY_ERROR_DETECTED,
                      ALLOW_READ);
  constant PARALLEL_BIT_COUNT: INTEGER := 8;
  subtype PARALLEL_RANGE is INTEGER 
      range 0 to (PARALLEL_BIT_COUNT-1);
  subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL;     -- Use the TYPES package

entity SER_PAR is       -- Declare the interface
  port(SERIAL_IN, CLOCK, RESET: in BIT;
       PARALLEL_OUT: out PARALLEL_TYPE;
       PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;
 
architecture BEHAVIOR of SER_PAR is
  -- Signals for stored values
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
  signal CURRENT_PARITY, NEXT_PARITY: BIT;
  signal CURRENT_BIT_POSITION, NEXT_BIT_POSITION:
      INTEGER range PARALLEL_BIT_COUNT downto 0;
  signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
      PARALLEL_TYPE;
begin
NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
                 CURRENT_BIT_POSITION, CURRENT_PARITY,
                 CURRENT_PARALLEL_OUT)
  -- This process computes all outputs, the next 
  --   state, and the next value of all stored values
  begin
    PARITY_ERROR <= ’0’; -- Default values for all
    READ_ENABLE <= ’0’;  --  outputs and stored values
    NEXT_STATE <= CURRENT_STATE;
    NEXT_BIT_POSITION <= 0;
    NEXT_PARITY <= ’0’;
    NEXT_PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

    if (RESET = ’1’) then      -- Synchronous reset
      NEXT_STATE <= WAIT_FOR_START;
    else
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      case CURRENT_STATE is   -- State processing
        when WAIT_FOR_START =>
          if (SERIAL_IN = ’1’) then
            NEXT_STATE <= READ_BITS;
            NEXT_PARALLEL_OUT <=
                PARALLEL_TYPE’(others=>’0’);
          end if;
        when READ_BITS =>
          if (CURRENT_BIT_POSITION =
              PARALLEL_BIT_COUNT) then
            if (CURRENT_PARITY = SERIAL_IN) then
              NEXT_STATE <= ALLOW_READ;
              READ_ENABLE <= ’1’;
            else
              NEXT_STATE <= PARITY_ERROR_DETECTED;
            end if;
          else
            NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <=
                SERIAL_IN;
            NEXT_BIT_POSITION <= 
                CURRENT_BIT_POSITION + 1;
            NEXT_PARITY <= CURRENT_PARITY xor
                           SERIAL_IN;
          end if;
        when PARITY_ERROR_DETECTED =>
          PARITY_ERROR <= ’1’;
        when ALLOW_READ =>
          NEXT_STATE <= WAIT_FOR_START;
      end case;
    end if;
  end process NEXT_ST;

  SYNCH: process
    -- This process remembers the stored values
    --    across clock cycles
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    CURRENT_STATE <= NEXT_STATE;
    CURRENT_BIT_POSITION <= NEXT_BIT_POSITION;
    CURRENT_PARITY <= NEXT_PARITY;
    CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
  end process SYNCH;

  PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;
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Figure A-17 Serial-to-Parallel Converter—Counting Bits Schematic

Serial-to-Parallel Converter—Shifting Bits

This example describes another implementation of the serial-to-
parallel converter in the last example. This design performs the same 
function as the previous one but uses a different algorithm to do the 
conversion.  

The previous implementation used a counter to indicate the bit of the 
output that was set when a new serial bit was read. In this 
implementation, the serial bits are shifted into place. Before the 
conversion occurs, a ’1’ is placed in the least-significant bit position. 
When that ’1’ is shifted out of the most significant position (position 
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0), the signal NEXT_HIGH_BIT is set to ’1’ and the conversion is 
complete.

Example A-14 shows the listing of the second implementation. The 
differences are highlighted in bold. The differences relate to the 
removal of the ..._BIT_POSITION signals, the addition of 
..._HIGH_BIT signals, and the change in the way 
NEXT_PARALLEL_OUT is computed.

Example A-14 Serial-to-Parallel Converter—Shifting Bits
package TYPES is
  -- Declares types used in the rest of the design
  type STATE_TYPE is (WAIT_FOR_START, 
                      READ_BITS,
                      PARITY_ERROR_DETECTED,
                      ALLOW_READ);
  constant PARALLEL_BIT_COUNT: INTEGER := 8;
  subtype PARALLEL_RANGE is INTEGER 
      range 0 to (PARALLEL_BIT_COUNT-1);
  subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL;      -- Use the TYPES package

entity SER_PAR is        -- Declare the interface
  port(SERIAL_IN, CLOCK, RESET: in BIT;
       PARALLEL_OUT: out PARALLEL_TYPE;
       PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;
 
architecture BEHAVIOR of SER_PAR is
  -- Signals for stored values
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
                                       
  signal CURRENT_PARITY, NEXT_PARITY: BIT;
  signal CURRENT_HIGH_BIT, NEXT_HIGH_BIT: BIT;
  signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
     PARALLEL_TYPE;
begin

NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
                 CURRENT_HIGH_BIT, CURRENT_PARITY,
                 CURRENT_PARALLEL_OUT)
  -- This process computes all outputs, the next 
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  --   state, and the next value of all stored values
  begin
    PARITY_ERROR <= ’0’; -- Default values for all
    READ_ENABLE <= ’0’;  --  outputs and stored values
    NEXT_STATE <= CURRENT_STATE;
    NEXT_HIGH_BIT <= ’0’;
    NEXT_PARITY <= ’0’;
    NEXT_PARALLEL_OUT <=  PARALLEL_TYPE’(others=>’0’);
    if(RESET = ’1’) then      -- Synchronous reset
      NEXT_STATE <= WAIT_FOR_START;
    else
      case CURRENT_STATE is   -- State processing
        when WAIT_FOR_START =>
          if (SERIAL_IN = ’1’) then
            NEXT_STATE <= READ_BITS;
            NEXT_PARALLEL_OUT <= 
                PARALLEL_TYPE’(others=>’0’);
          end if;
        when READ_BITS =>
          if ( CURRENT_HIGH_BIT = ’1’ ) then
            if (CURRENT_PARITY = SERIAL_IN) then
              NEXT_STATE <= ALLOW_READ;
              READ_ENABLE <= ’1’;
            else
              NEXT_STATE <= PARITY_ERROR_DETECTED;
            end if;
          else
            NEXT_HIGH_BIT <= CURRENT_PARALLEL_OUT(0);
            NEXT_PARALLEL_OUT <= 
                CURRENT_PARALLEL_OUT(
                    1 to PARALLEL_BIT_COUNT-1) &
                SERIAL_IN;
            NEXT_PARITY <= CURRENT_PARITY xor
                           SERIAL_IN;
          end if;
        when PARITY_ERROR_DETECTED =>
          PARITY_ERROR <= ’1’;
        when ALLOW_READ =>
          NEXT_STATE <= WAIT_FOR_START;
      end case;
    end if;
  end process NEXT_ST;

  SYNCH: process
    -- This process remembers the stored values
    --    across clock cycles
  begin
    wait until CLOCK’event and CLOCK = ’1’;
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    CURRENT_STATE <= NEXT_STATE;
    CURRENT_HIGH_BIT <= NEXT_HIGH_BIT;
    CURRENT_PARITY <= NEXT_PARITY;
    CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
  end process SYNCH;

  PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;

Note:
The synthesized schematic for the shifter implementation is much 
simpler than that of the previous count implementation in Example 
A-13. It is simpler because the shifter algorithm is inherently easier 
to implement.

Figure A-18 Serial-to-Parallel Converter—Shifting Bits Schematic
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With the count algorithm, each of the flip-flops holding the 
PARALLEL_OUT bits needed logic that decoded the value stored in 
the BIT_POSITION flip-flops to see when to route in the value of 
SERIAL_IN. Also, the BIT_POSITION flip-flops needed an 
incrementer to compute their next value. 

In contrast, the shifter algorithm requires neither an incrementer nor 
flip-flops to hold BIT_POSITION. Additionally, the logic in front of most 
PARALLEL_OUT bits needs to read only the value of the previous 
flip-flop or ’0’. The value depends on whether bits are currently being 
read. In the shifter algorithm, the SERIAL_IN port needs to be 
connected only to the least significant bit (number 7) of the 
PARALLEL_OUT flip-flops.

These two implementations illustrate the importance of designing 
efficient algorithms. Both work properly, but the shifter algorithm 
produces a faster, more area-efficient design.

Programmable Logic Arrays

This example shows a way to build programmable logic arrays (PLAs) 
in VHDL. The PLA function uses an input lookup vector as an index 
into a constant PLA table and then returns the output vector specified 
by the PLA.  

The PLA table is an array of PLA rows, where each row is an array 
of PLA elements. Each element is either a one, a zero, a minus, or a 
space (’1’, ’0’, ’–’, or ’ ’). The table is split between an input plane and 
an output plane. The input plane is specified by zeros, ones, and 
minuses. The output plane is specified by zeros and ones. The two 
planes’ values are separated by a space. 
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In the PLA function, the output vector is first initialized to be all zeros. 
When the input vector matches an input plane in a row of the PLA 
table, the ones in the output plane are assigned to the corresponding 
bits in the output vector. A match is determined as follows: 

• If a zero or one is in the input plane, the input vector must have 
the same value in the same position.

• If a minus is in the input plane, it matches any input vector value 
at that position.

The generic PLA table types and the PLA function are defined in a 
package named LOCAL. An entity PLA_VHDL that uses LOCAL 
needs only to specify its PLA table as a constant, then call the 
PLA function.

The PLA function does not explicitly depend on the size of the PLA. 
To change the size of the PLA, change the initialization of the TABLE 
constant and the initialization of the constants INPUT_COUNT, 
OUTPUT_COUNT, and ROW_COUNT. In Example A-15, these 
constants are initialized to a PLA equivalent to the ROM shown 
previously (Example A-3). Accordingly, the synthesized schematic is 
the same as that of the ROM, with one difference: in Example A-3, 
the DATA output port range is 1 to 5; in Example A-15, the 
OUT_VECTOR output port range is 4 down to 0.
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Example A-15 Programmable Logic Array
package LOCAL is
  constant INPUT_COUNT: INTEGER := 3;
  constant OUTPUT_COUNT: INTEGER := 5;
  constant ROW_COUNT: INTEGER := 6;
  constant ROW_SIZE: INTEGER := INPUT_COUNT + 
                                OUTPUT_COUNT + 1;
  type PLA_ELEMENT is (’1’, ’0’, ’-’, ’ ’);
  type PLA_VECTOR is 
      array (INTEGER range <>) of PLA_ELEMENT;
  subtype PLA_ROW is 
      PLA_VECTOR(ROW_SIZE - 1 downto 0);
  subtype PLA_OUTPUT is 
      PLA_VECTOR(OUTPUT_COUNT - 1 downto 0);
  type PLA_TABLE is 
      array(ROW_COUNT - 1 downto 0) of PLA_ROW;

  function PLA(IN_VECTOR: BIT_VECTOR; 
               TABLE: PLA_TABLE)
      return BIT_VECTOR;
end LOCAL;

package body LOCAL is

  function PLA(IN_VECTOR: BIT_VECTOR; 
               TABLE: PLA_TABLE)
      return BIT_VECTOR is
    subtype RESULT_TYPE is
        BIT_VECTOR(OUTPUT_COUNT - 1 downto 0);
    variable RESULT: RESULT_TYPE;
    variable ROW: PLA_ROW;
    variable MATCH: BOOLEAN;
    variable IN_POS: INTEGER;

  begin
    RESULT <= RESULT_TYPE’(others => BIT’( ’0’ ));
    for I in TABLE’range loop
      ROW <= TABLE(I);
      MATCH <= TRUE;
      IN_POS <= IN_VECTOR’left;
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      -- Check for match in input plane
      for J in ROW_SIZE - 1 downto OUTPUT_COUNT loop
        if(ROW(J) = PLA_ELEMENT’( ’1’ )) then
          MATCH <= MATCH and 
                   (IN_VECTOR(IN_POS) = BIT’( ’1’ ));
        elsif(ROW(J) = PLA_ELEMENT’( ’0’ )) then
          MATCH <= MATCH and 
                   (IN_VECTOR(IN_POS) = BIT’( ’0’ ));
        else
          null;     -- Must be minus (”don’t care”)
        end if;
        IN_POS <= IN_POS - 1;
      end loop;

      -- Set output plane
      if(MATCH) then
        for J in RESULT’range loop
          if(ROW(J) = PLA_ELEMENT’( ’1’ )) then
            RESULT(J) <= BIT’( ’1’ );
          end if;
        end loop;
      end if;
    end loop;
    return(RESULT);
  end;
end LOCAL;

use WORK.LOCAL.all;
entity PLA_VHDL is
  port(IN_VECTOR: BIT_VECTOR(2 downto 0);
       OUT_VECTOR: out BIT_VECTOR(4 downto 0));
end PLA_VHDL;

architecture BEHAVIOR of PLA_VHDL is
  constant TABLE: PLA_TABLE := PLA_TABLE’(
       PLA_ROW’(”--- 10000”),
       PLA_ROW’(”-1- 01000”),
       PLA_ROW’(”0-0 00101”),
       PLA_ROW’(”-1- 00101”),
       PLA_ROW’(”1-1 00101”),
       PLA_ROW’(”-1- 00010”));
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begin
  OUT_VECTOR <= PLA(IN_VECTOR, TABLE);
end BEHAVIOR;

Figure A-19 Programmable Logic Array Schematic
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B
Synopsys Packages B

The following Synopsys packages are included with this release:

• std_logic_1164 Package

Defines a standard for designers to use in describing the 
interconnection data types used in VHDL modeling. 

• std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison 
functions for SIGNED, UNSIGNED, INTEGER, STD_ULOGIC, 
STD_LOGIC, and STD_LOGIC_VECTOR types. 

• numeric_std Package

The numeric_std package is an alternative to the std_logic_arith 
package. It is the IEEE standard 1076.3-1997, and documentation 
about it is available from IEEE. For more information, see 
“numeric_std Package” on page B-20.
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• std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions 
for the std_logic_1164 package. 

• ATTRIBUTES Package 

Declares synthesis attributes and the resource sharing subtype 
and its attributes.

std_logic_1164 Package

The std_logic_1164 package defines the IEEE standard for designers 
to use in describing the interconnection data types used in VHDL 
modeling. The logic system defined in this package might be 
insufficient for modeling switched transistors, because such a 
requirement is out of the scope of this package. Furthermore, 
mathematics, primitives, and timing standards are considered 
orthogonal issues as they relate to this package and are, therefore, 
beyond its scope.

The std_logic_1164 package file has been updated with Synopsys 
synthesis directives.

To use this package in a VHDL source file, include the following lines 
at the beginning of the source file:

library IEEE;
use IEEE.std_logic_1164.all;
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When you analyze your VHDL source, FPGA Compiler II / FPGA 
Express automatically finds the IEEE library and the std_logic_1164 
package. However, you must analyze those use packages that are 
not in the IEEE and Synopsys libraries before processing a source 
file that uses them. 

std_logic_arith Package

Functions defined in the std_logic_arith package provide conversion 
to and from the predefined VHDL data type INTEGER, arithmetic, 
comparison, and BOOLEAN operations. This package lets you 
perform arithmetic operations and numeric comparisons on array 
data types. The package defines some arithmetic operators (+, -, *, 
ABS) and the relational operators (<, >, <=, >=, =, /=). (IEEE VHDL 
does not define arithmetic operators for arrays and defines the 
comparison operators in a manner inconsistent with an arithmetic 
interpretation of array values.) 

The package also defines two major data types of its own: UNSIGNED 
and SIGNED (see “Data Types” on page B-6 for details). The 
std_logic_arith package is legal VHDL; you can use it for both 
synthesis and simulation.

You can configure the std_logic_arith package to work on any array 
of single-bit types. You encode single-bit types in 1 bit with the 
ENUM_ENCODING attribute.
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You can make the vector type (for example, std_logic_vector) 
synonymous with either SIGNED or UNSIGNED. This way, if you plan 
to use mostly UNSIGNED numbers, you do not need to convert your 
vector type to call UNSIGNED functions. The disadvantage of making 
your vector type synonymous with either UNSIGNED or SIGNED is 
that it causes redefinition of the standard VHDL comparison functions 
(=, /=, <, >, <=, >=).

Table B-1 shows that the standard comparison functions 
for BIT_VECTOR do not match the SIGNED and 
UNSIGNED functions.

Table B-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions

Using the Package

To use the std_logic_arith package in a VHDL source file, include the 
following lines at the beginning of the source file:

library IEEE;
use IEEE.std_logic_arith.all;

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR
”000” = ”000” true true true

”00” = ”000” true true false

”100” = ”0100” true false false

”000” < ”000” false false false

”00” < ”000” false false true

”100” < ”0100” false true false
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Modifying the Package

The std_logic_arith package is written in standard VHDL. You can 
modify or add to it. The appropriate hardware is then synthesized. 

For example, to convert a vector of multivalued logic to an INTEGER, 
you can write the function shown in Example B-1. This 
MVL_TO_INTEGER function returns the integer value corresponding 
to the vector when the vector is interpreted as an unsigned (natural) 
number. If unknown values are in the vector, the return value is –1.

Example B-1 New Function Based on a std_logic_arith Package Function
library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR) 
  return INTEGER is
  -- pragma built_in SYN_FEED_THRU
  variable uns: UNSIGNED (ARG’range);
begin
    for i in ARG’range loop
        case ARG(i) is
            when ’0’ | ’L’ => uns(i) := ’0’;
            when ’1’ | ’H’ => uns(i) := ’1’;
            when others    => return -1;
        end case;
    end loop;
    return CONV_INTEGER(uns);
end MLV_TO_INTEGER;

Note the use of the CONV_INTEGER function in Example B-1.

FPGA Compiler II / FPGA Express performs almost all synthesis 
directly from the VHDL descriptions. However, several functions are 
hard-wired for efficiency. They can be identified by the following 
comment in their declarations:
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-- pragma built_in

This statement marks functions as special, causing the body of the 
function to be ignored. Modifying the body does not change the 
synthesized logic unless you remove the built_in comment. If you 
want new functionality, write it by using the built_in functions; this is 
more efficient than removing the built_in function and modifying the 
body of the function. 

Data Types

The std_logic_arith package defines two data types: UNSIGNED and 
SIGNED.   

type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type 
BIT_VECTOR, but the std_logic_arith package defines the 
interpretation of variables and signals of these types as numeric 
values. 

UNSIGNED

The UNSIGNED data type represents an unsigned numeric value. 
FPGA Compiler II / FPGA Express interprets the number as a binary 
representation, with the farthest-left bit being most significant. For 
example, the decimal number 8 can be represented as 

UNSIGNED’(”1000”)
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When you declare variables or signals of type UNSIGNED, a 
larger vector holds a larger number. A 4-bit variable holds values up 
to decimal 15, an 8-bit variable holds values up to 255, and so on. By 
definition, negative numbers cannot be represented in an UNSIGNED 
variable. Zero is the smallest value that can be represented. 

Example B-2 illustrates some UNSIGNED declarations. The most 
significant bit is the farthest-left array bound, rather than the high or 
low range value.

Example B-2 UNSIGNED Declarations
variable VAR: UNSIGNED (1 to 10);
  -- 11-bit number
  -- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0); 
  -- 6-bit number
  -- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED

The SIGNED data type represents a signed numeric value. FPGA 
Compiler II / FPGA Express interprets the number as a 2’s-
complement binary representation, with the farthest-left bit as the sign 
bit. For example, you can represent decimal 5 and –5 as

SIGNED’(”0101”)  -- represents +5
SIGNED’(”1011”)  -- represents -5

When you declare SIGNED variables or signals, a larger vector holds 
a larger number. A 4-bit variable holds values from –8 to 7; an 8-bit 
variable holds values from –128 to 127. A SIGNED value cannot hold 
as large a value as an UNSIGNED value with the same bit-width. 
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Example B-3 shows some SIGNED declarations. The sign bit is the 
farthest-left bit, rather than the highest or lowest.

Example B-3 SIGNED Declarations
variable S_VAR: SIGNED (1 to 10); 
  -- 11-bit number
  -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0); 
  -- 6-bit number
  -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions

The std_logic_arith package provides three sets of functions to 
convert values between its UNSIGNED and SIGNED types and the 
predefined type INTEGER. This package also provides the 
std_logic_vector. Example B-4 shows the declarations of these 
conversion functions, with BIT and BIT_VECTOR types.

Example B-4 Conversion Functions
subtype SMALL_INT is INTEGER range 0 to 1;
function CONV_INTEGER(ARG: INTEGER)  return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED)   return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER; 
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED; 
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;      
                       SIZE: INTEGER) return UNSIGNED;
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function CONV_SIGNED(ARG: INTEGER; 
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; 
                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;

There are four versions of each conversion function. The VHDL 
operator overloading mechanism determines the correct version from 
the function call’s argument types.

The CONV_INTEGER functions convert an argument of type 
INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to an INTEGER 
return value. The CONV_UNSIGNED and CONV_SIGNED functions 
convert an argument of type INTEGER, UNSIGNED, SIGNED, or 
STD_ULOGIC to an UNSIGNED or SIGNED return value whose bit 
width is SIZE.

The CONV_INTEGER functions have a limitation on the size of 
operands. VHDL defines INTEGER values as being between 
–2147483647 and 2147483647. This range corresponds to a 31-bit 
UNSIGNED value or a 32-bit SIGNED value. You cannot convert an 
argument outside this range to an INTEGER.
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The CONV_UNSIGNED and CONV_SIGNED functions each require 
two operands. The first operand is the value converted. The second 
operand is an INTEGER that specifies the expected size of the 
converted result. For example, the following function call returns a 
10-bit UNSIGNED value representing the value in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is 
smaller than the expected bit-width (such as representing the value 
2 in a 24-bit number), the value is bit-extended appropriately. FPGA 
Compiler II / FPGA Express places zeros in the more significant (left) 
bits for an UNSIGNED return value, and it uses sign extension for a 
SIGNED return value. 

You can use the conversion functions to extend a number’s bit-width 
even if conversion is not required. For example,

CONV_SIGNED(SIGNED’(”110”), 8)  ⇒ ”11111110”

An UNSIGNED or SIGNED return value is truncated when its bit-
width is too small to hold the ARG value. For example,

CONV_SIGNED(UNSIGNED’(”1101010”), 3)  ⇒ ”010”

Arithmetic Functions

The std_logic_arith package provides arithmetic functions for use with 
combinations of the Synopsys UNSIGNED and SIGNED data types 
and the predefined types STD_ULOGIC and INTEGER. These 
functions produce adders and subtracters. 
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There are two sets of arithmetic functions: binary functions having 
two arguments, such as A+B or A*B, and unary functions having one 
argument, such as –A. Example B-5 and Example B-6 show the 
declarations for these functions.

Example B-5 Binary Arithmetic Functions
function ”+”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED;   R: SIGNED)   return SIGNED;
function ”+”(L: UNSIGNED; R: SIGNED)   return SIGNED;
function ”+”(L: SIGNED;   R: UNSIGNED) return SIGNED;
function ”+”(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function ”+”(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED;   R: INTEGER)  return SIGNED;
function ”+”(L: INTEGER;  R: SIGNED)   return SIGNED;
function ”+”(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function ”+”(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function ”+”(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function ”+”(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”+”(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”+”(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”+”(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”+”(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED;   R: SIGNED)   return SIGNED;
function ”-”(L: UNSIGNED; R: SIGNED)   return SIGNED;
function ”-”(L: SIGNED;   R: UNSIGNED) return SIGNED;
function ”-”(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function ”-”(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED;   R: INTEGER)  return SIGNED;
function ”-”(L: INTEGER;  R: SIGNED)   return SIGNED;
function ”-”(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function ”-”(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function ”-”(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function ”-”(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
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function ”-”(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”-”(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”-”(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”-”(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”-”(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function ”*”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”*”(L: SIGNED;   R: SIGNED)   return SIGNED;
function ”*”(L: SIGNED;   R: UNSIGNED) return SIGNED;
function ”*”(L: UNSIGNED; R: SIGNED)   return SIGNED;

Example B-6 Unary Arithmetic Functions

function ”+”(L: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED)   return SIGNED;
function ”-”(L: SIGNED)   return SIGNED;
function ”ABS”(L: SIGNED) return SIGNED;

The unary arithmetic functions in Example B-5 and Example B-6 
determine the width of their return values, as follows:

1. When only one UNSIGNED or SIGNED argument is present, the 
width of the return value is the same as that argument’s. 

2. When both arguments are either UNSIGNED or SIGNED, the 
width of the return value is the larger of the two argument widths. 
An exception is that when an UNSIGNED number is added to or 
subtracted from a SIGNED number that is the same size or 
smaller, the return value is a SIGNED number 1 bit wider than the 
UNSIGNED argument. This size guarantees that the return value 
is large enough to hold any (positive) value of the UNSIGNED 
argument. 

The number of bits returned by + and – is illustrated in Table B-2.
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signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table B-2 Number of Bits Returned by + and –

In some circumstances, you might need to obtain a carry-out bit from 
the + or – operation. To do this, extend the larger operand by 1 bit. 
The high bit of the return value is the carry, as shown in Example B-7.

Example B-7 Using the Carry-Out Bit
process
    variable a, b, sum: UNSIGNED (7 downto 0);
    variable temp: UNSIGNED (8 downto 0);
    variable carry: BIT;
begin
    temp  <= CONV_UNSIGNED(a,9) + b;
    sum   <= temp(7 downto 0);
    carrY <= temp(8);
end process;

Comparison Functions

The std_logic_arith package provides functions for comparing 
UNSIGNED and SIGNED data types with each other and with the 
predefined type INTEGER. FPGA Compiler II / FPGA Express 
compares the numeric values of the arguments, returning a 
BOOLEAN value. For example, the following evaluates true:

+ or - U4 U8 S4 S8
U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
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UNSIGNED’(”001”) > SIGNED’(”111”)

The std_logic_arith comparison functions are similar to the built-in 
VHDL comparison functions. The only difference is that the 
std_logic_arith functions accommodate signed numbers and varying 
bit-widths. The predefined VHDL comparison functions perform 
bitwise comparisons and do not have the correct semantics for 
comparing numeric values (see “Relational Operators” on page 4-5).

These functions produce comparators. The function declarations are 
listed in two groups: ordering functions (”<”, ”<=”, ”>”, ”>=”), shown in 
Example B-8, and equality functions (”=”, ”/=”), shown in Example B-9. 

Example B-8 Ordering Functions
function ”<”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN; =”(L: 
INTEGER;  R: SIGNED)   return BOOLEAN;

Example B-9 Equality Functions
function ”=”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN; 
function ”=”(L: SIGNED;   R: SIGNED)   return BOOLEAN;
function ”=”(L: UNSIGNED; R: SIGNED)   return BOOLEAN;
function ”=”(L: SIGNED;   R: UNSIGNED) return BOOLEAN;
function ”=”(L: UNSIGNED; R: INTEGER)  return BOOLEAN;
function ”=”(L: INTEGER;  R: UNSIGNED) return BOOLEAN;
function ”=”(L: SIGNED;   R: INTEGER)  return BOOLEAN;
function ”=”(L: INTEGER;  R: SIGNED)   return BOOLEAN;

function ”/=”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN; 
function ”/=”(L: SIGNED;   R: SIGNED)   return BOOLEAN;
function ”/=”(L: UNSIGNED; R: SIGNED)   return BOOLEAN;
function ”/=”(L: SIGNED;   R: UNSIGNED) return BOOLEAN;
function ”/=”(L: UNSIGNED; R: INTEGER)  return BOOLEAN;
function ”/=”(L: INTEGER;  R: UNSIGNED) return BOOLEAN;
function ”/=”(L: SIGNED;   R: INTEGER)  return BOOLEAN;
function ”/=”(L: INTEGER;  R: SIGNED)   return BOOLEAN;
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Shift Functions

The std_logic_arith package provides functions for shifting the bits in 
SIGNED and UNSIGNED numbers. These functions produce 
shifters. Example B-10 shows the shift function declarations. For a 
list of shift and rotate operators, see “Operators” on page C-9.

Example B-10 Shift Functions
function SHL(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHL(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

function SHR(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHR(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

The SHL function shifts the bits of its argument ARG left by COUNT 
bits. SHR shifts the bits of its argument ARG right by COUNT bits. 

The SHL functions work the same for both UNSIGNED and SIGNED 
values of ARG, shifting in zero bits as necessary. The SHR functions 
treat UNSIGNED and SIGNED values differently. If ARG is an 
UNSIGNED number, vacated bits are filled with zeros; if ARG is a 
SIGNED number, the vacated bits are copied from the ARG sign bit. 

Example B-11 shows some shift function calls and their return values.
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Example B-11 Shift Operations
variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED   (7 downto 0);
variable COUNT:  UNSIGNED (1 downto 0);
. . .
U1 <= ”01101011”;   
U2 <= ”11101011”;

S1 <= ”01101011”;   
S2 <= ”11101011”;

COUNT <= CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = ”01011000”
SHL(S1, COUNT) = ”01011000”
SHL(U2, COUNT) = ”01011000”
SHL(S2, COUNT) = ”01011000”

SHR(U1, COUNT) = ”00001101”
SHR(S1, COUNT) = ”00001101”
SHR(U2, COUNT) = ”00011101”
SHR(S2, COUNT) = ”11111101”

Multiplication Using Shifts

You can use shift operations for simple multiplication and division of 
UNSIGNED numbers if you are multiplying or dividing by a power of 2.

For example, to divide the following UNSIGNED variable U by 4, use 
this syntax:

variable U: UNSIGNED (7 downto 0) := ”11010101”;
variable quarter_U: UNSIGNED (5 downto 0);

quarter_U <= SHR(U, ”01”);
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ENUM_ENCODING Attribute

Place the synthesis attribute ENUM_ENCODING on your primary 
logic type (see “Enumeration Encoding” on page 3-4). This attribute 
allows FPGA Compiler II / FPGA Express to interpret your logic 
correctly.

pragma built_in

Label your primary logic functions with built_in pragmas. Pragmas 
allow FPGA Compiler II / FPGA Express to interpret your logic 
functions easily. When you use a built_in pragma, FPGA Compiler II 
/ FPGA Express parses but ignores the body of the function. Instead, 
FPGA Compiler II / FPGA Express directly substitutes the appropriate 
logic for the function. You need not use built_in pragmas, but they can 
result in runtimes that are 10 times as fast.

Use a built_in pragma by placing a comment in the declaration part 
of a function. FPGA Compiler II / FPGA Express interprets a comment 
as a directive if the first word of the comment is pragma. Example 
B-12 shows the use of a built_in pragma.

Example B-12 Using a built_in pragma
function ”XOR” (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
  -- pragma built_in SYN_XOR
    begin
        if (L = ’1’) xor (R = ’1’) then
            return ’1’;
        else 
            return ’0’;
        end if;
end ”XOR”;
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Two-Argument Logic Functions

Synopsys provides six built-in functions for performing two-argument 
logic functions:

• SYN_AND 

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

You can use these functions on single-bit arguments or equal-length 
arrays of single bits. Example B-13 shows a function that takes the 
logical AND of two equal-size arrays.

Example B-13 Built-In AND for Arrays
function ”AND” (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
  -- pragma built_in SYN_AND
    variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
    variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);
    variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
    assert L’length = R’length;
    MY_L <= L;
    MY_R <= R;
    for i in RESULT’range loop
        if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
            RESULT(i) <= ’1’;
        else
            RESULT(i) <= ’0’;
        end if;
    end loop;
    return RESULT;
end ”AND”;
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One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument 
logic functions: 

• SYN_NOT

• SYN_BUF

You can use these functions on single-bit arguments or equal-length 
arrays of single bits. Example B-14 shows a function that takes the 
logical NOT of an array.

Example B-14 Built-In NOT for Arrays
function ”NOT” (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
  -- pragma built_in SYN_NOT
     variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
     variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
    MY_L <= L;
    for i in result’range loop
        if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
            RESULT(i) <= ’1’;
        elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
            RESULT(i) <= ’0’;
        else
            RESULT(i) <= ’X’;
        end if;
    end loop;
    return RESULT;
end ”NOT”;

Type Conversion

The built-in function SYN_FEED_THRU performs fast type 
conversion between unrelated types. The synthesized logic from 
SYN_FEED_THRU wires the single input of a function to the return 
value. This connection can save CPU time required to process a 
complicated conversion function, as shown in Example B-15. 
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Example B-15 Use of SYN_FEED_THRU
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is ”01 10 11”;
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
  -- pragma built_in SYN_FEED_THRU
begin
    case L is
       when RED   => return ”01”;
       when GREEN => return ”10”;
       when BLUE  => return ”11”;
    end case;
end COLOR_TO_BV;

numeric_std Package

FPGA Compiler II / FPGA Express supports nearly all of numeric_std, 
the IEEE Standard VHDL Synthesis Package, which defines numeric 
types and arithmetic functions. 

Caution!
The numeric_std package and the std_logic_arith package have 
overlapping operations. Use of these two packages 
simultaneously during analysis could cause type mismatches.
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Understanding the Limitations of numeric_std package

The 1999.05 version of FPGA Compiler II / FPGA Express does not 
support the following numeric_std package components:

• divide, rem, or mod operators

If your design contains these operators, use the std_logic_arith 
package.

• TO_01 function as a simulation construct

Using the Package

Access numeric_std package with the following statement in your 
VHDL code:

library IEEE;
use IEEE.numeric_std.all;

Synopsys packages are pre-analyzed and do not require further 
analyzing. To list the packages currently in memory, use the following 
command:

report_design_lib

Data Types 

The numeric_std package defines the following two data types in the 
same way that the std_logic_arith package does: 

• USIGNED

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
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See “UNSIGNED” on page B-6 for more information.

• SIGNED

type SIGNED is array (NATURAL range <>) of STD_LOGIC;

See “SIGNED” on page B-7 for more information.

Conversion Functions

The numeric_std package provides functions to convert values 
between its USIGNED and SIGNED types. Example B-16 shows the 
declarations of these conversion functions.

Example B-16 numeric_std Conversion Functions
function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
function TO_INTEGER (ARG: SIGNED) return INTEGER;
function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;

TO_INTEGER, TO_SIGNED, and TO_UNSIGNED are similar to 
CONV_INTEGER, CONV_SIGNED, and CONV_UNSIGNED in 
std_logic_arith (see “Conversion Functions” on page B-8).

Resize Function

The resize function numeric_std supports is shown in the declarations 
in Example B-17.

Example B-17 numeric_std Resize Function
function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL) return SIGNED;
function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL) return UNSIGNED;
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Arithmetic Functions

The numeric_std package provides arithmetic functions for use with 
combinations of Synopsys UNSIGNED and SIGNED data types and 
the predefined types STD_ULOGIC and INTEGER. These functions 
produce adders and subtracters. 

There are two sets of arithmetic functions, which the numeric_std 
package defines in the same way that the std_logic_arith package 
does (see “Arithmetic Functions” on page B-10 for more information): 

• Binary functions having two arguments, such as 

A+B

A*B

Example B-18 shows the declarations for these functions.

• Unary functions having one argument, such as 

–A

abs A

Example B-19 on page B-24 shows the declarations for these 
functions.

Example B-18 numeric_std Binary Arithmetic Functions

function "+" (L, R: UNSIGNED) return UNSIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "+" (L: INTEGER; R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: INTEGER) return SIGNED;
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function "-" (L, R: UNSIGNED) return UNSIGNED;
function "-" (L, R: SIGNED) return SIGNED;
function "-" (L: UNSIGNED;R: NATURAL) return UNSIGNED;
function "-" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "-" (L: SIGNED; R: INTEGER) return SIGNED;
function "-" (L: INTEGER; R: SIGNED) return SIGNED;

function "*" (L, R: UNSIGNED) return UNSIGNED;
function "*" (L, R: SIGNED) return SIGNED;
function "*" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "*" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "*" (L: SIGNED; R: INTEGER) return SIGNED;
function "*" (L: INTEGER; R: SIGNED) return SIGNED;

Example B-19 numeric_std Unary Arithmetic Functions

function "abs" (ARG: SIGNED) return SIGNED;
function "-" (ARG: SIGNED) return SIGNED;

Comparison Functions

The numeric_std package provides functions to compare UNSIGNED 
and SIGNED data types to each other and to the predefined type 
INTEGER. FPGA Compiler II / FPGA Express compares the numeric 
values of the arguments and returns a BOOLEAN value. 

These functions produce comparators. The function declarations are 
listed in two groups: 

• Ordering functions ("<", "<=", ">", ">="), shown in Example B-20

• Equality functions ("=", "/="), shown in Example B-21 on 
page B-25
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Example B-20 numeric_std Ordering Functions

function ">" (L, R: UNSIGNED) return BOOLEAN;
function ">" (L, R: SIGNED) return BOOLEAN;
function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<" (L, R: UNSIGNED) return BOOLEAN;
function "<" (L, R: SIGNED) return BOOLEAN;
function "<" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<=" (L, R: UNSIGNED) return BOOLEAN;
function "<=" (L, R: SIGNED) return BOOLEAN;
function "<=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<=" (L: SIGNED; R: INTEGER) return BOOLEAN;

function ">=" (L, R: UNSIGNED) return BOOLEAN;
function ">=" (L, R: SIGNED) return BOOLEAN;
function ">=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN;

Example B-21 numeric_std Equality Functions

function "=" (L, R: UNSIGNED) return BOOLEAN;
function "=" (L, R: SIGNED) return BOOLEAN;
function "=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "=" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "/=" (L, R: UNSIGNED) return BOOLEAN;
function "/=" (L, R: SIGNED) return BOOLEAN;
function "/=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
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function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "/=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "/=" (L: SIGNED; R: INTEGER) return BOOLEAN;

Defining Logical Operators Functions

The numeric_std package provides functions that define all of the 
logical operators: NOT, AND, OR, NAND, NOR, XOR, and XNOR. 
These functions work just like similar functions in std_logic_1164, 
except that they operate on SIGNED and UNSIGNED values rather 
than on STD_LOGIC_VECTOR values. Example B-22 shows these 
function declarations.

Example B-22 numeric_std Logical Operators Functions
function "not" (L: UNSIGNED) return UNSIGNED;
function "and" (L, R: UNSIGNED) return UNSIGNED;
function "or" (L, R: UNSIGNED) return UNSIGNED;
function "nand" (L, R: UNSIGNED) return UNSIGNED;
function "nor" (L, R: UNSIGNED) return UNSIGNED;
function "xor" (L, R: UNSIGNED) return UNSIGNED;
function "xnor" (L, R: UNSIGNED) return UNSIGNED;

function "not" (L: SIGNED) return SIGNED;
function "and" (L, R: SIGNED) return SIGNED;
function "or" (L, R: SIGNED) return SIGNED;
function "nand" (L, R: SIGNED) return SIGNED;
function "nor" (L, R: SIGNED) return SIGNED;
function "xor" (L, R: SIGNED) return SIGNED;
function "xnor" (L, R: SIGNED) return SIGNED;

Shift Functions

The numeric_std package provides functions for shifting the bits in 
UNSIGNED and SIGNED numbers. These functions produce 
shifters. Example B-23 shows the shift function declarations.
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Example B-23 numeric_std Shift Functions
function SHIFT_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

function ROTATE_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function ROTATE_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

The SHIFT_LEFT function shifts the bits of its argument ARG left by 
COUNT bits. SHIFT_RIGHT shifts the bits of its argument ARG right 
by COUNT bits.

The SHIFT_LEFT functions work the same for both UNSIGNED and 
SIGNED values of ARG, shifting in zero bits as necessary. The 
SHIFT_RIGHT functions treat UNSIGNED and SIGNED values 
differently:

• If ARG is an UNSIGNED number, vacated bits are filled with zeros

• If ARG is a SIGNED number, the vacated bits are copied from the 
ARG sign bit

Example B-26 on page B-29 shows some shift functions calls and 
their return values.

Rotate Functions

ROTATE_LEFT and ROTATE_RIGHT are similar to the shift functions.

Example B-24 shows rotate function declarations.
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Example B-24 numeric_std Rotate Functions
ROTATE_LEFT (U1, COUNT) = "01011011"
ROTATE_LEFT (S1, COUNT) = "01011011"
ROTATE_LEFT (U2, COUNT) = "01011111"
ROTATE_LEFT (S2, COUNT) = "01011111"

ROTATE_RIGHT (U1, COUNT) = "01101101"
ROTATE_RIGHT (S1, COUNT) = "01101101"
ROTATE_RIGHT (U2, COUNT) = "01111101"
ROTATE_RIGHT (S2, COUNT) = "01111101"

Shift and Rotate Operators

The numeric_std package provides shift operators and rotate 
operators, which work in the same way that shift functions and rotate 
functions do. The shift operators are: sll, srl, sla, and sra. 
Example B-25 shows some shift and rotate operator declarations. 
Example B-26 on page B-29 includes some shift and rotate operators.

Example B-25 numeric_std Shift Operators
function "sll" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "sll" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "srl" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "srl" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "rol" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "rol" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "ror" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
B-28

Synopsys Packages



Example B-26 Some numeric_std Shift Functions and Shift Operators
Variable U1, U2: UNSIGNED (7 downto 0);
Variable S1, S2: SIGNED (7 downto 0);
Variable COUNT: NATURAL;
...
U1 <= "01101011";
U2 <= "11101011";
S1 <= "01101011";
S2 <= "11101011";
COUNT <= 3;
...
SHIFT_LEFT (U1, COUNT) = "01011000"
SHIFT_LEFT (S1, COUNT) = "01011000"  
SHIFT_LEFT (U2, COUNT) = "01011000"
SHIFT_LEFT (S2, COUNT) = "01011000"

SHIFT_RIGHT (U1, COUNT) = "00001101"
SHIFT_RIGHT (S1, COUNT) = "00001101"
SHIFT_RIGHT (U2, COUNT) = "00011101"
SHIFT_RIGHT (S2, COUNT) = "11111101"

U1 sll COUNT = "01011000"
S1 sll COUNT = "01011000"
U2 sll COUNT = "01011000"
S2 sll COUNT = "01011000"

U1 srl COUNT = "00001101"
S1 srl COUNT = "00001101"
U2 srl COUNT = "00011101"
S2 srl COUNT = "11111101"

U1 rol COUNT = "01011011"
S1 rol COUNT = "01011011"
U2 rol COUNT = "01011111"
S2 rol COUNT = "01011111"

U1 ror COUNT = "01101101"
S1 ror COUNT = "01101101"
U2 ror COUNT = "01111101"
S2 ror COUNT = "01111101"
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std_logic_misc Package

The std_logic_misc package resides in the lib/packages/IEEE/src/
std_logic_misc.vhd subdirectory of the FPGA Compiler II / FPGA 
Express directory. It declares the primary data types the Synopsys 
VSS tools support. 

Boolean reduction functions take one argument (an array of bits) and 
return a single bit. For example, the AND reduction of ”101” is ”0”, the 
logical AND of all three bits. 

Several functions in the std_logic_misc package provide Boolean 
reduction operations for the predefined type STD_LOGIC_VECTOR. 
Example B-27 shows the declarations of these functions.

Example B-27 Boolean Reduction Functions
function AND_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function OR_REDUCE   (ARG: STD_LOGIC_VECTOR) return UX01;
function NOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;
function XOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function AND_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function OR_REDUCE   (ARG: STD_ULOGIC_VECTOR) return UX01;
function NOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;
function XOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

These functions combine the bits of the STD_LOGIC_VECTOR, as 
the name of the function indicates. For example, XOR_REDUCE 
returns the XOR of all bits in ARG. Example B-28 shows some 
reduction function calls and their return values.
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Example B-28 Boolean Reduction Operations
AND_REDUCE(”111”) = ’1’
AND_REDUCE(”011”) = ’0’

OR_REDUCE(”000”) = ’0’
OR_REDUCE(”001”) = ’1’

XOR_REDUCE(”100”) = ’1’
XOR_REDUCE(”101”) = ’0’

NAND_REDUCE(”111”)= ’0’
NAND_REDUCE(”011”)= ’1’

NOR_REDUCE(”000”) = ’1’
NOR_REDUCE(”001”) = ’0’

XNOR_REDUCE(”100”)= ’0’
XNOR_REDUCE(”101”)= ’1’

ATTRIBUTES Package

The ATTRIBUTES package declares all the supported synthesis (and 
simulation) attributes. These include: 

• FPGA Compiler II / FPGA Express constraints and attributes 

• State vector attributes 

• Resource sharing attributes 

• General attributes for interpreting VHDL (described in Chapter 3, 
"Data Types”)

• Attributes for use with the Synopsys VSS tools
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Reference this package when you use synthesis attributes:

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;
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C
VHDL Constructs C

Many VHDL language constructs, although useful for simulation and 
other stages in the design process, are not relevant to synthesis. 
Because these constructs cannot be synthesized, FPGA Compiler II 
/ FPGA Express does not support them.

This appendix provides a list of all VHDL language constructs, with 
the level of support for each, followed by a list of VHDL reserved 
words. 

This appendix describes

• VHDL Construct Support

• VHDL Reserved Words
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VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored 
and unsupported constructs are defined as follows:

• Ignored means that the construct is allowed in the VHDL source 
but is ignored by FPGA Compiler II / FPGA Express.

• Unsupported means that the construct is not allowed in the VHDL 
source and that FPGA Compiler II / FPGA Express flags it as an 
error. If errors are in a VHDL description, the description is not 
translated (synthesized).

Constructs are listed in the following order:

• Design units

• Data types

• Declarations

• Specifications

• Names

• Operators

• Operands and expressions

• Sequential statements

• Concurrent statements

• Predefined language environment
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Design Units

entity 
The entity statement part is ignored. Generics are supported, but 
only of type INTEGER. Default values for ports are ignored.

architecture 
Multiple architectures are allowed. Global signal interaction 
between architectures is unsupported.

configuration 
Configuration declarations and block configurations are 
supported, but only to specify the top-level architecture for a top-
level entity. 

The use clauses, attribute specifications, component 
configurations, and nested block configurations are unsupported.

package 
Packages are fully supported.

library 
Libraries and separate compilation are supported. 

subprogram 
Default values for parameters are unsupported. Assigning to 
indexes and slices of unconstrained out parameters is 
unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not 
bounded by a static value. 

Resolution functions are supported for wired-logic and three-state 
functions only.

Subprograms can be declared only in packages and in the 
declaration part of an architecture.
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Data Types

enumeration 
Enumeration is fully supported.

integer 
Infinite-precision arithmetic is unsupported. 

Integer types are automatically converted to bit vectors whose 
width is as small as possible to accommodate all possible values 
of the type’s range. The type’s range can be either in unsigned 
binary for nonnegative ranges or in 2’s-complement form for 
ranges that include negative numbers.

physical 
Physical type declarations are ignored. The use of physical types 
is ignored in delay specifications.

floating 
Floating-point type declarations are ignored. The use of floating-
point types is unsupported except for floating-point constants 
used with Synopsys-defined attributes.

array 
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are 
supported.

record 
Record data types are fully supported.

access 
Access type declarations are ignored, and the use of access types 
is unsupported.
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file 
File type declarations are ignored, and the use of file types 
is unsupported.

incomplete type declarations 
Incomplete type declarations are unsupported.

Declarations

constant 
Constant declarations are supported except for deferred constant 
declarations.

signal 
Register and bus declarations are unsupported. Resolution 
functions are supported for wired and three-state functions only. 
Declarations other than from a globally static type are 
unsupported. Initial values are unsupported.

variable
Declarations other than from a globally static type are 
unsupported. Initial values are unsupported.

shared variable
Variable shared by different processes. Shared variables are fully 
supported.

file 
File declarations are unsupported.

interface 
Buffer and linkage are translated to out and inout, respectively.
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alias 
Alias declarations are supported, with the following exceptions:

- An alias declaration that lacks a subtype indication

- A nonobject alias—such as an alias that refers to a type. 

component 
Component declarations that list a name other than a valid entity 
name are unsupported.

attribute 
Attribute declarations are fully supported, but the use of user-
defined attributes is unsupported.

Specifications

attribute 
Others and all are unsupported in attribute specifications. User-
defined attributes can be specified, but the use of user-defined 
attributes is unsupported.

configuration 
Configuration specifications are unsupported. 

disconnection 
Disconnection specifications are unsupported. Attribute 
declarations are fully supported, but the use of user-defined 
attributes is unsupported.
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Names

simple 
Simple names are fully supported.

selected 
Selected (qualified) names outside a use clause are unsupported. 
Overriding the scopes of identifiers is unsupported.

operator symbol 
Operator symbols are fully supported.

indexed 
Indexed names are fully supported, with one exception: Indexing 
an unconstrained out parameter in a procedure is unsupported.

slice 
Slice names are fully supported, with one exception: Using a slice 
of an unconstrained out parameter in a procedure is unsupported 
unless the actual parameter is an identifier.

attribute 
Only the following predefined attributes are supported: base, left, 
right, high, low, range, reverse_range, and length. The event and 
stable attributes are supported only as described with the wait 
and if statements (see “wait Statements” on page 5-50). User-
defined attribute names are unsupported. The use of attributes 
with selected names (name.name’attribute) is unsupported.
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Identifiers and Extended Identifiers

An identifier in VHDL is a user-defined name for any of these: 
constant, variable, function, signal, entity, port, subprogram, 
parameter, and instance.

Specifics of Identifiers

The characteristics of identifiers are: 

• They can be composed of letters, digits, and the underscore 
character ( _ ).

• Their first character cannot be a number, unless it is an extended 
identifier (see Example C-1).

• They can be of any length. 

• They are case-insensitive.

• All of their characters are significant.

Specifics of Extended Identifiers

The characteristics of extended identifiers are: 

• Any of the following can be defined as one:

- Identifiers that contain special characters

- Identifiers that begin with numbers

- Identifiers that have the same name as a keyword
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• They start with a backslash character (\), followed by a sequence 
of characters, followed by another backslash (\). 

• They are case-sensitive.

Example C-1 shows some extended identifiers.

Example C-1 Sample Extended Identifiers
\a+b\  \3state\
\type\  \(a&b)|c\

For more information about identifiers and extended identifiers, see 
“Identifiers” on page 4-23.

Operators

logical 
Logical operators are fully supported.

relational 
Relational operators are fully supported.

addition 
Concatenation and arithmetic operators are fully supported.

signing 
Signing operators are fully supported.

multiplying 
The * (multiply) operator is fully supported. The / (division), mod, 
and rem operators are supported only when both operands are 
constant or when the right operand is a constant power of 2.
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miscellaneous 
The ** operator is supported only when both operands are 
constant or when the left operand is 2. The abs operator is fully 
supported.

operator overloading 
Operator overloading is fully supported.

short-circuit operation 
The short-circuit behavior of operators is not supported.

Shift and Rotate Operators

You can define shift and rotate operators for any one-dimensional 
array type whose element type is either of the predefined types, BIT 
or Boolean. The right operand is always of type integer. The type of 
the result of a shift operator is the same as the type of the left operand. 
The shift and rotate operators are included in the list of VHDL reserved 
words in Table C-1 on page C-17. There is more information about 
the shift and rotate operators that numeric_std supports in “Shift and 
Rotate Operators” on page B-28. The shift operators are:

sll
Shift left logical

srl
Shift right logical

sla
Shift left arithmetic

sra
Shift right arithmetic
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The rotate operators are

rol
Rotate left logical

ror
Rotate right logical

Example C-2 illustrates the use of shift and rotate operators.

Example C-2 Sample Showing Use of Shift and Rotate Operators
architecture arch of shft_op is
begin

a <= "01101";
q1 <= a sll 1; -- q1 = "11010"
q2 <= a srl 3; -- q2 = "00001"
q3 <= a rol 2; -- q3 = "10101"
q4 <= a ror 1; -- q4 = "10110"
q5 <= a sla 2; -- q5 = "10100"
q6 <= a sra 1; -- q6 = "00110"

end;

xnor Operator

You can define the binary logical operator xnor for predefined types 
BIT and Boolean, as well as for any one-dimensional array type whose 
element type is BIT or Boolean. The operands must be the same type 
and length. The result also has the same type and length. The xnor 
operator is included in the list of VHDL reserved words in Table C-1 
on page C-17.

Example C-3 Sample Showing Use of xnor Operator
a <= "10101";
b <= "11100";
c <= a xnor b; -- c = "10110"
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Operands and Expressions

based literal 
Based literals are fully supported.

null literal 
Null slices, null ranges, and null arrays are unsupported.

physical literal 
Physical literals are ignored.

string 
Strings are fully supported.

aggregate 
The use of types as aggregate choices is supported. Record 
aggregates are supported.

function call 
Function calls are supported, with one exception: Function 
conversions on input ports are not supported, because type 
conversions on formal ports in a connection specification (port 
map) are not supported.

qualified expression 
Qualified expressions are fully supported.

type conversion 
Type conversion is fully supported.

allocator 
Allocators are unsupported.

static expression 
Static expressions are fully supported.
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universal expression 
Floating-point expressions are unsupported, except in a 
Synopsys-recognized attribute definition. Infinite-precision 
expressions are not supported. Precision is limited to 32 bits; all 
intermediate results are converted to integer.

Sequential Statements

wait 
The wait statement is unsupported unless it is in one of the 
following forms:

wait until                      clock = VALUE;
wait until     clock’event  and clock = VALUE;
wait until not clock’stable and clock = VALUE;

VALUE is ’0’, ’1’, or an enumeration literal whose encoding is 0 or 
1. A wait statement in this form is interpreted to mean “wait until 
the falling (VALUE is ’0’) or rising (VALUE is ’1’) edge of the signal 
named clock.” You cannot use wait statements in subprograms.

assert
Assert statements are ignored.

report
Report statements are ignored.

statement label
Statement labels are ignored.

signal 
Guarded signal assignment is unsupported. The transport and 
after signals are ignored. Multiple waveform elements in signal 
assignment statements are unsupported.

variable 
Variable statements are fully supported.
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procedure call 
Type conversion on formal parameters is unsupported. 
Assignment to single bits of vectored ports is unsupported.

if 
The if statements are fully supported.

case 
The case statements are fully supported.

loop 
The for loops are supported, with two constraints: The loop index 
range must be globally static, and the loop body must not contain 
a wait statement. The while loops are supported, but the loop body 
must contain at least one wait statement. The loop statements 
with no iteration scheme (infinite loops) are supported, but the 
loop body must contain at least one wait statement. 

next 
Next statements are fully supported.

exit 
Exit statements are fully supported.

return 
Return statements are fully supported.

null 
Null statements are fully supported.
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Concurrent Statements

block 
Guards on block statements are supported. Ports and generics 
in block statements are unsupported.

process 
Sensitivity lists in process statements are ignored.

concurrent procedure call 
Concurrent procedure call statements are fully supported.

concurrent assertion 
Concurrent assertion statements are ignored.

concurrent signal assignment 
The guarded keyword is supported. The transport keyword is 
ignored. Multiple waveforms are unsupported.

component instantiation 
Type conversion on the formal port of a connection specification 
is unsupported. 

generate 
The generate statements are fully supported.
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Predefined Language Environment

severity_level type 
The severity_level type is unsupported.

time type 
The time type is ignored if time variables and constants are used 
only in after clauses. In the following two code fragments, both 
the after clause and TD are ignored:

constant TD: time := 1.4 ns;
X <= Y after TD;

X <= Y after 1.4 ns;

now function 
The now function is unsupported.

TEXTIO package 
The TEXTIO package is unsupported.

predefined attributes
These predefined attributes are supported: base, left, right, high, 
low, range, reverse_range, ascending, and length. The event and 
stable attributes are supported only in the if and wait statements, 
as described in “wait Statements” on page 5-50.
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VHDL Reserved Words

Table C-1 lists the words that are reserved for the VHDL language 
and cannot be used as identifiers:

Table C-1 VHDL Reserved Words 

abs exit new select
access next severity
after file nor shared
alias for not signal
all function null sla
and sll
architecture of sra
array generate on srl
assert generic open subtype
attribute group or

guarded others then
begin out to
block if transport
body impure package type
buffer in port
bus inertial postponed unaffected

inout procedure units
case is process until
component pure use
configuration label
constant library range variable

linkage record
disconnect literal register wait
downto loop reject when

rem while
else map report with
elsif mod return
end rol xnor
entity nand ror xor
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Glossary

anonymous type
A predefined or underlying type with no name, such as universal 
integers.

ASIC 
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design 
by using sequential statements. These statements are similar in 
expressive capability to those found in many other programming 
languages. See also the data flow view, sequential statement, and 
structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example, 
the bit-width of the constant 5 is 3 bits.

character literal 
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value FPGA Compiler II / FPGA 
Express can determine during translation.
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constraints
The designer’s specification of design performance goals. FPGA 
Compiler II / FPGA Express uses constraints to direct the 
optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are 
convertible, along with same-sized arrays of convertible element 
types.

data flow view
The set of VHDL/Verilog statements that describe the behavior of a 
design by using concurrent statements. These descriptions are 
usually at the level of Boolean equations combined with other 
operators and function calls. See also the behavioral view and 
structural view definitions.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL 
Hardware Description Language. 

identifier
A sequence of letters, underscores, and numbers. An identifier 
cannot be a VHDL/Verilog reserved word, such as type or loop. An 
identifier must begin with a letter or an underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.
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optimization
The modification of a design in an attempt to improve some 
performance aspect. FPGA Compiler II / FPGA Express optimizes 
designs and tries to meet specified design constraints for area and 
speed. 

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit 
result, namely the result of the operator applied to each successive 
pair of array elements.

register
A memory device containing one or more flip-flops or latches used 
to hold a value.

resource sharing
The assignment of a similar VHDL/Verilog operation (for example, 
+) to a common netlist cell. Netlist cells are the resources—they are 
equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of VHDL/Verilog statements that execute in sequence. 

signed value
A value that can be positive, zero, or negative.

structural view
The set of VHDL/Verilog statements used to instantiate primitive 
and hierarchical components in a design. A VHDL/Verilog design at 
the structural level is also called a netlist. See also the behavioral 
view and data flow view definitions.
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subtype
A type declared as a constrained version of another type. 

synthesis
The creation of optimized circuits from a high-level description. 
When VHDL/Verilog is used, synthesis is a two-step process: 
translation from VHDL/Verilog to gates and optimization of those 
gates for a specific FPGA library. 

technology library
A library of cells available to FPGA Compiler II / FPGA Express 
during the synthesis process. A technology library can contain area, 
timing, and functional information on each cell.

translation
The mapping of high-level language constructs onto a lower-level 
form. FPGA Compiler II / FPGA Express translates RTL VHDL/
Verilog descriptions to gates.

type
In VHDL/Verilog, the mechanism by which objects are restricted in 
the values they are assigned and the operations that can be applied 
to them. 

unsigned
A value that can be only positive or zero.

variable
An electrical quantity that can be used to transmit information. A 
signal is declared with a type and receives its value from one or 
more drivers. Signals are created in Verilog through either wire or 
reg declarations.

VHDL
VHSIC hardware description language.
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VHSIC
Very high speed integrated circuit, a high-technology program of the 
United States Department of Defense.
GL-5



GL-6



Index

Symbols
” B-25, B-25
”&” (concatenation operator) 4-8
”**” (exponentiation operator) 4-12
”*” (multiplying operator) 4-11
”*” function B-12, B-24
”+” (adding operator) 4-8
”+” (unary operator) 4-10
”+” function B-11, B-24
”/=” (relational operator) 4-6
”/=” function B-14
”/” (multiplying operator) 4-11
”<=” function B-14
”<” function B-14
”=” (relational operator) 4-6
”=” function B-14, B-26
”>=” (relational operator) 4-6
”>=” function B-14, B-25
”>” (relational operator) 4-6
”>” function B-14, B-25
”-” (adding operator) 4-8
”-” (unary operator) 4-10
”-” function B-24
”–” function B-11

A
abs (absolute value operator) 4-12
actual parameters

subprograms 2-26
adder-subtracter (example) A-17
adding operators 4-8
aggregate target syntax 5-9
aggregates C-12
aggregates (array literals) 4-18
aggregates, record 3-14
algorithms

processes 2-19
alias declarations

supported C-6
and (logical operator) 4-3
architecture 2-5

dataflow
two-input NAND gate 2-34

defined 2-5
overriding entity port names 2-8
RTL

two-input NAND gate 2-34
statement, entity 2-5
structural

two-input NAND gate 2-33
arithmetic functions

numeric_std
IN-1



binary B-23
unary B-23

arithmetic operators
adding 4-8
multiplying 4-11
negating 4-10

arithmetic optimization
considering overflow from carry bits 8-10
introduction 8-6

array attributes
RANGE

example 5-28
array data type

attributes
high 3-12
index 3-12
left 3-12
length 3-12
low 3-12
predefined 3-12
range 3-12
reverse_range 3-12
right 3-12
using 3-12

concatenating 4-9
constrained

array_type_name 3-10
defining 3-10
illustration 3-10
index 3-10
syntax 3-10

definition of 3-9
index

constrained 3-9
ordering 4-6
unconstrained

advantages 3-11
array_type_name 3-11
defining 3-11
element_type_name 3-11
range_type_name 3-11
syntax 3-11

array literals
as aggregates 4-18
as bit strings 4-28

array_type_name 3-10, 3-11
arrival time 8-8
assert statement C-13
assignment statement

aggregate target 5-9
field target 5-8
indexed name target 5-4
signal

syntax 5-12
simple name target 5-3
slice target 5-7
syntax 5-2
variable

syntax 5-11
async_set_reset attribute 7-5
async_set_reset_local attribute 7-5
async_set_reset_local_all attribute 7-5
asynchronous designs

optimization 8-37
using 8-23

asynchronous processes 6-3
attribute declarations C-6
attributes

array 3-12
as operands 4-20
ENUM_ENCODING B-17
synthesis_off 7-8
synthesis_on 7-8
VHDL

ENUM_ENCODING 3-5
ENUM_ENCODING values 3-7

ATTRIBUTES package B-2, B-31

B
binary arithmetic functions

example B-11
numeric_std B-23
IN-2



binary bit string 4-28
bit string literals 4-28
BIT type 3-17
bit vectors

as bit strings 4-28
bit width (of operands) 4-15
BIT_VECTOR type 3-17, B-4
block 2-17
block statement

block_declarative_item 6-10
edge-sensitive latch 6-13
guarded 6-10
guarded blocks 6-12
level-sensitive latch 6-12
nested blocks 6-11

block statements
guards C-15

block_declarative_item
entity architecture 2-6
in block statement 6-10

body
subprogram 2-23

Boolean reduction functions B-30
BOOLEAN type 3-17
buffer

port mode 2-4, 2-24, 2-25
built_in directive

logic functions B-18
type conversion B-19
using B-17

built_in pragma
example of using B-17

bus resolution function 6-9
bused clock

syntax 7-22

C
carry-lookahead adder (example) A-32
carry-out bit

example of using B-13

case statement
invalid usages 5-21
syntax 5-17

character literals 4-26
character string literals 4-28
CHARACTER type 3-17
clock, bused 7-22
combinational feedback

paths 8-35
combinational logic 8-2
combinational processes 5-55, 6-5
common subexpressions

sharing 8-12
comparison functions

numeric_std B-24
compiler directives 5-45
component

declaration
generic parameter 2-11
N-bit adder 2-11
port name and order 6-23
two-input AND gate, example 2-11

implication
directives 5-46
example 5-47
latches and registers 5-55
three-state driver 7-59

instantiation
defined 2-17
direct 6-25
port map 6-23
search order 2-13
statement 2-13, 6-22

mapping subprogram to 5-45
component declarations C-6
component implication

registers 7-1
computable operands 4-16
concatenation operator 4-9
concurrent procedure call

eqivalent process 6-14
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syntax 6-14
concurrent signal assignment 6-17

conditional signal assignment 6-18
selected signal assignment 6-20

concurrent statement
block 2-17
component instantiation 2-17
procedure call 2-17
signal assignment 2-18
supported C-15

conditional signal assignment
equivalent process 6-19
syntax 6-18

conditionally assigned variable 7-19
conditionally specified signal 8-36
constant declaration

defined 2-18
supported C-5
value 2-18

constant propagation 8-21
constants

record aggregates 3-14
constrained data array 3-10
constructs, VHDL

architecture 2-5
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32
variable declaration 2-20, 2-31

block
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32

component instantiation 2-13
declaration

constant 2-18
signal 2-21
variable 2-20, 2-31

entity
constant declaration 2-18
defined 2-2

subtype declaration 2-32
type declaration 2-32

operator
overloading 2-30

package
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32

process
constant declaration 2-18
defined 2-19
subtype declaration 2-32
type declaration 2-32

signal
bus resolution function 6-9
resolution function 2-40

subprogram
constant declaration 2-18
function 2-22, 2-24
overloading 2-29
procedure 2-22, 2-23
subtype declaration 2-32
type declaration 2-32

subtype
declaration 2-32
defined 2-32

variable
declaration 2-20, 2-31

control unit (example)
counting A-29
state machine A-24

CONV_INTEGER functions B-8
CONV_SIGNED functions B-9
CONV_UNSIGNED functions B-8
conversion functions

arithmetic
binary B-11
for adders and subtracters B-10
unary B-12

numeric_std
TO_INTEGER B-22
TO_SIGNED B-22
IN-4



TO_UNSIGNED B-22
std_logic_arith package B-8

count zeros (example)
combinational A-19
sequential A-22

COUNTER3
description

structural design 2-15
critical path 8-8

D
data type

abstract
BOOLEAN 3-1

advantages 3-2
array

constrained 3-10
syntax 3-10

array attributes
high 3-12
index 3-12
left 3-12
length 3-12
low 3-12
range 3-12
reverse_range 3-12
right 3-12

BIT 3-18
BIT_VECTOR 3-19
BOOLEAN 3-18
CHARACTER 3-18
described 3-1
enumeration syntax 3-3
hardware-related BIT 3-1
integer

defined 3-19
syntax 3-8

new type defined
BYTE, example 3-2

predefined
STANDARD package 3-1

record 3-13
subtype

defined 3-3
syntax 2-32

supported C-4
SYNOPSYS

std_logic_signed 3-9
std_logic_unsigned 3-9

data types
numeric_std

SIGNED B-22
UNSIGNED B-22

dataflow architecture
NAND2 entity 2-34

declaration
constant 2-18

example 2-18
incorrect use of port name example 2-9

signal
example 2-21
incorrect use of port name example 2-9
logical 4-4

subprogram
function syntax 2-24
procedure syntax 2-23

subtype 2-32
supported C-5
variable

defined 2-20, 2-31
example 2-20, 2-31

definitions
register inference 7-1

design architecture
concurrent statement 2-17

block 2-17
block_declarative_item 2-6
component instantiation 2-13, 2-17
procedure call 2-17
process 2-17, 2-19
signal assignment 2-18

declaration section
component 2-10
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constant 2-10
signal 2-10
subprogram 2-10
type 2-10

design units
package 2-35, 2-36
subprogram 2-22

organization, illustrated 2-5
Design Compiler

asynchronous designs 8-23
design style

data type
enumeration 3-3
integer 3-8

data types 3-2
design unit

package 2-35
supported C-3

designs
efficiency 8-22
structure 8-3

direct component instantiation 6-25
directives

built_in
identifying B-6
using B-17

component implication 5-46
map_to_entity 5-45, 6-14
resolution_method 2-41
return_port_name 5-45
synthetic 9-2
translate_off, warning 9-3
translate_on, warning 9-3
using 2-42

dont care inference
example 8-29
simulation versus synthesis 8-33
using 8-32

E
edge expression 7-58

element_type_name 3-11
encoding

values
ENUM_ENCODING attribute 3-7

vectors
ENUM_ENCODING attribute 3-6

entity
architecture

defined 2-2
syntax 2-5
three-bit counter 2-7
two-input NAND gate 2-34

composition 2-2
consistency

component instantiation 2-14
defined 2-2
generic specification

example 2-5
syntax 2-3

port specification
overriding port names 2-8
port modes 2-4, 2-24, 2-25
syntax 2-4

specification
NAND2 gate 2-3, 2-34
three-bit counter 2-7

ENUM_ENCODING attribute 3-5, B-17
values 3-7
vectors 3-7

enumerated types
ordering 4-6

enumeration data type
encoding

ENUM_ENCODING attribute 3-5
ENUM_ENCODING value 3-7
example 3-5
literal value 3-4

example
COLOR 3-4
encoding 3-5
MY_LOGIC 3-4

literal, overloaded 3-4
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syntax 3-3
enumeration literals 4-27
equality functions

example B-14
equality operators 4-6
escaped identifier.See extended identifier
examples

adder-subtracter A-17
asynchronous design

incorrect 8-27
carry-lookahead adder A-32
case statement

enumerated type 5-18
combinational process 6-5, 6-6
component implication 5-47
control unit

counting A-29
state machine A-24

count zeros
combinational A-19
sequential A-22

dont care usage 8-29
enumeration encoding

dont care 8-29
for ... generate 6-28
function call 5-42
if statement 5-15
integer data type

definitions 3-8
Mealy finite state machine A-5
Moore finite state machine A-2
PLA A-51
ROM A-7
sequential processes 6-6
serial-to-parallel converter

counting bits A-40
shifting bits A-47

simulation driver 9-3
subprograms

component implication 5-47
declarations 5-36
function call 5-42

synchronous design 8-23
three-state component

registered input 7-67
two-phase clocked design 7-20
wait statement 5-56

in a loop 5-52
multiple waits 5-52

waveform generator
complex A-13
simple A-10

exit statement 5-33
exponentiation operator 4-12
expression tree 8-7

subexpressions in 8-9
expressions

described 4-1
relational

true 4-7
supported C-12
use 4-1
using parentheses in 8-9

expressions, VHDL, tick (’) 4-29
extended identifier C-8

F
falling_edge 7-22, 7-28
feedback paths 8-35
field target syntax 5-8
file declarations C-5
flip-flop

definition 7-1
inference 7-22

for ... generate statement
example 6-28
syntax 6-26

for ... loop statement
and exit statement 5-33
arrays 5-28
label as identifier in 5-25, 6-27
syntax 5-23, 5-25
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formal parameters
subprograms 2-26

fully specified
signal 8-35
variable 8-35

function
call 4-22, 5-41
declaration

syntax 2-24
resolution

allowed 2-41
bus 6-9
creating 2-40
directives, using 2-41
example 2-42
marking 2-41
signal 2-40
syntax, declaration 2-40
syntax, subtype 2-41
syntax, type 2-40

value 2-22
functions

description 5-38
implementations

mapped to component 5-47
mapped to gates 5-49

return statement 5-43

G
generate statements

for ... generate 6-26
if ... generate 6-26

generic
map

component instantiation 2-13
parameter

component declaration 2-11
two-input AND gate 2-11

specification
entity 2-3
entity syntax 2-3

values
mapping 2-14

guard
on block statement C-15

guarded blocks
in block statement 6-12

guarded keyword C-15

H
hdlin_pragma_keyword variable 9-2
hexadecimal bit string 4-28
high attribute 3-12
high impedance state 7-59

I
identifier C-8

extended C-9
identifiers

defined 4-23
enumeration literals 4-27

if ... generate statement
syntax 6-31

if statement
creating registers 7-23

implying registers 7-1
incompletely specified 8-35
indexed name target 5-4
indexed names

computability 4-25
using 4-24

inequality operators 4-6
inference report

example 7-3
inferred registers

limitations 7-57
instantiation

component
direct 6-25

integer data type
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bits, accessing
std_logic_signed package 3-9
std_logic_unsigned package 3-9

defining 3-8
definitions

example 3-8
encoding 3-8
INTEGER type 3-17
subrange 3-8

K
keywords C-17

L
language constructs, VHDL

concurrent statements
assertion C-15
block 2-17, C-15
component instantiation 2-13, 2-17, C-15
function 2-22, 2-24
generate C-15
procedure 2-22, 2-23
procedure call 2-17, C-15
process 2-17, 2-19, C-15
signal assignment 2-18, C-15

data types
access C-4
array 3-10, C-4
enumeration 3-3, C-4
file C-5
floating C-4
incomplete type declarations C-5
integer 3-8, C-4
physical C-4
record C-4
subtype 2-32

dataflow
entity, NAND2 2-34

declaration
constant 2-18

signal 2-21
variable 2-20, 2-31

declarations
alias C-6
attribute C-6
component C-6
constant C-5
file C-5
interface C-5
shared variable C-5
signal C-5
variable C-5

design units
architecture 2-5, C-3
configuration 2-34, C-3
entity C-3
entity, NAND2 2-3
library C-3
package 2-35, 2-36, C-3
subprogram C-3
subprogram, overloading 2-29

expressions
aggregate C-12
allocator C-12
based literal C-12
function call C-12
null literal C-12
physical literal C-12
static expression C-12
string C-12
type conversion C-12
universal expression C-13

names
attribute C-7
indexed C-7
operator symbol C-7
selected C-7
simple C-7
slice C-7

operands
aggregate C-12
allocator C-12
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based literal C-12
function call C-12
null literal C-12
physical literal C-12
static expression C-12
string C-12
type conversion C-12
universal expression C-13

operators
addition C-9
logical C-9
miscellaneous C-10
multiplying C-9
overloading 2-30, C-10
relational C-9
short-circuit operation C-10
signing C-9

predefined language environment
now function C-16
predefined attributes C-16
severity_level type C-16
TEXTIO package C-16
time type C-16

reserved words C-17
sequential statements

assertion C-13
case C-14
exit C-14
if C-14
loop C-14
next C-14
null C-14
procedure call C-14
report C-13
return C-14
signal C-13
statement labels C-13
variable C-13
wait C-13

specifications
attribute C-6
configuration C-6

disconnection C-6
latch

definition 7-1
latch inference

local variables 7-11
latches

edge-sensitive
not in guarded block statement 6-13

level-sensitive
guarded block statement 6-12

left attribute 3-12
length attribute 3-12
literal

enumeration
character, defined 3-3
identifier, defined 3-3

literals
as operands 4-26
bit strings 4-28
character 4-26
character string 4-28
enumeration 4-27
numeric 4-26
string 4-28

logic
combinational 8-2

logical operators 4-3
loop statement 5-22

syntax 5-23
low attribute 3-12

M
map_to_entity directive 5-45, 6-14
mapping

generic values
example 2-14
instantiation 2-14

port connections
example 2-15
expressions 2-15
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Mealy finite state machine (example) A-5
mod (multiplying operator) 4-11
Moore finite state machine (example) A-2
multiple driven signals 6-8
multiplication using shifts B-16
multiplying operators 4-11

N
names C-7

attributes 4-20
field names 4-30
qualified 4-30
record names 4-30
slice names 4-32

nand (logical operator) 4-3
NAND2 entity

syntax
dataflow architecture 2-34
RTL architecture 2-34
specification 2-3
structural architecture 2-33

NATURAL subtype 3-17
N-bit adder

declaration
example 2-11

nested blocks
in block statement 6-11

netlist
defined 2-13

next statement
in named loops 5-32

noncomputable operands 4-16
nor (logical operator) 4-3
not (logical operator) 4-3
null range 4-33
null slice 4-33
null statement 5-58
numeric literals 4-26
numeric_std package

” B-25, B-25
”*” function B-24
”+” function B-24
”/=” equality function B-26
”=” equality function B-26
”>=” ordering function B-25
”>” ordering function B-25
”-” function B-24
accessing B-21
arithmetic functions

binary B-23
binary example B-24
unary B-23
unary example B-24

comparison functions
equality B-26
ordering B-25

conversion functions
TO_INTEGER B-22
TO_UNSIGNED B-22
UNSIGNED B-22

data types
SIGNED B-22
UNSIGNED B-22

IEEE documentation B-1
location B-21
logical operators

AND B-26
NAND B-26
NOR B-26
NOT B-26
OR B-26
XNOR B-26
XOR B-26

report_design_lib command B-21
resize function B-23
rotate functions B-28
rotate operators B-28
shift functions

ROTATE_LEFT B-27
ROTATE_RIGHT B-27
SHIFT_LEFT B-27
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SHIFT_RIGHT B-27
shift operators B-28
unsupported components B-21
use with std_logic_arith package B-20

O
octal bit string 4-28
one_cold attribute 7-7
one_hot attribute 7-7
operands

aggregates 4-18
attributes 4-20
bit width 4-15
computable 4-16
defined 4-14
field 4-30
function call 4-22, 5-41
identifiers 4-23
in expressions

defined 4-1
grouping 4-5

integer
predefined operators 4-8

literal 4-26
character 4-26
enumeration 4-27
numeric 4-26
string 4-28

noncomputable 4-16
qualified expressions 4-29
record 4-30
slice names 4-32
supported C-12
type conversions 4-34

operators
absolute value 4-12
adding 4-8
arithmetic

adding 4-8
multiplying 4-11
negation 4-10

array
catenation 4-9
relational 4-6

catenation 4-9
described 4-2
equality 4-6
exponentiation 4-12
in expressions 4-1
logical 4-3
multiplying

predefined 4-11
restrictions on use 4-11

ordering 4-6
and array types 4-6
and enumerated types 4-6

overloading 2-30
defined 2-30
examples 2-30

precedence 4-3
predefined 4-2
relational

described 4-5
std_logic_arith package 4-7

rotate C-11
numeric_std B-28

shift C-10
numeric_std B-28

sign 4-10
supported C-9
unary 4-10
xnor C-11

optimization
arithmetic expressions 8-6
NAND2 gate 2-33

or (logical operator) 4-3
ordering

operators 4-6
ordering functions

example B-14
others (in aggregates) 4-20
others (in case statement) 5-17
overflow characteristics
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arithmetic optimization 8-10
overloading

enumeration
literal 3-4

enumeration literals 4-27
operators 2-30

defined 2-30
resolving by qualification 4-30
subprograms 2-29

defined 2-29

P
package

body syntax 2-39
component declaration in 2-35
constant declaration in 2-35
declaration

example 2-38
syntax 2-37

defined 2-35
numeric_std

IEEE documentation B-1
package_body_declarative_item 2-39
STANDARD 3-17
std_logic_arith 4-7
std_logic_signed 3-9
std_logic_unsigned 3-9
structure

body 2-36
declaration 2-36

subprogram in 2-35
TEXTIO 3-16
type declaration in 2-35
use statement syntax 2-36, 2-38

package_body_declarative_item 2-39
package_declarative_item 2-37
package_name 2-37
packages

Synopsys-supplied B-1
parameters, subprogram

actual 2-26

formal 2-26
PLA (example) A-51
port

as signal 2-21
connections, mapping example 2-15
map 2-13
mode

buffer 2-4, 2-24
entity port specification 2-4, 2-24, 2-25
in 2-4, 2-24, 2-25
inout 2-4, 2-24
out 2-4, 2-24

name
consistency among entities 2-9, 2-12
incorrect use 2-9

type
consistency among components 2-12

POSITIVE subtype 3-17
pragma keyword comment

hdlin_pragma_keyword variable 9-2
pragmas.See directives
predefined attributes

array 3-12
supported C-7

predefined attributes, supported C-16
predefined language environment C-16
predefined VHDL operators 4-3
procedure

call (defined) 2-17
call syntax 5-39
subprogram declaration syntax 2-23
subprogram description 5-38

process
as algorithm 2-19
declaration 2-19
defined 2-19
description 2-19
sequential statements in 2-19

process statement 6-2, 6-10
processes

asynchronous 6-3
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combinational
example 6-5

combinational logic 5-55
sensitivity lists 6-3
sequential

example 6-6
sequential logic 5-55
synchronous 6-3
wait statement 5-50

Q
qualified expressions 4-29

R
range attribute 3-12
range_type_name 3-11
record aggregates 3-14
record data type 3-13
record operands 4-30
records

as aggregates C-12
register

definition of 7-1
inference 7-1

register inference
attribute

async_set_reset 7-5
async_set_reset_local 7-5
async_set_reset_local_all 7-5
one_cold 7-7
one_hot 7-7
sync_set_reset 7-6
sync_set_reset_local 7-6
sync_set_reset_local_all 7-6

D latch 7-10
definition 7-1
edge expressions 7-22
if statement 7-23
if versus wait 7-23

signal edge 7-22
SR latch 7-8
templates 7-3
wait statement 7-22
wait versus if 7-23

relational operators 4-5
rem (multiplying operator) 4-11
report statement C-13
reserved words C-17
resize function

numeric_std B-23
resolution function

allowed 2-41
creating 2-40
directive, using 2-41
directives

resolution_method three_state 2-41
resolution_method wired_and 2-41
resolution_method wired_or 2-41

example 2-42
marking 2-41
signal 2-40
syntax

declaration 2-40
subtype 2-41
type 2-40

resolution functions
bus 6-9

resolution_method
three_state directive 2-41
wired_and directive 2-41
wired_or directive 2-41

resolved signal
creating 2-42
example 2-42
subtype declaration 2-40
syntax 2-41
using 2-42

return statement 5-43
return_port_name directive 5-45
reverse_range attribute 3-12
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right attribute 3-12
rising_edge 7-22, 7-26
ROM (example) A-7
rotate functions

numeric_std B-28
rotate operators C-11

numeric_std B-28
RTL Analyzer

architecture
NAND2 entity 2-34

S
selected signal assignment

equivalent process 6-22
syntax 6-20

sensitivity lists 6-3
sequential processes 5-55, 6-6
sequential statement

if, syntax 5-15
sequential statements

supported C-13
serial-to-parallel converter (example)

counting bits A-40
shifting bits A-47

shared variable C-5
sharing

common subexpressions
automatically determined 8-12

shift functions
example B-15
numeric_std B-27

shift operations
example B-16

shift operators C-10
numeric_std B-28

signal
as port 2-21
assignment 2-18

examples 5-11, 5-13
syntax 5-12

declaration 2-21
example 3-4
logical 4-4

in package 2-37
multiple drivers

bus 6-9
resolution function 2-40
resolved 2-40

signals
concurrent signal assignment 6-17
conditional signal assignment 6-18
drivers 6-8
edge detection 7-22
registering 7-54
selected signal assignment 6-20
supported C-5
three-state 6-8

SIGNED data type
defined B-6, B-7
std_logic_arith package B-4

SIGNED data types
numeric_std package B-22

simple name target 5-3
simulation

dont care values 8-33
driver example 9-3

slice names
limitations 4-33
syntax 4-32

slice target syntax 5-7
specifications C-6
STANDARD package 3-17
state machine (example)

controller A-24
Mealy A-5
Moore A-2

statement
assignment

aggregate target, syntax 5-9
field target, syntax 5-8
indexed name target, syntax 5-4
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slice target, syntax 5-7
case

enumerated type 5-18
invalid usages 5-21
syntax 5-17

concurrent
block 2-17
component instantiation 2-17
procedure call 2-17
process 2-17, 2-19
signal assignment 2-18

for ... loop
syntax 5-25

loop
syntax 5-23

loop syntax 5-22
sequential

assignment, syntax 5-2
if 5-15

while ... loop syntax 5-24
statement labels C-13
std_logic_1164 package B-2
std_logic_arith package B-2, B-3

_REDUCE functions B-30
”*” function B-12
”+” function B-11
”/=” function B-14
”<=” function B-14
”<” function B-14
”=” function B-14
”>=” function B-14
”>” function B-14
”–” function B-11
arithmetic functions B-10
Boolean reduction functions B-30
built_in functions B-6
comparison functions B-13
CONV_INTEGER functions B-8
CONV_SIGNED functions B-9
CONV_UNSIGNED functions B-8
conversion functions B-10
data types B-6

modifying the package B-5
ordering functions B-14
shift function B-15
using the package B-4

std_logic_misc package B-30
std_logic_signed package 3-9
std_logic_unsigned package 3-9
string literals 4-28

bit 4-28
character 4-28

STRING type 3-17
structural architecture

NAND2 entity 2-33
structural design

component
instantiation statement 2-13

description
COUNTER3 2-15

subexpressions in expression tree 8-9
subprogram

body
calls, examples 2-26
examples 2-29
function syntax 2-28
procedure syntax 2-26

declaration
examples 2-25
function syntax 2-24
overloading 2-29
procedure, syntax 2-23
syntax 2-28

overloading
defined 2-29
examples 2-29

parameter 2-26
profile 2-29

sequential statement 2-22
subprograms

calling 5-37
defined 5-35
defining 5-36
mapping to components
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example 5-47
matching entity 5-45

procedure versus function 5-38
subrange

integer data type 3-8
subtype data type

declaration 2-32
defining 3-21

SYN_FEED_THRU
example of using B-20

sync_set_reset attribute 7-6
sync_set_reset_local attribute 7-6
sync_set_reset_local_all attribute 7-6
synchronous

designs 8-23
example 8-23

processes 6-3
synopsys keyword comment

hdlin_pragma_keyword variable 9-2
Synopsys packages B-1

std_logic_misc package B-30
Synopsys-defined package

std_logic_arith 3-21
std_logic_signed

integers 3-9
overload for arithmatic 3-9

std_logic_unsigned
integers 3-9
overload for arithmatic 3-9

syntax
array data type

constrained 3-10
unconstrained 3-11

assignment statement
aggregate target 5-9
field target 5-8
indexed name target 5-4
signal 5-2, 5-12
simple name target 5-3
slice target 5-7
variable 5-2, 5-11

bused clock 7-22
case statement 5-17
clock, bused 7-22
component

declaration statement 2-10
instantiation statement 2-13

constant declaration 2-18
enumeration data type 3-3
for ... loop statement 5-25
generic_declaration 2-3
if statement 5-15
integer data type 3-8
loop statement 5-22, 5-23
NAND2

dataflow architecture 2-34
RTL architecture 2-34
specification 2-3
structural architecture 2-33

operator
overloading 2-30

package body 2-39
resolution function

declaration 2-40
subtype 2-41
type 2-40

signal declaration 2-21
subprogram

overloading 2-29
subprogram declaration

body, examples 2-29
body, function syntax 2-28
function 2-24
procedure 2-23
procedure body 2-27

subtype 2-32
type

declaration 2-30
use statement, package 2-36
variable declaration 2-20, 2-31
while ... loop statement 5-24

synthetic comments
hdlin_pragma_keyword variable 9-2
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synthetic comments.See directives

T
target

signal assignment syntax 5-3
variable assignment syntax 5-2

TEXTIO package 3-16
three-bit counter

circuit description
entity architecture 2-7
entity specification 2-7

three-state
gate 7-65

registered enable 7-67
without registered enable 7-68

inference 7-59
registered drivers 7-65, 7-67
registered input 7-67
signals 6-8

tick (’) in VHDL expressions 4-29
time type C-16
TO_INTEGER function

conversion
numeric_std B-22

TO_SIGNED function
conversion

numeric_std B-22
TO_UNSIGNED function

conversion
numeric_std B-22

translate_off directive, warning 9-3
translate_on directive, warning 9-3
transport keyword C-15
two-input AND gate

component declaration example 2-11
two-input NAND gate

dataflow architecture syntax 2-34
RTL architecture syntax 2-34
specification syntax 2-3
structural architecture 2-33

two-input N-bit comparator
example 2-5

two-phase design 7-20
type

conversion
syntax 4-34

types
as aggregates C-12

U
unary arithmetic functions

example B-12
numeric_std B-23

unary operators
sign 4-10

unconstrained arrays
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