
FPGA Compiler II /
FPGA Express
VHDL Reference Manual
Version 1999.05, May 1999

Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

Copyright Notice and Proprietary Information
Copyright  1999 Synopsys, Inc. All rights reserved. This software and documentation are owned by Synopsys, Inc., and
furnished under a license agreement. The software and documentation may be used or copied only in accordance with the terms of
the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly
provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number
__________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, DesignWare,

dont_use, Eagle Design Automation, ExpressModel, in-Sync, LM-1000, LM-1200, Logic Modeling, Logic Modeling
(logo), Memory Architect, ModelAccess, ModelTools, PathMill, PLdebug, Powerview, Retargeter, SmartLicense,
SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream Driven Simulator_,
Synopsys, Synopsys (logo), Synopsys VHDL Compiler, Synthetic Designs, Synthetic Libraries, TestBench Manager,
TimeMill, ViewBase, ViewData, ViewDoc, ViewDraw, ViewFault, ViewFlow, VIEWFPGA, ViewGen, Viewlogic,
ViewPlace, ViewPLD, ViewScript, ViewSim, ViewState, ViewSynthesis, ViewText, Workview, Workview Office, and
Workview Plus are registered trademarks of Synopsys, Inc.

Trademarks
3-D Debugging, AC/Grade, AMPS, Arcadia, Arkos, Aurora, BCView, BOA, BRT, CBA Design System,

CBA-Frame, characterize, Chip Architect, Chronologic, Compiler Designs, Core Network, Core Store, Cyclone, Data
Path Express, DataPath Architect, DC Expert, DC Expert Plus, DC Professional, Delay Mill, Design Advisor, Design
Analyzer_proposed, Design Exchange, Design Source, DesignTime, DesignWare Developer, Direct RTL, Direct
Silicon Access, dont_touch, dont_touch_network, DW 8051, DWPCI, DxDataBook, DxDataManager, Eagle, Eaglei,
Eagle V, Embedded System Prototype, Floorplan Manager, Formality, FoundryModel, FPGA Compiler II, FPGA
Express, Fusion, FusionHDL, General Purpose Post-Processor, GPP, HDL Advisor, HTX, Integrator, IntelliFlow,
Interactive Waveform Viewer, ISIS, ISIS PreVUE, LM-1400, LM-700, LM-family, Logic Model, ModelSource,
ModelWare, MOTIVE, MS-3200, MS-3400, PathBlazer, PDQ, POET, PowerArc, PowerCODE, PowerGate, PowerMill,
PreVUE, PrimeTime, Protocol Compiler, QUIET, QUIET Expert, RailMill, RTL Analyzer, Shadow Debugger, Silicon
Architects, SimuBus, SmartCircuit, SmartModel Windows, Source-Level Design, SourceModel, SpeedWave, SWIFT,
SWIFT interface, Synopsys Behavioral Compiler, Synopsys Design Compiler, Synopsys ECL Compiler, Synopsys
ECO Compiler, Synopsys FPGA Compiler, Synopsys Frame Compiler, Synopsys Graphical Environment, Synopsys
HDL Compiler, Synopsys Library Compiler, Synopsys ModelFactory, Synopsys Module Compiler, Synopsys Power
Compiler, Synopsys Test Compiler, Synopsys Test Compiler Plus, TAP-in, Test Manager, TestGen, TestGen Expert
Plus, TestSim, Timing Annotator, TLC, Trace-On-Demand, VCS, DCS Express, VCSi, VHDL System Simulator,
ViewAnalog, ViewDatabook, ViewDRC, ViewLibrarian, ViewLibrary, ViewProject, ViewSymbol, ViewTrace, Visualyze,
Vivace, VMD, VSS Expert, VSS Professional VWaves, XFX, XNS, and XTK are trademarks of Synopsys, Inc.

Service Marks
SolvNET is a service mark of Synopsys, Inc.
All other product or company names may be trademarks of their respective owners.
Printed in the U.S.A.

FPGA Compiler II / FPGA Express VHDL Reference Manual, Version 1999.05
ii

About This Manual

This manual describes the VHDL portion of Synopsys FPGA
Compiler II / FPGA Express, part of the Synopsys suite of synthesis
tools. FPGA Compiler II / FPGA Express reads an RTL VHDL model
of a discrete electronic system and synthesizes this description into
a gate-level netlist.

VHDL is defined by IEEE Standard 1076 and the United States
Department of Defense Standard MIL-STD-454L. Appendix B and
Appendix C summarize the level of Synopsys support for all VHDL
packages and constructs.

Audience

This manual is written for logic designers and electronic engineers
who are familiar with Synopsys synthesis products. A basic
knowledge of VHDL or other high-level programming language is also
necessary.
iii

Other Sources of Information

The resources in the following sections provide additional information:

• Related publications

• SolvNET online help

• Customer support

Related Publications

These Synopsys documents supply additional information:

• FPGA Compiler II / FPGA Express Getting Started Manual

• Design Compiler Command-Line Interface Guide

• Design Compiler Reference Manual: Constraints and Timing

• Design Compiler Reference Manual: Optimization and Timing
Analysis

• Design Compiler Tutorial

• Design Compiler User Guide

• DesignWare Developer Guide

• VSS User Guide
iv

For more information about VHDL and its use, see the following
publications:

• IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-1987.

• Introduction to HDL-Based Design Using VHDL. Steve Carlson.
Synopsys, Inc., 1990.

• VHDL. Douglas L. Perry. McGraw-Hill, Inc., 1991.

Man Pages

You can view man pages from fc2_shell / fe_shell environment. From
the shell prompt, enter:

fc2_shell> help command_name

or

fe_shell> help command_name

SolvNET Online Help

SOLV-IT! is the Synopsys electronic knowledge base. It contains
information about Synopsys and its tools and is updated daily.

Access SOLV-IT! through e-mail or through the World Wide Web. For
more information about SOLV-IT!, send e-mail to

solvitfb@synopsys.com

or view the Synopsys Web page at

http://www.synopsys.com
v

Customer Support

If you have problems, questions, or suggestions, contact the
Synopsys Technical Support Center in one of the following ways:

• Send e-mail to

support_center@synopsys.com

• Call (650) 584-4200 outside the continental United States, or call
(800) 245-8005 inside the continental United States, from 7 a.m.
to 5:30 p.m. Pacific Time, Monday through Friday.

• Send a fax to (650) 594-2539.
vi

Conventions

The following conventions are used in Synopsys documentation.

Convention Description
courier Indicates command syntax.

In command syntax and examples, shows
system prompts, text from files, error
messages, and reports printed by the
system.

courier italic Indicates a user specification, such as
object_name

courier bold In command syntax and examples, indicates
user input (text the user types verbatim).

[] Denotes optional parameters, such as pin1
[pin2, . . , pinN]

| Indicates a choice among alternatives, such
as

low | medium | high

This example indicates that you can enter
one of three possible values for an option:
low, medium, or high.

_ Connects two terms that are read as a single
term by the system. For example,
design_space.

(Control-c) Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Edit > Copy Shows a menu selection. Edit is the menu

name, and Copy is the item on the menu.
vii

viii

Table of Contents

About This Manual

1. Using FPGA Compiler II / FPGA Express with VHDL

Hardware Description Languages . 1-2

Typical uses for HDLs . 1-3

Advantages of HDLs . 1-3

About VHDL . 1-4

FPGA Compiler II / FPGA Express Design Process 1-7

Using FPGA Compiler II / FPGA Express to Compile a VHDL Design1-8

Design Methodology . 1-9

2. Design Descriptions

Entities. 2-2

Entity Generic Specifications . 2-3

Entity Port Specifications . 2-4

Architecture . 2-5

Declarations . 2-10
ix

Components . 2-10
Concurrent Statements . 2-17
Constants . 2-18
Processes . 2-19
Signals . 2-21
Subprograms . 2-22
Types . 2-31

Examples of Architectures for NAND2 Entity. 2-33

Configurations . 2-34

Packages. 2-35

Package Uses . 2-35

Package Structure . 2-36

Package Declarations . 2-37

Package Body . 2-39

Resolution Functions. 2-40

3. Data Types

Enumeration Types . 3-3

Enumeration Overloading . 3-4

Enumeration Encoding. 3-4

Enumeration Encoding Values. 3-7

Integer Types. 3-8

Array Types . 3-9

Constrained Arrays . 3-10

Unconstrained Arrays . 3-10

Array Attributes . 3-12
x

Record Types . 3-13

Record Aggregates . 3-14

Predefined VHDL Data Types . 3-16

Data Type BOOLEAN . 3-18

Data Type BIT . 3-18

Data Type CHARACTER . 3-18

Data Type INTEGER . 3-19

Data Type NATURAL . 3-19

Data Type POSITIVE . 3-19

Data Type STRING . 3-19

Data Type BIT_VECTOR . 3-19

Unsupported Data Types. 3-20

Physical Types . 3-20

Floating-Point Types. 3-20

Access Types . 3-20

File Types. 3-20

Synopsys Data Types . 3-21

Subtypes . 3-21

4. Expressions

Operators . 4-2

Logical Operators. 4-3

Relational Operators . 4-5

Adding Operators. 4-8

Unary (Signed) Operators . 4-10
xi

Multiplying Operators . 4-11

Miscellaneous Arithmetic Operators . 4-12

Operands. 4-14

Operand Bit-Width . 4-15

Computable Operands. 4-16

Aggregates. 4-18

Attributes . 4-20

Expressions . 4-21

Function Calls . 4-22

Identifiers . 4-23

Indexed Names . 4-24

Literals . 4-26
Numeric Literals . 4-26
Character Literals . 4-26
Enumeration Literals . 4-27
String Literals . 4-27

Qualified Expressions . 4-29

Records and Fields . 4-30

Slice Names. 4-32
Limitations on Null Slices . 4-33
Limitations on Noncomputable Slices 4-34

Type Conversions . 4-34

5. Sequential Statements

Assignment Statements and Targets. 5-2

Simple Name Targets. 5-3

Indexed Name Targets . 5-4
xii

Slice Targets . 5-7

Field Targets . 5-8

Aggregate Targets . 5-9

Variable Assignment Statements. 5-11

Signal Assignment Statements . 5-12

if Statements . 5-15

Evaluating Conditions . 5-15

Using the if Statement to Infer Registers and Latches. 5-16

case Statements . 5-17

Using Different Expression Types . 5-18

Invalid case Statements. 5-21

loop Statements . 5-22

Basic loop Statements . 5-23

while...loop Statements . 5-24

for...loop Statements . 5-25
Steps in the Execution of a for...loop Statement. 5-27
for...loop Statements and Arrays . 5-28

next Statements. 5-30

exit Statements . 5-33

Subprograms. 5-35

Subprogram Always a Combinational Circuit. 5-35

Subprogram Declaration and Body . 5-35

Subprogram Calls . 5-37
Procedure Calls . 5-39
Function Calls. 5-41
xiii

return Statement . 5-43

Procedures and Functions as Design Components. 5-45

Example With Component Implication Directives 5-47

Example Without Component Implication Directives 5-49

wait Statements . 5-50

Inferring Synchronous Logic . 5-51

Combinational Versus Sequential Processes 5-55

null Statements . 5-58

6. Concurrent Statements

process Statements. 6-2

Combinational Process Example . 6-5

Sequential Process Example . 6-6

Driving Signals. 6-8

block Statements . 6-10

Nested Blocks . 6-11

Guarded Blocks . 6-12

Concurrent Versions of Sequential Statements. 6-13

Concurrent Procedure Calls. 6-14

Concurrent Signal Assignments. 6-17
Simple Concurrent Signal Assignments 6-17
Conditional Signal Assignment. 6-18
Selected Signal Assignments. 6-20

Component Instantiation Statements . 6-22

Direct Instantiation. 6-25
xiv

generate Statements . 6-26

for...generate Statement . 6-26
Steps in the Execution of a for...generate Statement 6-27
Common Usage of a for...generate Statement 6-29

if...generate Statements. 6-31

7. Register and Three-State Inference

Register Inference . 7-1

The inference Report . 7-3
Latch Inference Warnings. 7-4

Controlling Register Inference . 7-4
Attributes That Control Register Inference 7-5

Inferring Latches . 7-8
Inferring Set/Reset (SR) Latches . 7-8
Inferring D Latches . 7-10
Inferring Master-Slave Latches. 7-20

Inferring Flip-Flops . 7-21
Inferring D Flip-Flops . 7-22
Inferring JK Flip-Flops . 7-41
Inferring Toggle Flip-Flops . 7-45
Getting the Best Results. 7-51

Understanding Limitations of Register Inference 7-57

Three-State Inference . 7-59

Reporting Three-State Inference . 7-59

Controlling Three-State Inference . 7-60

Inferring Three-State Drivers . 7-60
Inferring a Simple Three-State Driver. 7-60
xv

Three-State Driver With Registered Enable 7-65
Three-State Driver Without Registered Enable 7-67

Understanding the Limitations of Three-State Inference 7-69

8. Writing Circuit Descriptions

How Statements Are Mapped to Logic . 8-2

Design Structure . 8-3

Adding Structure . 8-3
Using Variables and Signals. 8-4
Using Parentheses . 8-5

Using Design Knowledge. 8-6

Optimizing Arithmetic Expressions . 8-6
Arranging Expression Trees for Minimum Delay 8-7
Sharing Common Subexpressions. 8-12

Changing an Operator Bit-Width . 8-14

Using State Information . 8-17

Propagating Constants . 8-21

Sharing Complex Operators . 8-22

Asynchronous Designs . 8-23

Don’t Care Inference . 8-29

Using don’t care Default Values. 8-32

Differences Between Simulation and Synthesis 8-33

Synthesis Issues . 8-34

Feedback Paths and Latches. 8-34
Fully Specified Variables . 8-35
Asynchronous Behavior . 8-37
xvi

Understanding Superset Issues and Error Checking. 8-38

9. FPGA Compiler II / FPGA Express Directives

Notation for FPGA Compiler II / FPGA Express Directives 9-2

FPGA Compiler II / FPGA Express Directives. 9-2

Translation Stop and Start Pragma Directives 9-3

synthesis_off and synthesis_on Directives 9-3

Resolution Function Directives . 9-5

Component Implication Directives . 9-5

A. Examples

Moore Machine . A-2

Mealy Machine . A-5

Read-Only Memory . A-7

Waveform Generator . A-10

Smart Waveform Generator . A-13

Definable-Width Adder-Subtracter. A-16

Count Zeros—Combinational Version . A-19

Count Zeros—Sequential Version . A-22

Soft Drink Machine—State Machine Version. A-24

Soft Drink Machine—Count Nickels Version A-29

Carry-Lookahead Adder . A-32

Carry Value Computations. A-32

Implementation . A-39
xvii

Serial-to-Parallel Converter—Counting Bits A-40

Input Format. A-41

Implementation Details . A-42

Serial-to-Parallel Converter—Shifting Bits. A-47

Programmable Logic Arrays . A-51

B. Synopsys Packages

std_logic_1164 Package . B-2

std_logic_arith Package . B-3

Using the Package. B-4

Modifying the Package. B-5

Data Types . B-6
UNSIGNED . B-6
SIGNED . B-7

Conversion Functions . B-8

Arithmetic Functions . B-10

Comparison Functions. B-13

Shift Functions . B-15

ENUM_ENCODING Attribute. B-17

pragma built_in . B-17
Two-Argument Logic Functions . B-18
One-Argument Logic Functions . B-19
Type Conversion. B-19

numeric_std Package . B-20

Understanding the Limitations of numeric_std package B-21

Using the Package. B-21
xviii

Data Types . B-22

Conversion Functions . B-22

Resize Function . B-23

Arithmetic Functions . B-23

Comparison Functions. B-24

Defining Logical Operators Functions . B-26

Shift Functions . B-27

Rotate Functions . B-28

Shift and Rotate Operators . B-28

std_logic_misc Package . B-30

ATTRIBUTES Package . B-31

C. VHDL Constructs

VHDL Construct Support. C-2

Design Units . C-3

Data Types . C-4

Declarations . C-5

Specifications. C-6

Names . C-7

Identifiers and Extended Identifiers . C-8
Specifics of Identifiers . C-8
Specifics of Extended Identifiers . C-8

Operators . C-9
Shift and Rotate Operators. C-10
xnor Operator . C-11

Operands and Expressions . C-12
xix

Sequential Statements. C-13

Concurrent Statements . C-15

Predefined Language Environment . C-16

VHDL Reserved Words . C-17
xx

List of Figures

Figure 1-1 VHDL Hardware Model. 1-5

Figure 1-2 Design Flow . 1-9

Figure 2-1 3-Bit Counter Synthesized Circuit 2-8

Figure 2-2 Design Using Resolved Signal . 2-43

Figure 4-1 Design Schematic for Logical Operators 4-4

Figure 4-2 Relational Operators Design Illustrating Example 4-4 . . 4-8

Figure 4-3 Design Array Illustrating Example 4-5. 4-9

Figure 4-4 Design Illustrating Unary Negation From Example 4-6. . 4-10

Figure 4-5 Design Illustrating Multiplying Operators From Example 4-7 4-
12

Figure 4-6 Design With Arithmetic Operators From Example 4-8 . . 4-13

Figure 4-7 Design Illustrating Use of Indexed Names From Example 4-16
4-25

Figure 4-8 Design Illustrating Use of Slices From Example 4-24. . . 4-33

Figure 5-1 Design Illustrating Indexed Name Targets From Example 5-3
5-6

Figure 5-2 Schematic Design From Example 5-8 5-16
xxi

Figure 5-3 Schematic Design From Example 5-9 5-19

Figure 5-4 Schematic Design From Example 5-10 5-20

Figure 5-5 Schematic Design From Example 5-12 5-28

Figure 5-6 Schematic Design of Array From Example 5-13. 5-29

Figure 5-7 Schematic Design From Example 5-14 5-31

Figure 5-8 Schematic Design From Example 5-16 5-34

Figure 5-9 Schematic Design From Example 5-18 5-41

Figure 5-10 Schematic Design From Example 5-20 5-45

Figure 5-11 Schematic Design With Component Implication Directives 5-
48

Figure 5-12 Schematic Design Without Component Implication Directives
5-50

Figure 5-13 Schematic Design From Example 5-30 5-57

Figure 5-14 Schematic Design From Example 5-31 5-59

Figure 6-1 Modulo-10 Counter Process Design 6-6

Figure 6-2 Modulo-10 Counter Process With wait Statement Design 6-8

Figure 6-3 Two Three-State Buffers Driving the Same Signal 6-9

Figure 6-4 Schematic of Nested Blocks . 6-12

Figure 6-5 Concurrent CHECK Procedure Design. 6-16

Figure 6-6 Conditional Signal Assignment Design. 6-19

Figure 6-7 Selected Signal Assignment Design. 6-21

Figure 6-8 A Simple Netlist Design . 6-24

Figure 6-9 An 8-Bit Array Design . 6-29

Figure 6-10 Design of COMP Components Connecting Bit Vectors A and B
6-30
xxii

Figure 6-11 Design of N-Bit Serial-to-Parallel Converter 6-33

Figure 7-1 SR Latch . 7-10

Figure 7-2 D Latch . 7-13

Figure 7-3 D Latch With Asynchronous Set 7-15

Figure 7-4 D Latch With Asynchronous Reset 7-17

Figure 7-5 D Latch With Asynchronous Set and Reset 7-19

Figure 7-6 Two-Phase Clocks . 7-21

Figure 7-7 Positive Edge-Triggered D Flip-Flop 7-25

Figure 7-8 Positive Edge-Triggered D Flip-Flop Using rising_edge . 7-27

Figure 7-9 Negative Edge-Triggered D Flip-Flop 7-28

Figure 7-10 Negative Edge-Triggered D Flip-Flop Using falling_edge 7-29

Figure 7-11 D Flip-Flop With Asynchronous Set 7-30

Figure 7-12 D Flip-Flop With Asynchronous Reset 7-32

Figure 7-13 D Flip-Flop With Asynchronous Set and Reset 7-34

Figure 7-14 D Flip-Flop With Synchronous Set 7-35

Figure 7-15 D Flip-Flop With Synchronous Reset 7-37

Figure 7-16 D Flip-Flop With Synchronous and Asynchronous Load 7-38

Figure 7-17 Multiple Flip-Flops with Asynchronous and Synchronous Controls
7-40

Figure 7-18 JK Flip-Flop. 7-43

Figure 7-19 JK Flip-Flop With Asynchronous Set and Reset. 7-45

Figure 7-20 Toggle Flip-Flop With Asynchronous Set 7-47

Figure 7-21 Toggle Flip-Flop With Asynchronous Reset 7-49

Figure 7-22 Toggle Flip-Flop With Enable and Asynchronous Reset. 7-51
xxiii

Figure 7-23 Circuit With Six Inferred Flip-Flops 7-54

Figure 7-24 Circuit With Three Inferred Flip-Flops 7-56

Figure 7-25 Schematic of Simple Three-State Driver 7-61

Figure 7-26 One Three-State Driver Inferred From a Single Process 7-63

Figure 7-27 Two Three-State Drivers Inferred From Separate Processes7-
65

Figure 7-28 Three-State Driver With Registered Enable 7-67

Figure 7-29 Three-State Driver Without Registered Enable. 7-69

Figure 8-1 Ripple Carry and Carry-Lookahead Chain Design 8-5

Figure 8-2 Diagram of 4-Input Adder . 8-5

Figure 8-3 Diagram of 4-Input Adder With Parentheses 8-6

Figure 8-4 Default Expression Tree . 8-7

Figure 8-5 Balanced Adder Tree (Same Arrival Times for All Signals) 8-8

Figure 8-6 Expression Tree With Minimum Delay (Signal A Arrives Last)
8-9

Figure 8-7 Expression Tree With Subexpressions Dictated by Parentheses
8-10

Figure 8-8 Default Expression Tree With 4-Bit Temporary Variable . 8-11

Figure 8-9 Expression Tree With 5-Bit Intermediate Result 8-12

Figure 8-10 Function With One Adder Schematic 8-15

Figure 8-11 Using TEMP Declaration to Save Circuit Area 8-16

Figure 8-12 Schematic of Simple State Machine With Two Processes 8-19

Figure 8-13 Schematic of an Improved State Machine 8-21

Figure 8-14 Schematic of Synchronous Counter With Reset and Enable 8-
24
xxiv

Figure 8-15 Design With AND Gate on Clock and Enable Signals . . 8-26

Figure 8-16 Design With Asynchronous Reset 8-26

Figure 8-17 Schematic of Incorrect Asynchronous Design With Gated Clock
8-28

Figure 8-18 Seven-Segment LED Decoder With Don’t Care Type. . . 8-30

Figure 8-19 Seven-Segment LED Decoder With 0 LED Default 8-32

Figure A-1 Moore Machine Specification . A-2

Figure A-2 Moore Machine Schematic . A-4

Figure A-3 Mealy Machine Specification . A-5

Figure A-4 Mealy Machine Schematic . A-7

Figure A-5 ROM Schematic . A-9

Figure A-6 Waveform Example. A-10

Figure A-7 Waveform Generator Schematic. A-12

Figure A-8 Waveform for Smart Waveform Generator Example. . . . A-13

Figure A-9 Smart Waveform Generator Schematic A-16

Figure A-10 6-Bit Adder-Subtracter Schematic A-19

Figure A-11 Count Zeros—Combinational Schematic A-21

Figure A-12 Count Zeros—Sequential Schematic A-24

Figure A-13 Soft Drink Machine—State Machine Schematic A-28

Figure A-14 Soft Drink Machine—Count Nickels Version Schematic . A-31

Figure A-15 Carry-Lookahead Adder Block Diagram A-34

Figure A-16 Sample Waveform Through the Converter A-42

Figure A-17 Serial-to-Parallel Converter—Counting Bits Schematic . A-47

Figure A-18 Serial-to-Parallel Converter—Shifting Bits Schematic . . A-50
xxv

Figure A-19 Programmable Logic Array Schematic A-55
xxvi

List of Tables

Table 3-1 Array Index Attributes . 3-12

Table 4-1 Predefined VHDL Operators. 4-3

Table 7-1 SR Latch Truth Table (NAND Type) 7-9

Table 7-2 Truth Table for JK Flip-Flop . 7-42

Table B-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions
B-4

Table B-2 Number of Bits Returned by + and – B-13

Table C-1 VHDL Reserved Words . C-17
xxvii

xxviii

List of Examples

Example 2-1 VHDL Entity Specification . 2-3

Example 2-2 Interface for an N-Bit Counter 2-5

Example 2-3 An Implementation of a 3-Bit Counter 2-7

Example 2-4 Incorrect Use of a Port Name in Declaring Signals or Constants
2-9

Example 2-5 Component Declaration of a 2-Input AND Gate 2-11

Example 2-6 Component Declaration of an N-Bit Adder 2-11

Example 2-7 Equivalent Named and Positional Association 2-15

Example 2-8 Structural Description of a 3-Bit Counter 2-15

Example 2-9 Constant Declarations. 2-18

Example 2-10 Variable Declarations . 2-20

Example 2-11 Signal Declarations . 2-21

Example 2-12 Two Subprogram Declarations 2-25

Example 2-13 Two Subprogram Calls . 2-26

Example 2-14 Two Subprogram Bodies . 2-29

Example 2-15 Subprogram Overloading . 2-29

Example 2-16 Operator Overloading . 2-30
xxix

Example 2-17 Variable Declarations . 2-31

Example 2-18 Structural Architecture for Entity NAND2 2-33

Example 2-19 Data Flow Architecture for Entity NAND2 2-34

Example 2-20 RTL Architecture for Entity NAND2. 2-34

Example 2-21 Sample Package Declarations 2-38

Example 2-22 Resolved Signal and Its Resolution Function 2-42

Example 3-1 Enumeration Type Definitions 3-4

Example 3-2 Enumeration Literal Overloading. 3-4

Example 3-3 Automatic Enumeration Encoding. 3-5

Example 3-4 Using the ENUM_ENCODING Attribute 3-6

Example 3-5 Integer Type Definitions. 3-8

Example 3-6 Declaration of Array of Arrays 3-9

Example 3-7 Constrained Array Type Definition. 3-10

Example 3-8 Unconstrained Array Type Definition 3-11

Example 3-9 Use of Array Attributes . 3-13

Example 3-10 Record Type Declaration and Use 3-13

Example 3-11 Simple Record Type . 3-15

Example 3-12 Named Aggregate for Example 3-11. 3-15

Example 3-13 Use of others in an Aggregate 3-16

Example 3-14 Positional Aggregate . 3-16

Example 3-15 Record Aggregate Equivalent to Example 3-16 3-16

Example 3-16 Record Aggregate With Set of Choices 3-16

Example 3-17 FPGA Compiler II / FPGA Express STANDARD Package 3-
17
xxx

Example 3-18 Valid and Invalid Assignments Between INTEGER Subtypes
3-22

Example 3-19 Attributes and Functions Operating on a Subtype . . . 3-23

Example 4-1 Operator Precedence . 4-3

Example 4-2 Logical Operators . 4-4

Example 4-3 True Relational Expressions . 4-7

Example 4-4 Relational Operators . 4-7

Example 4-5 Adding Operators . 4-9

Example 4-6 Unary (Signed) Operators. 4-10

Example 4-7 Multiplying Operators With Powers of 2 4-11

Example 4-8 Miscellaneous Arithmetic Operators 4-13

Example 4-9 Computable and Noncomputable Expressions 4-17

Example 4-10 Simple Aggregate . 4-19

Example 4-11 Equivalent Aggregates . 4-20

Example 4-12 Equivalent Aggregates Using the others Expression . 4-20

Example 4-13 Function Calls . 4-23

Example 4-14 Sample Extended Identifiers . 4-23

Example 4-15 Identifiers . 4-24

Example 4-16 Indexed Name Operands . 4-25

Example 4-17 Numeric Literals . 4-26

Example 4-18 Enumeration Literals . 4-27

Example 4-19 Character String Literals . 4-28

Example 4-20 Bit String Literals . 4-29

Example 4-21 A Qualified Decimal Literal . 4-30
xxxi

Example 4-22 Qualified Aggregates and Enumeration Literals 4-30

Example 4-23 Record and Field Access . 4-31

Example 4-24 Slice Name Operands . 4-32

Example 4-25 Null and Noncomputable Slices 4-34

Example 4-26 Valid and Invalid Type Conversions. 4-35

Example 5-1 Simple Name Targets . 5-4

Example 5-2 Indexed Name Targets . 5-5

Example 5-3 Computable and Noncomputable Indexed Name Targets 5-
5

Example 5-4 Slice Targets . 5-7

Example 5-5 Field Targets . 5-8

Example 5-6 Aggregate Targets. 5-10

Example 5-7 Variable and Signal Assignments 5-14

Example 5-8 if Statement . 5-16

Example 5-9 case Statement With Enumerated Type 5-18

Example 5-10 case Statement With Integers 5-20

Example 5-11 Invalid case Statements . 5-21

Example 5-12 for...loop Statement With Equivalent Code Fragments 5-27

Example 5-13 for...loop Statement Operating on an Entire Array . . . 5-28

Example 5-14 next Statement . 5-30

Example 5-15 Named next Statement . 5-32

Example 5-16 Comparator That Uses the exit Statement 5-34

Example 5-17 Subprogram Declarations and Bodies 5-37

Example 5-18 Procedure Call to Sort an Array 5-40
xxxii

Example 5-19 Function Definition With Two Calls 5-42

Example 5-20 Use of Multiple return Statements. 5-44

Example 5-21 Using Component Implication Directives on a Function 5-47

Example 5-22 Using Gates to Implement a Function. 5-49

Example 5-23 Equivalent wait Statements. 5-51

Example 5-24 wait for a Positive Edge . 5-51

Example 5-25 Loop That Uses a wait Statement 5-52

Example 5-26 Multiple wait Statements . 5-52

Example 5-27 wait Statements and State Logic. 5-53

Example 5-28 Synchronous Reset That Uses wait Statements. 5-54

Example 5-29 Invalid Uses of wait Statements 5-54

Example 5-30 Parity Tester That Uses the wait Statement 5-56

Example 5-31 null Statement . 5-58

Example 6-1 Modulo-10 Counter Process . 6-5

Example 6-2 Modulo-10 Counter Process With wait Statement . . . 6-7

Example 6-3 Multiple Drivers of a Signal . 6-9

Example 6-4 Nested Blocks . 6-11

Example 6-5 Guarded Blocks. 6-12

Example 6-6 Level-Sensitive Latch Using Guarded Blocks 6-13

Example 6-7 Concurrent Procedure Call and Equivalent Process. . 6-14

Example 6-8 Procedure Definition for Example 6-9 6-15

Example 6-9 Concurrent Procedure Calls . 6-16

Example 6-10 Concurrent Signal Assignment 6-17

Example 6-11 Conditional Signal Assignment 6-19
xxxiii

Example 6-12 Process Equivalent to Conditional Signal Assignment 6-19

Example 6-13 Selected Signal Assignment . 6-21

Example 6-14 Process Equivalent to Selected Signal Assignment . . 6-22

Example 6-15 Component Declaration and Instantiations 6-24

Example 6-16 A Simple Netlist. 6-24

Example 6-17 Component Instantiation Statement 6-25

Example 6-18 Direct Component Instantiation Statement 6-26

Example 6-19 for...generate Statement . 6-28

Example 6-20 for...generate Statement Operating on an Entire Array 6-30

Example 6-21 Typical Use of if...generate Statements. 6-32

Example 7-1 Inference Report for a JK Flip-Flop 7-3

Example 7-2 SR Latch . 7-9

Example 7-3 Inference Report for an SR Latch 7-10

Example 7-4 Latch Inference . 7-11

Example 7-5 Fully Specified Signal: No Latch Inference 7-11

Example 7-6 Function: No Latch Inference 7-11

Example 7-7 D Latch . 7-13

Example 7-8 Inference Report for a D Latch 7-13

Example 7-9 D Latch With Asynchronous Set 7-14

Example 7-10 Inference Report for D Latch With Asynchronous Set 7-15

Example 7-11 D Latch With Asynchronous Reset 7-16

Example 7-12 Inference Report for D Latch With Asynchronous Reset 7-
16

Example 7-13 D Latch With Asynchronous Set and Reset 7-18
xxxiv

Example 7-14 Inference Report for D Latch With Asynchronous Set and Reset
7-18

Example 7-15 Invalid Use of a Conditionally Assigned Variable 7-19

Example 7-16 Two-Phase Clocks. 7-20

Example 7-17 Inference Reports for Two-Phase Clocks 7-21

Example 7-18 Using a wait Statement to Infer a Flip-Flop 7-23

Example 7-19 Using an if Statement to Infer a Flip-Flop 7-23

Example 7-20 Positive Edge-Triggered D Flip-Flop 7-25

Example 7-21 Inference Report for Positive Edge-Triggered D Flip-Flop 7-
25

Example 7-22 Positive Edge-Triggered D Flip-Flop Using rising_edge 7-26

Example 7-23 Inference Report for a Positive Edge-Triggered D Flip-Flop
Using rising_edge . 7-26

Example 7-24 Negative Edge-Triggered D Flip-Flop 7-27

Example 7-25 Inference Report for Negative Edge-Triggered D Flip-Flop
7-28

Example 7-26 Negative Edge-Triggered D Flip-Flop Using falling_edge 7-
28

Example 7-27 Inference Report for a Negative Edge-Triggered D Flip-Flop
Using falling_edge. 7-29

Example 7-28 D Flip-Flop With Asynchronous Set 7-30

Example 7-29 Inference Report for a D Flip-Flop With Asynchronous Set
7-30

Example 7-30 D Flip-Flop With Asynchronous Reset 7-31

Example 7-31 Inference Report for a D Flip-Flop With Asynchronous Reset
7-31
xxxv

Example 7-32 D Flip-Flop With Asynchronous Set and Reset. 7-33

Example 7-33 Inference Report for a D Flip-Flop With Asynchronous Set
and Reset . 7-33

Example 7-34 D Flip-Flop With Synchronous Set 7-35

Example 7-35 Inference Report for a D Flip-Flop With Synchronous Set 7-
35

Example 7-36 D Flip-Flop With Synchronous Reset 7-36

Example 7-37 Inference Report for a D Flip-Flop With Synchronous Reset
7-36

Example 7-38 D Flip-Flop With Synchronous and Asynchronous Load 7-
37

Example 7-39 Inference Report for a D Flip-Flop With Synchronous and
Asynchronous Load . 7-38

Example 7-40 Multiple Flip-Flops: Asynchronous and Synchronous Controls
7-39

Example 7-41 Inference Reports for Example 7-40 7-40

Example 7-42 JK Flip-Flop. 7-42

Example 7-43 Inference Report for JK Flip-Flop 7-43

Example 7-44 JK Flip-Flop With Asynchronous Set and Reset 7-44

Example 7-45 Inference Report for JK Flip-Flop With Asynchronous Set and
Reset. 7-45

Example 7-46 Toggle Flip-Flop With Asynchronous Set 7-46

Example 7-47 Inference Report for Toggle Flip-Flop With Asynchronous Set
7-47

Example 7-48 Toggle Flip-Flop With Asynchronous Reset 7-48

Example 7-49 Inference Report for a Toggle Flip-Flop With Asynchronous Reset
7-48
xxxvi

Example 7-50 Toggle Flip-Flop With Enable and Asynchronous Reset7-50

Example 7-51 Inference Report for Toggle Flip-Flop With Enable and
Asynchronous Reset . 7-50

Example 7-52 Circuit With Six Inferred Flip-Flops 7-52

Example 7-53 Inference Report for Circuit With Six Inferred Flip-Flops 7-
53

Example 7-54 Circuit With Three Inferred Flip-Flops 7-55

Example 7-55 Inference Report for Circuit With Three Inferred Flip-Flops
7-55

Example 7-56 Delays in Registers . 7-57

Example 7-57 Three-State Inference Report 7-59

Example 7-58 Simple Three-State Driver. 7-61

Example 7-59 Inference Report for Simple Three-State Driver 7-61

Example 7-60 Inferring One Three-State Driver From a Single Process 7-
62

Example 7-61 Single Process Inference Report 7-62

Example 7-62 Inferring Two Three-State Drivers From Separate Processes
7-64

Example 7-63 Inference Report for Two Three-State Drivers From Separate Processes
7-64

Example 7-64 Inferring a Three-State Driver With Registered Enable 7-66

Example 7-65 Inference Report for Three-State Driver With Registered Enable
7-66

Example 7-66 Three-State Driver Without Registered Enable. 7-68

Example 7-67 Inference Report for Three-State Driver Without Registered Enable
7-68
xxxvii

Example 7-68 Incorrect Use of the Z Value in an Expression 7-70

Example 7-69 Correct Use of the Z Value in an Expression 7-70

Example 8-1 Four Logic Blocks . 8-2

Example 8-2 Ripple Carry Chain . 8-4

Example 8-3 Carry-Lookahead Chain . 8-4

Example 8-4 4-Input Adder . 8-5

Example 8-5 4-Input Adder Structured With Parentheses 8-6

Example 8-6 Simple Arithmetic Expression 8-7

Example 8-7 Parentheses in an Arithmetic Expression 8-9

Example 8-8 Adding Numbers of Different Bit-Widths 8-11

Example 8-9 Simple Additions With a Common Subexpression . . . 8-12

Example 8-10 Sharing Common Subexpressions—Increases Area . 8-13

Example 8-11 Common Subexpressions . 8-14

Example 8-12 Function With One Adder . 8-15

Example 8-13 Using Design Knowledge to Simplify an Adder. 8-16

Example 8-14 A Simple State Machine . 8-17

Example 8-15 A Better Implementation of a State Machine 8-20

Example 8-16 Equivalent Statements . 8-22

Example 8-17 Fully Synchronous Counter With Reset and Enable . . 8-24

Example 8-18 Design With Gated Clock and Asynchronous Reset. . 8-25

Example 8-19 Incorrect Design (Counter With Asynchronous Load). 8-27

Example 8-20 Incorrect Asynchronous Design With Gated Clock . . . 8-28

Example 8-21 Using don’t care Type for Seven-Segment LED Decoder 8-
29
xxxviii

Example 8-22 Seven-Segment Decoder Without Don’t Care Type . . 8-31

Example 8-23 Fully Specified Variables . 8-35

Example 9-1 Using synthesis_on and synthesis_off Directives 9-4

Example A-1 Implementation of a Moore Machine. A-3

Example A-2 Implementation of a Mealy Machine A-5

Example A-3 Implementation of a ROM in Random Logic A-8

Example A-4 Implementation of a Waveform Generator A-11

Example A-5 Implementation of a Smart Waveform Generator A-14

Example A-6 MATH Package for Example A-7. A-17

Example A-7 Implementation of a 6-Bit Adder-Subtracter A-18

Example A-8 Count Zeros—Combinational A-20

Example A-9 Count Zeros—Sequential . A-22

Example A-10 Soft Drink Machine—State Machine A-25

Example A-11 Soft Drink Machine—Count Nickels A-29

Example A-12 Carry-Lookahead Adder . A-35

Example A-13 Serial-to-Parallel Converter—Counting Bits A-45

Example A-14 Serial-to-Parallel Converter—Shifting Bits A-48

Example A-15 Programmable Logic Array . A-53

Example B-1 New Function Based on a std_logic_arith Package Function
B-5

Example B-2 UNSIGNED Declarations . B-7

Example B-3 SIGNED Declarations . B-8

Example B-4 Conversion Functions . B-8

Example B-5 Binary Arithmetic Functions . B-11
xxxix

Example B-6 Unary Arithmetic Functions. B-12

Example B-7 Using the Carry-Out Bit. B-13

Example B-8 Ordering Functions . B-14

Example B-9 Equality Functions. B-14

Example B-10 Shift Functions . B-15

Example B-11 Shift Operations . B-16

Example B-12 Using a built_in pragma . B-17

Example B-13 Built-In AND for Arrays . B-18

Example B-14 Built-In NOT for Arrays . B-19

Example B-15 Use of SYN_FEED_THRU . B-20

Example B-16 numeric_std Conversion Functions. B-22

Example B-17 numeric_std Resize Function B-23

Example B-18 numeric_std Binary Arithmetic Functions B-24

Example B-19 numeric_std Unary Arithmetic Functions B-24

Example B-20 numeric_std Ordering Functions. B-25

Example B-21 numeric_std Equality Functions B-26

Example B-22 numeric_std Logical Operators Functions. B-26

Example B-23 numeric_std Shift Functions . B-27

Example B-24 numeric_std Rotate Functions B-28

Example B-25 numeric_std Shift Operators . B-28

Example B-26 Some numeric_std Shift Functions and Shift Operators B-
29

Example B-27 Boolean Reduction Functions B-30

Example B-28 Boolean Reduction Operations B-31
xl

Example C-1 Sample Extended Identifiers . C-9

Example C-2 Sample Showing Use of Shift and Rotate Operators . C-11

Example C-3 Sample Showing Use of xnor Operator. C-11
xli

xlii

1
Using FPGA Compiler II / FPGA Express with
VHDL 1

FPGA Compiler II / FPGA Express translates a VHDL description to
an internal gate-level equivalent format. This format is then optimized
for a given FPGA technology.

This chapter contains the following sections:

• Hardware Description Languages

• About VHDL

• FPGA Compiler II / FPGA Express Design Process

• Using FPGA Compiler II / FPGA Express to Compile a VHDL
Design

• Design Methodology
1-1

Using FPGA Compiler II / FPGA Express with VHDL

The United States Department of Defense, as part of its Very High
Speed Integrated Circuit (VHSIC) program, developed VHSIC HDL
(VHDL) in 1982. VHDL describes the behavior, function, inputs, and
outputs of a digital circuit design. VHDL is similar in style and syntax
to modern programing languages, but includes many hardware-
specific constructs.

FPGA Compiler II / FPGA Express reads and parses the supported
VHDL syntax. Appendix C, "VHDL Constructs”, lists all VHDL
constructs and includes the level of Synopsys support provided for
each construct.

Hardware Description Languages

Hardware description languages (HDLs) are used to describe the
architecture and behavior of discrete electronic systems.

HDLs were developed to deal with increasingly complex designs. An
analogy is often made to the development of software description
languages, from machine code (transistors and solder), to assembly
language (netlists), to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects,
where several designers or teams of designers are working
concurrently. HDLs provide structured development. After major
architectural decisions have been made, and major components and
their connections have been identified, work can proceed
independently on subprojects.
1-2

Using FPGA Compiler II / FPGA Express with VHDL

Typical uses for HDLs

HDLs typically support a mixed-level description, where structural or
netlist constructs can be mixed with behavioral or algorithmic
descriptions. With this mixed-level capability, you can describe
system architectures at a high level of abstraction; then incrementally
refine a design into a particular component-level or gate-level
implementation. Alternatively, you can read an HDL design
description into FPGA Compiler II / FPGA Express, then direct the
compiler to synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDLs has several fundamental
advantages over a traditional gate-level design methodology. Among
the advantages are the following:

• You can verify design functionality early in the design process and
immediately simulate a design written as an HDL description.
Design simulation at this higher level, before implementation at
the gate level, allows you to test architectural and design
decisions.

• FPGA Compiler II / FPGA Express provides logic synthesis and
optimization, so you can automatically convert a VHDL description
to a gate-level implementation in a given technology. This
methodology eliminates the former gate-level design bottleneck
and reduces circuit design time and errors introduced when hand-
translating a VHDL specification to gates.
1-3

Using FPGA Compiler II / FPGA Express with VHDL

With FPGA Compiler II / FPGA Express logic optimization, you
can automatically transform a synthesized design to a smaller and
faster circuit. You can apply information gained from the
synthesized and optimized circuits back to the VHDL description,
perhaps to fine-tune architectural decisions.

• HDL descriptions provide technology-independent
documentation of a design and its functionality. An HDL
description is more easily read and understood than a netlist or
schematic description. Because the initial HDL design description
is technology-independent, you can later reuse it to generate the
design in a different technology, without having to translate from
the original technology.

• VHDL, like most high-level software languages, provides strong
type checking. A component that expects a four-bit-wide signal
type cannot be connected to a three- or five-bit-wide signal; this
mismatch causes an error when the HDL description is compiled.
If a variable’s range is defined as 1 to 15, an error results from
assigning it a value of 0. Incorrect use of types has been shown
to be a major source of errors in descriptions. Type checking
catches this kind of error in the HDL description even before a
design is generated.

About VHDL

VHDL is one of a few HDLs in widespread use today. VHDL is
recognized as a standard HDL by the Institute of Electrical and
Electronics Engineers (IEEE Standard 1076, ratified in 1987) and by
the United States Department of Defense (MIL-STD-454L).
1-4

Using FPGA Compiler II / FPGA Express with VHDL

VHDL divides entities (components, circuits, or systems) into an
external or visible part (entity name and connections) and an internal
or hidden part (entity algorithm and implementation). After you define
the external interface to an entity, other entities can use that entity
when they all are being developed. This concept of internal and
external views is central to a VHDL view of system design. An entity
is defined, relative to other entities, by its connections and behavior.
You can explore alternate implementations (architectures) of an entity
without changing the rest of the design.

After you define an entity for one design, you can reuse it in other
designs as needed. You can develop libraries of entities for use by
many designs or for a family of designs.

The VHDL hardware model is shown in Figure 1-1.

Figure 1-1 VHDL Hardware Model

Process

(Signals)

(Architecture)

Component

red, blue

0 to 15

Combinational

Process

X and (Y xor Z);

Subprogram

Ports

Process

Sequential

Process
wait ... ;

end if;
 else Y
 then X

if A

Entity
1-5

Using FPGA Compiler II / FPGA Express with VHDL

A VHDL entity (design) has one or more input, output, or inout ports
that are connected (wired) to neighboring systems. An entity is
composed of interconnected entities, processes, and components,
all of which operate concurrently. Each entity is defined by a particular
architecture, which is composed of VHDL constructs such as
arithmetic, signal assignment, or component instantiation
statements.

In VHDL independent processes model sequential (clocked) circuits,
using flip-flops and latches, and combinational (unclocked) circuits,
using only logic gates. Processes can define and call (instantiate)
subprograms (subdesigns). Processes communicate with each other
by signals (wires).

A signal has a source (driver), one or more destinations (receivers),
and a user-defined type, such as “color” or “number between 0 and
15”.

VHDL provides a broad set of constructs. With VHDL, you can
describe discrete electronic systems of varying complexity (systems,
boards, chips, or modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their
level of abstraction: behavioral, dataflow, and structural. These
categories are described as follows:

behavioral
The functional or algorithmic aspects of a design, expressed in a
sequential VHDL process.

dataflow
The view of data as flowing through a design, from input to output.
An operation is defined in terms of a collection of data
transformations, expressed as concurrent statements.
1-6

Using FPGA Compiler II / FPGA Express with VHDL

structural
The view closest to hardware; a model where the components of
a design are interconnected. This view is expressed by
component instantiations.

FPGA Compiler II / FPGA Express Design Process

FPGA Compiler II / FPGA Express performs three functions:

• Translates VHDL to an internal format

• Optimizes the block-level representation through various
optimization methods

• Maps the design’s logical structure for a specific FPGA technology
library

FPGA Compiler II / FPGA Express synthesizes VHDL descriptions
according to the VHDL synthesis policy defined in Chapter 2, "Design
Descriptions”. The Synopsys VHDL synthesis policy has three parts:
design methodology, design style, and language constructs. You use
the VHDL synthesis policy to produce high quality VHDL-based
designs.
1-7

Using FPGA Compiler II / FPGA Express with VHDL

Using FPGA Compiler II / FPGA Express to Compile a
VHDL Design

When a VDL design is read into FPGA Compiler II / FPGA Express,
it is converted to an internal database format so FPGA Compiler II /
FPGA Express can synthesize and optimize the design.

When FPGA Compiler II / FPGA Express optimizes a design, it can
restructure part or all of the design. You can control the degree of
restructuring. Options include:

• Fully preserving the design’s hierarchy

• Allowing full modules to be moved up or down in the hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening
the design) if it is beneficial to do so

The following section describes the design process that uses FPGA
Compiler II / FPGA Express with a VHDL simulator.
1-8

Using FPGA Compiler II / FPGA Express with VHDL

Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Compiler
II / FPGA Express and a VHDL simulator.

Figure 1-2 Design Flow

VHDL Driver

Synopsys
FPGA Compiler II /

VHDL Simulator

Simulation Output
Compare
Output

VHDL Simulator

1.

2.

3.

4.

5.

6.

7.

(Test Vectors)

VHDL Description

FPGA Vendor
Development System

FPGA Express

Simulation Output
1-9

Using FPGA Compiler II / FPGA Express with VHDL

Figure 1-2 illustrates the following steps:

1. Write a design description in VHDL. This description can be a
combination of structural and functional elements (as shown in
Chapter 2, "Design Descriptions”). This description is used with
both FPGA Compiler II / FPGA Express and the VHDL simulator.

2. Provide VHDL test drivers for the simulator. For information on
writing these drivers, see the appropriate simulator manual. The
drivers supply test vectors for simulation and other output data.

3. Simulate the design by using a VHDL simulator. Verify that the
description is correct.

4. Use FPGA Compiler II / FPGA Express to synthesize and optimize
the VHDL design description into a gate-level netlist. FPGA
Compiler II / FPGA Express generates optimized netlists to satisfy
timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-
specific version of the design to the VHDL simulator. The
development system includes simulation models and interfaces
required for the design flow.

6. Simulate the technology-specific version of the design with the
VHDL simulator. You can use the original VHDL simulation drivers
from step 3because module and port definitions are preserved
through the translation and optimization processes.

7. Compare the output of the gate-level simulation (step 6) against
the original VHDL description simulation (step 3) to verify that the
implementation is correct.
1-10

Using FPGA Compiler II / FPGA Express with VHDL

2
Design Descriptions 2

Each VHDL structural design can have four parts, which this chapter
discusses in the following major sections:

• Entities

• Architecture

• Configurations

• Packages

This chapter also contains the section “Resolution Functions” on
page 2-40.
2-1

Design Descriptions

Entities

An entity defines the input and output ports of a design. A design can
contain more than one entity. Each entity has its own architecture
statement.

The syntax is

entity entity_name is [generic (generic_declarations);]
 [port (port_declarations) ;]
end [entity_name] ;

entity_name
The name of the entity.

- generic_declarations determine local constants used for sizing
or timing the entity.

- port_declarations determine the number and type of input and
output ports.

You cannot use the declaration of other in the entity specification.

An entity serves as an interface to other designs, by defining entity
characteristics that must be known to FPGA Compiler II / FPGA
Express before it can connect the entity to other entities and
components.

For example, before you can connect a counter to other entities, you
must specify the number and types of its input and output ports, as
shown in Example 2-1.
2-2

Design Descriptions

Example 2-1 VHDL Entity Specification
entity NAND2 is
 port(A, B: in BIT; -- Two inputs, A and B
 Z: out BIT); -- One output, Z = (A and B)’
end NAND2;

Entity Generic Specifications

Generic specifications are entity parameters. Generics can specify
the bit-widths of components—such as adders—or can provide
internal timing values.

A generic can have a default value. It receives a nondefault value only
when the entity is instantiated (see “Component Instantiation
Statements” on page 2-13) or configured (see “Configurations” on
page 2-34). Inside an entity, a generic is a constant value.

The syntax is

generic(
constant_name : type [:= value]
 { ; constant_name : type [:= value] }
);

constant_name
The name of a generic constant.

- type is a previously defined data type.

- Optional value is the default value of constant_name.
2-3

Design Descriptions

Entity Port Specifications

Port specifications define the number and type of ports in the entity.

The syntax is

port(
port_name : mode port_type
 { ; port_name : mode port_type}
);

port_name
The name of the port.

mode
Any of these four values:

in
Can only be read.

out
Can only be assigned a value.

inout
Can be read and assigned a value. The value read is that of
the port’s incoming value, not the assigned value (if any).

buffer
Similar to out but can be read. The value read is the assigned
value. It can have only one driver. For more information about
drivers, see “Driving Signals” on page 6-8.

port_type
A previously defined data type.
2-4

Design Descriptions

Example 2-2 shows an entity specification for a 2-input N-bit
comparator with a default bit-width of 8.

Example 2-2 Interface for an N-Bit Counter
-- Define an entity (design) called COMP
-- that has 2 N-bit inputs and one output.

entity COMP is
 generic(N: INTEGER := 8); -- default is 8 bits

 port(X, Y: in BIT_VECTOR(0 to N-1);
 EQUAL: out BOOLEAN);
end COMP;

Architecture

Architecture, which determines the implementation of an entity, can
range in abstraction from an algorithm (a set of sequential statements
within a process) to a structural netlist (a set of component
instantiations).

The syntax is

architecture architecture_name of entity_name is
 { block_declarative_item }
begin
 { concurrent_statement }
end [architecture_name] ;

architecture_name
 The name of the architecture.

entity_name
The name of the entity being implemented.
2-5

Design Descriptions

block_declarative_item
Any of the following statements:

- use statement (see “Package Uses” on page 2-35)

- subprogram declaration (“Subprogram Declarations” on
page 2-23)

- subprogram body (“Subprogram Body” on page 2-26)

- type declaration (see “Types” on page 2-31)

- subtype declaration (see “Subtypes” on page 2-32)

- constant declaration (see “Constants” on page 2-18)

- signal declaration (see “Signals” on page 2-21)

- component declaration (see “Subtypes” on page 2-32)

- concurrent statement
Defines a unit of computation that reads signals, performs
computations, and assigns values to signals (see “Concurrent
Statements” on page 2-17).

Example 2-3 shows a description for a 3-bit counter that contains an
entity specification and an architecture statement:

• Entity specification for COUNTER3

• Architecture statement, MY_ARCH

Figure 2-1 shows a schematic of the design.
2-6

Design Descriptions

Example 2-3 An Implementation of a 3-Bit Counter
entity COUNTER3 is
port (CLK : in bit;
 RESET: in bit;
 COUNT: out integer range 0 to 7);
end COUNTER3;
architecture MY_ARCH of COUNTER3 is
signal COUNT_tmp : integer range 0 to 7;

begin
 process
 begin
 wait until (CLK’event and CLK = ’1’);
 -- wait for the clock
 if RESET = ’1’ or COUNT_tmp = 7 then
 -- Check for RESET or max. count
 COUNT_tmp <= 0;
 else COUNT_tmp <= COUNT_tmp + 1;
 -- Keep counting
 end if;
 end process;
 COUNT <= COUNT_tmp;
end MY_ARCH;
2-7

Design Descriptions

Figure 2-1 3-Bit Counter Synthesized Circuit

Note:
In an architecture, you must not give constants or signals the same
name as any of the entity’s ports in the entity specification.

If you declare a constant or signal with a port’s name, the new
declaration hides that port name. If the new declaration lies
directly in the architecture declaration (as shown in Example 2-4)
and not in an inner block, FPGA Compiler II / FPGA Express
reports an error.
2-8

Design Descriptions

Example 2-4 Incorrect Use of a Port Name in Declaring Signals or Constants
entity X is
 port(SIG, CONST: in BIT;
 OUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
 signal SIG : BIT;
 constant CONST: BIT := ’1’;
begin
...
end EXAMPLE;

The error messages generated for Example 2-4 are

 signal SIG : BIT;
 ^
Error: (VHDL-1872) line 13
 Illegal redeclaration of SIG.

 constant CONST: BIT := ’1’;
 ^
Error: (VHDL-1872) line 14

 Illegal redeclaration of CONST.
2-9

Design Descriptions

Declarations

An architecture consists of a declaration section where you declare

• Components

• Concurrent statements

• Constants

• Processes

• Signals

• Subprograms

• Types

Components

If your design consists only of VHDL entity statements, every
component declaration in the architecture or package statement has
to correspond to an entity.

Components declared in an architecture are local to that architecture.

The syntax is

component identifier
 [generic(generic_declarations);]
 [port(port_declarations);]
end component ;
2-10

Design Descriptions

identifier
The name of the component.

You cannot use names preceded by GTECH_ for components
other than ones provided by Synopsys. However, you can use
GTECH to precede a name if it is used without an underscore, as
in GTECHBUSTBUF.

generic_declaration
Determines local constants used for sizing or timing the
component.

port_declaration
Determines the number and type of input and output ports.

Example 2-5 shows a simple component declaration statement.

Example 2-5 Component Declaration of a 2-Input AND Gate
component AND2
 port(I1, I2: in BIT;
 O1: out BIT);
end component;

Example 2-6 shows a component declaration statement that uses a
generic parameter.

Example 2-6 Component Declaration of an N-Bit Adder
component ADD
 generic(N: POSITIVE);

 port(X, Y: in BIT_VECTOR(N-1 downto 0);
 Z: out BIT_VECTOR(N-1 downto 0);
 CARRY: out BIT);
end component;
2-11

Design Descriptions

The component declaration makes a design entity (AND2 in Example
2-5, ADD in Example 2-6) usable within an architecture. You must
declare a component in an architecture or package before you can
instantiate it.

Sources of Components

A declared component can come from

• The same VHDL source file

• A different VHDL source file

• Another format, such as EDIF or XNF

• A component from a technology library

Consistency of Component Ports

FPGA Compiler II / FPGA Express checks for consistency among its
VHDL entities. For other entities, the port names are taken from the
original design description, as follows:

• For components in a technology library, the port names are the
input and output pin names.

• For EDIF designs, the port names are the EDIF port names.

The bit-widths of each port must match.

• For VHDL components, FPGA Compiler II / FPGA Express verifies
matching.

• For components from other sources, FPGA Compiler II / FPGA
Express checks when linking the component to the VHDL
description.
2-12

Design Descriptions

Component Instantiation Statements

You use a component instantiation statement to define a design
hierarchy or build a netlist in VHDL. A netlist is a structural description
of a design.

To form a netlist, use component instantiation statements to
instantiate and connect components. A component instantiation
statement create a new level of design hierarchy.

The syntax of the component instantiation statement is

instance_name : component_name
[generic map (
 generic_name => expression
 { , generic_name => expression }
)]
port map (
 [port_name =>] expression
 { , [port_name =>] expression }
);

instance_name
The name of this instance of component type component_name,
as in

U1 : ADD

generic map (optional)
Maps nondefault values onto generics. Each generic_name is the
name of a generic exactly as declared in the corresponding
component declaration statement. Each expression evaluates to
an appropriate value.

U1 : ADD generic map (N => 4)
2-13

Design Descriptions

port map
Maps the component’s ports onto connections. Each port_name
is the name of a port, exactly as declared in the corresponding
component declaration statement. Each expression evaluates to
a signal value.

U1 : ADD generic map (N => 4)
 port map (X, Y, Z, CARRY) ;

FPGA Compiler II / FPGA Express uses the following two rules to
select which entity and architecture to associate with a component
instantiation:

1. Each component declaration must have an entity—a VHDL entity,
a design entity from another source or format, or a library
component—with the same name. This entity is used for each
component instantiation associated with the component
declaration.

2. A VHDL entity may have only one architecture associated with it.
If multiple architectures are available, add only one of these files
to the Design Sources window.

Mapping Generic Values

When you instantiate a component with generics, you can map
generics to values. A generic without a default value must be
instantiated with a generic map value.

For example, a 4-bit instantiation of the component ADD from
Example 2-6 on page 2-11 might use the following generic map:

U1: ADD generic map (N => 4)
 port map (X, Y, Z, CARRY);
2-14

Design Descriptions

Mapping Port Connections

The port map maps component ports to actual signals.

Use named or positional association to specify port connections in
component instantiation statements, as follows:

• To identify the specific ports of the component, use named
association. The port_name => construction identifies the ports.

• To list the component port expressions in the declared port order,
use positional association.

Example 2-7 shows named and positional association for the U5
component instantiation statement in Example 2-8.

Example 2-7 Equivalent Named and Positional Association
U5: or2 port map (O => n6, I1 => n3, I2 => n1);
 -- Named association

U5: or2 port map (n3, n1, n6);
 -- Positional association

Note:
When you use positional association, the instantiated port
expressions (signals) must be in the same order as the ports in
the component declaration statement.

Example 2-8 shows a structural netlist description for the COUNTER3
design entity from Example 2-3 on page 2-7.

Example 2-8 Structural Description of a 3-Bit Counter
architecture STRUCTURE of COUNTER3 is
 component DFF
 port(CLK, DATA: in BIT;
 Q: out BIT);
 end component;
2-15

Design Descriptions

 component AND2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component OR2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component NAND2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component XNOR2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component INV
 port(I: in BIT;
 O: out BIT);
 end component;

 signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin
 u1: DFF port map(CLK, N1, N2);
 u2: DFF port map(CLK, N5, N3);
 u3: DFF port map(CLK, N9, N4);
 u4: INV port map(N2, N1);
 u5: OR2 port map(N3, N1, N6);
 u6: NAND2 port map(N1, N3, N7);
 u7: NAND2 port map(N6, N7, N5);
 u8: XNOR2 port map(N8, N4, N9);
 u9: NAND2 port map(N2, N3, N8);
 COUNT(0) <= N2;
 COUNT(1) <= N3;
 COUNT(2) <= N4;
end STRUCTURE;
2-16

Design Descriptions

Concurrent Statements

Each concurrent statement in an architecture defines a unit of
computation that

• Reads signals

• Performs a computation that is based on the values of the signals

• Assigns the computed values to the signals

Concurrent statements all compute their values at the same time.
Although the order of concurrent statements has no effect on the
order in which FPGA Compiler II / FPGA Express executes them,
concurrent statements coordinate their processing by communicating
with each other through signals.

The five kinds of concurrent statements are

Block
Groups a set of concurrent statements.

Component instantiation
Creates an instance of an entity, connecting its interface ports to
signals or interface ports of the entity being defined. See
“Component Instantiation Statements” on page 2-13.

Procedure call
Calls algorithms that compute and assign values to signals.

Process
Defines sequential algorithms that read the values of signals and
compute new values to assign to other signals. For a discussion
of processes, see “Processes” on page 2-19.”
2-17

Design Descriptions

Signal assignments
Assign computed values to signals or interface ports.

Concurrent statements are described further in Chapter 6,
"Concurrent Statements”.

Constants

Constant declarations create named values of a given type. The value
of a constant can be read but not changed.

Constant declarations are allowed in architectures, packages,
entities, blocks, processes, and subprograms.

Constants declared in an architecture are local to that architecture.

Example 2-9 shows some constant declarations.

Example 2-9 Constant Declarations
constant WIDTH: INTEGER := 8;
constant X : NEW_BIT := ’X’;

You can use constants in expressions, as described in “Identifiers”
on page 4-23 and “Literals” on page 4-26, and as source values in
assignment statements, as described in “Assignment Statements and
Targets” on page 5-2.
2-18

Design Descriptions

Processes

A process, which is declared within an architecture, is a concurrent
statement. But it is made up of sequentially executed statements that
define algorithms. The sequential statements can be any of the
following, all of which are discussed in Chapter 5, "Sequential
Statements”:

• case statement

• exit statement

• if statement

• loop statement

• next statement

• null statement

• Procedure call

• Signal assignment

• Variable assignment

• wait statement

Processes, like all other concurrent statements, read and write
signals and the values of interface ports to communicate with the rest
of the architecture and with the enclosing system.

Processes are unique in that they behave like concurrent statements
to the rest of the design, but they are internally sequential. In addition,
only processes can define variables to hold intermediate values in a
sequence of computations.
2-19

Design Descriptions

Because the statements in a process are sequentially executed,
several constructs, such as if and loop statements, are provided to
control the order of execution.

Variable Declarations

Variable declarations define a named value of a given type.

Example 2-10 shows some variable declarations.

Example 2-10 Variable Declarations
variable A, B: BIT;
variable INIT: NEW_BIT;

You can use variables in expressions, as described in Chapter 4,
"Expressions”.

You assign values to variables by using variable assignment
statements, as described in “Variable Assignment Statements” on
page 5-11.

FPGA Compiler II / FPGA Express does not support variable
initialization. If you try to initialize a variable, FPGA Compiler II / FPGA
Express generates the following message:

Warning: Initial values for signals are not supported for
synthesis. They are ignored on line %n (VHDL-2022)

Note:
Variables are declared and used only in processes and
subprograms, because processes and subprograms cannot
declare signals for internal use.
2-20

Design Descriptions

Signals

Signals connect the separate concurrent statements of an
architecture to each other, and to other parts of a design, through
interface ports.

Signal declarations create new named signals (wires) of a given type.
Signals can be given default (initial) values, but these initial values
are ignored for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in “Resolution
Functions” on page 2-40.

Example 2-11 shows two signal declarations.

Example 2-11 Signal Declarations
signal A, B: BIT;
signal INIT: INTEGER := -1;

Note:
Ports are also signals, with the restriction that out ports cannot be
read and in ports cannot be assigned a value. You create signals
either with port declarations or with signal declarations. You create
ports only with port declarations.

You can declare signals in architectures, entities, and blocks and can
use them in processes and subprograms. Processes and
subprograms cannot declare signals for internal use.

You can use signals in expressions, as described in Chapter 5,
"Sequential Statements”. Signals are assigned values by signal
assignment statements, as described in “Signal Assignment
Statements” on page 5-12.
2-21

Design Descriptions

Subprograms

Subprograms use sequential statements to define algorithms and are
useful for performing repeated calculations, often in different parts of
an architecture (see “Subprograms” on page 5-35). Subprograms
declared in an architecture are local to that architecture.

Subprograms differ from processes, in that subprograms cannot
directly read or write signals from the rest of the architecture. All
communication is through the subprogram’s interface. Each
subprogram call has its own set of interface signals.

Signal declarations create new named signals (wires) of a given type.
Signals can be given default (initial) values, but these initial values
are ignored for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in “Resolution
Functions” on page 2-40.

Subprograms also differ from component instantiation statements, in
that the use of a subprogram by an entity or another subprogram does
not create a new level of design hierarchy.

There are two types of subprograms, which can have zero or more
parameters:

Procedure Subprogram
A procedure returns zero or more values through its interface.

Function Subprogram
A function returns a single value directly.
2-22

Design Descriptions

A subprogram has two parts:

• Declaration

• Body

Note:
When you declare a subprogram in a package, the subprogram
declaration must be in the package declaration and the
subprogram body must be in the package body.

When you declare a subprogram in an architecture, the program
body must be in the architecture body but there is no
corresponding subprogram declaration.

Subprogram Declarations

A declaration lists the names and types of the subprogram’s
parameters and, for functions, the type of the subprogram’s return
value.

Procedure Declaration Syntax

The syntax of a procedure declaration is

procedure proc_name [(parameter_declarations)] ;

proc_name
The name of the procedure.

parameter_declarations
Specify the number and type of input and output ports. The syntax
is

[parameter_name : mode parameter_type
 { ; parameter_name : mode parameter_type}]
2-23

Design Descriptions

parameter_name
The name of a parameter.

mode
Procedure parameters can be any of these four modes:

in
Can only be read.

out
Can only be assigned a value.

inout
Can be read and assigned a value. The value read is that of
the port’s incoming value, not the assigned value (if any).

buffer
Similar to out but can be read. The value read is the assigned
value. A buffer can have only one driver. For more information
about drivers, see “Driving Signals” on page 6-8.

parameter_type
A previously defined data type.

Function Declaration Syntax

The syntax of a function declaration is

function func_name [(parameter_declarations)
 return type_name ;

func_name
The name of the function.

type_name
The type of the function’s returned value. Signal parameters of
type range cannot be passed to a subprogram.
2-24

Design Descriptions

parameter_declarations
Specify the number and type of input and output ports. The syntax
is

[parameter_name : mode parameter_type
 { ; parameter_name : mode parameter_type}]

parameter_name
The name of a parameter.

mode
Function parameters can only use the in mode:

in
Can only be read.

parameter_type
A previously defined data type.

Declaration Examples

Example 2-12 shows sample subprogram declarations for a function
and a procedure.

Example 2-12 Two Subprogram Declarations
type BYTE is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;
 -- Returns TRUE if NUM is even.

procedure BYTE_TO_NIBBLES(B: in BYTE;
 UPPER, LOWER: out NIBBLE);
 -- Splits a BYTE into UPPER and LOWER halves.

When FPGA Compiler II / FPGA Express calls a subprogram, it
substitutes actual parameters for the declared formal parameters.
2-25

Design Descriptions

Actual parameters are

• Constant values

• Names of signals, variables, constants, or ports

An actual parameter must support the type and mode of the formal
parameter. For example, FPGA Compiler II / FPGA Express does not
accept an input port as an out actual parameter and uses a constant
only as an in actual parameter.

Example 2-13 shows some calls to the subprogram declarations from
Example 2-12.

Example 2-13 Two Subprogram Calls
signal INT : INTEGER;
variable EVEN : BOOLEAN;
. . .
INT <= 7;
EVEN := IS_EVEN(INT);
. . .

variable TOP, BOT: NIBBLE;
. . .
BYTE_TO_NIBBLES(”00101101”, TOP, BOT);

Subprogram Body

A subprogram body defines an implementation of a subprogram’s
algorithm.
2-26

Design Descriptions

Procedure Body Syntax

The syntax of a procedure body is

procedure procedure_name [(parameter_declarations)] is
 { subprogram_declarative_item }
begin
 { sequential_statement }
end [procedure_name] ;

procedure_name
Name of the procedure

subprogram_declarative_item
A subprogram_declarative_item can be any of the following
statements:

- use clause

- type declaration

- subtype declaration

- constant declaration

- variable declaration

- attribute declaration

- attribute specification

- subprogram declaration (for local or nested subprograms)

- subprogram body (for locally declared subprograms)
2-27

Design Descriptions

Function Body Syntax

The syntax of a function body is

function function_name [(parameter_declarations)]
 return type_name is
 { subprogram_declarative_item }
begin
 { sequential_statement }
end [function_name] ;

function_name
Name of the function

subprogram_declarative_item
A subprogram_declarative_item can be any of the following
statements:

- use clause

- type declaration

- subtype declaration

- constant declaration

- variable declaration

- attribute declaration

- attribute specification

- subprogram declaration (for local or nested subprograms)

- subprogram body (for locally declared subprograms)

Example 2-14 shows subprogram bodies for the sample subprogram
declarations in Example 2-12 on page 2-25.
2-28

Design Descriptions

Example 2-14 Two Subprogram Bodies
function IS_EVEN(NUM: in INTEGER)
 return BOOLEAN is
begin
 return ((NUM rem 2) = 0);
end IS_EVEN;
procedure BYTE_TO_NIBBLES(B: in BYTE;
 UPPER, LOWER: out NIBBLE) is
begin
 UPPER := NIBBLE(B(7 downto 4));
 LOWER := NIBBLE(B(3 downto 0));
end BYTE_TO_NIBBLES;

Subprogram Overloading

You can overload subprograms, which means that one or more
subprograms can have the same name. Each subprogram that uses
a given name must have a different parameter profile.

A parameter profile specifies a subprogram’s number and type of
parameters. This information determines which subprogram is called
when more than one subprogram has the same name. Overloaded
functions are also distinguished by the type of their return values.

Example 2-15 shows two subprograms with the same name
(IS_ODD) but different parameter profiles.

Example 2-15 Subprogram Overloading
type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;
function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;
signal B: BOOLEAN;
. . .
B <= IS_ODD(A_NUMBER); -- Will call the first function above
2-29

Design Descriptions

Operator Overloading

You can overload predefined operators such as +, and, and mod. By
using overloading, you can adapt predefined operators to work with
your own data types.

For example, you can declare new logic types rather than use the
predefined types BIT and INTEGER. However, you cannot use
predefined operators with these new types unless you overload the
operators for the types.

Example 2-16 shows how some predefined operators are overloaded
for a new logic type.

Example 2-16 Operator Overloading
type NEW_BIT is (’0’, ’1’, ’X’);
 -- New logic type

function ”and”(I1, I2: in NEW_BIT) return NEW_BIT;
function ”or” (I1, I2: in NEW_BIT) return NEW_BIT;
 -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;

VHDL requires that overloaded operator declarations enclose the
operator name or symbol in double quotation marks, because
operator name and symbol are infix operators (they are used between
operands). If you declare the overloaded operators without quotation
marks, a VHDL tool considers them functions rather than operators.
2-30

Design Descriptions

Variable Declarations

Variable declarations define a named value of a given type.

You can use variables in expressions, as described in “Identifiers” on
page 4-23 and “Literals” on page 4-26. You assign values to variables
by using variable assignment statements, as described in “Variable
Assignment Statements” on page 5-11.”

FPGA Compiler II / FPGA Express does not support variable
initialization. If you try to initialize a variable, FPGA Compiler II / FPGA
Express generates the following message:

Warning: Initial values for signals are not supported for
synthesis. They are ignored on line %n (VHDL-2022)

Example 2-17 shows some variable declarations.

Example 2-17 Variable Declarations
variable A, B: BIT;
variable INIT: NEW_BIT;

Note:
Variables are declared and used only in processes and
subprograms, because processes and subprograms cannot
declare signals for internal use.

To use these declarations in more than one entity or architecture,
place them in a package, as described in “Packages” on page 2-35.

Types

You declare each signal with a type that determines the kind of data
it carries. Types declared in an architecture are local to that
architecture.
2-31

Design Descriptions

You can use type declarations in architectures, packages, entities,
blocks, processes, and subprograms.

Type declarations define the name and characteristics of a type.
Types and type declarations are fully described in Chapter 3, "Data
Types”. A type is a named set of values, such as the set of integers
or the set of colors (red, green, and blue). An object of a given type,
such as a signal, can have any value of that type.

You can see an example of a type declaration for type NEW_BIT in
Example 2-16 on page 2-30.

Subtypes

Use subtype declarations to define the name and characteristics of
a constrained subset of another type or subtype. A subtype is fully
compatible with its parent type, but only over the subtype’s range.

The following subtype declaration (NEW_LOGIC) is a subrange of
the type declaration in Example 2-16 on page 2-30.

subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

You can use subtype declarations wherever you use type
declarations: in architectures, packages, entities, blocks, processes,
and subprograms.
2-32

Design Descriptions

Examples of Architectures for NAND2 Entity

Example 2-18, Example 2-19, and Example 2-20 show three different
architectures for the entity NAND2. The three examples define
equivalent implementations of NAND2. After optimization and
synthesis, they all produce the same circuit, a 2-input NAND gate in
the target technology. The architecture description style you use for
this entity depends on your own preferences.

Example 2-18 shows how the entity NAND2 can be implemented by
using two components from a technology library. The entity inputs A
and B are connected to AND gate U0, producing an intermediate
I signal. Signal I is then connected to inverter U1, producing the entity
output Z.

Example 2-18 Structural Architecture for Entity NAND2
architecture STRUCTURAL of NAND2 is
 signal I: BIT;

 component AND_2 -- From a technology library
 port(I1, I2: in BIT;
 O1: out BIT);
 end component;

 component INVERT -- From a technology library
 port(I1: in BIT;
 O1: out BIT);
 end component;

begin
 U0: AND_2 port map (I1 => A, I2 => B, O1 => I);
 U1: INVERT port map (I1 => I, O1 => Z);
end STRUCTURAL;

Example 2-19 shows how you can define the entity NAND2 by its
logical function.
2-33

Design Descriptions

Example 2-19 Data Flow Architecture for Entity NAND2
architecture DATAFLOW of NAND2 is
begin
 Z <= A nand B;
end DATAFLOW;

Example 2-20 shows another implementation of NAND2.

Example 2-20 RTL Architecture for Entity NAND2
architecture RTL of NAND2 is
begin
 process(A, B)
 begin
 if (A = ’1’) and (B = ’1’) then
 Z <= ’0’;
 else
 Z <= ’1’;
 end if;
 end process;
end RTL;

Configurations

Configurations are not currently supported by FPGA Compiler II /
FPGA Express.
2-34

Design Descriptions

Packages

A package is a collection of declarations that more than one design
can use.

You can collect constants, data types, component declarations, and
subprograms into a VHDL package that can then be used by more
than one design or entity.

A package must contain at least one of the following constructs:

Constant
Declares systemwide parameters, such as data-path widths.

VHDL data type declaration
Defines data types used throughout a design. All entities in a
design must use common interface types, such as common
address bus types.

Component declaration
Specifies the interfaces to entities that can be instantiated in the
design.

Subprogram
Defines algorithms that can be called anywhere in a design.

Packages are often sufficiently general that they are usable in many
different designs. For example, the std_logic_1164 package defines
data types std_logic and std_logic_vector.

Package Uses

The use statement allow an entity to use the declarations in a
package.
2-35

Design Descriptions

The syntax is

use LIBRARY_NAME.PACKAGE_NAME.ALL;

LIBRARY_NAME
The name of a VHDL library.

PACKAGE_NAME
The name of the included package.

A use statement is usually the first statement in a package or entity
specification source file.

Note:
Synopsys does not support different packages with the same
name when they exist in different libraries. No two packages can
have the same name.

Package Structure

Packages have two parts: the declaration and the body.

Package declaration
Holds public information, including constant, type, and
subprogram declarations.

Package body
Holds private information, including local types and subprogram
implementations (bodies).

Note:
When a package declaration contains subprogram declarations,
a corresponding package body must define the subprogram
bodies.
2-36

Design Descriptions

Package Declarations

Package declarations collect information that are needed by one or
more entities in a design. This information includes data type
declarations, signal declarations, subprogram declarations, and
component declarations.

Note:
Signals declared in packages cannot be shared across entities.
If two entities both use a signal from a given package, each entity
has its own copy of that signal.

Although you can declare all this information explicitly in each design
entity or architecture in a system, it is often easier to declare system
information in a separate package. Each design entity in the system
can then use the system’s package.

The syntax of a package declaration is

package package_name is
 { package_declarative_item }
end [package_name] ;

package_name
The name of this package.

package_declarative_item
Any of the following statements:

- use clause (to include other packages)

- type declaration

- subtype declaration

- constant declaration
2-37

Design Descriptions

- signal declaration

- subprogram declaration

- component declaration

Example 2-21 shows some package declarations.

Example 2-21 Sample Package Declarations
package EXAMPLE is

 type BYTE is range 0 to 255;
 subtype NIBBLE is BYTE range 0 to 15;

 constant BYTE_FF: BYTE := 255;

 signal ADDEND: NIBBLE;

 component BYTE_ADDER
 port(A, B: in BYTE;
 C: out BYTE;
 OVERFLOW: out BOOLEAN);
 end component;

 function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the previous example declarations, add a use statement at
the beginning of your design description as follows:

use WORK.EXAMPLE.ALL;
entity . . .
architecture . . .

Appendix B, "Synopsys Packages”, contains more examples of
packages and their declarations.
2-38

Design Descriptions

Package Body

A package body includes

• The implementations (bodies) of subprograms declared in the
package declaration

• Internal support subprograms

But designs or entities that use the package never see this
information.

The syntax of a package body is

package body package_name is {
 { package_body_declarative_item }
end [package_name] ;

package_name
The name of the associated package.

package_body_declarative_item
Any of the following statements:

- use clause

- subprogram declaration

- subprogram body

- type declaration

- subtype declaration

- constant declaration

Appendix B, "Synopsys Packages”, shows a package declaration and
body example that comes with FPGA Compiler II / FPGA Express.
2-39

Design Descriptions

Resolution Functions

Resolution functions are used with signals that can be connected
(wired together). For example, if two drivers directly connect to a
signal, the resolution function determines whether the signal value is
the AND, OR, or three-state function of the driving values.

Use resolution functions to assign the driving values when there are
multiple drivers. For simulation, you can write an arbitrary function to
resolve bus conflicts.

Note:
A resolution function might change the value of a resolved signal
even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype
declaration. You create a resolved signal in four steps:

1. Declare the signal’s base type.

type SIGNAL_TYPE is ...
-- signal’s base type is SIGNAL_TYPE

2. Declare the resolution function.

function res_function (DATA: ARRAY_TYPE)
 return SIGNAL_TYPE is
-- declaration of the resolution function
-- ARRAY_TYPE must be an unconstrained array of
-- SIGNAL_TYPE
2-40

Design Descriptions

3. Declare the resolved signal’s subtype as a subtype of the base
type, which includes the name of the resolution function.

subtype res_type is res_function SIGNAL_TYPE;
-- name of the subtype is res_type
-- name of function is res_function
-- signal type is res_type (a subtype of SIGNAL_TYPE)

4. Declare resolved signals as resolved subtypes.

signal resolved_signal_name:res_type;
-- resolved_signal_name is a resolved signal

FPGA Compiler II / FPGA Express does not support arbitrary
resolution functions. Only wired AND, wired OR, and three-state
functions are allowed. FPGA Compiler II / FPGA Express requires
that you mark all resolution functions with a special directive indicating
the kind of resolution being performed.

FPGA Compiler II / FPGA Express considers the directive only when
creating hardware. The body of the resolution function is parsed but
ignored; using unsupported VHDL constructs generates errors (see
Appendix C, "VHDL Constructs”).

Do not connect signals that use different resolution functions. FPGA
Compiler II / FPGA Express supports only one resolution function per
network.

The three resolution function directives are

• synopsys resolution_method wired_and

• synopsys resolution_method wired_or

• synopsys resolution_method three_state
2-41

Design Descriptions

Pre-synthesis and post-synthesis simulation results might not match
if the body of the resolution function the simulator uses does not match
the directive the synthesizer uses.

Example 2-22 shows how to create and use a resolved signal and
how to use compiler directives for resolution functions. The signal’s
base type is the predefined type BIT. Figure 2-2 shows the design.

Example 2-22 Resolved Signal and Its Resolution Function
package RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
 subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT is
 -- synopsys resolution_method wired_and
 begin
 -- The code in this function is ignored by the program
 -- but parsed for correct VHDL syntax

 for I in DATA’range loop
 if DATA(I) = ’0’ then
 return ’0’;
 end if;
 end loop;
 return ’1’;
 end;
end;
use work.RES_PACK.all;
entity WAND_VHDL is
 port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
 Z <= X;
 Z <= Y;
end WAND_VHDL;
2-42

Design Descriptions

Figure 2-2 Design Using Resolved Signal

X
Y

AN2 Z
2-43

Design Descriptions

2-44

Design Descriptions

3
Data Types 3

VHDL is a strongly typed language. Every constant, signal, variable,
function, and parameter is declared with a type, such as BOOLEAN
or INTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types such as BOOLEAN, which are
part of most programming languages, and hardware-related types,
such as BIT, which are found in most hardware languages. VHDL
predefined types are declared in the STANDARD package supplied
with all VHDL implementations (see Example 3-17 on page 3-17).
This chapter includes information about

• Enumeration Types

• Integer Types

• Array Types

• Record Types
3-1

Data Types

• Predefined VHDL Data Types

• Unsupported Data Types

• Synopsys Data Types

• Subtypes

The advantage of strong typing is that VHDL tools can detect many
common design errors, such as assigning an 8-bit value to a
4-bit-wide signal, or detect incrementing of an array index out of its
range.

The following code shows the definition of a new type, BYTE, as an
array of 8 bits and a variable declaration, ADDEND, which uses this
type.

type BYTE is array(7 downto 0) of BIT;

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data
types. Some VHDL types, such as REAL and FILE, are not supported
for synthesis.

The examples in this chapter show type definitions and associated
object declarations. Although each constant, signal, variable,
function, and parameter is declared with a type, only variable and
signal declarations are shown in the examples. For more information
about constant, function, and parameter declarations, see
“Declarations” on page 2-10.
3-2

Data Types

VHDL also provides subtypes, which are defined as subsets of other
types. Anywhere a type definition can appear, a subtype definition
can also appear. The difference between a type and a subtype is that
a subtype is a subset of a previously defined parent (or base) type or
subtype. Overlapping subtypes of a given base type can be compared
against and assigned to each other. All integer types, for example,
are technically subtypes of the built-in integer base type (see “Integer
Types” on page 3-8 and “Subtypes” on page 3-21).

Enumeration Types

You define an enumeration type by listing (enumerating) all possible
values of that type.

The syntax of an enumeration type definition is

type type_name is (enumeration_literal {, enumeration_literal});

type_name
An identifier.

Each enumeration_literal is either an identifier (enum_6) or a
character literal (’A’).

An identifier is a sequence of letters, underscores, and numbers.
It must start with a letter and cannot be a VHDL reserved word,
such as TYPE. All VHDL reserved words are listed in “VHDL
Reserved Words” on page C-17.

A character literal is any value of type CHARACTER, in single
quotation marks.

Example 3-1 shows two enumeration type definitions and
corresponding variable and signal declarations.
3-3

Data Types

Example 3-1 Enumeration Type Definitions
type COLOR is (BLUE, GREEN, YELLOW, RED);
type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);
variable HUE: COLOR;
signal SIG: MY_LOGIC;
. . .
HUE := BLUE;
SIG <= ’Z’;

Enumeration Overloading

You can overload an enumeration literal by including it in the definition
of two or more enumeration types. When you use such an overloaded
enumeration literal, FPGA Compiler II / FPGA Express is usually able
to determine the literal’s type. However, under certain circumstances
determination might be impossible. In these cases, you must qualify
the literal by explicitly stating its type. (See “Enumeration Literals” on
page 4-27.) Example 3-2 shows how you can qualify an overloaded
enumeration literal.

Example 3-2 Enumeration Literal Overloading
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
...
A <= COLOR’(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the
first enumeration literal is assigned the value 0, the next enumeration
literal is assigned the value 1, and so forth.
3-4

Data Types

FPGA Compiler II / FPGA Express automatically encodes
enumeration values into bit vectors that are based on each value’s
position. The length of the encoding bit vector is the minimum number
of bits required to encode the number of enumerated values. For
example, an enumeration type with five values would have a 3-bit
encoding vector.

Example 3-3 shows the default encoding of an enumeration type with
five values.

Example 3-3 Automatic Enumeration Encoding
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED = ”000”
GREEN = ”001”
YELLOW = ”010”
BLUE = ”011”
VIOLET = ”100”

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify
your own enumeration encodings with the ENUM_ENCODING
attribute. This interpretation is specific to FPGA Compiler II / FPGA
Express.

A VHDL attribute is defined by its name and type and is then declared
with a value for the attributed type, as shown in Example 3-4.

Several VHDL synthesis-related attributes are declared in the
ATTRIBUTES package supplied with FPGA Compiler II / FPGA
Express. For more information about this package, see
“ATTRIBUTES Package” on page B-31.
3-5

Data Types

The ENUM_ENCODING attribute must be a string containing a series
of vectors, one for each enumeration literal in the associated type.
The encoding vector is specified by ’0’s, ’1’s, ’D’s, ’U’s, and ’Z’s,
separated by blank spaces. The meaning of these encoding vectors
is described in the next section. The first vector in the attribute string
specifies the encoding for the first enumeration literal, the second
vector specifies the encoding for the second enumeration literal, and
so on. The ENUM_ENCODING attribute must immediately follow the
type declaration.

Example 3-4 illustrates how the default encodings from Example 3-3
can be changed with the ENUM_ENCODING attribute.

Example 3-4 Using the ENUM_ENCODING Attribute
attribute ENUM_ENCODING: STRING;
 -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of
 COLOR: type is ”010 000 011 100 001”;
 -- Attribute declaration

The enumeration values are encoded as follows:

RED = ”010”
GREEN = ”000”
YELLOW = ”011”
BLUE = ”100”
VIOLET = ”001”

The result is GREEN < VIOLET < RED < YELLOW < BLUE.

Note:
The interpretation of the ENUM_ENCODING attribute is specific
to FPGA Compiler II / FPGA Express. Other VHDL tools, such as
simulators, use the standard encoding (ordering).
3-6

Data Types

Enumeration Encoding Values

The possible encoding values for the ENUM_ENCODING attribute
are ’0’, ’1’, ’D’, ’U’, and ’Z’:

’0’
Bit value ’0’.

’1’
Bit value ’1’.

’D’
Don’t care (can be either ’0’ or ’1’). To use don’t care information,
see “Don’t Care Inference” on page 8-29.

’U’
Unknown. If ’U’ appears in the encoding vector for an
enumeration, you cannot use that enumeration literal except as
an operand to the = and /= operators. You can read an
enumeration literal encoded with a ’U’ from a variable or signal,
but you cannot assign it.

For synthesis, the = operator returns false and /= returns true
when either of the operands is an enumeration literal whose
encoding contains ’U’.

’Z’
High impedance. See “Three-State Inference” on page 7-59 for
more information.
3-7

Data Types

Integer Types

The maximum range of a VHDL integer type is

–(231–1) to 231–1 (–2_147_483_647 ... 2_147_483_647).
Integer types are defined as subranges of this anonymous built-in
type. Multidigit numbers in VHDL can include underscores (_) to make
them easier to read.

FPGA Compiler II / FPGA Express encodes an integer value as a bit
vector whose length is the minimum necessary to hold the defined
range. FPGA Compiler II / FPGA Express encodes integer ranges
that include negative numbers as
2’s-complement bit vectors.

The syntax of an integer type definition is

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range
is a subrange of the anonymous integer type.

Example 3-5 shows some integer type definitions.

Example 3-5 Integer Type Definitions
type PERCENT is range -100 to 100;
 -- Represented as an 8-bit vector
 -- (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;
 -- Represented as a 32-bit vector
 -- This is the definition of the INTEGER type
3-8

Data Types

You cannot directly access the bits of an INTEGER or explicitly state
the bit-width of the type. For these reasons, Synopsys provides
overloaded functions for arithmetic. These functions are defined in
the std_logic_signed and std_logic_unsigned packages, described
in “std_logic_arith Package” on page B-3.

Array Types

An array is an object that is a collection of elements of the same type.
VHDL supports N-dimensional arrays, but FPGA Compiler II / FPGA
Express supports only one-dimensional arrays. Array elements can
be of any type. An array has an index whose value selects each
element. The index range determines how many elements are in the
array and their ordering (low to high or high downto low). An index
can be of any integer type.

You can declare multidimensional arrays by building one-dimensional
arrays where the element type is another one-dimensional array, as
shown in Example 3-6.

Example 3-6 Declaration of Array of Arrays
type BYTE is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides constrained as well as unconstrained arrays. The
difference between the two comes from the index range in the array
type definition.
3-9

Data Types

Constrained Arrays

A constrained array’s index range is explicitly defined; an example is
the integer range (1 to 4). When you declare a variable or signal of
the type constrained array, the variable or signal has the same index
range as the constrained array.

The syntax of a constrained array type definition is

type array_type_name is array (integer_range) of type_name;

array_type_name
The name of the new constrained array type.

integer_range
A subrange of another integer type.

type_name
The type of each array element.

Example 3-7 shows a constrained array type definition.

Example 3-7 Constrained Array Type Definition
type BYTE is array (7 downto 0) of BIT;
 -- A constrained array whose index range is
 -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Arrays

You define an unconstrained array’s index range as a type; for
example, INTEGER. This definition implies that the index range can
be any contiguous subset of that type’s values. When you declare an
array variable or signal of this type, you also define its actual index
range. Different declarations can have different index ranges.
3-10

Data Types

The syntax of an unconstrained array type definition is

type array_type_name is
 array (range_type_name range <>)
 of element_type_name ;

array_type_name
The name of the new unconstrained array type.

range_type_name
The name of a range type or subtype.

element_type_name
The type of each array element.

Example 3-8 shows an unconstrained array type definition and a
declaration that uses it.

Example 3-8 Unconstrained Array Type Definition
type BIT_VECTOR is array(INTEGER range <>) of BIT;
 -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool can
recall the index range of each declaration. You can use array attributes
to determine the range (bounds) of a signal or variable of an
unconstrained array type. With this information, you can write routines
that use variables or signals of an unconstrained array type,
independent of any one array variable’s or signal’s bounds. The next
section describes array attributes and how they are used.
3-11

Data Types

Array Attributes

FPGA Compiler II / FPGA Express supports the following predefined
VHDL attributes for use with arrays:

• left

• right

• high

• low

• length

• range

• reverse_range

These attributes all return a value corresponding to part of an array’s
range. Table 3-1 shows the values of the array attributes for the
variable MY_VECTOR in Example 3-8.

Table 3-1 Array Index Attributes

Example 3-9 shows the use of array attributes in a function that ORs
together all elements of a given bit vector (declared in Example 3-8)
and returns that value.

Attribute Expression Value

MY_VECTOR’left 5

MY_VECTOR’right –5

MY_VECTOR’high 5

MY_VECTOR’low –5

MY_VECTOR’length 11

MY_VECTOR’range (5 downto –5)

MY_VECTOR’reverse_range (–5 to 5)
3-12

Data Types

Example 3-9 Use of Array Attributes
function OR_ALL (X: in BIT_VECTOR) return BIT is
 variable OR_BIT: BIT;
 begin
 OR_BIT := ’0’;
 for I in X’range loop
 OR_BIT := OR_BIT or X(I);
 end loop;

 return OR_BIT;
 end;

Note:
This function works for a bit vector of any size.

Record Types

A record is a set of named fields of various types, unlike an array,
which is composed of identical anonymous entries. A record’s field
can be of any previously defined type, including another record type.

Example 3-10 shows a record type declaration (BYTE_AND_IX),
three signals of that type, and some assignments.

Example 3-10 Record Type Declaration and Use
constant LEN: INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is
 record
 BYTE: BYTE_VEC;
 IX: INTEGER range 0 to LEN;
 end record;

signal X, Y, Z: BYTE_AND_IX;
3-13

Data Types

signal DATA: BYTE_VEC;
signal NUM: INTEGER;
. . .

X.BYTE <= "11110000";
X.IX <= 2;

DATA <= Y.BYTE;
NUM <= Y.IX;

Z <= X;

As shown in Example 3-10, you can read values from or assign values
to records in two ways:

• By individual field name

X.BYTE <= DATA;
X.IX <= LEN;

• From another record object of the same type

Z <= X;

A record type object’s individual fields are accessed by the object
name, a period, and a field name: X.BYTE or X.IX. To access an
element of the BYTE field’s array, use array notation: X.BYTE(2).

Record Aggregates

Record aggregates (constants) have the same syntax as array
aggregates (see “Aggregates” on page 4-18). They can appear
anywhere records appear.
3-14

Data Types

The following line illustrates a named record aggregate in a
description:

X <= (BYTE => "11110000", IX => 2);

The following line illustrates a positional record aggregate in a
description:

X <= ("11110000", 2);

You can use the others construct in a named or positional record
aggregate, just as you can in an array aggregate (see “Aggregates”
on page 4-18).

You can mix named and positional aggregates in a description, with
the positional items listed first.

You cannot have a named item that refers to a field covered in the
positional aggregate. The following four examples illustrate this
caveat.

Example 3-11 Simple Record Type
type rec is

record
a: integer;
b: integer;
c: integer;
d: integer;
e: integer;

end record
end

Example 3-12 Named Aggregate for Example 3-11
(a => 1, b => 2, c => 0, d => 3, e => 0)

In a named aggregate, the items can appear in any order.
3-15

Data Types

Example 3-13 Use of others in an Aggregate
(1, 2, d => 3, others => 0)

Example 3-13 is equivalent to Example 3-12 or Example 3-14.

Example 3-14 Positional Aggregate
(1, 2, 0, 3, 0)

You can supply a set of choices in a description of a record aggregate,
but a choice cannot be a range. See Example 3-15 and Example 3-16.

Example 3-15 Record Aggregate Equivalent to Example 3-16
(b => 2, c => 2, d => 2, a => 1, e => 3)

Example 3-16 Record Aggregate With Set of Choices
(b | c | d => 2, a => 1, e =>3)

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a
standard set of types and operations: the STANDARD package and
the TEXTIO package.

The STANDARD package of data types is included in all VHDL source
files by an implicit use clause. The TEXTIO package defines types
and operations for communication with a standard programming
environment (terminal and file I/O). This package is not needed for
synthesis; therefore, FPGA Compiler II / FPGA Express does not
support it.
3-16

Data Types

The FPGA Compiler II / FPGA Express implementation of the
STANDARD package is listed in Example 3-17. This STANDARD
package is a subset of the IEEE VHDL STANDARD package.
Differences are described in “Unsupported Data Types” on
page 3-20.

Example 3-17 FPGA Compiler II / FPGA Express STANDARD Package
package STANDARD is
 type BOOLEAN is (FALSE, TRUE);
 type BIT is (’0’, ’1’);
 type CHARACTER is (
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

 ’ ’, ’!’, ’”’, ’#’, ’$’, ’%’, ’&’, ’’’,
 ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
 ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

 ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
 ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
 ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
 ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

 ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
 ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
 ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

 type INTEGER is range -2147483647 to 2147483647;
 subtype NATURAL is INTEGER range 0 to 2147483647;
 subtype POSITIVE is INTEGER range 1 to 2147483647;
 type STRING is array (POSITIVE range <>)
 of CHARACTER;
 type BIT_VECTOR is array (NATURAL range <>)
 of BIT;
end STANDARD;
3-17

Data Types

Data Type BOOLEAN

The BOOLEAN data type is actually an enumerated type with two
values, false and true, where false < true. Logical functions, such as
equality (=) and comparison (<) functions, return a BOOLEAN value.

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT

The BIT data type represents a binary value as one of two characters,
’0’ or ’1’. Logical operations such as “and” can take and return BIT
values.

Convert a BOOLEAN value to a BIT value as follows:

if (BOOLEAN_VAR) then
 BIT_VAR := ’1’;
else
 BIT_VAR := ’0’;
end if;

Data Type CHARACTER

The CHARACTER data type enumerates the ASCII character set.
Nonprinting characters are represented by a three-letter name, such
as NUL for the null character. Printable characters are represented
by themselves, in single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;
3-18

Data Types

Data Type INTEGER

The INTEGER data type represents positive and negative whole
numbers.

Data Type NATURAL

The NATURAL data type is a subtype of INTEGER that is used for
representing natural (nonnegative) numbers.

Data Type POSITIVE

The POSITIVE data type is a subtype of INTEGER that is used for
representing positive (nonzero, nonnegative) numbers.

Data Type STRING

The STRING data type is an unconstrained array of characters. A
STRING value is enclosed in double quotation marks as follows:

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := ”Rosebud”;

Data Type BIT_VECTOR

The BIT_VECTOR data type represents an array of BIT values.
3-19

Data Types

Unsupported Data Types

Some data types are either not useful for synthesis or are not
supported. The following sections list and describe these
unsupported data types.

Appendix C, "VHDL Constructs” describes the level of FPGA
Compiler II / FPGA Express support for each VHDL construct.

Physical Types

FPGA Compiler II / FPGA Express does not support physical types,
such as units of measure (for example, ns).

Floating-Point Types

FPGA Compiler II / FPGA Express does not support floating-point
types, such as REAL.

Access Types

FPGA Compiler II / FPGA Express does not support access (pointer)
types because no equivalent hardware construct exists.

File Types

FPGA Compiler II / FPGA Express does not support file (disk file)
types, such as a hardware file type RAM or ROM.
3-20

Data Types

Synopsys Data Types

The std_logic_arith package provides arithmetic operations and
numeric comparisons on array data types. The package also defines
two major data types: UNSIGNED and SIGNED. These data types,
unlike the predefined INTEGER type, provide access to the individual
bits (wires) of a numeric value. For more information, see
“std_logic_arith Package” on page B-3.

Subtypes

A subtype is defined as a subset of a previously defined type or
subtype. A subtype definition can appear anywhere a type definition
is allowed.

Using subtypes is a powerful way to use VHDL type checking to
ensure valid assignments and meaningful data handling. Subtypes
inherit all operators and subprograms defined for their parent (base)
types.

Subtypes are also used for resolved signals to associate a resolution
function with the signal type (see “Subtypes” on page 2-32, for more
information).

For example, note in Example 3-17 that NATURAL and POSITIVE
are subtypes of INTEGER and that they can be used with any
INTEGER function. They can be added, multiplied, compared, and
assigned to each other if the values are within the appropriate
subtype’s range. All INTEGER types and subtypes are actually
subtypes of an anonymous predefined numeric type.
3-21

Data Types

Example 3-18 shows some valid and invalid assignments between
NATURAL and POSITIVE values.

Example 3-18 Valid and Invalid Assignments Between INTEGER Subtypes
variable NAT: NATURAL;
variable POS: POSITIVE;
. . .
POS := 5;
NAT := POS + 2;
. . .
NAT := 0;
POS := NAT; -- Invalid; out of range

For example, the type BIT_VECTOR is defined as

type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype
MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 3-19 shows that all functions and attributes that operate on
BIT_VECTOR also operate on MY_VECTOR.
3-22

Data Types

Example 3-19 Attributes and Functions Operating on a Subtype
type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(0 to 15);
. . .
signal VEC1, VEC2: MY_VECTOR;
signal S_BIT: BIT;
variable UPPER_BOUND: INTEGER;
. . .
if (VEC1 = VEC2)
. . .
VEC1(4) <= S_BIT;
VEC2 <= ”0000111100001111”;
. . .
RIGHT_INDEX := VEC1’high;
3-23

Data Types

3-24

Data Types

4
Expressions 4

In VHDL, expressions perform arithmetic or logical computations by
applying an operator to one or more operands. Operators specify the
computation to perform. Operands are the data for the computation.

In the following VHDL fragment, A and B are operands, + is an
operator, and A + B is an expression.

C := A + B; -- Computes the sum of two values

You can use expressions in many places in a design description. You
can

• Assign them to variables or signals or use them as the initial values
of constants

• Use them as operands to other operators

• Use them for the return value of functions
4-1

Expressions

• Use them for the IN parameters in a subprogram call

• Assign them to the OUT parameters in a procedure body

• Use them to control the actions of statements such as if, loop, and
case

This chapter discusses the use of expressions in a design description,
in the following major sections:

• Operators

• Operands

Operators

A VHDL operator is characterized by

• Name

• Computation (function)

• Number of operands

• Type of operands (such as Boolean or character)

• Type of result value

You can define new operators, like functions, for any type of operand
and result value. The predefined VHDL operators are listed in Table
4-1.
4-2

Expressions

Table 4-1 Predefined VHDL Operators

Each line in the table lists operators with the same precedence. Each
line’s operators have greater precedence than those on the previous
line. An operator’s precedence determines whether it is applied before
or after adjoining operators.

Example 4-1 shows some expressions and how they are interpreted.

Example 4-1 Operator Precedence
A + B * C = A + (B * C)
not BOOL and (NUM = 4) = (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded—that is, applied to
new types of operands. The logical operator called and, for example,
can be overloaded to work with a new logic type. For more information,
see “Operator Overloading” on page 2-30.

Logical Operators

Operands of a logical operator must be of the same type. The logical
operators—and, or, nand, nor, xor, xnor, not—accept operands of
type BIT or type BOOLEAN and one-dimensional arrays of BIT or
BOOLEAN. Array operands must be the same size. A logical operator
applied to two array operands is applied to pairs of the two arrays’
elements.

Type Operators Precedence
Logical and or nand nor xor xnor Lowest
Relational = /= < <= > >=
Adding + - &
Unary (sign) + -
Multiplying * / mod rem
Miscellaneous ** abs not Highest
4-3

Expressions

Example 4-2 shows some logical signal declarations and logical
operations on them. Figure 4-1 illustrates the resulting design.

Example 4-2 Logical Operators
signal A, B, C: BIT_VECTOR(3 downto 0);
signal D, E, F, G: BIT_VECTOR(1 downto 0);
signal H, I, J, K: BIT;
signal L, M, N, O, P: BOOLEAN;

A <= B and C;
D <= E or F or G;
H <= (I nand J) nand K;
L <= (M xor N) and (O xor P);

Figure 4-1 Design Schematic for Logical Operators
4-4

Expressions

Normally, to use more than two operands in an expression, you must
use parentheses to group the operands. An exception is that you can
combine, without parentheses, a sequence that uses only one of the
following operators:

- and

- or

- xor

- xnor

The following expression uses the same operator—and—in the
sequence:

A and B and C and D

However, a sequence that contains more than one of these operators
requires parentheses to indicate which two operands are to be paired.
In the following sequence, and is the first operator, or is the second.

A and B or C

Parentheses should be used in one of two ways, as shown:

(A and B) or C or A and (B or C)

Relational Operators

Relational operators, such as = or >, compare two operands of the
same base type and return a Boolean value.
4-5

Expressions

IEEE VHDL defines the equality (=) and inequality (/=) operators for
all types. Two operands are equal if they represent the same value.
For array and record types, IEEE VHDL compares corresponding
elements of the operands.

IEEE VHDL defines the ordering operators (<, <=, >, and >=) for all
enumerated types, integer types, and one-dimensional arrays of
enumeration or integer types.

The internal order of a type’s values determines the result of the
ordering operators. Integer values are ordered from negative infinity
to positive infinity. Enumerated values are in the same order as they
were declared, unless you have changed the encoding.

Note:
If you set the encoding of your enumerated types (see
“Enumeration Encoding” on page 3-4), the ordering operators
compare your encoded value ordering, not the declaration
ordering. Because this interpretation is specific to FPGA Compiler
II / FPGA Express, a VHDL simulator still uses the declaration’s
order of enumerated types.

Arrays are ordered alphabetically. FPGA Compiler II / FPGA Express
determines the relative order of two array values by comparing each
pair of elements in turn, beginning from the left bound of each array’s
index range. If a pair of array elements is not equal, the order of the
different elements determines the order of the arrays. For example,
bit vector ”101011” is less than ”1011”, because the fourth bit of each
vector is different, and ’0’ is less than ’1’.

If the two arrays have different lengths and the shorter one matches
the first part of the longer one, the shorter comes before the longer.
Thus, the bit vector ”101” is less than ”101000”. Arrays are compared
from left to right, regardless of their index ranges (to or downto).
4-6

Expressions

Example 4-3 shows several expressions that evaluate to true.

Example 4-3 True Relational Expressions
 ’1’ = ’1’
”101” = ”101”
 ”1” > ”011” -- Array comparison
”101” < ”110”

To interpret bit vectors such as ”011” as signed or unsigned binary
numbers, use the relational operators defined in the std_logic_arith
package (listed in Appendix B, "Synopsys Packages”). The third line
in Example 4-3 evaluates false if the operands are of type UNSIGNED.

UNSIGNED’”1” < UNSIGNED’”011” -- Numeric comparison

Example 4-4 shows some relational expressions. Figure 4-2
illustrates the resulting synthesized circuits.

Example 4-4 Relational Operators
signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);
H <= (C < D);
I <= (C >= D);
J <= (E > F);
4-7

Expressions

Figure 4-2 Relational Operators Design Illustrating Example 4-4

Adding Operators

Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and – are predefined for all integer
operands. These addition and subtraction operators perform
conventional arithmetic. Example 4-5 uses the + operator.

The concatenation operator & is predefined for all one-dimensional
array operands. The concatenation operator builds arrays by
combining the operands. Each operand of & can be an array or an
4-8

Expressions

element of an array. Use & to add a single element to the beginning
or end of an array, to combine two arrays, or to build an array out of
elements, as shown in Example 4-5 and Figure 4-3.

Example 4-5 Adding Operators
signal A, D: BIT_VECTOR(3 downto 0);
signal B, C, G: BIT_VECTOR(1 downto 0);
signal E: BIT_VECTOR(2 downto 0);
signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C; -- Array & array
D <= not E & not F; -- Array & element
G <= not H & not I; -- Element & element
J <= K + L; -- Simple addition

Figure 4-3 Design Array Illustrating Example 4-5
4-9

Expressions

Unary (Signed) Operators

A unary operator has only one operand. FPGA Compiler II / FPGA
Express predefines unary operators + and – for all integer types. The
+ operator has no effect. The – operator negates its operand. For
example,

5 = +5
5 = -(-5)

Example 4-6 shows how unary negation is synthesized, and Figure
4-4 illustrates the resulting design.

Example 4-6 Unary (Signed) Operators
signal A, B: INTEGER range -8 to 7;

A <= -B;

Figure 4-4 Design Illustrating Unary Negation From Example 4-6
4-10

Expressions

Multiplying Operators

FPGA Compiler II / FPGA Express predefines the multiplying
operators (*, /, mod, and rem) for all integer types.

FPGA Compiler II / FPGA Express places some restrictions on the
supported values for the right-hand operands of the multiplying
operators, as follows:

*
Integer multiplication: no restrictions.

/
Integer division: The right-hand operand must be a computable
power of 2 and cannot be negative (see“Computable Operands”
on page 4-16). This operator is implemented as a bit shift.

mod
Modulus: same as /.

rem
Remainder: same as /.

Example 4-7 shows some uses of the multiplying operators whose
right-hand operands are all powers of 2. Figure 4-5 illustrates the
resulting synthesized circuit design.

Example 4-7 Multiplying Operators With Powers of 2
signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

 A <= B * 4;
 C <= D / 4;
 E <= F mod 4;
 G <= H rem 4;
4-11

Expressions

Figure 4-5 Design Illustrating Multiplying Operators From Example 4-7

Miscellaneous Arithmetic Operators

FPGA Compiler II / FPGA Express predefines the absolute value
(abs) and exponentiation (**) operators for all integer types. There is
one restriction placed on the ** operator: When you’re using **
exponentiation, the left operand must be the computable value 2 (see
“Computable Operands” on page 4-16).
4-12

Expressions

Example 4-8 shows how these operators are used. Figure 4-6
illustrates the synthesized design.

Example 4-8 Miscellaneous Arithmetic Operators
signal A, B: INTEGER range -8 to 7;
signal C: INTEGER range 0 to 15;
signal D: INTEGER range 0 to 3;
A <= abs(B);
C <= 2 ** D;

Figure 4-6 Design With Arithmetic Operators From Example 4-8
4-13

Expressions

Operands

The operands specify the data used by the operator to compute its
value. An operand returns its value to the operator.

There are many categories of operands. The simplest operand is a
literal, such as the number 7, or an identifier, such as a variable or
signal name. Operands can themselves be expressions. You create
expression operands by surrounding an expression with parentheses.

The operand categories are

Aggregates
my_array_type’(others => 1)

Attributes
my_array’range

Expressions
(A nand B)

Function calls
LOOKUP_VAL(my_var_1, my_var_2)

Identifiers
my_var, my_sig

Indexed names
my_array(7)

Literals
’0’, ”101”, 435, 16#FF3E#

Qualified expressions
BIT_VECTOR’(’1’ & ’0’)
4-14

Expressions

Records and fields
my_record.a_field

Slice names
my_array(7 to 11)

Type conversions
THREE_STATE(’0’)

The next two sections discuss operand bit-widths and explain
computable operands. The sections following them describe the
operand categories listed here.

Operand Bit-Width

FPGA Compiler II / FPGA Express uses the bit-width of the largest
operand to determine the bit-width needed to implement an operator
in a circuit. For example, an INTEGER operand is 32 bits wide by
default. An addition of two INTEGER operands causes FPGA
Compiler II / FPGA Express to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit-width
of numeric operands. For example, use a subrange of INTEGER
when declaring types, variables, or signals.

type ENOUGH: INTEGER range 0 to 255;
variable WIDE: INTEGER range -1024 to 1023;
signal NARROW: INTEGER range 0 to 7;

Note:
During optimization, FPGA Compiler II / FPGA Express removes
hardware for unused bits.
4-15

Expressions

Computable Operands

Some operators, such as the division operator, restrict their operands
to be computable. A computable operand is one whose value can be
determined by FPGA Compiler II / FPGA Express. Computability is
important because noncomputable expressions can require logic
gates to determine their value.

Following are examples of computable operands:

• Literal values

• for...loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions

• Function calls whose return value is computable

• Expressions with computable operands

• Qualified expressions when the expression is computable

• Type conversions when the expression is computable

• The value of the and or nand operators when one of the operands
is a computable ’0’

• The value of the or operator or the nor operator when one of the
operands is a computable ’1’

Additionally, a variable is given a computable value if it is an OUT or
INOUT parameter of a procedure that assigns it a computable value.

Following are examples of noncomputable operands:

• Signals
4-16

Expressions

• Ports

• Variables assigned different computable values that depend on a
noncomputable condition

• Variables assigned noncomputable values

Example 4-9 shows some definitions and declarations, followed by
several computable and noncomputable expressions.

Example 4-9 Computable and Noncomputable Expressions
signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
 if (C = ’1’) then
 return(A);
 else
 return(B);
 end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
 B := not A;
end;

process(S)
 variable V0, V1, V2: BIT;
 variable V_INT: INTEGER;
subtype MY_ARRAY is BIT_VECTOR(0 to 3);
 variable V_ARRAY: MY_ARRAY;
begin
 V0 := ’1’; -- Computable (value is ’1’)
 V1 := V0; -- Computable (value is ’1’)
 V2 := not V1; -- Computable (value is ’0’)

 for I in 0 to 3 loop
 V_INT := I; -- Computable (value depends on iteration)
 end loop;
4-17

Expressions

 V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
 -- Computable (”1000”)
 V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
 COMP(V1, V2);
 V1 := V2; -- Computable (value is ’0’)
 V0 := S and ’0’; -- Computable (value is ’0’)
 V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
 V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

 if (S = ’1’) then
 V2 := ’0’; -- Computable (value is ’0’)
 else
 V2 := ’1’; -- Computable (value is ’1’)
 end if;
 V0 := V2; -- Non-computable; V2 depends on S
 V1 := S; -- Non-computable; S is signal
 V2 := V1; -- Non-computable; V1 is no longer
computable
end process;

Aggregates

Aggregates create array literals, by giving a value to each element of
an instance of an array type. Aggregates can also be considered array
literals, because they specify an array type and the value of each
array element. The syntax is

type_name’([choice =>] expression{, [choice =>] expression})

type_name
A constrained array type (as required by FPGA Compiler II / FPGA
Express in the previous example), an element index, a sequence
of indexes, or the others expression. Each expression provides a
value for the chosen elements and must evaluate to a value of the
element’s type.
4-18

Expressions

Example 4-10 shows an array type definition and an aggregate
representing a literal of that array type. The two sets of assignments
have the same result.

Example 4-10 Simple Aggregate
subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X: MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B) -- Aggregate
-- assignment

X(1) <= ’1’; -- Element assignment
X(2) <= A nand B;
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index by using either positional or
named notation. With positional notation, each element receives the
value of its expression in order, as shown in Example 4-10.

By using named notation, the choice => construct specifies one or
more elements of the array. The choice can contain an expression,
such as (I mod 2) =>, to indicate a single element index or a range,
such as 3 to 5 => or 7 downto 0 =>, to indicate a sequence of element
indexes.

An aggregate can use both positional and named notation.

It is not necessary to specify all element indexes in an aggregate. All
unassigned values are given a value by inclusion of the others =>
expression as the last element of the list.

Example 4-11 shows several aggregates representing the same
value.
4-19

Expressions

Example 4-11 Equivalent Aggregates
subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);
MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);
MY_VECTOR’(’1’, ’1’, others => ’0’);
MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);
MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);
MY_VECTOR’(3 to 4 => ’0’, others => ’1’);

The others expression can be the only expression in the aggregate.
Example 4-12 shows two equivalent aggregates.

Example 4-12 Equivalent Aggregates Using the others Expression
MY_VECTOR’(others => ’1’);
MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

For information on using an aggregate as the target of an assignment
statement, see “Assignment Statements and Targets” on page 5-2.

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a
variable or signal of a given type and returns a value. The syntax of
an attribute is

object’ attribute

FPGA Compiler II / FPGA Express supports the following predefined
VHDL attributes for use with arrays, as described in “Array Types” on
page 3-9.

• left

• right
4-20

Expressions

• high

• low

• length

• range

• reverse_range

FPGA Compiler II / FPGA Express also supports the following
predefined VHDL attributes for use with wait and if statements, as
described in Chapter 7, "Register and Three-State Inference".

• event

• stable

In addition to supporting the previous predefined VHDL attributes,
FPGA Compiler II / FPGA Express has a defined set of synthesis-
related attributes. You can include these FPGA Compiler II / FPGA
Express-specific attributes in your VHDL design description to direct
FPGA Compiler II / FPGA Express during optimization.

Expressions

Operands can themselves be expressions. You create expression
operands by surrounding an expression with parentheses, such as
(A nand B).
4-21

Expressions

Function Calls

A function call executes a named function with the given parameter
values. The value returned to an operator is the function’s return
value. The syntax of a function call is

function_name ([parameter_name =>] expression
 {, [parameter_name =>] expression }) ;

function_name
Name of a defined function. The optional parameter_names are
the names of formal parameters as defined by the function. Each
expression provides a value for its parameter and must evaluate
to a type appropriate for that parameter.

You can specify parameters in positional or named notation, as
you can with aggregate values.

In positional notation, the parameter_name => construct is
omitted. The first expression provides a value for the function’s
first parameter, the second expression is for the second
parameter, and so on.

In named notation, parameter_name => is specified before an
expression; the named parameter gets the value of that
expression.

You can mix positional and named expressions in the same
function call if you put all positional expressions before named
parameter expressions.

Example 4-13 shows a function declaration and several equivalent
function calls.
4-22

Expressions

Example 4-13 Function Calls
function FUNC(A, B, C: INTEGER) return BIT;
. . .
FUNC(1, 2, 3)
FUNC(B => 2, A => 1, C => 7 mod 4)
FUNC(1, 2, C => -3+6)

Identifiers

Identifiers are probably the most common operand. An identifier is
the name of a constant, variable, function, signal, entity, port,
subprogram, or parameter and returns that object’s value to an
operand.

Identifiers that contain special characters, begin with numbers, or
have the same name as a keyword can be specified as an extended
identifier. An extended identifier starts with a backslash character (\),
followed by a sequence of characters, followed by another backslash
character (\).

Example 4-14 shows some extended identifiers.

Example 4-14 Sample Extended Identifiers
\a+b\ \3state\
\type\ \(a&b)|c\

Example 4-15 shows several kinds of identifiers and their usages. All
identifiers appear in bold type.
4-23

Expressions

Example 4-15 Identifiers
entity EXAMPLE is
 port (INT_PORT: in INTEGER;
 BIT_PORT: out BIT);
end;
. . .
signal BIT_SIG: BIT;
signal INT_SIG: INTEGER;
. . .
INT_SIG <= INT_PORT; -- Signal assignment from port
BIT_PORT <= BIT_SIG; -- Signal assignment to port

function FUNC(INT_PARAM: INTEGER)
 return INTEGER;
end function;
. . .
constant CONST: INTEGER := 2;
variable VAR: INTEGER;
. . .
VAR := FUNC(INT_PARAM => CONST); -- Function call

Indexed Names

An indexed name identifies one element of an array variable or signal.
The syntax of an indexed name is

identifier (expression)

identifier
Name of a signal or variable of an array type. The expression must
return a value within the array’s index range. The value returned
to an operator is the specified array element.

If the expression is computable (see “Computable Operands” on
page 4-16), the operand is synthesized directly. If the expression
4-24

Expressions

is noncomputable, a circuit is synthesized that extracts the
specified element from the array.

Example 4-16 shows two indexed names, one computable and one
not. Figure 4-7 illustrates the resulting synthesized circuit design.

Example 4-16 Indexed Name Operands
signal A, B: BIT_VECTOR(0 to 3);
signal I: INTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(I); -- Noncomputable index expression
Z <= B(3); -- Computable index expression

Figure 4-7 Design Illustrating Use of Indexed Names From Example 4-16

You can also use indexed names as assignment targets; see
“Assignment Statements and Targets” on page 5-2.
4-25

Expressions

Literals

A literal (constant) operand can be a numeric literal, a character literal,
an enumeration literal, or a string literal. The following sections
describe these four kinds of literals.

Numeric Literals

Numeric literals are constant integer values. The two kinds of numeric
literals are decimal and based. A decimal literal is written in base 10.
A based literal can be written in a base from 2 to 16 and is composed
of the base number, an octothorpe (#), the value in the given base,
and another octothorpe (#). For example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by
underscores. Example 4-17 shows several different numeric literals,
all representing the same value, which is 170.

Example 4-17 Numeric Literals
170
1_7_0
10#170#
2#1010_1010#
16#AA#

Character Literals

Character literals are single characters enclosed in single quotation
marks—for example, ’A’. Character literals are used both as values
for operators and in defining enumerated types, such as
CHARACTER and BIT. See “Enumeration Types” on page 3-3 for the
valid character types.
4-26

Expressions

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds
of enumeration literals are character literals and identifiers. Character
literals are described earlier. Enumeration identifiers are those listed
in an enumeration type definition. For example,

type SOME_ENUM is (ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are
overloaded. You must qualify overloaded enumeration literals when
you use them in an expression, unless their type can be determined
from context (see “Qualified Expressions” on page 4-29). For more
information, see “Enumeration Types” on page 3-3.

Example 4-18 defines two enumerated types and shows some
enumeration literal values.

Example 4-18 Enumeration Literals
type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);
type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA -- Enumeration identifier of type ENUM_1
’B’ -- Character literal of type ENUM_1
CCC -- Enumeration identifier of type ENUM_2
’D’ -- Character literal of type ENUM_2
ENUM_1’(ZZZ) -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters enclosed in
double quotation marks (” ”). The two kinds are

• Character strings, which are sequences of characters in double
quotation marks, for example, ”ABCD”.
4-27

Expressions

• Bit strings, which are similar to character strings but represent
binary, octal, or hexadecimal values. For example, B”1101”,
O”15”, and X”D” all represent the decimal value 13.

A string literal’s type is a one-dimensional array of an enumerated
type. Each of the characters in the string represents one element of
the array.

Example 4-19 shows some character string literals.

Example 4-19 Character String Literals
”10101”
”ABCDEF”

Note:
Null string literals (””) are not supported.

Bit strings, like based numeric literals, are composed of a base
specifier character, a double quotation mark, a sequence of numbers
in the given base, and another double quotation mark. For example,
B”0101” represents the bit vector 0101. A bit string literal consists of
the base specifier B, O, or X, followed by a string literal. It is interpreted
as a bit vector, a one-dimensional array of the predefined type BIT.
The base specifier determines the interpretation of the bit string as
follows:

B (binary)
The value is in binary digits (bits 0 or 1). Each bit in the string
represents one BIT in the generated bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string
represents three BITs in the generated bit vector (array).
4-28

Expressions

X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each
hexadecimal digit in the string represents four BITs in the
generated bit vector (array).

You can separate the digits in a bit string literal value with underscores
(_) for readability. Example 4-20 shows three bit string literals
representing the value AAA.

Example 4-20 Bit String Literals
X”AAA”
B”1010_1010_1010”
O”5252”

Qualified Expressions

Qualified expressions state the type of an ambiguous operand. You
cannot use qualified expressions for type conversion (see “Type
Conversions” on page 4-34).

The syntax of a qualified expression is

type_name’(expression)

type_name
The name of a defined type. The expression must evaluate to a
value of an appropriate type.

Note:
FPGA Compiler II / FPGA Express requires a single quotation
mark (tick) between type_name and (expression). If the single
quotation mark is not there, the construction is intepreted as a
type conversion (described in the next section).
4-29

Expressions

Example 4-21 shows a qualified expression that resolves an
overloaded function by qualifying the type of a decimal literal
parameter.

Example 4-21 A Qualified Decimal Literal
type R_1 is range 0 to 10; -- Integer 0 to 10
type R_2 is range 0 to 20; -- Integer 0 to 20

function FUNC(A: R_1) return BIT;
function FUNC(A: R_2) return BIT;

FUNC(5) -- Ambiguous; could be of type R_1, R_2, or INTEGER

FUNC(R_1’(5)) -- Unambiguous

Example 4-22 shows how qualified expressions resolve ambiguities
in aggregates and enumeration literals.

Example 4-22 Qualified Aggregates and Enumeration Literals
type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;
. . .
(others => ’0’) -- Ambiguous; could be of type ARR_1 or ARR_2

ARR_1’(others => ’0’) -- Qualified; unambiguous
--
type ENUM_1 is (A, B);
type ENUM_2 is (B, C);
. . .
B -- Ambiguous; could be of type ENUM_1 or ENUM_2

ENUM_1’(B) -- Qualified; unambiguous

Records and Fields

Records are composed of named fields of any type. For more
information, see “Record Types” on page 3-13.
4-30

Expressions

In an expression, you can refer to a whole record or to a single field.
The syntax of field names is

record_name.field_name

record_name
Name of the record variable or signal. A record_name is different
for each variable or signal of that record type.

field_name
Name of a field in that record type. A field_name is separated from
the record_name by a period (.). A field_name is the field name
defined for that record type.

Example 4-23 shows a record type definition and record and field
access.

Example 4-23 Record and Field Access
type BYTE_AND_IX is
 record
 BYTE: BIT_VECTOR(7 downto 0);
 IX: INTEGER range 0 to 7;
 end record;

signal X: BYTE_AND_IX;
. . .
X -- record
X.BYTE -- field: 8-bit array
X.IX -- field: integer

A field can be of any type, including an array, record, or aggregate
type. Refer to an element of a field by using that type’s notation; for
example,

X.BYTE(2) -- one element from array field BYTE
X.BYTE(3 downto 0) -- 4-element slice of array field BYTE
4-31

Expressions

Slice Names

Slice names identify a sequence of elements of an array variable or
signal. The syntax is

identifier (expression direction expression)

identifier
Name of a signal or variable of an array type. Each expression
must return a value within the array’s index range and must be
computable (see “Computable Operands” on page 4-16).

The direction must be either to or downto. The direction of a slice
must be the same as the direction of an identifier’s array type. If the
left and right expressions are equal, they define a single element.

The value returned to an operator is a subarray containing the
specified array elements.

Example 4-24 uses slices to assign an 8-bit input to an 8-bit output,
exchanging the lower and upper 4 bits. Figure 4-8 illustrates the
resulting synthesized circuit design. Slices are also used as
assignment targets. This usage is described in “Assignment
Statements and Targets” on page 5-2.

Example 4-24 Slice Name Operands
signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);
4-32

Expressions

Figure 4-8 Design Illustrating Use of Slices From Example 4-24

Limitations on Null Slices

Synthesis does not support null slices, which are indicated by

• A null range, such as (4 to 3)

• A range with the wrong direction, such as UP_VAR(3 downto 2)
when the UP_VAR declared range is ascending (Example 4-25)

Example 4-25 shows three null slices and one noncomputable slice.
4-33

Expressions

Example 4-25 Null and Noncomputable Slices
subtype DOWN is BIT_VECTOR(4 downto 0);
subtype UP is BIT_VECTOR(0 to 7);
. . .
variable UP_VAR: UP;
variable DOWN_VAR: DOWN;
. . .
UP_VAR(4 to 3) -- Null slice (null range)
UP_VAR(4 downto 0) -- Null slice (wrong direction)
DOWN_VAR(0 to 1) -- Null slice (wrong direction)
variable I: INTEGER range 0 to 7;
. . .
UP_VAR(I to I+1) -- Noncomputable slice

Limitations on Noncomputable Slices

Synthesis does not allow noncomputable slices—slices whose range
contains a noncomputable expression.

Type Conversions

Type conversions change an expression’s type.

The syntax of a type conversion is

type_name(expression)

type_name
The name of a defined type. The expression must evaluate to a
value of a type that is convertible into type type_name.

- Type conversions can convert between integer types or
between similar array types.

- Two array types are similar if they have the same length and
have convertible or identical element types.
4-34

Expressions

- Enumerated types are not convertible.

Example 4-26 shows some type definitions and associated signal
declarations, followed by valid and invalid type conversions.

Example 4-26 Valid and Invalid Type Conversions
type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;
type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(11 to 20) of BIT;
type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT: INT_1;
signal S_ARRAY: ARRAY_1;
signal S_BIT_VEC: MY_BIT_VECTOR;
signal S_BIT: BIT;
 -- Legal type conversions

INT_2(S_INT)
 -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)
 -- Similar array type conversion
 -- Illegal type conversions

BOOLEAN(S_BIT);
 -- Can’t convert between enumerated types

INT_1(S_BIT);
 -- Can’t convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC);
 -- Array lengths not equal

ARRAY_1(S_BIT_VEC);
 -- Element types are not convertible
4-35

Expressions

4-36

Expressions

5
Sequential Statements 5

FPGA Compiler II / FPGA Express interprets sequential statements,
such as A := 3, in the order in which they appear in the code. VHDL
sequential statements can appear only in processes and
subprograms. This chapter discusses the different types of sequential
statements, in the following sections:

• Assignment Statements and Targets

• Variable Assignment Statements

• Signal Assignment Statements

• if Statements

• case Statements

• loop Statements

• next Statements
5-1

Sequential Statements

• exit Statements

• Subprograms

• return Statement

• wait Statements

• null Statements

Assignment Statements and Targets

Use an assignment statement to assign a value to a variable or signal.
The syntax is

target := expression; -- Variable assignment

target <= expression; -- Signal assignment

target
The target can be a variable or a signal (or part of a variable or a
signal, such as a subarray) that receives the value of the
expression. The expression must evaluate to the same type as
the target. See Chapter 4, "Expressions” for more information.

There are five kinds of targets:

- Simple names, such as my_var

- Indexed names, such as my_array_var(3)

- Slices, such as my_array_var(3 to 6)

- Field names, such as my_record.a_field

- Aggregates, such as (my_var1, my_var2)
5-2

Sequential Statements

The difference in syntax between variable assignments and signal
assignments is that

• Variables use the := operator

Variables are local to a process or subprogram, and their
assignments take effect immediately.

• Signals use the <= operator

Signals need to be global in a process or subprogram, and their
assignments take effect at the end of a process.

Signals are the only means of communication between
processes. For more information on semantic differences, see
“Signal Assignment Statements” on page 5-12.

The following descriptions refer to variable as well as signal targets.

Simple Name Targets

The syntax for an assignment to a simple name (identifier) target is

identifier := expression; -- Variable assignment

identifier <= expression; -- Signal assignment

identifier
The name of a signal or variable. The assigned expression must
have the same type as the signal or variable. For array types, all
elements of the array are assigned values.

Example 5-1 shows some assignments to simple name targets.
5-3

Sequential Statements

Example 5-1 Simple Name Targets
variable A, B: BIT;
signal C: BIT_VECTOR(1 to 4);

-- Target Expression
 A := ’1’; -- Variable A is assigned ’1’
 B := ’0’; -- Variable B is assigned ’0’
 C <= ”1100”; -- Signal array C is assigned bit value "1100"

Indexed Name Targets

The syntax for an assignment to an indexed name (identifier) target is

identifier(index_expression) := expression; -- Variable assignment
identifier(index_expression) <= expression; -- Signal assignment

identifier
The name of an array type signal or variable. The
index_expression must evaluate to an index value for the identifier
array’s index type and bounds. It does not have to be computable
(see Chapter 4, "Expressions”), but more hardware is synthesized
if it is not.

The assigned expression must have the array’s element type.

In Example 5-2, the array variable A elements are assigned values
as indexed names.

Example 5-3 shows two indexed name targets. One is computable,
the other is not. Figure 5-1 illustrates the corresponding design.
5-4

Sequential Statements

Example 5-2 Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target Expression;
 A(1) := ’1’; -- Assigns ’1’ to the first element of array A.
 A(2) := ’1’; -- Assigns ’1’ to the second element of array A
 A(3) := ’0’; -- Assigns ’0’ to the third element of array A
 A(4) := ’0’; -- Assigns ’0’ to the fourth element of array A

Example 5-3 Computable and Noncomputable Indexed Name Targets
entity example5_3 is

port (
signal A, B: out BIT_VECTOR(0 to 3);
signal I: in INTEGER range 0 to 3;
signal Y, Z: in BIT
);

end example5_3;

architecture behave of example5_3 is

begin
process (I,Y,Z)
begin

A <= ”0000”;
B <= ”0000”;
A(I) <= Y; -- Noncomputable index expression
B(3) <= Z; -- Computable index expression

end process;
end behave;
5-5

Sequential Statements

Figure 5-1 Design Illustrating Indexed Name Targets From Example 5-3
5-6

Sequential Statements

Slice Targets

The syntax for an assignment to a slice target is

identifier(index_expr_1 direction index_expr_2)

identifier
The name of an array type signal or variable. Each index_expr
expression must evaluate to an index value for the identifier array’s
index type and bounds. Both index_expr expressions must be
computable (see Chapter 4, "Expressions") and must lie within
the bounds of the array. The direction must match the identifier
array type’s direction, either to or downto.

The assigned expression must have the array’s element type.

In Example 5-4, array variables A and B are assigned the same value.

Example 5-4 Slice Targets
variable A, B: BIT_VECTOR(1 to 4);
-- Target Expression
 A(1 to 2) := ”11”;
 -- Assigns ”11” to the first two elements of array A
 A(3 to 4) := ”00”;
 -- Assigns ”00” to the last two elements of array A
 B(1 to 4) := ”1100”;
 -- Assigns ”1100” to array B
5-7

Sequential Statements

Field Targets

The syntax for an assignment to a field target is

identifier.field_name

identifier
The name of a record type signal or variable. field_name is the
name of a field in that record type, preceded by a period (.). The
assigned expression must have the identified field’s type. A field
can be of any type, including an array, record, or aggregate type.

Example 5-5 assigns values to the fields of record variables A and B.

Example 5-5 Field Targets
type REC is
 record
 NUM_FIELD: INTEGER range -16 to 15;
 ARRAY_FIELD: BIT_VECTOR(3 to 0);
 end record;

variable A, B: REC;

-- Target Expression
 A.NUM_FIELD := -12;
 -- Assigns -12 to record A’s field NUM_FIELD
 A.ARRAY_FIELD := ”0011”;
 -- Assigns ”0011” to record A’s field ARRAY_FIELD
 A.ARRAY_FIELD(3) := ’1’;
 -- Assigns ’1’ to the most significant bit of
 -- record A’s field ARRAY_FIELD
 B := A;
 -- Assigns values of record A to corresponding fields of B

For more information, see “Record Types” on page 3-13.
5-8

Sequential Statements

Aggregate Targets

The syntax for an assignment to an aggregate target is

([choice =>] identifier
 {,[choice =>] identifier}) := array_expression;
 -- Variable assignment

([choice =>] identifier
 {,[choice =>] identifier}) <= array_expression;
 -- Signal assignment

aggregate assignment
Assigns the array_expression element values to one or more
variable or signal identifiers.

Each (optional) choice is an index expression selecting an element
or a slice of the assigned array_expression. Each identifier must have
the array_expression element type. An identifier can be an array type.

You can assign array element values to the identifiers by position or
by name. In positional notation, the choice => construct is not used.
Identifiers are assigned array element values in order, from the left
array bound to the right array bound.

In named notation, the choice => construct identifies specific
elements of the assigned array. A choice index expression indicates
a single element (such as 3). The identifier’s type must match the
assigned expression’s element type.

Positional and named notation can be mixed, but positional
associations must come before named associations, as in Example
5-6.
5-9

Sequential Statements

Example 5-6 Aggregate Targets
signal A, B, C, D: BIT;
signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F: BIT;
variable G: BIT_VECTOR(1 to 2);
variable H: BIT_VECTOR(1 to 4);

-- Positional notation
S <= (’0’, ’1’, ’0’, ’0’);
(A, B, C, D) <= S; -- Assigns ’0’ to A

-- Assigns ’1’ to B
-- Assigns ’0’ to C
-- Assigns ’0’ to D

-- Named notation
(3 => E, 4 => F,
 2 => G(1), 1 => G(2)) := H; -- Assigns H(1) to G(2)

-- Assigns H(2) to G(1)
-- Assigns H(3) to E
-- Assigns H(4) to F
5-10

Sequential Statements

Variable Assignment Statements

A variable assignment changes the value of a variable. The syntax is

target := expression;

target
Names the variables that receive the value of expression.

See “Assignment Statements and Targets” on page 5-2 for a
description of variable assignment targets.

expression
Determines the assigned value; its type must be compatible with
the target.

For more information about expressions, see Chapter 4,
"Expressions”.

When a variable is assigned a value, the assignment takes place
immediately. A variable keeps its assigned value until another
assignment takes place.

Example 5-7 on page 5-14 shows the different effects of variable and
signal assignments.
5-11

Sequential Statements

Signal Assignment Statements

A signal assignment changes the value being driven on a signal by
the current process. The syntax is

target <= expression;

target
Names the signals that receive the value of expression.

See “Assignment Statements and Targets” on page 5-2 for a
description of variable assignment targets.

expression
Determines the assigned value; its type must be compatible with
target.

For more information about expressions, see Chapter 4,
"Expressions”.

Signals and variables act in different ways when they receive
assigned values. The differences lie in the way the two kinds of
assignments take effect and how that influences the value FPGA
Compiler II / FPGA Express reads from either variables or signals.

variable assignment
When a variable receives an assigned value, the assignment
changes the value of the variable from that point on. That value
is kept until the variable is assigned a different value.
5-12

Sequential Statements

signal assignment
When a signal receives an assigned value, the assignment does
not necessarily take effect, because the value of a signal is
determined by the processes (or other concurrent statements)
that drive the signal.

- If several values are assigned to a given signal in one process,
only the last assignment is effective. Even if a signal in a process
is assigned, then read, and then assigned again, the value read
(either inside or outside the process) is the last assignment
value.

- If several processes (or other concurrent statements) assign
values to one signal, the drivers are wired together. The
resulting circuit depends on the expressions and the target
technology. It might be invalid, wired AND, wired OR, or a three-
state bus. For more information on this topic, see Chapter 6,
"Concurrent Statements”.

Example 5-7 shows the different effects of variable and signal
assignments.
5-13

Sequential Statements

Example 5-7 Variable and Signal Assignments
signal S1, S2: BIT;
signal S_OUT : BIT_VECTOR(1 to 8);
. . .
process(S1, S2)
 variable V1, V2: BIT;
begin
 V1 := ’1’; -- This sets the value of V1
 V2 := ’1’; -- This sets the value of V2
 S1 <= ’1’; -- This assignment is the driver for S1
 S2 <= ’1’; -- This has no effect because of the
 -- assignment later in this process

 S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
 S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
 S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below

 V1 := ’0’; -- This sets the new value of V1
 V2 := ’0’; -- This sets the new value of V2
 S2 <= ’0’; -- This assignment overrides the previous
 -- one since it is the last assignment to
 -- this signal in this process

 S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
 S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
 S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;
5-14

Sequential Statements

if Statements

The if statement executes a sequence of statements. The sequence
depends on the value of one or more conditions. The syntax is

if condition then
[{ sequential_statement }
 elsif condition then]
 { sequential_statement }
[else
 { sequential_statement }]
end if;

Each condition must be a Boolean expression. Each branch of an if
statement can have one or more sequential_statements.

Evaluating Conditions

An if statement evaluates each condition in order. Only the first true
condition causes the execution of the if statement’s branch
statements. The remainder of the if statement is skipped.

If none of the conditions is true and the else clause is present, those
statements are executed. If none of the conditions is true and no else
clause is present, none of the statements is executed.

Example 5-8 shows an if statement. Figure 5-2 illustrates the
corresponding circuit.
5-15

Sequential Statements

Example 5-8 if Statement
signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then
 Z <= A;
elsif (P2 = ’0’) then
 Z <= B;
else
 Z <= C;
end if;

Figure 5-2 Schematic Design From Example 5-8

Using the if Statement to Infer Registers and Latches

Some forms of the if statement can be used like the wait statement,
to test for signal edges and therefore imply synchronous logic. This
usage causes FPGA Compiler II / FPGA Express to infer registers or
latches, as described in Chapter 7, "Register and Three-State
Inference”.
5-16

Sequential Statements

case Statements

The case statement executes one of several sequences of
statements, depending on the value of a single expression. The
syntax is

case expression is
 when choices =>
 { sequential_statement }
 { when choices =>
 { sequential_statement } }
end case;

expression
Must evaluate to an INTEGER, an enumerated type, or an array
of enumerated types such as BIT_VECTOR. Each of the choices
must be of the form

choice { | choice }

choice
Each choice can be either a static expression (such as 3) or a
static range (such as 1 to 3). The type of choice_expression
determines the type of each choice. Each value in the range of
choice_expression’s type must be covered by one choice.

The final choice can be others, as in Example 5-10 on
page 5-20, which matches all remaining (unchosen) values in
the range of expression’s type. The others choice, if present,
matches expression only if no other choices match.

The case statement evaluates expression and compares that
value with each choice value. The when clause with the matching
choice value has its statements executed.
5-17

Sequential Statements

The following restrictions are placed on choices:

• No two choices can overlap.

• If an others choice is not present, all possible values of expression
must be covered by the set of choices.

Using Different Expression Types

Example 5-9 shows a case statement that selects one of four signal
assignment statements by using an enumerated expression type.
Figure 5-3 illustrates the corresponding design with binary encoding
specified.

Example 5-9 case Statement With Enumerated Type
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package case_enum is
type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);
end case_enum;

library work;
use work.case_enum.all;

entity example5_9 is
 port (
 signal A, B, C, D: in BIT;
 signal VALUE: ENUM;
 signal Z: out BIT
);
end example5_9;

architecture behave of example5_9 is

begin
process (VALUE)
5-18

Sequential Statements

begin
 case VALUE is
 when PICK_A =>
 Z <= A;
 when PICK_B =>
 Z <= B;
 when PICK_C =>
 Z <= C;
 when PICK_D =>
 Z <= D;
 end case;
end process;
end behave;

Figure 5-3 Schematic Design From Example 5-9

Example 5-10 shows a case statement again used to select one of
four signal assignment statements, this time by using an integer
expression type with multiple choices. Figure 5-4 illustrates the
corresponding design.
5-19

Sequential Statements

Example 5-10 case Statement With Integers
entity example5_10 is

port (
signal VALUE: in INTEGER range 0 to 15;
signal Z1, Z2, Z3, Z4: out BIT
);

end example5_10;
architecture behave of example5_10 is
begin

process (VALUE)
begin
Z1 <= ’0’;
Z2 <= ’0’;
Z3 <= ’0’;
Z4 <= ’0’;
case VALUE is

when 0 => -- Matches 0
Z1 <= ’1’;

when 1 | 3 => -- Matches 1 or 3
Z2 <= ’1’;

when 4 to 7 | 2 =>-- Matches 2, 4, 5, 6, or 7
Z3 <= ’1’;

when others => -- Matches remaining values, 8 through 15
Z4 <= ’1’;

end case;
end process;
end behave;

Figure 5-4 Schematic Design From Example 5-10
5-20

Sequential Statements

Invalid case Statements

Example 5-11 shows invalid case statements with explanatory
comments.

Example 5-11 Invalid case Statements
signal VALUE: INTEGER range 0 to 15;
signal OUT_1: BIT;

case VALUE is -- Must have at least one when clause
end case;

case VALUE is -- Values 2 to 15 are not covered by choices
 when 0 =>
 OUT_1 <= ’1’;
 when 1 =>
 OUT_1 <= ’0’;
end case;

case VALUE is -- Choices 5 to 10 overlap
 when 0 to 10 =>
 OUT_1 <= ’1’;
 when 5 to 15 =>
 OUT_1 <= ’0’;
end case;
5-21

Sequential Statements

loop Statements

A loop statement repeatedly executes a sequence of statements. The
syntax is

[label :] [iteration_scheme] loop
 { sequential_statement }
 { next [label] [when condition] ; }
 { exit [label] [when condition] ; }
end loop [label];

label
The label, which is optional, names the loop and is useful for
building nested loops.

iteration_scheme
There are three types of iteration_scheme: loop, while...loop, and
for...loop. They are described in the next three sections.

next and exit statements
Sequential statements used only within loops.

next statement
Skips the remainder of the current loop and continues with the
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the
next statement after the exited loop.

See “next Statements” on page 5-30 and “exit Statements” on
page 5-33.
5-22

Sequential Statements

Basic loop Statements

The basic loop statement has no iteration scheme. FPGA Compiler
II / FPGA Express executes enclosed statements repeatedly until it
encounters an exit or next statement. The syntax statement is

[label :] loop
 { sequential_statement }
end loop [label];

loop
The label, which is optional, names this loop.

sequential_statement
Any statement described in this chapter.

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the
next statement after the exited loop.

See “next Statements” on page 5-30 and “exit Statements” on
page 5-33.

Note:
Noncomputable loops (loop and while...loop statements) must
have at least one wait statement in each enclosed logic branch.
Otherwise, a combinational feedback loop is created. See “wait
Statements” on page 5-50 for more information. Conversely,
computable loops (for...loop statements) must not contain wait
statements. Otherwise, a race condition may result.
5-23

Sequential Statements

while...loop Statements

The while...loop statement has a Boolean iteration scheme. If the
iteration condition evaluates true, FPGA Compiler II / FPGA Express
executes the enclosed statements once. The iteration condition is
then reevaluated. As long as the iteration condition remains true, the
loop is repeatedly executed. When the iteration condition evaluates
false, the loop is skipped and execution continues with the next loop
iteration. The syntax for a while...loop statement is

[label :] while condition loop
 { sequential_statement }
end loop [label];

label
The label, which is optional, names this loop.

condition
Any Boolean expression, such as ((A = ’1’) or (X < Y)).

sequential_statement
Any statement described in this chapter.

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the
next statement after the exited loop.

See “next Statements” on page 5-30 and “exit Statements” on
page 5-33.
5-24

Sequential Statements

Note:
Noncomputable loops (loop and while...loop statements) must
have at least one wait statement in each enclosed logic branch.
Otherwise, a combinational feedback loop is created. See “wait
Statements” on page 5-50 for more information.

for...loop Statements

The for...loop statement has an integer iteration scheme. The integer
range determines the number of repetitions. The syntax for a
for...loop statement is

[label :] for identifier in range loop
 { sequential_statement }
end loop [label];

label
The label, which is optional, names this loop.

identifier
Specific to the for...loop statement:

- Identifier is not declared elsewhere. It is automatically declared
by the loop itself and is local to the loop. A loop identifier
overrides any other identifier with the same name, but only
within the loop.

- The identifier value can be read only inside its loop (identifier
does not exist outside the loop). You cannot assign a value to
a loop identifier.
5-25

Sequential Statements

range
Must be a computable integer range in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer.

For more information, see Chapter 4, "Expressions”

sequential_statement
Any statement described in this chapter.

Two sequential statements are used only with loops:

next statement
Skips the remainder of the current loop and continues with the
next loop iteration.

exit statement
Skips the remainder of the current loop and continues with the
next statement after the exited loop.

See “next Statements” on page 5-30 and “exit Statements” on
page 5-33.

Note:
Computable loops (for...loop statements) must not contain wait
statements. Otherwise, a race condition may result.
5-26

Sequential Statements

Steps in the Execution of a for...loop Statement

A for...loop statement executes as follows:

1. A new integer variable, which is local to the loop, is declared with
the identifier.

2. The identifier receives the first value of range, and the sequence
of statements executes once.

3. The identifier receives the next value of range, and the sequence
of statements executes once more.

4. Step 3 repeats until identifier receives the last value in range. The
sequence of statements then executes for the last time. Execution
continues with the statement following the end loop. The loop is
then inaccessible.

Example 5-12 shows two equivalent code fragments. Figure 5-5
illustrates the corresponding design.

Example 5-12 for...loop Statement With Equivalent Code Fragments
variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement
for I in 1 to 3 loop
 A(I) <= B(I);
end loop;

-- Second fragment is three statements
A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3);
5-27

Sequential Statements

Figure 5-5 Schematic Design From Example 5-12

for...loop Statements and Arrays

You can use a loop statement to operate on all elements of an array,
without explicitly depending on the size of the array. Example 5-13
shows how to use the VHDL array attribute ’range to invert each
element of bit vector A. Figure 5-6 illustrates the corresponding
design. For more information about unconstrained arrays and array
attributes, see “Array Types” on page 3-9.

Example 5-13 for...loop Statement Operating on an Entire Array
entity example5_13 is

port(
A: out BIT_VECTOR(1 to 10);
B: in BIT_VECTOR(1 to 10)
);

end example5_13;

architecture behave of example5_13 is
begin

process (B)
begin

for I in A’range loop
A(I) <= not B(I);

end loop;

end process;
end behave;

[1]
[2]

B

B
[3]

A [1]
A [2]
A [3]B
5-28

Sequential Statements

Figure 5-6 Schematic Design of Array From Example 5-13
5-29

Sequential Statements

next Statements

The next statement skips execution to the next iteration of an
enclosing loop statement, called label in the syntax, as follows:

next [label] [when condition] ;

label
A next statement with no label terminates the current iteration of
the innermost enclosing loop. When you specify a loop label, the
current iteration of that named loop is terminated.

when
An optional clause that executes its next statement when its
condition (a Boolean expression) evaluates true.

Example 5-14 uses the next statement to copy bits conditionally from
bit vector B to bit vector A only when the next condition evaluates
true. Figure 5-7 illustrates the corresponding design.

Example 5-14 next Statement
entity example5_14 is

port(
signal B, COPY_ENABLE: in BIT_VECTOR (1 to 8);
signal A: out BIT_VECTOR (1 to 8)
);

end example5_14;

architecture behave of example5_14 is

begin
process (B, COPY_ENABLE)
begin

A <= ”00000000”;
5-30

Sequential Statements

for I in 1 to 8 loop
next when COPY_ENABLE(I) = ’0’;
A(I) <= B(I);

end loop;

end process;
end behave;

Figure 5-7 Schematic Design From Example 5-14
5-31

Sequential Statements

Example 5-15 shows the use of nested next statements in named
loops. This example processes

• The first element of vector X against the first element of vector Y

• The second element of X against each of the first two elements
of Y

• The third element of X against each of the first three elements of Y

The processing continues in this fashion until it is completed.

Example 5-15 Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop
. . .
 B_LOOP: for J in Y’range loop
 . . .
 next A_LOOP when I < J;
 . . .
 end loop B_LOOP;
. . .
end loop A_LOOP;
5-32

Sequential Statements

exit Statements

The exit statement completes execution of an enclosing loop
statement, called label in the syntax. The completion is conditional if
the statement includes a condition, such as the when condition in the
following syntax:

exit [label] [when condition] ;

label
An exit statement with no label terminates the current iteration of
the innermost enclosing loop. When you specify a loop label, the
current iteration of that named loop is terminated, as shown
previously in Example 5-15.

when
An optional clause that executes its next statement when its
condition (a Boolean expression) evaluates true.

Note:
The exit statement and the next statement have identical syntax,
and they both skip the remainder of the enclosing (or named) loop.
The difference between them is that exit terminates its loop and
next continues with the next loop iteration (if any).

Example 5-16 compares two bit vectors. An exit statement exits the
comparison loop when a difference is found. Figure 5-8 illustrates the
corresponding design.
5-33

Sequential Statements

Example 5-16 Comparator That Uses the exit Statement
entity example5_16 is

port(
signal A, B: in BIT_VECTOR(1 downto 0);
signal A_LESS_THAN_B: out BOOLEAN;
);

end example5_16;

architecture behave of example5_16 is

begin
process(A,B)
begin

A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop
if (A(I) = ’1’ and B(I) = ’0’) then

A_LESS_THAN_B <= FALSE;
exit;

elsif (A(I) = ’0’ and B(I) = ’1’) then
A_LESS_THAN_B <= TRUE;
exit;

else
null; -- Continue comparing

end if;
end loop;
end process;
end behave;

Figure 5-8 Schematic Design From Example 5-16
5-34

Sequential Statements

Subprograms

Subprograms are independent, named algorithms. A subprogram is
either a procedure (zero or more in, inout, or out parameters) or a
function (zero or more in parameters and one return value).
Subprograms are called by name from anywhere within a VHDL
architecture or a package body. Subprograms can be called
sequentially (as described later in this chapter in “Combinational
Versus Sequential Processes” on page 5-55) or concurrently (as
described in Chapter 6, "Concurrent Statements”).

Subprogram Always a Combinational Circuit

In hardware terms, a subprogram call is similar to module
instantiation, except that a subprogram call becomes part of the
current circuit. A module instantiation adds a level of hierarchy to the
design. A synthesized subprogram is always a combinational circuit.
(Use a process to create a sequential circuit.)

Subprogram Declaration and Body

Subprograms, like packages, have declarations and bodies. A
subprogram declaration specifies the subprogram’s name,
parameters, and return value (for functions). The subprogram body
then implements the operation you want.

Often a package contains only type and subprogram declarations for
use by other packages. The bodies of the declared subprograms are
then implemented in the bodies of the declaring packages.
5-35

Sequential Statements

The advantage of the separation between declarations and bodies is
that subprogram interfaces can be declared in public packages during
system development. One group of developers can use the public
subprograms as another group develops the corresponding bodies.
You can modify package bodies, including subprogram bodies,
without affecting existing users of that package’s declarations.

You can also define subprograms locally inside an entity, block,
or process.

FPGA Compiler II / FPGA Express implements procedure and
function calls with combinational logic, unless you use the
map_to_entity compiler directive (see “Procedures and Functions as
Design Components” on page 5-45.) FPGA Compiler II / FPGA
Express does not allow inference of sequential devices, such as
latches or flip-flops, in subprograms.

Example 5-17 shows a package containing some procedure and
function declarations and bodies. The example itself is not
synthesizable; it just creates a template. Designs that instantiate
procedure P, however, compile normally.

For more information about subprograms, see “Subprograms” on
page 2-22.
5-36

Sequential Statements

Example 5-17 Subprogram Declarations and Bodies
package EXAMPLE is
 procedure P (A: in INTEGER; B: inout INTEGER);
 -- Declaration of procedure P

 function INVERT (A: BIT) return BIT;
 -- Declaration of function INVERT
end EXAMPLE;

package body EXAMPLE is
 procedure P (A: in INTEGER; B: inout INTEGER) is
 -- Body of procedure P
 begin
 B := A + B;
 end;

 function INVERT (A: BIT) return BIT is
 -- Body of function INVERT
 begin
 return (not A);
 end;
end EXAMPLE;

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram
declaration defines each parameter’s name, mode, and type. These
are a subprogram’s formal parameters. When the subprogram is
called, each formal parameter receives a value, termed the “actual”
parameter. Each actual parameter’s value (of an appropriate type)
might come from an expression, a variable, or a signal.
5-37

Sequential Statements

The mode of a parameter specifies whether the actual parameter can
be

• read from (mode in)

• written to (mode out)

• both read from and written to (mode inout)

Actual parameters that use mode out and mode inout must be
variables or signals and include indexed names (A(1)) and slices
(A(1 to 3)). They cannot be constants or expressions.

The two kinds of subprograms are procedures and functions:

Procedures
A procedure can have multiple parameters that use modes in,
inout, and out, but a procedure does not itself return a value.

Procedures are used when you want to update some parameters
(modes out and inout) or when you do not need a return value.
An example could be a procedure with one inout bit vector
parameter that inverted each bit in place.

Functions
A function can have multiple parameters but only parameters that
use mode in. A function returns its own function value. Part of a
function definition specifies its return value type (also called the
function type).

Use functions when you do not need to update the parameters
and you want a single return value. For example, the arithmetic
function ABS returns the absolute value of its parameter.
5-38

Sequential Statements

Procedure Calls

A procedure call executes the named procedure with the given
parameter values. The syntax is

procedure_name [([name =>] expression
 { , [name =>] expression })] ;

expression
Each expression is called an actual parameter; expression is often
just an identifier. If a name is present (positional notation), it is a
formal parameter name associated with the actual parameter’s
expression.

Formal parameters are matched to actual parameters by a positional
or named notation. A notation can mix positional and named notation,
but positional parameters must precede named parameters.

A procedure call occurs in three steps:

1. FPGA Compiler II / FPGA Express assigns the values of the in
and inout actual parameters to their associated formal
parameters.

2. The procedure executes.

3. FPGA Compiler II / FPGA Express assigns the values of the inout
and out formal parameters to the actual parameters.

In the synthesized circuit, the procedure’s actual inputs and outputs
are wired to the procedure’s internal logic.

Example 5-18 shows a local procedure named SWAP that compares
two elements of an array and exchanges them if they are out of order.
5-39

Sequential Statements

SWAP is called repeatedly to sort an array of three numbers. Figure
5-8 illustrates the corresponding design.

Example 5-18 Procedure Call to Sort an Array
library IEEE;
use IEEE.std_logic_1164.all;

package DATA_TYPES is
 type DATA_ELEMENT is range 0 to 1;
 type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;
end DATA_TYPES;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.DATA_TYPES.ALL;

entity SORT is
 port(IN_ARRAY: in DATA_ARRAY;
 OUT_ARRAY: out DATA_ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begin
 process(IN_ARRAY)
 procedure SWAP(DATA: inout DATA_ARRAY;
 LOW, HIGH: in INTEGER) is
 variable TEMP: DATA_ELEMENT;
 begin
 if(DATA(LOW) > DATA(HIGH)) then -- Check data
 TEMP := DATA(LOW);
 DATA(LOW) := DATA(HIGH); -- Swap data
 DATA(HIGH) := TEMP;
 end if;
 end SWAP;

 variable MY_ARRAY: DATA_ARRAY;

 begin
 MY_ARRAY := IN_ARRAY; -- Read input to variable
 -- Pair-wise sort
 SWAP(MY_ARRAY, 1, 2); -- Swap first and second
 SWAP(MY_ARRAY, 2, 3); -- Swap second and third
 SWAP(MY_ARRAY, 1, 2); -- Swap 1st and 2nd again
 OUT_ARRAY <= MY_ARRAY; -- Write result to output
 end process;
end EXAMPLE;
5-40

Sequential Statements

Figure 5-9 Schematic Design From Example 5-18

Function Calls

A function call executes a named function with the given parameter
values. The value returned to an operator is the function’s return
value. The syntax is

function_name ([parameter_name =>] expression
 {, [parameter_name =>] expression }) ;

function_name
Name of a defined function. The parameter_name, which is
optional, is the name of a formal parameter as defined by the
function. Each expression provides a value for its parameter and
must evaluate to a type appropriate for that parameter.

You can specify parameter values in positional or named notation,
as you can aggregate values.

In positional notation, the parameter_name => construct is
omitted. The first expression provides a value for the function’s
first parameter, the second expression is for the second
parameter, and so on.
5-41

Sequential Statements

In named notation, parameter_name => is specified before an
expression; the named parameter gets the value of that
expression.

You can mix positional and named expressions in the same
function call if you put all positional expressions before named
parameter expressions.

Example 5-19 shows a simple function definition and two calls to
that function.

Example 5-19 Function Definition With Two Calls
function INVERT (A : BIT) return BIT is
 begin
 return (not A);
 end;
...
process
 variable V1, V2, V3: BIT;
begin
 V1 := ’1’;
 V2 := INVERT(V1) xor 1;
 V3 := INVERT(’0’);
end process;
5-42

Sequential Statements

return Statement

The return statement terminates a subprogram. A function definition
requires a return statement. In a procedure definition, a return
statement is optional. The syntax is

return expression ; -- Functions
return ; -- Procedures

expression
Provides the return value of a function. Every function must have
at least one return statement and can have more than one. The
expression type must match the declared function type. Only one
return statement is reached by a given function call.

procedure
Can have one or more return statements but no expression. A
return statement, if present, is the last statement executed in a
procedure.

In Example 5-20, the function OPERATE returns either the and logical
operator or the or logical operator of its parameters A and B. The
return depends on the value of the parameter OPERATION. Figure
5-10 illustrates the corresponding design.
5-43

Sequential Statements

Example 5-20 Use of Multiple return Statements
package test is

function OPERATE(A, B, OPERATION: BIT) return BIT;
end test;

package body test is

function OPERATE(A, B, OPERATION: BIT) return BIT is
begin

if (OPERATION = ’1’) then
return (A and B);

else
return (A or B);

end if;
end OPERATE;
end test;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.test.all;

entity example5_20 is
port(

signal A, B, OPERATION: in BIT;
signal RETURNED_VALUE: out BIT
);

end example5_20;

architecture behave of example5_20 is

begin

RETURNED_VALUE <= OPERATE(A, B, OPERATION);
end behave;
5-44

Sequential Statements

Figure 5-10 Schematic Design From Example 5-20

Procedures and Functions as Design Components

In VHDL, entities cannot be invoked from within behavioral code.
Procedures and functions cannot exist as entities (components) but
must be represented by gates.

You can overcome this limitation with the compiler directive
map_to_entity, which causes FPGA Compiler II / FPGA Express to
implement a function or procedure as a component instantiation.
Procedures and functions that use map_to_entity are represented as
components in designs where they are called.

When you add a map_to_entity directive to a subprogram definition,
FPGA Compiler II / FPGA Express assumes the existence of an entity
with the identified name and the same interface.

FPGA Compiler II / FPGA Express does not check this assumption
until it links the parent design. The matching entity must have the
same input and output port names. If the subprogram is a function,
you must also provide a return_port_name directive where the
matching entity has an output port of the same name.
5-45

Sequential Statements

These two directives are called component implication directives:

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Insert these directives after the function or procedure definition, as in
the following example:

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT is

-- pragma map_to_entity MUX_ENTITY
-- pragma return_port_name Z
...

When FPGA Compiler II / FPGA Express encounters the
map_to_entity directive, it parses but ignores the contents of the
subprogram definition.

Use --pragma synthesis_off and --pragma synthesis_on to hide
simulation-specific constructs in a map_to_entity subprogram (see
“Translation Stop and Start Pragma Directives” on page 9-3 for more
information about synthesis_off and synthesis_on).

The matching entity (entity_name) does not need to be written in
VHDL. It can be in any format that FPGA Compiler II / FPGA Express
supports.

Note:
Be aware that the behavioral description of the subprogram is not
checked against the functionality of the entity overloading it. Pre-
synthesis and post-synthesis simulation results might not match
if differences in functionality exist between the VHDL subprogram
and the overloaded entity.
5-46

Sequential Statements

Example With Component Implication Directives

Example 5-21 shows a function that uses component implication
directives. Figure 5-11 illustrates the corresponding design.

Example 5-21 Using Component Implication Directives on a Function
package MY_PACK is
 subtype TWO_BIT is BIT_VECTOR(1 to 2);
 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
 TWO_BIT;
end;

package body MY_PACK is

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
 TWO_BIT is

 -- pragma map_to_entity MUX_ENTITY
 -- pragma return_port_name Z

 -- contents of this function are ignored but should match the
 -- functionality of the module MUX_ENTITY, so pre- and post
 -- simulation will match
 begin
 if(C = ’1’) then
 return(A);
 else
 return(B);
 end if;
 end;
end;

use WORK.MY_PACK.ALL;
entity TEST is
 port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
 process
 begin
 TEST_OUT <= MUX_FUNC(not A, A, C);
 -- Component implication call
 end process;
end ARCH;

use WORK.MY_PACK.ALL;
5-47

Sequential Statements

-- the following entity ’overloads’ the function MUX_FUNC above

entity MUX_ENTITY is
 port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
 process
 begin
 case C is
 when ’1’ => Z <= A;
 when ’0’ => Z <= B;
 end case;
 end process;
end ARCH;

Figure 5-11 Schematic Design With Component Implication Directives
5-48

Sequential Statements

Example Without Component Implication Directives

Example 5-22 shows the same design as Example 5-21, but without
the creation of an entity for the function. The component implication
directives have been removed. Figure 5-12 illustrates the
corresponding design.

Example 5-22 Using Gates to Implement a Function
package MY_PACK is
 subtype TWO_BIT is BIT_VECTOR(1 to 2);
 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT;
end;

package body MY_PACK is
 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT is
 begin
 if(C = ’1’) then
 return(A);
 else
 return(B);
 end if;
 end;
end;

use WORK.MY_PACK.ALL;
entity TEST is
 port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
 process
 begin
 Z <= MUX_FUNC(not A, A, C);
 end process;
end ARCH;
5-49

Sequential Statements

Figure 5-12 Schematic Design Without Component Implication Directives

wait Statements

A wait statement suspends a process until FPGA Compiler II / FPGA
Express detects a positive-going or negative-going edge on a signal.
The syntax is

wait until signal = value ;

wait until signal’event and signal = value ;

wait until not signal’stable
 and signal = value ;

signal
The name of a single-bit signal—a signal of an enumerated type
encoded with 1 bit (see Chapter 3, "Data Types”). The value must
be one of the literals of the enumerated type. If the signal type is
BIT, the awaited value is either ’1’, for a positive-going edge, or
’0’, for a negative-going edge.
5-50

Sequential Statements

Note:
Three forms of the wait statement (a subset of IEEE VHDL), shown
in the syntax above and in Example 5-23, are specific to the current
implementation of FPGA Compiler II / FPGA Express.

Inferring Synchronous Logic

A wait statement implies synchronous logic where signal is usually a
clock signal. “Combinational Versus Sequential Processes” on
page 5-55, describes how FPGA Compiler II / FPGA Express infers
and implements this logic.

Example 5-23 shows three equivalent wait statements (all positive
edge-triggered).

Example 5-23 Equivalent wait Statements
wait until CLK = ’1’;
wait until CLK’event and CLK = ’1’;
wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait
statements does not differ.

Example 5-24 shows a wait statement that suspends a process until
the next positive edge (a 0-to-1 transition) on signal CLK.

Example 5-24 wait for a Positive Edge
signal CLK: BIT;
...
process
begin
 wait until CLK’event and CLK = ’1’;
 -- Wait for positive transition (edge)
 ...
end process;
5-51

Sequential Statements

Note:
IEEE VHDL specifies that a process containing a wait statement
must not have a sensitivity list. For more information, see “process
Statements” on page 6-2.

Example 5-25 shows the use of a wait statement to describe a circuit
where a value is incremented on each positive clock edge.

Example 5-26 shows the use of multiple wait statements to describe
a multicycle circuit. The circuit provides an average value of its input
A over four clock cycles.

Example 5-27 shows two equivalent descriptions, the first with implicit
state logic and the second with explicit state logic.

Example 5-25 Loop That Uses a wait Statement
process
begin
 y <= 0;
 wait until (clk’event and clk = ’1’);
 while (y < MAX) loop
 wait until (clk’event and clk = ’1’);
 x <= y ;
 y <= y + 1;
 end loop;
end process;

Example 5-26 Multiple wait Statements
process
begin
 wait until CLK’event and CLK = ’1’;
 AVE <= A;
 wait until CLK’event and CLK = ’1’;
 AVE <= AVE + A;
 wait until CLK’event and CLK = ’1’;
 AVE <= AVE + A;
 wait until CLK’event and CLK = ’1’;
 AVE <= (AVE + A)/4;
end process;
5-52

Sequential Statements

Example 5-27 wait Statements and State Logic
--Implicit State Logic
process
begin
 wait until CLOCK’event and CLOCK = ’1’;
 if (CONDITION) then
 X <= A;
 else
 wait until CLOCK’event and CLOCK = ’1’;
 end if;
end process;

-- Explicit State Logic
type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;
...
process
begin
 wait until CLOCK’event and CLOCK = ’1’;
 case STATE is
 when S0 =>
 if (CONDITION) then
 X <= A;
 STATE := S0;
 else
 STATE := S1;
 end if;
 when S1 =>
 STATE := S0;
 end case;
end process;

Note:
You can use wait statements anywhere in a process except in
for...loop statements and subprograms. However, if any path
through the logic has one or more wait statements, all the paths
must have at least one wait statement.

Example 5-28 shows how to describe a circuit with synchronous reset,
using wait statements in an infinite loop. FPGA Compiler II / FPGA
Express checks the reset signal immediately after each wait
statement. The assignment statements in Example 5-28 (X <= A; and
Y <= B;) represent the sequential statements that implement the
circuit.
5-53

Sequential Statements

Example 5-29 shows two invalid uses of wait statements. These
limitations are specific to FPGA Compiler II / FPGA Express.

Example 5-28 Synchronous Reset That Uses wait Statements
process
begin
 RESET_LOOP: loop
 wait until CLOCK’event and CLOCK = ’1’;
 next RESET_LOOP when (RESET = ’1’);
 X <= A;
 wait until CLOCK’event and CLOCK = ’1’;
 next RESET_LOOP when (RESET = ’1’);
 Y <= B;
 end loop RESET_LOOP;
end process;

Example 5-29 Invalid Uses of wait Statements
...
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is ”100 010 001”;
signal CLK : COLOR;
...
process
 begin
 wait until CLK’event and CLK = RED;
 -- Illegal: clock type is not encoded with 1 bit
 ...
 end;
...

process
 begin
 if (X = Y) then
 wait until CLK’event and CLK = ’1’;
 ...
 end if;
 -- Illegal: not all paths contain wait statements
 ...
 end;
5-54

Sequential Statements

Combinational Versus Sequential Processes

Synthesis of a process that contains no wait statements uses
combinational logic. The computations the process performs react
immediately to changes in input signals.

Synthesis of a process that contains one or more wait statements
uses sequential logic. The process performs computations only one
time for each specified clock edge (positive or negative) and saves
the results of these computations until the next clock edge by storing
them in flip-flops.

The following values are stored in flip-flops:

• Signals driven by the process; see “Signal Assignment
Statements” on page 5-12

• State vector values, where the state vector can be implicit or
explicit (as in Example 5-27)

• Variables that might be read before they are set

Note:
As with the wait statement, some uses of the if statement can
imply synchronous logic, causing FPGA Compiler II / FPGA
Express to infer registers or latches. These methods are
described in Chapter 7, "Register and Three-State Inference”.

Example 5-30 uses a wait statement to store values across clock
cycles. The example code compares the parity of a data value with
a stored value. The stored value (called CORRECT_PARITY) is set
from the NEW_CORRECT_PARITY signal if the SET_PARITY signal
is true. Figure 5-13 illustrates the corresponding design.
5-55

Sequential Statements

Example 5-30 Parity Tester That Uses the wait Statement
entity example5_30 is
 port(
 signal CLOCK: in BIT;
 signal SET_PARITY: in BOOLEAN;
 signal PARITY_OK: out BOOLEAN;
 signal NEW_CORRECT_PARITY: in BIT;
 signal DATA: in BIT_VECTOR(0 to 3);
);
end example5_30;

architecture behave of example5_30 is

begin
process
 variable CORRECT_PARITY, TEMP: BIT;
begin
 wait until CLOCK’event and CLOCK = ’1’;

 -- Set new correct parity value if requested
 if (SET_PARITY) then
 CORRECT_PARITY := NEW_CORRECT_PARITY;
 end if;

 -- Compute parity of DATA
 TEMP := ’0’;
 for I in DATA’range loop
 TEMP := TEMP xor DATA(I);
 end loop;

 -- Compare computed parity with the correct value
 PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;
end behave;
5-56

Sequential Statements

Figure 5-13 Schematic Design From Example 5-30

Figure 5-13 shows two flip-flops in the synthesized schematic for
Example 5-30. The first (input) flip-flop holds the value of
CORRECT_PARITY. A flip-flop is needed here because
CORRECT_PARITY is read (when it is compared to TEMP) before it
is set (if SET_PARITY is false). The second (output) flip-flop holds
the value of PARITY_OK between clock cycles. The variable TEMP
is not given a flip-flop because it is always set before it is read.
5-57

Sequential Statements

null Statements

The null statement explicitly states that no action is required. It is often
used in case statements because all choices must be covered, even
if some of the choices are ignored. The syntax is

null;

Example 5-31 shows a typical usage. Figure 5-14 illustrates the
corresponding design.

Example 5-31 null Statement
entity example5_31 is

port(
signal CONTROL: in INTEGER range 0 to 7;
signal A: in BIT;
signal Z: out BIT
);

end example5_31;

architecture behave of example 5_31 is

begin

process (CONTROL, A)
begin

Z <= A;
case CONTROL is

when 0 | 7 => -- If 0 or 7, then invert A
Z <= not A;

when others =>
null; -- If not 0 or 7, then do nothing

end case;
end process;
end behave;
5-58

Sequential Statements

Figure 5-14 Schematic Design From Example 5-31
5-59

Sequential Statements

5-60

Sequential Statements

6
Concurrent Statements 6

A VHDL architecture construct comprises a set of interconnected
concurrent statements, such as processes and blocks, that describe
an overall design in terms of behavior or structure. Concurrent
statements in a design execute simultaneously, unlike sequential
statements, which execute one after another.

This chapter describes concurrent statements, in the following order:

• The two main concurrent statements

- process Statements

- block Statements

• Concurrent Versions of Sequential Statements

- Concurrent Procedure Calls

- Concurrent Signal Assignments
6-1

Concurrent Statements

• Component Instantiation Statements

• Direct Instantiation

• generate Statements

process Statements

A process statement (which is concurrent) contains a set of sequential
statements. Although all processes in a design execute concurrently,
FPGA Compiler II / FPGA Express interprets the sequential
statements within each process one at a time.

A process communicates with the rest of the design by reading values
from or writing them to signals or ports outside the process.

The syntax of a process statement is

[label:] process [(sensitivity_list)]
 { process_declarative_item }
begin
 { sequential_statement }
end process [label] ;

label
A label, which is optional, names the process.
6-2

Concurrent Statements

sensitivity_list
A list of all signals (including ports) read by the process. The
syntax is

signal_name {, signal_name}

The circuit FPGA Compiler II / FPGA Express synthesizes is
sensitive to all signals the process reads. To guarantee the same
results from a VHDL simulator and the synthesized circuit, a
process sensitivity list has to contain all signals whose changes
require resimulation of that process.

Follow these guidelines when developing the sensitivity list:

- Synchronous processes (processes that compute values only
on clock edges) must be sensitive to the clock signal.

- Asynchronous processes (processes that compute values on
clock edges and when asynchronous conditions are true) must
be sensitive to the clock signal (if any) and to inputs that affect
asynchronous behavior.

FPGA Compiler II / FPGA Express checks sensitivity lists for
completeness and issues warning messages for any signals that
are read inside a process but are not in the sensitivity list. An error
message is issued if a clock signal is read as data in a process.

Note:
IEEE VHDL does not allow a sensitivity list if the process has a
wait statement.

process_declarative_item
Declares subprograms, types, constants, and variables local to
the process. These items can be any of the following, all of which
are discussed in Chapter 2, "Design Descriptions”:

- use clause

- Subprogram declaration
6-3

Concurrent Statements

- Subprogram body

- Type declaration

- Subtype declaration

- Constant declaration

- Variable declaration

The sequence of statements in a process defines the behavior of the
process. After executing all the statements in a process, FPGA
Compiler II / FPGA Express executes them all again.

The only exception is during simulation: If a process has a sensitivity
list, the process is suspended (after its last statement) until a change
occurs in one of the signals in the sensitivity list.

If a process has one or more wait statements (and, therefore, no
sensitivity list), the process is suspended at the first wait statement
whose wait condition is false.

The circuit synthesized for a process is either combinational (not
clocked) or sequential (clocked). If a process includes a wait or if
signal’event statement, its circuit contains sequential components.
The wait and if statements are described in Chapter 5, "Sequential
Statements”.

Process statements provide a natural means of describing sequential
algorithms. If the values computed in a process are inherently parallel,
consider using concurrent signal assignment statements (see
“Concurrent Signal Assignments” on page 6-17).
6-4

Concurrent Statements

Combinational Process Example

Example 6-1 shows a process (with no wait statements) that
implements a simple modulo-10 counter. The process

• Reads two signals: CLEAR and IN_COUNT

• Drives one signal, OUT_COUNT

If CLEAR is ’1’ or IN_COUNT is 9, OUT_COUNT is set to 0 (zero).
Otherwise, OUT_COUNT is set to the value of IN_COUNT plus
1 (one).

Figure 6-1 illustrates the resulting circuit design.

Example 6-1 Modulo-10 Counter Process
entity COUNTER is
 port (CLEAR: in BIT;
 IN_COUNT: in INTEGER range 0 to 9;
 OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;
architecture EXAMPLE of COUNTER is
begin
 process(IN_COUNT, CLEAR)
 begin
 if (CLEAR = ’1’ or IN_COUNT = 9) then
 OUT_COUNT <= 0;
 else
 OUT_COUNT <= IN_COUNT + 1;
 end if;
 end process;
end EXAMPLE;
6-5

Concurrent Statements

Figure 6-1 Modulo-10 Counter Process Design

Sequential Process Example

Another way to implement the counter in Example 6-1 is to use a wait
statement to contain the count value internally in the process.

The process in Example 6-2 implements the counter as a sequential
(clocked) process.

• On each 0-to-1 CLOCK transition, if CLEAR is ’1’ or COUNT is 9,
COUNT is set to 0 (zero).

• Otherwise, FPGA Compiler II / FPGA Express increments the
value of COUNT by 1.
6-6

Concurrent Statements

• The value of the variable COUNT is stored in four flip-flops, which
FPGA Compiler II / FPGA Express generates because COUNT
can be read before it is set. Thus, the value of COUNT has to be
maintained from the previous clock cycle. For more information
on using wait statements and count values, see “wait Statements”
on page 5-50.

Figure 6-2 illustrates the resulting circuit design.

Example 6-2 Modulo-10 Counter Process With wait Statement
entity COUNTER is
 port (CLEAR: in BIT;
 CLOCK: in BIT;
 COUNT: buffer INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
 process
 begin
 wait until CLOCK’event and CLOCK = ’1’;

 if (CLEAR = ’1’ or COUNT >= 9) then
 COUNT <= 0;
 else
 COUNT <= COUNT + 1;
 end if;
 end process;
end EXAMPLE;
6-7

Concurrent Statements

Figure 6-2 Modulo-10 Counter Process With wait Statement Design

Driving Signals

If a process assigns a value to a signal, the process is a driver of that
signal. If more than one process or other concurrent statement drives
a signal, that signal has multiple drivers.

In the code fragment in Example 6-3, two three-state buffers drive the
same signal (SIG). To learn to infer three-state devices in VHDL, see
“Three-State Inference” on page 7-59.

Figure 6-3 shows the schematic design.
6-8

Concurrent Statements

Example 6-3 Multiple Drivers of a Signal
A_OUT <= A when ENABLE_A else ’Z’;
B_OUT <= B when ENABLE_B else ’Z’;
process(A_OUT)
begin
 SIG <= A_OUT;
end process;
process(B_OUT)
begin
 SIG <= B_OUT;
end process;

Figure 6-3 Two Three-State Buffers Driving the Same Signal

Bus resolution functions assign the value for a signal with multiple
drivers. For more information, see “Resolution Functions” on
page 2-40.
6-9

Concurrent Statements

block Statements

A block statement (which is concurrent) contains a set of concurrent
statements. The order of the concurrent statements does not matter,
because all statements are always executing.

Note:
FPGA Compiler II / FPGA Express does not create a new level of
design hierarchy from a block statement.

The syntax of a block statement is

label: block [(expression)]
 { block_declarative_item }
begin
 { concurrent_statement }
end block [label];

label
The label, which is required, names the block.

expression
The guard condition for the block. When this optional expression
is present, FPGA Compiler II / FPGA Express evaluates the
expression and creates a Boolean signal called GUARD.

block_declarative_item
Declares objects local to the block, which can be any of the
following items:

- use clause

- subprogram declaration

- subprogram body

- type declaration
6-10

Concurrent Statements

- subtype declaration

- constant declaration

- signal declaration

- component declaration

Objects declared in a block are visible to that block and to all blocks
nested within it. When a child block (nested inside a parent block)
declares an object with the same name as an object in the parent
block, the child block’s declaration overrides that of the parent.

Nested Blocks

The description in Example 6-4 uses nested blocks. Figure 6-4 shows
the schematic.

Example 6-4 Nested Blocks
B1: block
 signal S: BIT; -- Declaration of ”S” in block B1
begin
 S <= A and B; -- ”S” from B1

 B2: block
 signal S: BIT; -- Declaration of ”S”, block B2
 begin
 S <= C and D; -- ”S” from B2

 B3: block
 begin
 Z <= S; -- ”S” from B2
 end block B3;
 end block B2;
 Y <= S; -- ”S” from B1
end block B1;
6-11

Concurrent Statements

Figure 6-4 Schematic of Nested Blocks

Guarded Blocks

The description in Example 6-5 uses guarded blocks. In the example,
z has the same value as a.

Example 6-5 Guarded Blocks
entity EG1 is
 port (a: in BIT; z: out BIT);
end;

architecture RTL of EG1 is
begin

guarded_block: block (a = ’1’)
begin

z <= ’1’ when guard else ’0’;
end block;

end RTL;

A concurrent assignment within a block statement can use the
guarded keyword. In such a case, the guard expression conditions
the signal assignment. The description in Example 6-6 produces a
level-sensitive latch.
6-12

Concurrent Statements

Example 6-6 Level-Sensitive Latch Using Guarded Blocks
entity EG2 is
 port (d, g: in BIT; q: out BIT);
end;

architecture RTL of EG2 is
begin

guarded_block: block (g = ’1’)
begin

q <= guarded d;
end block;

end RTL;

Note:
Do not use the ’event or ’stable attributes with the guard
expression if you want to produce an edge-triggered latch using
a guarded block. The presence of either attribute prevents it.

Concurrent Versions of Sequential Statements

This section describes concurrent versions of sequential statements
in the form of

• Concurrent Procedure Calls

• Concurrent Signal Assignments

- Simple Concurrent Signal Assignments

- Conditional Signal Assignments

- Selected Signal Assignments
6-13

Concurrent Statements

Concurrent Procedure Calls

A concurrent procedure call, which is used in an architecture
construct or a block statement, is equivalent to a process with a single
sequential procedure call in it (see Example 6-7). The syntax is the
same as that of a sequential procedure call:

procedure_name [([name =>] expression
 { , [name =>] expression })] ;

The equivalent process reads all the in and inout parameters of the
procedure. Example 6-7 shows a procedure declaration and a
concurrent procedure call and its equivalent process.

Example 6-7 Concurrent Procedure Call and Equivalent Process
procedure ADD(signal A, B: in BIT;
 signal SUM: out BIT);
...
ADD(A, B, SUM); -- Concurrent procedure call
...
process(A, B) -- The equivalent process
begin
 ADD(A, B, SUM); -- Sequential procedure call
end process;

FPGA Compiler II / FPGA Express implements procedure calls (and
function calls) with logic unless you use the map_to_entity compiler
directive (see “Procedures and Functions as Design Components”
on page 5-45.)
6-14

Concurrent Statements

A common use for concurrent procedure calls is to obtain many copies
of a procedure. For example, assume that a class of BIT_VECTOR
signals must have just 1 bit with value ’1’ and the rest of the bits with
value ’0’ (as in Example 6-8). Suppose you have several signals of
varying widths that you want monitored at the same time (as in
Example 6-9). One approach is to write a procedure to detect the
error in a bit vector signal and then make a concurrent call to that
procedure for each signal.

Example 6-8 shows a procedure, CHECK, that determines whether
a given bit vector has exactly one element with value ’1’. If this is not
the case, CHECK sets its out parameter ERROR to true, as the
example shows.

Example 6-8 Procedure Definition for Example 6-9
procedure CHECK(signal A: in BIT_VECTOR;
 signal ERROR: out BOOLEAN) is

 variable FOUND_ONE: BOOLEAN := FALSE;
 -- Set TRUE when a ’1’ is seen
begin
 for I in A’range loop -- Loop across all bits in the vector
 if A(I) = ’1’ then -- Found a ’1’
 if FOUND_ONE then -- Have we already found one?
 ERROR <= TRUE; -- Found two ’1’s
 return; -- Terminate procedure
 end if;

 FOUND_ONE := TRUE;
 end if;
 end loop;

 ERROR <= not FOUND_ONE; -- Error will be TRUE if no ’1’ seen
end;

Example 6-9 shows the CHECK procedure called concurrently for
four bit vector signals that are different sizes. Figure 6-5 illustrates
the resulting circuit design.
6-15

Concurrent Statements

Example 6-9 Concurrent Procedure Calls
BLK: block
 signal S1: BIT_VECTOR(0 to 0);
 signal S2: BIT_VECTOR(0 to 1);
 signal S3: BIT_VECTOR(0 to 2);
 signal S4: BIT_VECTOR(0 to 3);

 signal E1, E2, E3, E4: BOOLEAN;

begin
 CHECK(S1, E1); -- Concurrent procedure call
 CHECK(S2, E2);
 CHECK(S3, E3);
 CHECK(S4, E4);
end block BLK;

Figure 6-5 Concurrent CHECK Procedure Design
6-16

Concurrent Statements

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing
a sequential assignment. Thus, each concurrent signal assignment
defines a new driver for the assigned signal. This section discusses
the three forms of concurrent signal assignment.

Simple Concurrent Signal Assignments

The syntax of the simplest form of the concurrent signal assignment is

target <= expression;

target
A signal that receives the value of an expression. Example 6-10
shows the value of expressions A and B concurrently assigned to
signal Z.

Example 6-10 Concurrent Signal Assignment
BLK: block
 signal A, B, Z: BIT;
begin
 Z <= A and B;
end block BLK;
6-17

Concurrent Statements

Conditional Signal Assignment

The syntax of the conditional signal assignment is

target <= { expression when condition else }
 expression;

target
A signal that receives the value of an expression. The expression
used is the first one whose Boolean condition is true.

When FPGA Compiler II / FPGA Express executes a conditional
signal assignment statement, it tests each condition in the order
written.

• FPGA Compiler II / FPGA Express assigns to the target the
expression of the first condition that evaluates to true.

• If no condition evaluates to true, FPGA Compiler II / FPGA
Express assigns the final expression to the target.

• If two or more conditions are true, FPGA Compiler II / FPGA
Express assigns only the first one to the target.

Example 6-11 shows a conditional signal assignment. The target is
the signal Z, which is assigned from one of the signals A, B, or C. The
signal depends on the value of the expressions ASSIGN_A and
ASSIGN_B. Figure 6-6 illustrates the resulting design.

Note:
The A assignment takes precedence over B, and B takes
precedence over C, because the first true condition controls the
assignment.
6-18

Concurrent Statements

Example 6-11 Conditional Signal Assignment
 Z <= A when ASSIGN_A = ’1’ else
 B when ASSIGN_B = ’1’ else
 C;

Figure 6-6 Conditional Signal Assignment Design

The process in Example 6-12 is equivalent to the conditional signal
assignment in Example 6-11.

Example 6-12 Process Equivalent to Conditional Signal Assignment
process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
 if ASSIGN_A = ’1’ then
 Z <= A;
 elsif ASSIGN_B = ’1’ then
 Z <= B;
 else
 Z <= C;
 end if;
end process;
6-19

Concurrent Statements

Selected Signal Assignments

The syntax of the selected signal assignment is

with choice_expression select
 target <= { expression when choices, }
 expression when choices;

target
A signal that receives the value of an expression. The expression
selected is the first one whose choices include the value of
choice_expression.

Each choice can be either

- A static expression (such as 3)

- A static range (such as 1 to 3)

The value of each choice the target signal receives has to match
the value or values of choice_expression.

If the value of choice_expression is a static range, each value in
the range must be covered by one choice in the expression.

The final choice can be others, which matches all remaining
(unchosen) values in the range of the choice_expression type.
The others choice, if present, matches choice_expression only if
none of the other choices match.You can use others as the final
choice only if the value of choice_expression is a range.

The with...select statement evaluates choice_expression and
compares that value with each choice value. The when clause with
the matching choice value has its expression assigned to target.
6-20

Concurrent Statements

The use of choices has the following restrictions:

• No two choices can overlap.

• If no others choice is present, all possible values of
choice_expression must be covered by the set of choices.

Example 6-13 shows target Z assigned from A, B, C, or D. The
assignment depends on the current value of CONTROL. Figure 6-7
illustrates the resulting design.

Example 6-13 Selected Signal Assignment
signal A, B, C, D, Z: BIT;
signal CONTROL: bit_vector(1 down to 0);
. . .
with CONTROL select
 Z <= A when ”00”,
 B when ”01”,
 C when ”10”,
 D when ”11”;

Figure 6-7 Selected Signal Assignment Design
6-21

Concurrent Statements

Example 6-14 shows the process equivalent to the selected signal
assignment statement in Example 6-13.

Example 6-14 Process Equivalent to Selected Signal Assignment
process(CONTROL, A, B, C, D)
begin
 case CONTROL is
 when 0 =>
 Z <= A;
 when 1 =>
 Z <= B;
 when 2 =>
 Z <= C;
 when 3 =>
 Z <= D;
 end case;
end process;

Component Instantiation Statements

The purpose of a component instantiation statement is to define a
design hierarchy or build a netlist in VHDL by

• Referencing a previously defined hardware component in the
current design, at the current level of hierarchy

• Referencing components not defined in VHDL, such as

- Components from a technology library (FPGA vendor-specific)

- Components defined in the Verilog hardware description
language
6-22

Concurrent Statements

The syntax is

instance_name : component_name port map (
 [port_name =>] expression
 {, [port_name =>] expression });

instance_name
Name of this instance of the component.

component_name
Name of the component port map, which connects each port of
this instance of component_name to a signal-valued expression
in the current entity.

port_name
Name of port.

expression
Name of a signal, indexed name, slice name, or aggregate, to
indicate the connection method for the component’s ports.

If expression is the VHDL reserved word open, the
corresponding port is left unconnected.

You can map ports to signals by named or positional notation. You
can include named as well as positional connections in the port map,
but you must put all positional connections before any named
connections.

Note:
For named association, the component port names must match
exactly the declared component’s port names. For positional
association, the actual port expressions must be in the same order
as the declared component’s port order.

Example 6-15 shows a component declaration (a 2-input NAND gate)
followed by three equivalent component instantiation statements.
6-23

Concurrent Statements

Example 6-15 Component Declaration and Instantiations
component ND2
 port(A, B: in BIT; C: out BIT);
end component;
. . .
signal X, Y, Z: BIT;
. . .
U1: ND2 port map(X, Y, Z); -- positional
U2: ND2 port map(A => X, C => Z, B => Y);-- named
U3: ND2 port map(X, Y, C => Z); -- mixed

Example 6-16 shows the component instantiation statement defining
a simple netlist. The three instances—U1, U2, and U3—are
instantiations of the 2-input NAND gate component declared in
Example 6-15.

Figure 6-8 illustrates the resulting design.

Example 6-16 A Simple Netlist
signal TEMP_1, TEMP2: BIT;
. . .
 U1: ND2 port map(A, B, TEMP_1);
 U2: ND2 port map(C, D, TEMP_2);
 U3: ND2 port map(TEMP_1, TEMP_2, Z);

Figure 6-8 A Simple Netlist Design
6-24

Concurrent Statements

Direct Instantiation

A component instantiation statement

• Defines a subcomponent of the design entity in which it appears

• Associates signals or values with the ports of that subcomponent

• Associates values with generics of that subcomponent

Example 6-17 and Example 6-18 show the difference between a
component instantiation statement and the more concise direct
component instantiation statement.

Example 6-17 Component Instantiation Statement
ARCHITECTURE struct OF root IS
 COMPONENT leaf
 PORT (
 clk,data : in std_logic;
 Qout : out std_logic);
 END COMPONENT;
BEGIN
 u1 : leaf
 PORT MAP (
 clk => clk,
 data => d_in(0),
 Qout => q_out(0));

Example 6-18 shows how you can express the information in Example
6-17 in a direct component instantiation statement.
6-25

Concurrent Statements

Example 6-18 Direct Component Instantiation Statement
ARCHITECTURE struct OF root IS
BEGIN
 u1 : entity work.leaf(rtl)
 port map (
 clk => clk,
 data => d_in(0),
 Qout => q_out(0));

generate Statements

A generate statement creates zero or more copies of an enclosed set
of concurrent statements. The two kinds of generate statements are

for...generate

The number of copies is determined by a discrete range.

if...generate

Zero or one copy is made, conditionally.

for...generate Statement

The syntax is

label: for identifier in range generate
 { concurrent_statement }
end generate [label] ;

label
The label, which is required, names this statement and is useful
for building nested generate statements.
6-26

Concurrent Statements

identifier
Specific to the for...generate statement:

- Identifier is not declared elsewhere. It is automatically declared
by the generate statement itself and is local to the statement.
A for ... generate identifier overrides any other identifier with the
same name, but only within the for...generate statement.

- The value of identifier can be read only inside its for...generate
statement (identifier does not exist outside the statement). You
cannot assign a value to a for...generate identifier.

- The value of identifier cannot be assigned to any parameter
whose mode is out or inout.

range
Must be a computable integer range, in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

integer_expression
Each integer_expression evaluates to an integer. Each
concurrent_statement can be any of the statements described in
this chapter, including other generate statements.

Steps in the Execution of a for...generate Statement

A for...generate statement executes as follows:

1. A new local integer variable is declared with the name identifier.

2. The identifier receives the first value of range, and each
concurrent statement executes once.
6-27

Concurrent Statements

3. The identifier receives the next value of range, and each
concurrent statement executes once more.

4. Step 3 repeats until the identifier receives the last value in the
range and each concurrent statement executes for the last time.
Execution continues with the statement following end generate.
The loop identifier is deleted.

Example 6-19 shows a code fragment that combines and interleaves
two 4-bit arrays, A and B, into an 8-bit array, C. Figure 6-9 illustrates
the resulting design.

Example 6-19 for...generate Statement
signal A, B : bit_vector(3 downto 0);
signal C : bit_vector(7 downto 0);
signal X : bit;
. . .
GEN_LABEL: for I in 3 downto 0 generate
 C(2*I + 1) <= A(I) nor X;
 C(2*I) <= B(I) nor X;
end generate GEN_LABEL;
6-28

Concurrent Statements

Figure 6-9 An 8-Bit Array Design

Common Usage of a for...generate Statement

The most common usage of the generate statement is to create
multiple copies of components, processes, or blocks. Example 6-20
and Figure 6-10 show this usage with components. (Example 6-21
on page 6-32 and Figure 6-11 on page 6-33 show this usage with
processes.)

Example 6-20 shows VHDL array attribute ’range used with the
for...generate statement to instantiate a set of COMP components
that connect corresponding elements of bit vectors A and B. Figure
6-10 illustrates the resulting design.
6-29

Concurrent Statements

Example 6-20 for...generate Statement Operating on an Entire Array
component COMP
 port (X : in bit;
 Y : out bit);
end component;
. . .
signal A, B: BIT_VECTOR(0 to 7);
. . .
GEN: for I in A’range generate
 U: COMP port map (X => A(I),
 Y => B(I));
end generate GEN;

Figure 6-10 Design of COMP Components Connecting Bit Vectors A and B

For more information about arrays, see “Array Types” on page 3-9.
6-30

Concurrent Statements

if...generate Statements

The syntax is

label: if expression generate
 { concurrent_statement }
end generate [label] ;

label
The label identifies (names) this statement.

expression
Any expression that evaluates to a Boolean value.

concurrent_statement
Any of the statements described in this chapter, including other
generate statements.

Note:
Unlike the if statement described in “if Statements” on page 5-15,
the if...generate statement has no else or elsif branches.

You can use the if...generate statement to generate a regular structure
that has different circuitry at its ends. Use a for...generate statement
to iterate over the desired width of a design, and use a set of
if...generate statements to define the beginning, middle, and ending
sets of connections.

Example 6-21 shows a technology-independent description of an
N-bit serial-to-parallel converter. Data is clocked into an N-bit buffer
from right to left. On each clock cycle, each bit in an N-bit buffer is
shifted up 1 bit and the incoming DATA bit is moved into the low-order
bit. Figure 6-11 illustrates the resulting design.
6-31

Concurrent Statements

Example 6-21 Typical Use of if...generate Statements
entity CONVERTER is
 generic(N: INTEGER := 8);

 port(CLK, DATA: in BIT;
 CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER;

architecture BEHAVIOR of CONVERTER is
 signal S : BIT_VECTOR(CONVERT’range);
begin

 G: for I in CONVERT’range generate

 G1: -- Shift (N-1) data bit into high-order bit
 if (I = CONVERT’left) generate
 process begin
 wait until (CLK’event and CLK = ’1’);
 CONVERT(I) <= S(I-1);
 end process;
 end generate G1;

 G2: -- Shift middle bits up
 if (I > CONVERT’right and
 I < CONVERT’left) generate

 S(I) <= S(I-1) and CONVERT(I);

 process begin
 wait until (CLK’event and CLK = ’1’);
 CONVERT(I) <= S(I-1);
 end process;
 end generate G2;

 G3: -- Move DATA into low-order bit
 if (I = CONVERT’right) generate
 process begin
 wait until (CLK’event and CLK = ’1’);
 CONVERT(I) <= DATA;
 end process;
 S(I) <= CONVERT(I);
 end generate G3;
 end generate G;
end BEHAVIOR;
6-32

Concurrent Statements

Figure 6-11 Design of N-Bit Serial-to-Parallel Converter
6-33

Concurrent Statements

6-34

Concurrent Statements

7
Register and Three-State Inference 7

FPGA Compiler II / FPGA Express can infer registers (latches and
flip-flops) and three-state cells. This chapter explains inference
behavior and results, in the following sections:

• Register Inference

• Three-State Inference

Register Inference

Register inference allows you to use sequential logic in your designs
and keep your designs technology-independent. A register is a
simple, 1-bit memory device, either a latch or a flip-flop. A latch is a
level-sensitive memory device. A flip-flop is an edge-triggered
memory device.
7-1

Register and Three-State Inference

The register inference capability can support coding styles other than
those described in this chapter. However, for best results,
7-2

Register and Three-State Inference

• Restrict each always block to a single type of memory-element
inferencing: latch, latch with asynchronous set or reset, flip-flop,
flip-flop with asynchronous reset, or flip-flop with synchronous
reset.

• Use the templates provided in “Inferring Latches” on page 7-8 and
“Inferring Flip-Flops” on page 7-21.

The inference Report

FPGA Compiler II / FPGA Express generates a general inference
report when building a design. It provides the asynchronous set or
reset, synchronous set or reset, and synchronous toggle conditions
of each latch or flip-flop, expressed as Boolean formulas. Example
7-1 shows the inference report for a JK flip-flop.

Example 7-1 Inference Report for a JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

In the inference reports in Example 7-1,

• Y indicates that the flip-flop has a synchronous reset (SR) and a
synchronous set (SS)

• N indicates that the flip-flop does not have an asynchronous reset
(AR), an asynchronous set (AS), or a synchronous toggle (ST)

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y Y N
7-3

Register and Three-State Inference

In the inference report (Example 7-1), the last part of the report lists
the objects that control the synchronous reset and set conditions. In
this example, a synchronous reset occurs when J is low (logic 0) and
K is high (logic 1). The last line of the report indicates the register
output when both set and reset are active:

zero (0)
Indicates that the reset has priority and that the output goes to
logic 0.

one (1)
Indicates that the set has priority and that the output goes to logic
1.

X
Indicates that there is no priority and the output is unstable.

“Inferring Latches” on page 7-8and “Inferring Flip-Flops” on
page 7-21 provide inference reports for each register template. After
you read a description in FPGA Compiler II / FPGA Express, check
the inference report.

Latch Inference Warnings

FPGA Compiler II / FPGA Express generates a warning message
when it infers a latch. This is useful for verifying that a combinational
design does not contain memory components.

Controlling Register Inference

Use directives to direct the type of sequential device you want inferred.
The default is to implement the type of latch described in the HDL
code. These attributes override this behavior.
7-4

Register and Three-State Inference

Attributes That Control Register Inference

The ATTRIBUTES package in the Synopsys VHDL library defines the
following attributes for controlling register inference:

• async_set_reset

When this is set to true on a signal, FPGA Compiler II / FPGA
Express searches for a branch that uses the signal as a condition.
FPGA Compiler II / FPGA Express then checks whether the
branch contains an assignment to a constant value, in which case
the signal becomes an asynchronous reset or set.

Attach this attribute to 1-bit signals by using the following syntax:

attribute async_set_reset of signal_name_list : signal
is ”true”;

• async_set_reset_local

FPGA Compiler II / FPGA Express treats listed signals in the
specified process as if they have the async_set_reset attribute
set to true.

Attach this attribute to a process label by using the following
syntax:

attribute async_set_reset_local of process_label : label
is ”signal_name_list” ;

• async_set_reset_local_all

FPGA Compiler II / FPGA Express treats all signals in the
specified processes as if they have the async_set_reset attribute
set to true.
7-5

Register and Three-State Inference

Attach this attribute to process labels by using the following
syntax:

attribute async_set_reset_local_all of
process_label_list : label is ” true” ;

• sync_set_reset

When this is set to true on a signal, FPGA Compiler II / FPGA
Express checks the signal to determine whether it synchronously
sets or resets a register in the design.

Attach this attribute to 1-bit signals by using the following syntax:

attribute sync_set_reset of signal_name_list : signal
is ”true”;

• sync_set_reset_local

FPGA Compiler II / FPGA Express treats listed signals in the
specified process as if they have the sync_set_reset attribute set
to true.

Attach this attribute to a process label by using the following
syntax:

attribute sync_set_reset_local of process_label : label
is ”signal_name_list” ;

• sync_set_reset_local_all

FPGA Compiler II / FPGA Express treats all signals in the
specified processes as if they have the sync_set_reset attribute
set to true.
7-6

Register and Three-State Inference

Attach this attribute to process labels by using the following
syntax:

attribute sync_set_reset_local_all of process_label_list
: label is ” true” ;

• one_cold

A one_cold implementation means that all signals in a group are
active low and that only one signal can be active at a given time.
The one_cold attribute prevents FPGA Compiler II / FPGA
Express from implementing priority encoding logic for the set and
reset signals.

Add an assertion to the VHDL code to ensure that the group of
signals has a one_cold implementation. FPGA Compiler II / FPGA
Express does not produce any logic to check this assertion.

Attach this attribute to set or reset signals on sequential devices
by using the following syntax:

attribute one_cold signal_name_list : signal is ”true”;

• one_hot

A one_hot implementation means that all signals in a group are
active high and that only one signal can be active at a given time.
The one_hot attribute prevents FPGA Compiler II / FPGA Express
from implementing priority encoding logic for the set and reset
signals.

Add an assertion to the VHDL code to ensure that the group of
signals has a one_hot implementation. FPGA Compiler II / FPGA
Express does not produce any logic to check this assertion.
7-7

Register and Three-State Inference

Attach this attribute to set or reset signals on sequential devices
by using the following syntax:

attribute one_hot signal_name_list : signal is ”true”;

Inferring Latches

In simulation, a signal or variable holds its value until that output is
reassigned. In a circuit, a latch implements this holding-of-state
capability. FPGA Compiler II / FPGA Express supports inference of
the following types of latches:

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring Set/Reset (SR) Latches

Use SR latches with caution, because they are difficult to test. If you
decide to use SR latches, you must verify that the inputs are hazard-
free (do not glitch). FPGA Compiler II / FPGA Express does not
ensure that the logic driving the inputs is hazard-free.

Example 7-2 provides the VHDL code that implements the SR latch
described in the truth table in Table 7-1. Example 7-3 shows the
inference report generated by FPGA Compiler II / FPGA Express.
Figure 7-1 shows the schematic for the latch.
7-8

Register and Three-State Inference

Table 7-1 SR Latch Truth Table (NAND Type)

Example 7-2 SR Latch
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity sr_latch is
 port (SET, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of SET, RESET :
 signal is ”true”;
end sr_latch;

architecture rtl of sr_latch is
begin

infer: process (SET, RESET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (RESET = ’0’) then
 Q <= ’0’;
 end if;
end process infer;

end rtl;

set reset y
0 0 Not stable

0 1 1

1 0 0

1 1 y
7-9

Register and Three-State Inference

Example 7-3 Inference Report for an SR Latch

y_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Figure 7-1 SR Latch

Inferring D Latches

When you do not specify the resulting value for an output under all
conditions, as in an incompletely specified if statement, FPGA
Compiler II / FPGA Express infers a D latch.

For example, the if statement in Example 7-4 infers a D latch, because
there is no else clause. The resulting value for output Q is specified
only when input enable has a logic 1 value. As a result, output Q
becomes a latched value.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y Y - - -
7-10

Register and Three-State Inference

Example 7-4 Latch Inference
process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 end if;
end process;

To avoid latch inference, assign a value to the signal under all
conditions, as shown in Example 7-5.

Example 7-5 Fully Specified Signal: No Latch Inference
process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 else
 Q <= ’0’;
 end if;
end process;

Variables declared locally within a subprogram do not hold their value
over time, because each time a subprogram is called, its variables
are reinitialized. Therefore, FPGA Compiler II / FPGA Express does
not infer latches for variables declared in subprograms. In Example
7-6, FPGA Compiler II / FPGA Express does not infer a latch for output
Q.

Example 7-6 Function: No Latch Inference
function MY_FUNC(DATA, GATE : std_logic) return std_logic is
 variable STATE: std_logic;
begin
 if (GATE = ’1’) then
 STATE <= DATA;
 end if;
 return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);
7-11

Register and Three-State Inference

The following sections provide code examples, inference reports, and
figures for these types of D latches:

• Simple D latch

• D latch with asynchronous set

• D latch with asynchronous reset

• D latch with asynchronous set and reset

Simple D Latch

When you infer a D latch, make sure that you can control the gate
and data signals from the top-level design ports or through
combinational logic. Controllable gate and data signals ensure that
simulation can initialize the design.

Example 7-7 provides the VHDL template for a D latch. FPGA
Compiler II / FPGA Express generates the inference report shown in
Example 7-8. Figure 7-2 shows the inferred latch.
7-12

Register and Three-State Inference

Example 7-7 D Latch
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
 port (GATE, DATA: in std_logic;
 Q : out std_logic);
end d_latch;

architecture rtl of d_latch is
begin

infer: process (GATE, DATA) begin
 if (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-8 Inference Report for a D Latch

Q_reg
reset/set: none

Figure 7-2 D Latch

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N N - - -
7-13

Register and Three-State Inference

D Latch With Asynchronous Set

The template in this section uses the async_set_reset attribute to
direct FPGA Compiler II / FPGA Express to the asynchronous set
(AS) pins of the inferred latch.

Example 7-9 provides the VHDL template for a D latch with an
asynchronous set. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 7-10. Figure 7-3 shows the
inferred latch.

Example 7-9 D Latch With Asynchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_set is
 port (GATE, DATA, SET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of SET :
 signal is ”true”;
end d_latch_async_set;

architecture rtl of d_latch_async_set is
begin

infer: process (GATE, DATA, SET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;
7-14

Register and Three-State Inference

Example 7-10 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-set: SET’

Figure 7-3 D Latch With Asynchronous Set

Note:
Because the target technology library does not contain a latch
with an asynchronous set, FPGA Compiler II / FPGA Express
synthesizes the set logic by using combinational logic.

D Latch With Asynchronous Reset

The template in this section uses the async_set_reset attribute to
direct FPGA Compiler II / FPGA Express to the asynchronous reset
(AR) pins of the inferred latch.

Example 7-11 provides the VHDL template for a D latch with an
asynchronous reset. FPGA Compiler II / FPGA Express generates

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N Y - - -
7-15

Register and Three-State Inference

the inference report shown in Example 7-12. Figure 7-4 shows the
inferred latch.

Example 7-11 D Latch With Asynchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_reset is
 port (GATE, DATA, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of RESET :
 signal is ”true”;
end d_latch_async_reset;

architecture rtl of d_latch_async_reset is
begin

infer : process (GATE, DATA, RESET) begin
 if (RESET = ’0’) then
 Q <= ’0’;
 elsif (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-12 Inference Report for D Latch With Asynchronous Reset

Q_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y N - - -
7-16

Register and Three-State Inference

Figure 7-4 D Latch With Asynchronous Reset

D Latch With Asynchronous Set and Reset

Example 7-13 provides the VHDL template for a D latch with an active
low asynchronous set and reset. This template uses the
async_set_reset_local attribute to direct FPGA Compiler II / FPGA
Express to the asynchronous signals in the infer process.

The template in Example 7-13 uses the one_cold attribute to prevent
priority encoding of the set and reset signals. If you do not specify the
one_cold attribute, the set signal has priority, because it is used as
the condition for the if clause. Example 7-14 shows the inference
report. Figure 7-5 shows the inferred latch.
7-17

Register and Three-State Inference

Example 7-13 D Latch With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async is
 port (GATE, DATA, SET, RESET :in std_logic;
 Q : out std_logic);
attribute one_cold of SET, RESET :
 signal is ”true”;
end d_latch_async;

architecture rtl of d_latch_async is
 attribute async_set_reset_local of infer :
 label is ”SET, RESET”;
begin

infer : process (GATE, DATA, SET, RESET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (RESET = ’0’) then
 Q <= ’0’;
 elsif (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;
end rtl;

Example 7-14 Inference Report for D Latch With Asynchronous Set and
Reset

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - Y Y - - -
7-18

Register and Three-State Inference

Figure 7-5 D Latch With Asynchronous Set and Reset

Understanding the Limitations of D Latch Inference

A variable must always have a value before it is read. As a result, you
cannot read a conditionally assigned variable after the if statement
in which it is assigned. A conditionally assigned variable is assigned
a new value under some, but not all, conditions. Example 7-15 shows
an invalid use of the conditionally assigned variable VALUE.

Example 7-15 Invalid Use of a Conditionally Assigned Variable
signal X, Y : std_logic;
. . .
process
 variable VALUE : std_logic;
begin
 if (condition) then
 VALUE <= X;
 end if;
 Y <= VALUE; -- Invalid read of variable VALUE
end process;
7-19

Register and Three-State Inference

Inferring Master-Slave Latches

You can infer two-phase systems using D latches. Example 7-16
shows a simple two-phase system with clocks MCK and SCK.
Example 7-17 shows the inference reports. Figure 7-6 shows the
inferred latch.

Example 7-16 Two-Phase Clocks
library IEEE;
use IEEE.std_Logic_1164.all;

entity LATCH_VHDL is
 port(MCK, SCK, DATA: in std_logic;
 Q : out std_logic);
end LATCH_VHDL;

architecture rtl of LATCH_VHDL is
 signal TEMP : std_logic;
begin

process (MCK, DATA) begin
 if (MCK = ’1’) then
 TEMP <= DATA;
 end if;
end process;

process (SCK, TEMP) begin
 if (SCK = ’1’) then
 Q <= TEMP;
 end if;
end process;

end rtl;
7-20

Register and Three-State Inference

Example 7-17 Inference Reports for Two-Phase Clocks

TEMP_reg
reset/set: none

Q_reg
reset/set: none

Figure 7-6 Two-Phase Clocks

Inferring Flip-Flops

FPGA Compiler II / FPGA Express can infer D flip-flops, JK flip-flops,
and toggle flip-flops. The following sections give details about each.

Many FPGA devices have a dedicated global set/reset hardware
resource that may be used. For this reason, you should infer
asynchronous set/reset signals for all flip-flops in the design. FPGA
Compiler II / FPGA Express will then use the global set/reset lines.

Register Name Type Width Bus MB AR AS SR SS ST
TEMP_reg Latch 1 - - N N - - -

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Latch 1 - - N N - - -
7-21

Register and Three-State Inference

Inferring D Flip-Flops

FPGA Compiler II / FPGA Express infers a D flip-flop whenever the
condition of a wait or if statement uses an edge expression (a test for
the rising or falling edge of a signal). Use the following syntax to
describe a rising edge:

SIGNAL’event and SIGNAL = ’1’

Use the following syntax to describe a falling edge:

SIGNAL’event and SIGNAL = ’0’

If you are using the IEEE std_logic_1164 package, you can use the
following syntax to describe a rising edge and a falling edge:

if (rising_edge (CLK)) then

if (falling_edge (CLK)) then

If you are using the IEEE std_logic_1164 package, you can use the
following syntax for a bused clock. You can also use a member of a
bus as a signal.

sig(3)’event and sig(3) = ’1’

rising_edge (sig(3))

A wait statement containing an edge expression causes FPGA
Compiler II / FPGA Express to create flip-flops for all signals, and
some variables are assigned values in the process. Example 7-18
shows the most common usage of the wait statement to infer a flip-
flop.
7-22

Register and Three-State Inference

Example 7-18 Using a wait Statement to Infer a Flip-Flop
process
begin
 wait until (edge);
 ...
end process;

An if statement implies flip-flops for signals and variables in the
branches of the if statement. Example 7-19 shows the most-common
usages of the if statement to infer a flip-flop.

Example 7-19 Using an if Statement to Infer a Flip-Flop
process (sensitivity_list)
begin
 if (edge)
 ...
 end if;
end process;

process (sensitivity_list)
begin
 if (...) then
 ...
 elsif (...)
 ...
 elsif (edge) then
 ...
 end if;
end process;

You can sometimes use wait and if statements interchangeably. If
possible, use the if statement, because it provides greater control
over the inferred registers.
7-23

Register and Three-State Inference

The following sections provide code examples, inference reports, and
figures for these types of D flip-flops:

• Positive edge-triggered D flip-flop

• Positive edge-triggered D flip-flop using rising_edge

• Negative edge-triggered D flip-flop

• Negative edge-triggered D flip-flop using falling_edge

• D flip-flop with asynchronous set

• D flip-flop with asynchronous reset

• D flip-flop with asynchronous set and reset

• D flip-flop with synchronous set

• D flip-flop with synchronous reset

• D flip-flop with synchronous and asynchronous load

• Multiple flip-flops with asynchronous and synchronous controls

Positive Edge-Triggered D Flip-Flop

When you infer a D flip-flop, make sure that you can control the clock
and data signals from the top-level design ports or through
combinational logic. Controllable clock and data signals ensure that
simulation can initialize the design. If you cannot control the clock and
data signals, infer a D flip-flop with asynchronous reset or set, or with
synchronous reset or set.

Example 7-20 provides the VHDL template for a positive edge-
triggered D flip-flop. Example 7-21 shows the inference report. Figure
7-7 shows the inferred flip-flop.
7-24

Register and Three-State Inference

Example 7-20 Positive Edge-Triggered D Flip-Flop
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-21 Inference Report for Positive Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Figure 7-7 Positive Edge-Triggered D Flip-Flop

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
7-25

Register and Three-State Inference

Positive Edge-Triggered D Flip-Flop Using rising_edge

Example 7-22 provides the VHDL template for a positive edge-
triggered D flip-flop using the IEEE_std_logic_1164 package and
rising_edge.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-23.

Figure 7-8 shows the inferred flip-flop.

Example 7-22 Positive Edge-Triggered D Flip-Flop Using rising_edge
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
 if (rising_edge (CLK)) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-23 Inference Report for a Positive Edge-Triggered D Flip-Flop
Using rising_edge

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
7-26

Register and Three-State Inference

Figure 7-8 Positive Edge-Triggered D Flip-Flop Using rising_edge

Negative Edge-Triggered D Flip-Flop

Example 7-24 provides the VHDL template for a negative edge-
triggered D flip-flop.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-25. Figure 7-9 shows the inferred flip-flop.

Example 7-24 Negative Edge-Triggered D Flip-Flop
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’0’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;
7-27

Register and Three-State Inference

Example 7-25 Inference Report for Negative Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Figure 7-9 Negative Edge-Triggered D Flip-Flop

Negative Edge-Triggered D Flip-Flop Using falling_edge

Example 7-26 provides the VHDL template for a negative edge-
triggered D flip-flop using the IEEE_std_logic_1164 package and
falling_edge.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-27. Figure 7-10 shows the inferred flip-flop.

Example 7-26 Negative Edge-Triggered D Flip-Flop Using falling_edge
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
7-28

Register and Three-State Inference

infer : process (CLK) begin
 if (falling_edge (CLK)) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-27 Inference Report for a Negative Edge-Triggered D Flip-Flop
Using falling_edge

Q_reg
set/reset/toggle: none

Figure 7-10 Negative Edge-Triggered D Flip-Flop Using falling_edge

D Flip-Flop With Asynchronous Set

Example 7-28 provides the VHDL template for a D flip-flop with an
asynchronous set.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-29. Figure 7-11 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
7-29

Register and Three-State Inference

Example 7-28 D Flip-Flop With Asynchronous Set
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_set is
 port (DATA, CLK, SET : in std_logic;
 Q : out std_logic);
end dff_async_set;

architecture rtl of dff_async_set is
begin

infer : process (CLK, SET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;
end rtl;

Example 7-29 Inference Report for a D Flip-Flop With Asynchronous Set

Q_reg
Async-set: SET’

Figure 7-11 D Flip-Flop With Asynchronous Set

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N Y N N N
7-30

Register and Three-State Inference

D Flip-Flop With Asynchronous Reset

Example 7-30 provides the VHDL template for a D flip-flop with an
asynchronous reset.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-31. Figure 7-12 shows the inferred flip-flop.

Example 7-30 D Flip-Flop With Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
end dff_async_reset;

architecture rtl of dff_async_reset is
begin

infer : process (CLK, RESET) begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-31 Inference Report for a D Flip-Flop With Asynchronous Reset

Q_reg
Async-reset: RESET

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y N N N N
7-31

Register and Three-State Inference

Figure 7-12 D Flip-Flop With Asynchronous Reset

D Flip-Flop With Asynchronous Set and Reset

Example 7-32 provides the VHDL template for a D flip-flop with active
high asynchronous set and reset pins.

The template in Example 7-32 uses the one_hot attribute to prevent
priority encoding of the set and reset signals. If you do not specify the
one_hot attribute, the reset signal has priority, because it is used as
the condition for the if clause. FPGA Compiler II / FPGA Express
generates the inference report shown in Example 7-33. Figure 7-13
shows the inferred flip-flop.

Note:
Most FPGA architectures do not have a register with an
asynchronous set AND asynchronous reset cell available. For this
reason you should avoid this construct.
7-32

Register and Three-State Inference

Example 7-32 D Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_async is
 port (DATA, CLK, SET, RESET : in std_logic;
 Q : out std_logic);
 attribute one_hot of SET, RESET : signal is ”true”;
end dff_async;

architecture rtl of dff_async is
begin
infer : process (CLK, SET, RESET) begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (SET = ’1’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Example 7-33 Inference Report for a D Flip-Flop With Asynchronous Set
and Reset

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y Y N N N
7-33

Register and Three-State Inference

Figure 7-13 D Flip-Flop With Asynchronous Set and Reset

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrate how to infer a D flip-flop with
asynchronous controls—one way to initialize or control the state of a
sequential device. You can also synchronously reset or set the flip-
flop (see Example 7-34 and Example 7-36). The sync_set_reset
attribute directs FPGA Compiler II / FPGA Express to the
synchronous controls of the sequential device.

When the target technology library does not have a D flip-flop with
synchronous reset, FPGA Compiler II / FPGA Express infers a D flip-
flop with synchronous reset logic as the input to the D pin of the flip-
flop. If the reset (or set) logic is not directly in front of the D pin of the
flip-flop, initialization problems can occur during gate-level simulation
of the design.

D Flip-Flop With Synchronous Set

Example 7-34 provides the VHDL template for a D flip-flop with
synchronous set. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 7-35. Figure 7-14 shows the
inferred flip-flop.
7-34

Register and Three-State Inference

Example 7-34 D Flip-Flop With Synchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;
entity dff_sync_set is
 port (DATA, CLK, SET : in std_logic;
 Q : out std_logic);
 attribute sync_set_reset of SET : signal is ”true”;
end dff_sync_set;

architecture rtl of dff_sync_set is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (SET = ’1’) then
 Q <= ’1’;
 else
 Q <= DATA;
 end if;
 end if;
end process infer;

end rtl;

Example 7-35 Inference Report for a D Flip-Flop With Synchronous Set

Q_reg
Sync-set: SET

Figure 7-14 D Flip-Flop With Synchronous Set

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N Y N
7-35

Register and Three-State Inference

D Flip-Flop With Synchronous Reset

Example 7-36 provides the VHDL template for a D flip-flop with
synchronous reset. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 7-37. Figure 7-15 shows the
inferred flip-flop.

Example 7-36 D Flip-Flop With Synchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
 attribute sync_set_reset of RESET :
 signal is ”true”;
end dff_sync_reset;

architecture rtl of dff_sync_reset is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (RESET = ’0’) then
 Q <= ’0’;
 else
 Q <= DATA;
 end if;
 end if;
end process infer;

end rtl;

Example 7-37 Inference Report for a D Flip-Flop With Synchronous Reset

Q_reg
Sync-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y N N
7-36

Register and Three-State Inference

Figure 7-15 D Flip-Flop With Synchronous Reset

D Flip-Flop With Synchronous and Asynchronous Load

D flip-flops can have asynchronous or synchronous controls. To infer
a component with both synchronous and asynchronous controls, you
must check the asynchronous conditions before you check the
synchronous conditions.

Example 7-38 provides the VHDL template for a D flip-flop with a
synchronous load (called SLOAD) and an asynchronous load (called
ALOAD). FPGA Compiler II / FPGA Express generates the inference
report shown in Example 7-39. Figure 7-16 shows the inferred flip-
flop.

Example 7-38 D Flip-Flop With Synchronous and Asynchronous Load
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_a_s_load is
 port(SLOAD, ALOAD, ADATA, SDATA,
 CLK : in std_logic;
 Q : out std_logic);
end dff_a_s_load;
7-37

Register and Three-State Inference

architecture rtl of dff_a_s_load is
begin

infer: process (CLK, ALOAD) begin
 if (ALOAD = ’1’) then
 Q <= ADATA;
 elsif (CLK’event and CLK = ’1’) then
 if (SLOAD = ’1’) then
 Q <= SDATA;
 end if;
 end if;
end process infer;

end rtl;

Example 7-39 Inference Report for a D Flip-Flop With Synchronous and
Asynchronous Load

Q_reg
set/reset/toggle: none

Figure 7-16 D Flip-Flop With Synchronous and Asynchronous Load

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N N N N
7-38

Register and Three-State Inference

Multiple Flip-Flops: Asynchronous and Synchronous Controls

If a signal is synchronous in one process but asynchronous in another,
use the sync_set_reset_local and async_set_reset_local attributes
to direct FPGA Compiler II / FPGA Express to the correct
implementation.

In Example 7-40, the process infer_sync uses the reset signal as a
synchronous reset, and the process infer_async uses the reset signal
as an asynchronous reset. Example 7-41 shows the inference report.
Figure 7-17 shows the resulting design.

Example 7-40 Multiple Flip-Flops: Asynchronous and Synchronous
Controls

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity multi_attr is
 port (DATA1, DATA2, CLK, RESET, SLOAD : in std_logic;
 Q1, Q2 : out std_logic);
end multi_attr;

architecture rtl of multi_attr is
 attribute async_set_reset_local of infer_async :
 label is ”RESET”;
 attribute sync_set_reset_local of infer_sync :
 label is ”RESET”;
begin

infer_sync: process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (RESET = ’0’) then
 Q1 <= ’0’;
 elsif (SLOAD = ’1’) then
 Q1 <= DATA1;
 end if;
 end if;
end process infer_sync;
7-39

Register and Three-State Inference

infer_async: process (CLK, RESET) begin
 if (RESET = ’0’) then
 Q2 <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 if (SLOAD = ’1’) then
 Q2 <= DATA2;
 end if;
 end if;
end process infer_async;

end rtl;

Example 7-41 Inference Reports for Example 7-40

Q1_reg

Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Figure 7-17 Multiple Flip-Flops with Asynchronous and Synchronous
Controls

Register Name Type Width Bus MB AR AS SR SS ST
Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST
Q2_reg Flip-flop 1 - - Y N N N N
7-40

Register and Three-State Inference

A flip-flop inference has specific limitations. See “Understanding
Limitations of Register Inference” on page 7-57.

Inferring JK Flip-Flops

When you infer a JK flip-flop, make sure you can control the J, K, and
clock signals from the top-level design ports to ensure that simulation
can initialize the design.

The following sections provide code examples, inference reports, and
figures for these types of JK flip-flops:

• JK flip-flop

• JK flip-flop with asynchronous set and reset

JK Flip-Flop

When you infer a JK flip-flop, make sure you can control the J, K, and
clock signals from the top-level design ports to ensure that simulation
can initialize the design.

Example 7-42 provides the VHDL code that implements the JK
flip-flop described in the truth table in Table 7-2.

In the JK flip-flop, the J and K signals act as active high synchronous
set and reset. Use the sync_set_reset attribute to indicate that the J
and K signals are the synchronous set and reset for the design.

Example 7-43 shows the inference report generated by FPGA
Compiler II / FPGA Express. Figure 7-18 shows the inferred flip-flop.
7-41

Register and Three-State Inference

Table 7-2 Truth Table for JK Flip-Flop

Example 7-42 JK Flip-Flop
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk is
 port(J, K, CLK : in std_logic;
 Q_out : out std_logic);
 attribute sync_set_reset of J, K :
 signal is ”true”;
end jk;

architecture rtl of jk is
 signal Q : std_logic;
begin
infer: process
 variable JK : std_logic_vector (1 downto 0);
begin
 wait until (CLK’event and CLK = ’1’);
 JK <= (J & K);
 case JK is
 when ”01” => Q <= ’0’;
 when ”10” => Q <= ’1’;
 when ”11” => Q <= not (Q);
 when ”00” => Q <= Q;
 when others => Q <= ’X’;
 end case;
end process infer;

Q_out <= Q;
end rtl;

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn
7-42

Register and Three-State Inference

Example 7-43 Inference Report for JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Figure 7-18 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset

Example 7-44 provides the VHDL template for a JK flip-flop with
asynchronous set and reset. Use the sync_set_reset attribute to
indicate the JK function. Use the one_hot attribute to prevent priority
encoding of the J and K signals.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-45. Figure 7-19 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - N N Y Y N
7-43

Register and Three-State Inference

Example 7-44 JK Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk_async_sr is
 port (SET, RESET, J, K, CLK : in std_logic;
 Q_out : out std_logic);
 attribute sync_set_reset of J, K :
 signal is ”true”;
 attribute one_hot of SET,RESET : signal is ”true”;
end jk_async_sr;

architecture rtl of jk_async_sr is
 signal Q : std_logic;
begin

infer : process (CLK, SET, RESET)
 variable JK : std_logic_vector (1 downto 0);
begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (SET = ’1’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 JK <= (J & K);
 case JK is
 when ”01” => Q <= ’0’;
 when ”10” => Q <= ’1’;
 when ”11” => Q <= not(Q);
 when ”00” => Q <= Q;
 when others => Q <= ’X’;
 end case;
 end if;
end process infer;

Q_out <= Q;

end rtl;
7-44

Register and Three-State Inference

Example 7-45 Inference Report for JK Flip-Flop With Asynchronous Set and
Reset

Q_reg
 Async-reset: RESET
 Async-set: SET
 Sync-reset: J’ K
 Sync-set: J K’
 Sync-toggle: J K
 Async-set and Async-reset ==> Q: X
 Sync-set and Sync-reset ==> Q: X

Figure 7-19 JK Flip-Flop With Asynchronous Set and Reset

Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style given in the following
examples. You must include asynchronous controls in the toggle flip-
flop description. Without asynchronous controls, you cannot initialize
toggle flip-flops to a known state.

Register Name Type Width Bus MB AR AS SR SS ST
Q_reg Flip-flop 1 - - Y Y Y Y N
7-45

Register and Three-State Inference

The following sections provide code examples, inference reports, and
figures for these types of toggle flip-flops:

• Toggle flip-flop with asynchronous set

• Toggle flip-flop with asynchronous reset

• Toggle flip-flop with enable and asynchronous reset

Toggle Flip-Flop With Asynchronous Set

Example 7-46 provides the VHDL template for a toggle flip-flop with
asynchronous set. Example 7-47 shows the inference report. Figure
7-20 shows the inferred flip-flop.

Example 7-46 Toggle Flip-Flop With Asynchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity t_async_set is
 port(SET, CLK : in std_logic;
 Q : out std_logic);
end t_async_set;
architecture rtl of t_async_set is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, SET) begin
 if (SET = ’1’) then
 TMP_Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 Q <= TMP_Q;
end process infer;

end rtl;
7-46

Register and Three-State Inference

Example 7-47 Inference Report for Toggle Flip-Flop With Asynchronous Set

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Figure 7-20 Toggle Flip-Flop With Asynchronous Set

Toggle Flip-Flop With Asynchronous Reset

Example 7-48 provides the VHDL template for a toggle flip-flop with
asynchronous reset. FPGA Compiler II / FPGA Express generates
the inference report shown in Example 7-49. Figure 7-21 shows the
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - N Y N N Y
7-47

Register and Three-State Inference

Example 7-48 Toggle Flip-Flop With Asynchronous Reset
library IEEE ;
use IEEE.std_logic_1164.all;

entity t_async_reset is
 port(RESET, CLK : in std_logic;
 Q : out std_logic);
end t_async_reset;

architecture rtl of t_async_reset is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
 if (RESET = ’1’) then
 TMP_Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 Q <= TMP_Q;
end process infer;

end rtl;

Example 7-49 Inference Report for a Toggle Flip-Flop With Asynchronous
Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - Y N N N Y
7-48

Register and Three-State Inference

Figure 7-21 Toggle Flip-Flop With Asynchronous Reset

Toggle Flip-Flop With Enable and Asynchronous Reset

Example 7-50 provides the VHDL template for a toggle flip-flop with
an enable and an asynchronous reset. The flip-flop toggles only when
the enable (TOGGLE signal) has a logic 1 value.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 7-51. Figure 7-22 shows the inferred flip-flop.
7-49

Register and Three-State Inference

Example 7-50 Toggle Flip-Flop With Enable and Asynchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity t_async_en_r is
 port(RESET, TOGGLE, CLK : in std_logic;
 Q : out std_logic);
end t_async_en_r;

architecture rtl of t_async_en_r is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
 if (RESET = ’1’) then
 TMP_Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 if (TOGGLE = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 end if;
end process infer;

Q <= TMP_Q;

end rtl;

Example 7-51 Inference Report for Toggle Flip-Flop With Enable and
Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Register Name Type Width Bus MB AR AS SR SS ST
TMP_Q_reg Flip-flop 1 - - Y N N N Y
7-50

Register and Three-State Inference

Figure 7-22 Toggle Flip-Flop With Enable and Asynchronous Reset

Getting the Best Results

This section provides tips for improving the results you achieve during
flip-flop inference. Topics include

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Minimizing Flip-Flop Count

HDL descriptions should build only as many flip-flops as a design
requires.
7-51

Register and Three-State Inference

Circuit Description Inferring Too Many Flip-Flops

Example 7-52 shows a description that infers too many flip-flops. The
inference report is shown in Example 7-53. Figure 7-23 shows the
inferred flip-flops.

Example 7-52 Circuit With Six Inferred Flip-Flops
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
 port (CLK, RESET : in std_logic;
 AND_BITS, OR_BITS,
 XOR_BITS : out std_logic);
end count;

architecture rtl of count is
begin

process
 variable COUNT : std_logic_vector (2 downto 0);
begin
 wait until (CLK’EVENT and CLK = ’1’);
 if (RESET = ’1’) then
 COUNT <= ”000”;
 else
 COUNT <= COUNT + 1;
 end if;
 AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
 OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
 XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process;

end rtl;
7-52

Register and Three-State Inference

Example 7-52 has only one process, which contains a wait statement
and six output signals. FPGA Compiler II / FPGA Express infers six
flip-flops, one for each output signal in the process:

• COUNT(2:0) (three inferred flip-flops)

• AND_BITS (one inferred flip-flop)

• OR_BITS (one inferred flip-flop)

• XOR_BITS (one inferred flip-flop)

However, because the outputs AND_BITS, OR_BITS, and
XOR_BITS depend solely on the value of variable COUNT, and
variable COUNT is registered, these three outputs do not need to be
registered. Therefore, assign AND_BITS, OR_BITS, and XOR_BITS
within a process that does not have a wait statement (see the next
section, “Circuit Description Inferring Correct Number of Flip-Flops”
on page 7-54).

Example 7-53 Inference Report for Circuit With Six Inferred Flip-Flops
Register Name Type Width Bus MB AR AS SR SS ST
AND_BITS_reg Flip-flop 1 - - N N N N N
COUNT_reg Flip-flop 3 Y N N N N N N
OR_BITS_reg Flip-flop 1 - - N N N N N
XOR_BITS_reg Flip-flop 1 - - N N N N N
7-53

Register and Three-State Inference

Figure 7-23 Circuit With Six Inferred Flip-Flops

Circuit Description Inferring Correct Number of Flip-Flops

To avoid inferring extra flip-flops, assign the output signals from within
a process that does not have a wait statement.

Example 7-54 shows a description with two processes, one with a
wait statement and one without. The registered (synchronous)
assignments are in the first process, which contains the wait
statement. The other (asynchronous) assignments are in the second
process. Signals communicate between the two processes.

This description style lets you choose the signals that are registered
and those that are not. The inference report is shown in Example
7-55. Figure 7-24 shows the resulting circuit.

RESET

CLK
7-54

Register and Three-State Inference

Example 7-54 Circuit With Three Inferred Flip-Flops
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
 port(CLK, RESET : in std_logic;
 AND_BITS, OR_BITS, XOR_BITS : out std_logic);
end count;

architecture rtl of count is
 signal COUNT : std_logic_vector (2 downto 0);
begin

reg : process begin
 wait until (CLK’event and CLK = ’1’);
 if (RESET = ’1’) then
 COUNT <= ”000”;
 else
 COUNT <= COUNT + 1;
 end if;
end process reg;
combine : process(count) begin
 AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
 OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
 XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process combine;

end rtl;

Example 7-55 Inference Report for Circuit With Three Inferred Flip-Flops

COUNT_reg (width 3)
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
COUNT_reg Flip-flop 3 Y N N N N N N
7-55

Register and Three-State Inference

Figure 7-24 Circuit With Three Inferred Flip-Flops

This technique of separating combinational logic from registered or
sequential logic in your design is useful when describing finite state
machines. See these in Appendix A, "Examples:

• “Moore Machine” on page A-2

• “Mealy Machine” on page A-5

• “Count Zeros—Sequential Version” on page A-22

• “Soft Drink Machine—State Machine Version” on page A-24

Correlating Synthesis Results With Simulation Results

Using delay specifications with registered values can cause the
simulation to behave differently from the logic synthesized by FPGA
Compiler II / FPGA Express. For example, the description in Example
7-56 contains delay information that causes FPGA Compiler II / FPGA
Express to synthesize a circuit that behaves unexpectedly (the post-
synthesis simulation results do not match pre-synthesis simulation
results).

RESET

CLK

AND_BITS

OR_BITS

XOR_BITS
7-56

Register and Three-State Inference

Example 7-56 Delays in Registers
component flip_flop (D, CLK : in std_logic;
 Q : out std_logic);
end component;

process (A, CLK);
 signal B: std_logic;
begin
 B <= A after 100ns;

 F1: flip_flop port map (A, CLK, C),

 F2: flip_flop port map (B, CLK, D);
end process;

In Example 7-56, B changes 100 nanoseconds after A changes. If
the clock period is less than 100 nanoseconds, output D is one or
more clock cycles behind output C during simulation of the design.
However, because FPGA Compiler II / FPGA Express ignores the
delay information, A and B change values at the same time and so
do C and D. This behavior is not the same as in the post-synthesis
simulation.

When using delay information in your designs, make sure that the
delays do not affect registered values. In general, you can safely
include delay information in your description if it does not change the
value that gets clocked into a flip-flop.

Understanding Limitations of Register Inference

FPGA Compiler II / FPGA Express cannot infer the following
components. You must instantiate these components in your VHDL
description.

• Flip-flops and latches with three-state outputs
7-57

Register and Three-State Inference

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:
Although you can instantiate flip-flops with bidirectional pins,
FPGA Compiler II / FPGA Express interprets these cells as black
boxes.

If you use an if statement to infer D flip-flops, your design must meet
the following requirements:

• An edge expression must be the only condition of an if or an elsif
clause.

The following if statement is invalid because it has multiple
conditions in the if clause:

if (edge and RST = ’1’)

• You can have only one edge expression in an if clause, and the if
clause must not have an else clause.

The following if statement is invalid, because you cannot include
an else clause when using an edge expression as the if or elsif
condition:

if X > 5 then
 sequential_statement;
elsif edge then
 sequential_statement;
else
 sequential_statement;
end if;
7-58

Register and Three-State Inference

• An edge expression cannot be part of another logical expression
or be used as an argument.

The following function call is invalid, because you cannot use the
edge expression as an argument:

any_function(edge);

Three-State Inference

FPGA Compiler II / FPGA Express infers a three-state driver when
you assign the value of Z to a signal or variable. The Z value
represents the high-impedance state. FPGA Compiler II / FPGA
Express infers one three-state driver per process. You can assign
high-impedance values to single-bit or bused signals (or variables).

Reporting Three-State Inference

Example 7-57 shows a three-state inference report.

Example 7-57 Three-State Inference Report

The first column of the report indicates the name of the inferred three-
state device. The second column indicates the type of three-state
device FPGA Compiler II / FPGA Express inferred. The third column
indicates whether the three-state device has multiple bits.

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
7-59

Register and Three-State Inference

Controlling Three-State Inference

FPGA Compiler II / FPGA Express always infers a three-state driver
when you assign the value of Z to a signal or variable. FPGA Compiler
II / FPGA Express does not provide any means of controlling the
inference.

Inferring Three-State Drivers

The following sections contain VHDL examples that infer the following
types of three-state drivers:

• Simple three-state driver

• Three-state driver with registered enable

• Three-state driver without registered enable

Inferring a Simple Three-State Driver

The following section provides a template for a simple three-state
driver. In addition, this section provides examples of how allocating
high-impedance assignments to different processes affects three-
state inference.

Example 7-58 provides the VHDL template for a simple three-state
driver. FPGA Compiler II / FPGA Express generates the inference
report shown in Example 7-59. Figure 7-25 shows the inferred three-
state driver.
7-60

Register and Three-State Inference

Example 7-58 Simple Three-State Driver
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity three_state is
port(IN1, ENABLE : in std_logic;
 OUT1 : out std_logic);
end;

architecture rtl of three_state is
begin

process (IN1, ENABLE) begin
 if (ENABLE = ’1’) then
 OUT1 <= IN1;
 else
 OUT1 <= ’Z’; -- assigns high-impedance state
 end if;
end process;

end rtl;

Example 7-59 Inference Report for Simple Three-State Driver

Figure 7-25 Schematic of Simple Three-State Driver

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
7-61

Register and Three-State Inference

Inferring One Three-State Driver From a Single Process

Example 7-60 provides an example of placing all high-impedance
assignments in a single process. In this case, the data is gated and
FPGA Compiler II / FPGA Express infers a single three-state driver.

Example 7-61 shows the inference report. Figure 7-26 shows the
three-state driver.

Example 7-60 Inferring One Three-State Driver From a Single Process

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (SELA, A, SELB, B) begin
 T <= ’Z’;
 if (SELA = ’1’) then
 T <= A;
 elsif (SELB = ’1’) then
 T <= B;
 end if;
end process infer;

end rtl;

Example 7-61 Single Process Inference Report
Three-State Device Name Type MB
T_tri Three-State Buffer N
7-62

Register and Three-State Inference

Figure 7-26 One Three-State Driver Inferred From a Single Process

Inferring Three-State Drivers From Separate Processes

Example 7-62 provides an example of placing each high-impedance
assignment in a separate process. In this case, FPGA Compiler II /
FPGA Express infers multiple three-state drivers.

Example 7-63 shows the inference report. Figure 7-27 shows the
design.

TRI
7-63

Register and Three-State Inference

Example 7-62 Inferring Two Three-State Drivers From Separate Processes

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer1 : process (SELA, A) begin
 if (SELA = ’1’) then
 T <= A;
 else
 T <= ’Z’;
 end if;
end process infer1;

infer2 : process (SELB, B) begin
 if (SELB = ’1’) then
 T <= B;
 else
 T <= ’Z’;
 end if;
end process infer2;

end rtl;

Example 7-63 Inference Report for Two Three-State Drivers From Separate
Processes
Three-State Device Name Type MB
T_tri Three-State Buffer N

Three-State Device Name Type MB
T_tri2 Three-State Buffer N
7-64

Register and Three-State Inference

Figure 7-27 Two Three-State Drivers Inferred From Separate Processes

Three-State Driver With Registered Enable

When a variable, such as THREE_STATE in Example 7-64, is
assigned to a register and defined as a three-state gate within the
same process, FPGA Compiler II / FPGA Express also registers the
enable pin of the three-state gate.

Example 7-64 shows an example of this type of code, and Example
7-65 shows the inference report. Figure 7-28 shows the schematic
generated by the code, a three-state gate with a register on its enable
pin.
7-65

Register and Three-State Inference

Example 7-64 Inferring a Three-State Driver With Registered Enable

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (THREE_STATE, CLK) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 elsif (CLK’event and CLK = ’1’) then
 OUT1 <= DATA;
 end if;
end process infer;

end rtl;

Example 7-65 Inference Report for Three-State Driver With Registered
Enable

OUT1_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
OUT1_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB
OUT1_tri
OUT1_tri_enable_reg

Three-State Buffer
Flip-Flop (width 1)

N
N

7-66

Register and Three-State Inference

Figure 7-28 Three-State Driver With Registered Enable

Three-State Driver Without Registered Enable

Example 7-66 uses two processes to instantiate a three-state gate,
with a flip-flop on the input pin.

Example 7-67 shows the inference report. Figure 7-29 shows the
schematic generated by the code.
7-67

Register and Three-State Inference

Example 7-66 Three-State Driver Without Registered Enable
library IEEE;
use IEEE.std_logic_1164.all;

entity ff_3state2 is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end ff_3state2;

architecture rtl of ff_3state2 is
 signal TEMP : std_logic;
begin

process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 TEMP <= DATA;
 end if;
end process;

process (THREE_STATE, TEMP) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 else
 OUT1 <= TEMP;
 end if;
end process;

end rtl;

Example 7-67 Inference Report for Three-State Driver Without Registered
Enable

TEMP_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST
TEMP_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB
OUT1_tri Three-State Buffer N
7-68

Register and Three-State Inference

Figure 7-29 Three-State Driver Without Registered Enable

Understanding the Limitations of Three-State Inference

You can use the Z value as

• A signal assignment

• A variable assignment

• A function call argument

• A return value

• An aggregate definition

You cannot use the Z value in an expression, except for comparison
with Z. Be careful when using expressions that compare with the Z
value. FPGA Compiler II / FPGA Express always evaluates such
expressions to false, and the pre- and post-synthesis simulation
results might differ. For this reason, FPGA Compiler II / FPGA Express
issues a warning when it synthesizes such comparisons.
7-69

Register and Three-State Inference

Example 7-68 shows an incorrect use of the Z value. Example 7-69
shows a correct use of the Z value.

Example 7-68 Incorrect Use of the Z Value in an Expression
OUT_VAL <= (’Z’ and IN_VAL);

Example 7-69 Correct Use of the Z Value in an Expression
if (IN_VAL = ’Z’) then
7-70

Register and Three-State Inference

8
Writing Circuit Descriptions 8

To understand FPGA Compiler II / FPGA Express and to write VHDL
descriptions that produce efficient synthesized circuits, study the
information presented in the following sections of this chapter:

• How Statements Are Mapped to Logic

• Design Structure

• Asynchronous Designs

• Don’t Care Inference

• Synthesis Issues

Some general guidelines for writing efficient circuit descriptions are

• Restructure a design that makes repeated use of several large
components to minimize the number of instantiations.
8-1

Writing Circuit Descriptions

• In a design that needs some, but not all, of its variables or signals
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more-efficient synthesis.

How Statements Are Mapped to Logic

VHDL descriptions are mapped to combinational logic by creation of
blocks of logic. A statement or an operator in a VHDL function can
represent a block of combinational logic or, in some cases, a latch or
register.

The statements shown in Example 8-1 represent four logic blocks:

• A comparator that compares the value of B with 10

• An adder that has A and B as inputs

• An adder that has A and 10 as inputs

• A multiplexer (implied by the if statement) that controls the final
value of Y

Example 8-1 Four Logic Blocks
if (B < 10) then
 Y = A + B;
else
 Y = A + 10;
end if;

The logic blocks created by FPGA Compiler II / FPGA Express are
custom-built for their environment. If A and B are 4-bit quantities, a
8-2

Writing Circuit Descriptions

4-bit adder is built. If A and B are 9-bit quantities, a 9-bit adder is built.
Because FPGA Compiler II / FPGA Express incorporates a large set
of these customized logic blocks, it can translate most VHDL
statements and operators.

Design Structure

A design’s structure influences the size and complexity of the resulting
synthesized circuit. These sections help you understand the
concepts:

• Adding Structure

• Using Design Knowledge

• Optimizing Arithmetic Expressions

• Changing an Operator Bit-Width

• Using State Information

• Propagating Constants

• Sharing Complex Operators

Adding Structure

FPGA Compiler II / FPGA Express gives you significant control over
the preoptimization structure, or organization of components, in your
design. Whether or not your design structure is preserved after
optimization depends on the options you select.
8-3

Writing Circuit Descriptions

Using Variables and Signals

You control design structure with your ordering of assignment
statements and your use of variables. Each VHDL signal assignment,
process, or component instantiation implies a piece of logic. Each
variable or signal implies a wire. By using these constructs, you can
connect entities in any configuration.

Example 8-2 and Example 8-3 show two possible descriptions of an
adder’s carry chain. Figure 8-1 illustrates the resulting design.

Example 8-2 Ripple Carry Chain
-- A is the addend
-- B is the augend
-- C is the carry
-- Cin is the carry in
C0 <= (A0 and B0) or
 ((A0 or B0) and Cin);
C1 <= (A1 and B1) or
 ((A1 or B1) and C0);

Example 8-3 Carry-Lookahead Chain
-- Ps are propagate
-- Gs are generate
p0 <= a0 or b0;
g0 <= a0 and b0;
p1 <= a1 or b1;
g1 <= a1 and b1;
c0 <= g0 or (p0 and cin);
c1 <= g1 or (p1 and g0) or
 (p1 and p0 and cin);
8-4

Writing Circuit Descriptions

Figure 8-1 Ripple Carry and Carry-Lookahead Chain Design

Using Parentheses

Another way to control the structure of a design is to use parentheses
to define logic groupings. Example 8-4 describes a 4-input adder
grouping. Figure 8-2 illustrates the resulting design.

Example 8-4 4-Input Adder
Z <= (A + B) + C + D;

Figure 8-2 Diagram of 4-Input Adder

a0 b0 a1 b1

c1

cin

c0

 +

 +

 +

A B

C

D

 Z
8-5

Writing Circuit Descriptions

Example 8-5 describes a 4-input adder grouping that is structured
with parentheses. Figure 8-3 illustrates the design.

Example 8-5 4-Input Adder Structured With Parentheses
Z <= (A + B) + (C + D);

Figure 8-3 Diagram of 4-Input Adder With Parentheses

Using Design Knowledge

In many circumstances, you can improve the quality of synthesized
circuits by describing your high-level knowledge of a circuit better.
FPGA Compiler II / FPGA Express cannot always derive details of a
circuit architecture. Any additional architectural information you can
provide to FPGA Compiler II / FPGA Express can result in a more
efficient circuit.

Optimizing Arithmetic Expressions

FPGA Compiler II / FPGA Express uses the properties of arithmetic
operators (such as the associative and commutative properties of
addition) to rearrange an expression so that it results in an optimized
implementation. You can also use arithmetic properties to control the

 +

 +

 +

 Z

A B C D
8-6

Writing Circuit Descriptions

choice of implementation for an expression. Two forms of arithmetic
optimization are discussed in this section:

• Arranging Expression Trees for Minimum Delay

• Sharing Common Subexpressions

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can
minimize the delay through an expression tree by rearranging the
sequence of the operations. Consider the statement in Example 8-6.

Example 8-6 Simple Arithmetic Expression
Z <= A + B + C + D;

The parser performs each addition in order, as though parentheses
were placed within the expression as follows:

Z <= ((A + B) + C) + D;

The parser constructs the expression tree shown in Figure 8-4.

Figure 8-4 Default Expression Tree

A B

C

D

Z

8-7

Writing Circuit Descriptions

Considering Signal Arrival Times

To figure out the delay through an expression tree, FPGA Compiler
II / FPGA Express considers the arrival times of each signal in the
expression. If the arrival times of all the signals are the same, the
length of the critical path of the expression in Example 8-6 equals
three adder delays. The critical path delay can be reduced to two
adder delays if you insert parentheses as follows:

Z <= (A + B) + (C + D);

The parser constructs the subexpression tree shown in Figure 8-5:

Figure 8-5 Balanced Adder Tree (Same Arrival Times for All Signals)

Suppose signals B, C, and D arrive at the same time and signal A
arrives last. The expression tree that produces the minimum delay is:
shown in Figure 8-6.

A B C D

Z

8-8

Writing Circuit Descriptions

Figure 8-6 Expression Tree With Minimum Delay (Signal A Arrives Last)

Using Parentheses

You can use parentheses in expressions to exercise more control over
the way expression trees are constructed. Parentheses are regarded
as user directives that force an expression tree to use the groupings
inside the parentheses. The expression tree cannot be rearranged in
a way that violates these groupings.

To see the effect of parentheses on the construction of an expression
tree, consider Example 8-7.

Example 8-7 Parentheses in an Arithmetic Expression
Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in Example 8-7 define the following
subexpressions:

1 (B + C)
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The
default expression tree for Example 8-7 is shown in Figure 8-7.

A

B C

D

Z

8-9

Writing Circuit Descriptions

Figure 8-7 Expression Tree With Subexpressions Dictated by Parentheses

Considering Overflow Characteristics

When FPGA Compiler II / FPGA Express performs arithmetic
optimization, it determines how to handle the overflow from carry bits
during addition.

The optimized structure of an expression tree is affected by the bit-
widths you declare for storing intermediate results. For example,
suppose you write an expression that adds two 4-bit numbers and
stores the result in a 4-bit register. If the result of the addition overflows
the 4-bit output, the most-significant bits are truncated. Example 8-8
shows how FPGA Compiler II / FPGA Express handles overflow
characteristics.

A

B C

D

Q

E

F

8-10

Writing Circuit Descriptions

Example 8-8 Adding Numbers of Different Bit-Widths
t <= a + b; -- a and b are 4-bit numbers
z <= t + c; -- c is a 6-bit number

In Example 8-8, three variables (a + b + c) are added. A temporary
variable, t, holds the intermediate result of a + b. If t is declared as a
4-bit variable, the overflow bits from the addition of a + b are truncated.
The parser determines the default structure of the expression tree,
which is shown in Figure 8-8.

Figure 8-8 Default Expression Tree With 4-Bit Temporary Variable

Now suppose the addition is performed without a temporary variable
(z = a + b + c). FPGA Compiler II / FPGA Express determines that 5
bits are needed to store the intermediate result of the addition, so no
overflow condition exists. The results of the final addition can be
different from those of the first case, where a 4-bit temporary variable
is declared that truncates the result of the intermediate addition.
Therefore, these two expression trees do not always yield the same
result. The expression tree for the second case is shown in Figure 8-9.

a[4] b[4]

c[6]

z[6]

t[4]
8-11

Writing Circuit Descriptions

Figure 8-9 Expression Tree With 5-Bit Intermediate Result

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If
the same subexpression appears in more than one equation, you
might want to share these operations to reduce the area of your circuit.

You can force common subexpressions to be shared, by declaring a
temporary variable to store the subexpression, and then use the
temporary variable wherever you want to repeat the subexpression.
Example 8-9 shows a group of simple additions that use the common
subexpression (a + b).

Example 8-9 Simple Additions With a Common Subexpression
temp <= a + b;
x <= temp;
y <= temp + c;

Instead of manually forcing common subexpressions to be shared,
you can let FPGA Compiler II / FPGA Express automatically
determine whether sharing common subexpressions improves your
circuit. You do not need to declare a temporary variable to hold the
common subexpression in this case.

a[4] b[4]

c[6]

z[6]

[5]
8-12

Writing Circuit Descriptions

In some cases, sharing common subexpressions results in the
building of more adders. Consider Example 8-10, where A + B is a
common subexpression.

Example 8-10 Sharing Common Subexpressions—Increases Area
if cond1

Y <= A + B;
else

Y <= C + D;
end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B is shared, three adders are
necessary to implement this section of code.

(A + B)
(C + D)
(E + F)

If the common subexpression is not shared, only two adders are
necessary: one to implement the additions A + B and C + D, and one
to implement the additions E + F and A + B.

FPGA Compiler II / FPGA Express analyzes common subexpressions
during the resource sharing phase of the compile process and
considers area costs and timing characteristics. To turn off the sharing
of common subexpressions for the current design, use the constraint
manager. The default is true.
8-13

Writing Circuit Descriptions

Example 8-11 Common Subexpressions
Y <= A + B + C;
Z <= D + A + B;

The parser does not recognize A + B as a common subexpression,
because it parses the second equation as (D + A) + B. You can force
the parser to recognize the common subexpression by rewriting the
second assignment statement as

Z <= A + B + D;

or

Z <= D + (A + B);

Note:
You do not have to rewrite the assignment statement, because
FPGA Compiler II / FPGA Express recognizes common
subexpressions automatically.

Changing an Operator Bit-Width

The adder in Example 8-12 sums the 8-bit value of A (a BYTE) with
the 8-bit value of TEMP. TEMP’s value is either B, which is used only
when it is less than 16, or C, which is a 4-bit value (a
NIBBLE).Therefore, the upper 4 bits of TEMP are always 0. FPGA
Compiler II / FPGA Express cannot derive this fact, because TEMP
is declared with type BYTE.

You can simplify the synthesized circuit by changing the declared type
of TEMP to NIBBLE (a 4-bit value). With this modification, half adders,
rather than full adders, are required to implement the top 4 bits of the
adder circuit, which Figure 8-10 illustrates.
8-14

Writing Circuit Descriptions

Example 8-12 Function With One Adder
function ADD_IT_16 (A, B: BYTE; C: NIBBLE) return BYTE is
 variable TEMP: BYTE;
begin
 if B < 16 then
 TEMP <= B;
 else
 TEMP <= C;
 end if;
 return A + TEMP;
end;

Figure 8-10 Function With One Adder Schematic

Example 8-13 shows how this change in TEMP’s declaration can yield
a significant savings in circuit area, which Figure 8-11 illustrates.
8-15

Writing Circuit Descriptions

Example 8-13 Using Design Knowledge to Simplify an Adder
function ADD_IT_16 (A, B: BYTE; C: NIBBLE)
 return BYTE is
 variable TEMP: NIBBLE; -- Now only 4 bits
begin
 if B < 16 then
 TEMP <= NIBBLE(B); -- Cast BYTE to NIBBLE
 else
 TEMP <= C;
 end if;
 return A + TEMP; -- Single adder
end;

Figure 8-11 Using TEMP Declaration to Save Circuit Area
8-16

Writing Circuit Descriptions

Using State Information

You can also apply design knowledge in sequential designs. Often
you can make strong assertions about the value of a signal in a
particular state of a finite-state machine. You can describe this
information to FPGA Compiler II / FPGA Express. Example 8-14
shows the VHDL description of a simple state machine that uses two
processes. Figure 8-12 illustrates the design.

Example 8-14 A Simple State Machine
package STATES is
 type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;

use work.STATES.all;

entity MACHINE is
 port(X, CLOCK: in BIT;
 CURRENT_STATE: buffer STATE_TYPE;
 Z: buffer BIT);
end MACHINE;

architecture BEHAVIOR of MACHINE is
 signal NEXT_STATE: STATE_TYPE;
 signal PREVIOUS_Z: BIT;
begin

 -- Process to hold combinational logic.
 COMBIN: process(CURRENT_STATE, X, PREVIOUS_Z)
 begin
 case CURRENT_STATE is
 when SET0 =>
 Z <= ’0’; -- Set Z to ’0’
 NEXT_STATE <= HOLD0;

 when HOLD0 =>
 Z <= PREVIOUS_Z; -- Hold value of Z
 if X = ’0’ then
8-17

Writing Circuit Descriptions

 NEXT_STATE <= HOLD0;
 else
 NEXT_STATE <= SET1;
 end if;

 when SET1 => -- Set Z to ’1’
 Z <= ’1’;
 NEXT_STATE <= SET0;
 end case;
 end process COMBIN;

 -- Process to hold synchronous elements (flip-flops).
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 PREVIOUS_Z <= Z;
 end process SYNCH;
end BEHAVIOR;

8-18

Writing Circuit Descriptions

Figure 8-12 Schematic of Simple State Machine With Two Processes

In the state HOLD0, output Z retains its value from the previous state.
To accomplish this, you insert a flip-flop to hold PREVIOUS_Z.
However, you can make some assertions about the value of Z. In
state HOLD0, the value of Z is always 0. You can deduce this from
the fact that state HOLD0 is entered only from state SET0, where Z
is always assigned ’0’.

Example 8-15 shows how you can change the VHDL description to
use this assertion, resulting in a simpler circuit. Figure 8-13 illustrates
the circuit.
8-19

Writing Circuit Descriptions

Example 8-15 A Better Implementation of a State Machine
package STATES is
 type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;
use work.STATES.all;

entity MACHINE is
 port(X, CLOCK: in BIT;
 CURRENT_STATE: buffer STATE_TYPE;
 Z: buffer BIT);
end MACHINE;

architecture BEHAVIOR of MACHINE is
 signal NEXT_STATE: STATE_TYPE;
begin
 -- Combinational logic.
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when SET0 =>
 Z <= ’0’; -- Set Z to ’0’
 NEXT_STATE <= HOLD0;
 when HOLD0 =>
 Z <= ’0’; -- Hold Z at ’0’
 if X = ’0’ then
 NEXT_STATE <= HOLD0;
 else
 NEXT_STATE <= SET1;
 end if;
 when SET1 => -- Set Z to ’1’
 Z <= ’1’;
 NEXT_STATE <= SET0;
 end case;
 end process COMBIN;
 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;
8-20

Writing Circuit Descriptions

Figure 8-13 Schematic of an Improved State Machine

Propagating Constants

Constant propagation is the compile-time evaluation of expressions
containing constants. FPGA Compiler II / FPGA Express uses
constant propagation to reduce the amount of hardware required to
implement operators. For example, a + operator with a constant 1 as
one of its arguments causes an incrementer to be built, rather than
a general adder. If both arguments of + or any other operator are
constants, no hardware is constructed, because the expression’s
value is calculated by FPGA Compiler II / FPGA Express and inserted
directly in the circuit.

Other operators that benefit from constant propagation include
comparators and shifters. Shifting a vector by a constant amount
requires no logic to implement; it requires only a reshuffling (rewiring)
of bits.
8-21

Writing Circuit Descriptions

Sharing Complex Operators

The efficiency of a synthesized design depends primarily on how you
describe its component structure. The optimization of individual
components, especially those made from random logic, produces
similar results from two very different descriptions. Therefore,
concentrate the majority of your design effort on the implied
component hierarchy (as discussed in the preceding sections) rather
than on the logical descriptions. Chapter 2, "Design Descriptions”,
discusses how to define a VHDL design hierarchy.

FPGA Compiler II / FPGA Express supports many shorthand VHDL
expressions. There is no benefit to using a verbose syntax when a
shorter description is adequate. Example 8-16 shows four equivalent
groups of statements.

Example 8-16 Equivalent Statements
 signal A, B, C: BIT_VECTOR(3 downto 0);
 . . .
 C <= A and B;

 C(3 downto 0) <= A(3 downto 0) and B(3 downto 0);

 C(3) <= A(3) and B(3);
 C(2) <= A(2) and B(2);
 C(1) <= A(1) and B(1);
 C(0) <= A(0) and B(0);

 for I in 3 downto 0 loop
 C(I) <= A(I) and B(I);
 end loop;
8-22

Writing Circuit Descriptions

Asynchronous Designs

In a synchronous design, all flip-flops use a single clock that is a
primary input to the design and there are no combinational feedback
paths. Synchronous designs perform the same function regardless
of the clock rate if all signals can propagate through the design’s
combinational logic during the clock’s cycle time.

FPGA Compiler II / FPGA Express treats all designs as synchronous.
It can therefore change the timing behavior of the combinational logic
if the maximum and minimum delay requirements are met.

FPGA Compiler II / FPGA Express always preserves the Boolean
function computed by logic, assuming that the clock arrives after all
signals have propagated. FPGA Compiler II / FPGA Express’s built-
in timing verifier helps determine the slowest path (critical path)
through the logic, which determines how fast the clock can run.

FPGA Compiler II / FPGA Express provides some support for
asynchronous designs, but you must assume a greater responsibility
for the accuracy of your circuits. Although fully synchronous circuits
usually agree with their simulation models, asynchronous circuits
might not. FPGA Compiler II / FPGA Express might not warn you
when a design is not fully synchronous. Be aware of the possibility of
asynchronous timing problems.

The most common way to produce asynchronous logic in VHDL is to
use gated clocks on latches or flip-flops. Example 8-17 shows a fully
synchronous design, a counter with synchronous ENABLE and
RESET inputs. Because it is synchronous, this counter works if the
clock speed is slower than the critical path. Figure 8-14 illustrates the
design.
8-23

Writing Circuit Descriptions

Example 8-17 Fully Synchronous Counter With Reset and Enable
entity COUNT is
 port(RESET, ENABLE, CLK: in BIT;
 Z: buffer INTEGER range 0 to 7);
end;
architecture ARCH of COUNT is
begin
 process(RESET, ENABLE, CLK, Z)
 begin
 if (CLK’event and CLK = ’1’) then
 if (RESET = ’1’) then -- occurs on clock edge
 Z <= 0;
 elsif (ENABLE = ’1’) then -- occurs on clock edge
 if (Z = 7) then
 Z <= 0;
 else
 Z <= Z + 1;
 end if;
 end if;
 end if;
 end process;
end ARCH;

Figure 8-14 Schematic of Synchronous Counter With Reset and Enable
8-24

Writing Circuit Descriptions

Example 8-18 shows an asynchronous version of the design in
Example 8-17. The version in Example 8-18 uses two common
asynchronous design techniques:

• The first technique, shown in Example 8-15, enables the counter
by using an AND gate on the clock and enable signals.

• The second technique, shown in Figure 8-16, uses an
asynchronous reset.

These techniques work only when the proper timing relationships
exist between the reset signal (RESET) and the clock signal (CLK)
and there are no glitches in these signals.

Example 8-18 Design With Gated Clock and Asynchronous Reset
entity COUNT is
 port(RESET, ENABLE, CLK: in BIT;
 Z: buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is
 signal GATED_CLK: BIT;
begin
 GATED_CLK <= CLK and ENABLE; -- clock gated by ENABLE

 process(RESET, GATED_CLK, Z)
 begin
 if (RESET = ’1’) then -- asynchronous reset
 Z <= 0;
 elsif (GATED_CLK’event and GATED_CLK = ’1’) then
 if (Z = 7) then
 Z <= 0;
 else
 Z <= Z + 1;
 end if;
 end if;
 end process;
end ARCH;
8-25

Writing Circuit Descriptions

Figure 8-15 Design With AND Gate on Clock and Enable Signals

Figure 8-16 Design With Asynchronous Reset
8-26

Writing Circuit Descriptions

Example 8-19 shows an asynchronous design that might not work,
because FPGA Compiler II / FPGA Express does not guarantee that
the combinational logic it builds has no hazards (glitches).

Example 8-19 Incorrect Design (Counter With Asynchronous Load)
entity COUNT is
 port(LOAD_ENABLE, CLK: in BIT;
 LOAD_DATA: in INTEGER range 0 to 7;
 Z: buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is

begin
 process(LOAD_ENABLE, LOAD_DATA, CLK, Z)
 begin
 if (LOAD_ENABLE = ’1’) then
 Z <= LOAD_DATA;
 elsif (CLK’event and CLK = ’1’) then
 if (Z = 7) then
 Z <= 0;
 else
 Z <= Z + 1;
 end if;
 end if;
 end process;
end ARCH;

The design in Example 8-19 works only when the logic driving the
preset and clear pins of the flip-flops that hold Z is faster than the
clock speed. If you use this design style, you must simulate the
synthesized circuit thoroughly. You also need to inspect the
synthesized logic, because potential glitches might not appear in
simulation. For a safer design, use a synchronous LOAD_ENABLE.

A design synthesized with complex logic driving the gate of a latch
rarely works. Example 8-20 describes an asynchronous design that
never works. Figure 8-17 shows the resulting schematic.
8-27

Writing Circuit Descriptions

Example 8-20 Incorrect Asynchronous Design With Gated Clock
entity COMP is
 port(A, B: in INTEGER range 0 to 7;
 Z: buffer INTEGER range 0 to 7);
end;
architecture ARCH of COMP is
begin
 process(A, B)
 begin
 if (A = B) then
 Z <= A;
 end if;
 end process;
end ARCH;

Figure 8-17 Schematic of Incorrect Asynchronous Design With Gated Clock

In Example 8-20 and Figure 8-17, the comparator’s output latches
the value A onto the value Z. This design might work under behavioral
simulation where the comparison happens instantly. However, the
hardware comparator generates glitches that cause the latches to
store new data when they should not.
8-28

Writing Circuit Descriptions

Don’t Care Inference

You can greatly reduce circuit area by using don’t care inference. To
use a don’t care value in your design, create an enumerated type for
the don’t care value (the standard VHDL BIT type does not include
don’t care values).

don’t care values are best used as default assignments to variables.
You can assign a don’t care value to a variable at the beginning of a
process, in the default section of a case statement, or in the else
section of an if statement.

Example 8-21 shows don’t care encoding for a seven-segment LED
decoder. Enumeration encoding ’D’ represents the don’t care state.
Figure 8-18 illustrates the design.

Example 8-21 Using don’t care Type for Seven-Segment LED Decoder
package P is
 type MULTI is (’0’, ’1’, ’D’, ’Z’);
 attribute ENUM_ENCODING: STRING;
 attribute ENUM_ENCODING of MULTI : type is ”0 1 D Z”;
 type MULTI_VECTOR is array (INTEGER range <>) of MULTI;
end P;

use work.P.all;

entity CONVERTER is
 port(BCD: in MULTI_VECTOR(3 downto 0);
 LED: out MULTI_VECTOR(6 downto 0));

 -- pragma dc_script_begin
 -- set_flatten true
 -- pragma dc_script_end

end CONVERTER;
8-29

Writing Circuit Descriptions

architecture BEHAVIORAL of CONVERTER is
begin
CONV: process(BCD)
 begin
 case BCD is
 when ”0000” => LED <= ”1111110”;
 when ”0001” => LED <= ”1100000”;
 when ”0010” => LED <= ”1011011”;
 when ”0011” => LED <= ”1110011”;
 when ”0100” => LED <= ”1100101”;
 when ”0101” => LED <= ”0110111”;
 when ”0110” => LED <= ”0111111”;
 when ”0111” => LED <= ”1100010”;
 when ”1000” => LED <= ”1111111”;
 when ”1001” => LED <= ”1110111”;
 when others => LED <= ”DDDDDDD”;
 end case;
 end process CONV;
end BEHAVIORAL;

Figure 8-18 Seven-Segment LED Decoder With Don’t Care Type
8-30

Writing Circuit Descriptions

Example 8-22 shows the seven-segment decoder used in Example
8-21, but the default assignment to LED is 0 instead of don’t care.
Note the larger gate count in the circuit without don’t care values.
Figure 8-19 illustrates the design.

Example 8-22 Seven-Segment Decoder Without Don’t Care Type
entity CONVERTER is
 port (BCD: in BIT_VECTOR(3 downto 0);
 LED: out BIT_VECTOR(6 downto 0));
 -- pragma dc_script_begin
 -- set_flatten true
 -- pragma dc_script_end
end CONVERTER;

architecture BEHAVIORAL of CONVERTER is
begin
CONV: process(BCD)
 begin
 case BCD is
 when ”0000” => LED <= ”1111110”;
 when ”0001” => LED <= ”1100000”;
 when ”0010” => LED <= ”1011011”;
 when ”0011” => LED <= ”1110011”;
 when ”0100” => LED <= ”1100101”;
 when ”0101” => LED <= ”0110111”;
 when ”0110” => LED <= ”0111111”;
 when ”0111” => LED <= ”1100010”;
 when ”1000” => LED <= ”1111111”;
 when ”1001” => LED <= ”1110111”;
 when others => LED <= ”0000000”;
 end case;
 end process CONV;
end BEHAVIORAL;
8-31

Writing Circuit Descriptions

Figure 8-19 Seven-Segment LED Decoder With 0 LED Default

Using don’t care Default Values

You do not always want to assign a default value of don’t care,
although it can be beneficial in some cases, as the seven-segment
decoder in Example 8-22 shows.

The reasons for not always defaulting to don’t care are these:

• The potential for mismatches between simulation and synthesis
is greater.

• Defaults for variables can hide mistakes in the VHDL code.
8-32

Writing Circuit Descriptions

For example, if you assign a default don’t care value to VAR and later
assign a value to VAR, expecting VAR to be a don’t care, you might
have overlooked an intervening condition under which VAR is
assigned.

Therefore, when you assign a value to a variable (or signal) containing
a don’t care value, make sure that the variable (or signal) is really a
don’t care type under those conditions.

Differences Between Simulation and Synthesis

Don’t care types are treated differently in simulation than they are in
synthesis, and there can be a mismatch between the two. To a
simulator, a don’t care is a distinct value, different from a 1 or a 0. In
synthesis, however, a don’t care value becomes a 0 or a 1 (and the
hardware built treats it as either a 0 or a 1).

Whenever a comparison is made to a variable whose value is don’t
care, simulation and synthesis can differ. The safest way to use don’t
care types is to

• Assign don’t care values only to output ports

• Make sure the design never reads output ports

These guidelines guarantee that when you simulate in the scope of
the design itself, the only difference between simulation and synthesis
occurs when the simulator defines an output as a don’t care.

Note:
If you use don’t care values internally to a design, expressions
compared with don’t care (’D’) are synthesized as though their
values are not equal to ’D’.
8-33

Writing Circuit Descriptions

For example,

if X = ’D’ then
...

is synthesized as

if FALSE then

If you use expressions comparing values with ’D’, there might be a
difference between pre- and post-synthesis simulation results. For
this reason, FPGA Compiler II / FPGA Express issues a warning when
it synthesizes such comparisons.

Warning: A partial don’t-care value was read in routine test
line 24 in file ’test.vhdl’ This may cause simulation to
disagree with synthesis. (HDL-171)

Synthesis Issues

Feedback paths and latches result from ambiguities in signal or
variable assignments and language supersets, or the differences
between a VHDL simulator view and the Synopsys use of VHDL.

Feedback Paths and Latches

Implied combinational feedback paths or latches in synthesized logic
can occur when a signal or variable in a combinational process (one
without a wait or if signal’event statement) is not fully specified in the
VHDL description. A variable or signal is fully specified when it is
assigned under all possible conditions. A variable or signal is not fully
8-34

Writing Circuit Descriptions

specified when a condition exists under which the variable is not
assigned.

Fully Specified Variables

Example 8-23 shows several variables. A, B, and C are fully specified;
X is not.

Example 8-23 Fully Specified Variables
process (COND1)
 variable A, B, C, X : BIT;
begin
 A <= ’0’ -- A is hereby fully specified
 C <= ’0’ -- C is hereby fully specified

 if (COND1) then
 B <= ’1’; -- B is assigned when COND1 is TRUE
 C <= ’1’; -- C is already fully specified
 X <= ’1’; -- X is assigned when COND1 is TRUE
 else
 B <= ’0’; -- B is assigned when COND1 is FALSE
 end if;
 -- A is assigned regardless of COND1, so A is fully
 -- specified.

 -- B is assigned under all branches of if (COND1),
 -- that is, both when COND1 is TRUE and when
 -- COND1 is FALSE, so B is fully specified.

 -- C is assigned regardless of COND1, so C is fully
 -- specified. (The second assignment to C does
 -- not change this.)

 -- X is not assigned under all branches of
 -- if (COND1), namely, when COND1 is FALSE,
 -- so X is not fully specified.
end process;
8-35

Writing Circuit Descriptions

The conditions of each if and else statement are considered
independent in Example 8-23. A is considered not fully specified in
the following fragment:

if (COND1) then
 A <= ’1’;
end if;

if (not COND1) then
 A <= ’0’;
end if;

A variable or signal that is not fully specified in a combinational
process is considered conditionally specified. In this case a flow-
through latch is implied. You can conditionally assign a variable, but
you cannot read a conditionally specified variable. You can, however,
both conditionally assign and read a signal.

If a fully specified variable is read before its assignment statements,
combinational feedback might exist. For example, the following
fragment synthesizes combinational feedback for VAL.

process(NEW, LOAD)
 variable VAL: BIT;
begin
 if (LOAD) then
 VAL <= NEW;
 else
 VAL <= VAL;
 end if;

 VAL_OUT <= VAL;
end process;
8-36

Writing Circuit Descriptions

In a combinational process, you can ensure that a variable or signal
is fully specified by providing an initial (default) assignment to the
variable at the beginning of the process. This default assignment
assures that the variable is always assigned a value, regardless of
conditions. Subsequent assignment statements can override the
default. A default assignment is made to variables A and C in Example
8-23.

Another way to ensure that you do not imply combinational feedback
is to use a sequential process (one with a wait or if signal’event
statement). In such a case, variables and signals are registered. The
registers break the combinational feedback loop.

See Chapter 7, "Register and Three-State Inference”, for more
information about sequential processes and the conditions under
which FPGA Compiler II / FPGA Express infers registers and latches.

Asynchronous Behavior

Some forms of asynchronous behavior are not supported. An
example is a circuit description of a one-shot signal generator of the
form

X <= A nand (not(not(not A)));

You might expect this circuit description to generate three inverters
(an inverting delay line) and a NAND gate, but it is optimized to

X <= A nand (not A);

then

X <= 1;
8-37

Writing Circuit Descriptions

Understanding Superset Issues and Error Checking

The Synopsys VHDL Analyzer is a full IEEE 1076 VHDL analyzer,
described in the VSS User Guide.

When FPGA Compiler II / FPGA Express reads in a VHDL design, it
first calls the Synopsys VHDL Analyzer to check the VHDL source
for errors and then calls FPGA Compiler II / FPGA Express to translate
the VHDL source to an intermediate form for synthesis. If an error is
in the VHDL source, you get a VHDL Analyzer message and possibly
a VHDL Compiler message.

VHDL Compiler allows globally static objects where only locally static
objects are allowed, without issuing an error message. However, the
Synopsys VSS Expert and VSS Professional tools detect and flag
this error.
8-38

Writing Circuit Descriptions

9
FPGA Compiler II / FPGA Express

Directives 9

Synopsys has defined several methods of providing circuit design
information directly in your VHDL source code.

Using FPGA Compiler II / FPGA Express directives, you can direct
translation from VHDL to components with special VHDL comments.
These synthetic comments turn translation on or off, specify one of
several hard-wired resolution methods, and provide a means to map
subprograms to hardware components.

To familiarize yourself with FPGA Compiler II / FPGA Express
directives, consider the following topics presented in this chapter:

• Notation for FPGA Compiler II / FPGA Express Directives

• FPGA Compiler II / FPGA Express Directives
9-1

FPGA Compiler II / FPGA Express Directives

Notation for FPGA Compiler II / FPGA Express Directives

FPGA Compiler II / FPGA Express directives are special (synthetic)
VHDL comments that affect the actions of FPGA Compiler II / FPGA
Express. These comments are just a special case of regular VHDL
comments, so they are ignored by other VHDL tools. Synthetic
comments are used only to direct the actions of FPGA Compiler II /
FPGA Express.

Synthetic comments begin just as regular comments do, with two
hyphens (--). If the word following these characters is pragma or
synopsys, FPGA Compiler II / FPGA Express treats the remaining
comment text as a directive.

Note:
FPGA Compiler II / FPGA Express displays a syntax error if an
unrecognized directive is encountered after -- synopsys or
-- pragma.

FPGA Compiler II / FPGA Express Directives

The three types of directives are:

• Translation stop and start directives

-- pragma synthesis_off
-- pragma synthesis_on

-- pragma translate_off Use not recommended.
-- pragma translate_on Use not recommended.
9-2

FPGA Compiler II / FPGA Express Directives

• Resolution function directives

-- pragma resolution_method wired_and
-- pragma resolution_method wired_or
-- pragma resolution_method three_state

• Component implication directives

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Translation Stop and Start Pragma Directives

FPGA Compiler II / FPGA Express supports the synthesis_off and
synthesis_on pragma directives.

Note:
It is recommended that you not use the following directives:

-- pragma translate_off
-- pragma translate_on

The use of these directives in FPGA Compiler II / FPGA Express
can lead to errors in your design.

synthesis_off and synthesis_on Directives

The synthesis_off and synthesis_on directives are the recommended
mechanisms for hiding simulation-only constructs from synthesis.
Any text between these directives is checked for syntax, but no
corresponding hardware is synthesized.

Example 9-1 shows how you can use the directives to protect a
simulation driver.
9-3

FPGA Compiler II / FPGA Express Directives

Example 9-1 Using synthesis_on and synthesis_off Directives
-- The following test driver for entity EXAMPLE
-- should not be translated:
-- pragma synthesis_off
-- Translation stops

entity DRIVER is
end DRIVER;
architecture VHDL of DRIVER is
 signal A, B : INTEGER range 0 to 255;
 signal SUM : INTEGER range 0 to 511;

 component EXAMPLE
 port (A, B: in INTEGER range 0 to 255;
 SUM: out INTEGER range 0 to 511);
 end component;
begin
 U1: EXAMPLE port map(A, B, SUM);
 process
 begin
 for I in 0 to 255 loop
 for J in 0 to 255 loop
 A <= I;
 B <= J;
 wait for 10 ns;
 assert SUM = A + B;
 end loop;
 end loop;
 end process;
end VHDL;

-- pragma synthesis_on
-- Code from here on is translated

entity EXAMPLE is
 port (A, B: in INTEGER range 0 to 255;
 SUM: out INTEGER range 0 to 511);
end EXAMPLE;

architecture VHDL of EXAMPLE is
begin
 SUM <= A + B;
end VHDL;
9-4

FPGA Compiler II / FPGA Express Directives

Resolution Function Directives

Resolution function directives determine the resolution function
associated with resolved signals (see “Resolution Functions” on
page 2-40). FPGA Compiler II / FPGA Express does not support
arbitrary resolution functions. It does support the following three
methods:

-- pragma resolution_method wired_and
-- pragma resolution_method wired_or
-- pragma resolution_method three_state

Note:
Do not connect signals that use different resolution functions.
FPGA Compiler II / FPGA Express supports only one resolution
function per network.

Component Implication Directives

Component implication directives map VHDL subprograms onto
existing components or VHDL entities. “Procedures and Functions
as Design Components” on page 5-45 describes these directives:

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name
9-5

FPGA Compiler II / FPGA Express Directives

9-6

FPGA Compiler II / FPGA Express Directives

A
Examples A

This appendix presents examples that demonstrate basic concepts
of Synopsys FPGA Compiler II / FPGA Express:

• Moore Machine

• Mealy Machine

• Read-Only Memory

• Waveform Generator

• Smart Waveform Generator

• Definable-Width Adder-Subtracter

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Soft Drink Machine—State Machine Version
A-1

Examples

• Soft Drink Machine—Count Nickels Version

• Carry-Lookahead Adder

• Serial-to-Parallel Converter—Counting Bits

• Serial-to-Parallel Converter—Shifting Bits

• Programmable Logic Arrays

Moore Machine

Figure A-1 is a diagram of a simple Moore finite state machine. It has
one input (X), four internal states (S0 to S3), and one output (Z).

Figure A-1 Moore Machine Specification

The VHDL code implementing this finite state machine is shown in
Example A-1, which includes a schematic of the synthesized circuit.

 S0

 S1

 S3

 S2

0

1 1

0

0

1

1

0

1

0

1

0 Present Next Output
 state state (Z)
 X=0 X=1 X=0

S0 S0 S2 0
S1 S0 S2 1

S2 S2 S3 1

S3 S3 S1 0
A-2

Examples

The machine description includes two processes. One process
defines the synchronous elements of the design (state registers); the
other process defines the combinational part of the design (state
assignment case statement). For more details on using the two
processes, see “Combinational Versus Sequential Processes” on
page 5-55.

Example A-1 Implementation of a Moore Machine
entity MOORE is -- Moore machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end MOORE;

architecture BEHAVIOR of MOORE is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 -- Process to hold combinational logic
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 Z <= ’1’;
 if X = ’0’ then
A-3

Examples

 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S1;
 end if;
 end case;
 end process COMBIN;

 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;

Figure A-2 Moore Machine Schematic
A-4

Examples

Mealy Machine

Figure A-3 is a diagram of a simple Mealy finite state machine. The
VHDL code for implementing this finite state machine is shown in
Example A-2. The machine description includes two processes, as
in the previous Moore machine example.

Figure A-3 Mealy Machine Specification

Example A-2 Implementation of a Mealy Machine
entity MEALY is -- Mealy machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end MEALY;

architecture BEHAVIOR of MEALY is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

S0

S1

S3

S2

0/1

1/1

1/0

0/0

1/1

0/0

1/0

0/0
 Present Next Output
 state state (Z)
 X=0 X=1 X=0 X=1

S0 S0 S2 0 1
S1 S0 S2 0 0

S2 S2 S3 1 0

S3 S3 S1 0 1
A-5

Examples

begin

 -- Process to hold combinational logic.
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’1’;
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’0’;
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 if X = ’0’ then
 Z <= ’1’;
 NEXT_STATE <= S2;
 else
 Z <= ’0’;
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S3;
 else
 Z <= ’1’;
 NEXT_STATE <= S1;
 end if;
 end case;
 end process COMBIN;
 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
A-6

Examples

 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;

Figure A-4 Mealy Machine Schematic

Read-Only Memory

Example A-3 shows how you can define a read-only memory in VHDL.
The ROM is defined as an array constant, ROM. Each line of the
constant array specification defines the contents of one ROM
address. To read from the ROM, index into the array.

The number of ROM storage locations and bit-width is easy to change.
The subtype ROM_RANGE specifies that the ROM contains storage
locations 0 to 7. The constant ROM_WIDTH specifies that the ROM
is 5 bits wide.
A-7

Examples

After you define a ROM constant, you can index into that constant
many times to read many values from the ROM. If the ROM address
is computable (see “Computable Operands” on page 4-16), no logic
is built and the appropriate data value is inserted. If the ROM address
is not computable, logic is built for each index into the value. In
Example A-3, ADDR is not computable, so logic is synthesized to
compute the value.

FPGA Compiler II / FPGA Express does not actually instantiate a
typical array-logic ROM, such as those available from ASIC vendors.
Instead, it creates the ROM from random logic gates (AND, OR, NOT,
and so on). This type of implementation is preferable for small ROMs
and for ROMs that are regular. For very large ROMs, consider using
an array-logic implementation supplied by your ASIC vendor.

Example A-3 shows the VHDL source code and the synthesized
circuit schematic.

Example A-3 Implementation of a ROM in Random Logic
package ROMS is
 -- declare a 5x8 ROM called ROM
 constant ROM_WIDTH: INTEGER := 5;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 7;
 type ROM_TABLE is array (0 to 7) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’(”10101”), -- ROM contents
 ROM_WORD’(”10000”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”10000”),
 ROM_WORD’(”10101”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”));
end ROMS;
use work.ROMS.all; -- Entity that uses ROM
entity ROM_5x8 is
A-8

Examples

 port(ADDR: in ROM_RANGE;
 DATA: out ROM_WORD);
end ROM_5x8;
architecture BEHAVIOR of ROM_5x8 is
begin
 DATA <= ROM(ADDR); -- Read from the ROM
end BEHAVIOR;

Figure A-5 ROM Schematic
A-9

Examples

Waveform Generator

The waveform generator example shows how to use the previous
ROM example to implement a waveform generator.

Assume that you want to produce the waveform output shown in
Figure A-6.

1. First, declare a ROM wide enough to hold the output signals
(4 bits) and deep enough to hold all time steps (0 to 12, for a total
of 13).

2. Next, define the ROM so that each time step is represented by an
entry in the ROM.

3. Finally, create a counter that cycles through the time steps (ROM
addresses), generating the waveform at each time step.

Figure A-6 Waveform Example

 0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

A-10

Examples

Example A-4 shows an implementation for the waveform generator.
It consists of a ROM, a counter, and some simple reset logic.

Example A-4 Implementation of a Waveform Generator
package ROMS is
 -- a 4x13 ROM called ROM that contains the waveform
 constant ROM_WIDTH: INTEGER := 4;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 12;
 type ROM_TABLE is array (0 to 12) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ”1100”, -- time step 0
 ”1100”, -- time step 1
 ”0100”, -- time step 2
 ”0000”, -- time step 3
 ”0110”, -- time step 4
 ”0101”, -- time step 5
 ”0111”, -- time step 6
 ”1100”, -- time step 7
 ”0100”, -- time step 8
 ”0000”, -- time step 9
 ”0110”, -- time step 10
 ”0101”, -- time step 11
 ”0111”); -- time step 12
end ROMS;

use work.ROMS.all;
entity WAVEFORM is -- Waveform generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out ROM_WORD);
end WAVEFORM;
A-11

Examples

architecture BEHAVIOR of WAVEFORM is
 signal STEP: ROM_RANGE;
begin

 TIMESTEP_COUNTER: process -- Time stepping process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 STEP <= ROM_RANGE’low; -- Restart
 elsif STEP = ROM_RANGE’high then -- Finished?
 STEP <= ROM_RANGE’high; -- Hold at last value
 -- STEP <= ROM_RANGE’low; -- Continuous wave
 else
 STEP <= STEP + 1; -- Continue stepping
 end if;
 end process TIMESTEP_COUNTER;

 WAVES <= ROM(STEP);
end BEHAVIOR;

Figure A-7 Waveform Generator Schematic

A-12

Examples

When the counter STEP reaches the end of the ROM, STEP stops,
generates the last value, then waits until a reset. To make the
sequence automatically repeat, remove the following statement:

STEP <= ROM_RANGE’high; -- Hold at last value

Use the following statement instead (commented out in Example A-4):

STEP <= ROM_RANGE’low; -- Continuous wave

Smart Waveform Generator

The smart waveform generator in Figure A-8 is an extension of the
waveform generator in Figure A-6 on page A-10. But this smart
waveform generator is capable of holding the waveform at any time
step for several clock cycles.

Figure A-8 Waveform for Smart Waveform Generator Example

 0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5 580 20
A-13

Examples

The implementation of the smart waveform generator is shown in
Example A-5. It is similar to the waveform generator in Example A-4
on page A-11, but has two additions. A new ROM, D_ROM, has been
added to hold the length of each time step. A value of 1 specifies that
the corresponding time step should be one clock cycle long; a value
of 80 specifies that the time step should be 80 clock cycles long. The
second addition to the previous waveform generator is a delay counter
that counts the clock cycles between time steps.

In the architecture of this example, a selected signal assignment
determines the value of the NEXT_STEP counter.

Example A-5 Implementation of a Smart Waveform Generator
package ROMS is

 -- a 4x13 ROM called W_ROM containing the waveform
 constant W_ROM_WIDTH: INTEGER := 4;
 subtype W_ROM_WORD is BIT_VECTOR (1 to W_ROM_WIDTH);
 subtype W_ROM_RANGE is INTEGER range 0 to 12;
 type W_ROM_TABLE is array (0 to 12) of W_ROM_WORD;
 constant W_ROM: W_ROM_TABLE := W_ROM_TABLE’(
 ”1100”, -- time step 0
 ”1100”, -- time step 1
 ”0100”, -- time step 2
 ”0000”, -- time step 3
 ”0110”, -- time step 4
 ”0101”, -- time step 5
 ”0111”, -- time step 6
 ”1100”, -- time step 7
 ”0100”, -- time step 8
 ”0000”, -- time step 9
 ”0110”, -- time step 10
 ”0101”, -- time step 11
 ”0111”); -- time step 12

 -- a 7x13 ROM called D_ROM containing the delays
 subtype D_ROM_WORD is INTEGER range 0 to 100;
 subtype D_ROM_RANGE is INTEGER range 0 to 12;
A-14

Examples

 type D_ROM_TABLE is array (0 to 12) of D_ROM_WORD;
 constant D_ROM: D_ROM_TABLE := D_ROM_TABLE’(
 1,80,5,1,1,1,1,20,5,1,1,1,1);
end ROMS;

use work.ROMS.all;
entity WAVEFORM is -- Smart Waveform Generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out W_ROM_WORD);
end WAVEFORM;

architecture BEHAVIOR of WAVEFORM is
 signal STEP, NEXT_STEP: W_ROM_RANGE;
 signal DELAY: D_ROM_WORD;
begin

 -- Determine the value of the next time step
 NEXT_STEP <= W_ROM_RANGE’high when
 STEP = W_ROM_RANGE’high
 else
 STEP + 1;
 -- Keep track of which time step we are in
 TIMESTEP_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 STEP <= 0; -- Restart waveform
 elsif DELAY = 1 then
 STEP <= NEXT_STEP; -- Continue stepping
 else
 null; -- Wait for DELAY to count down;
 end if; -- do nothing here
 end process TIMESTEP_COUNTER;

 -- Count the delay between time steps
 DELAY_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 DELAY <= D_ROM(0); -- Restart
 elsif DELAY = 1 then -- Have we counted down?
A-15

Examples

 DELAY <= D_ROM(NEXT_STEP); -- Next delay value
 else
 DELAY <= DELAY - 1; -- decrement DELAY counter
 end if;
 end process DELAY_COUNTER;

 WAVES <= W_ROM(STEP); -- Output waveform value
end BEHAVIOR;

Figure A-9 Smart Waveform Generator Schematic

Definable-Width Adder-Subtracter

VHDL lets you create functions for use with array operands of any
size. This example shows an adder-subtracter circuit that, when
called, is adjusted to fit the size of its operands.
A-16

Examples

Example A-6 shows an adder-subtracter defined for two
unconstrained arrays of bits (type BIT_VECTOR) in a package named
MATH. When an unconstrained array type is used for an argument to
a subprogram, the actual constraints of the array are taken from the
actual parameter values in a subprogram call.

Example A-6 MATH Package for Example A-7
package MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR;
 -- Add or subtract two BIT_VECTORs of equal length
end MATH;

package body MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR is
 variable CARRY: BIT;
 variable A, B, SUM:
 BIT_VECTOR(L’length-1 downto 0);
 begin
 if ADD then
 -- Prepare for an ”add” operation
 A := L;
 B := R;
 CARRY := ’0’;
 else

 -- Prepare for a ”subtract” operation
 A := L;
 B := not R;
 CARRY := ’1’;
 end if;

 -- Create a ripple carry chain; sum up bits
 for i in 0 to A’left loop
 SUM(i) := A(i) xor B(i) xor CARRY;
 CARRY := (A(i) and B(i)) or
 (A(i) and CARRY) or
 (CARRY and B(i));
 end loop;
A-17

Examples

 return SUM; -- Result
 end;
end MATH;

Within the function ADD_SUB, two temporary variables, A and B, are
declared. These variables are declared to be the same length as L
(and necessarily, R) but have their index constraints normalized to
L’length-1 downto 0. After the arguments are normalized, you can
create a ripple carry adder by using a for loop.

No explicit references to a fixed array length are in the function
ADD_SUB. Instead, the VHDL array attributes ’left and ’length are
used. These attributes allow the function to work on arrays of any
length.

Example A-7 shows how to use the adder-subtracter defined in the
MATH package. In this example, the vector arguments to functions
ARG1 and ARG2 are declared as BIT_VECTOR(1 to 6). This
declaration causes ADD_SUB to work with 6-bit arrays. A schematic
of the synthesized circuit follows Example A-7.

Example A-7 Implementation of a 6-Bit Adder-Subtracter
use work.MATH.all;

entity EXAMPLE is
 port(ARG1, ARG2: in BIT_VECTOR(1 to 6);
 ADD: in BOOLEAN;
 RESULT : out BIT_VECTOR(1 to 6));
end EXAMPLE;

architecture BEHAVIOR of EXAMPLE is
begin
 RESULT <= ADD_SUB(ARG1, ARG2, ADD);
end BEHAVIOR;
A-18

Examples

Figure A-10 6-Bit Adder-Subtracter Schematic

Count Zeros—Combinational Version

The count zeros—combinational example illustrates a design
problem in which an 8-bit-wide value is given and the circuit
determines two things:

• That no more than one sequence of zeros is in the value.

• The number of zeros in that sequence (if any). This computation
must be completed in a single clock cycle.

The circuit produces two outputs: the number of zeros found and an
error indication.

A valid input value can have at most one consecutive series of zeros.
A value consisting entirely of ones is defined as a valid value. If a
value is invalid, the zero counter resets to 0. For example, the value
00000000 is valid and has eight zeros; value 11000111 is valid and
has three zeros; value 00111100 is invalid.
A-19

Examples

Example A-8 shows the VHDL description for the circuit. It consists
of a single process with a for loop that iterates across each bit in the
given value. At each iteration, a temporary INTEGER variable
(TEMP_COUNT) counts the number of zeros encountered. Two
temporary Boolean variables (SEEN_ZERO and SEEN_TRAILING),
initially false, are set to true when the beginning and end of the first
sequence of zeros is detected.

If a zero is detected after the end of the first sequence of zeros (after
SEEN_TRAILING is true), the zero count is reset (to 0), ERROR is
set to true, and the for loop is exited.

Example A-8 shows a combinational (parallel) approach to counting
the zeros. The next example shows a sequential (serial) approach.

Example A-8 Count Zeros—Combinational
entity COUNT_COMB_VHDL is
 port(DATA: in BIT_VECTOR(7 downto 0);
 COUNT: out INTEGER range 0 to 8;
 ERROR: out BOOLEAN);
end COUNT_COMB_VHDL;

architecture BEHAVIOR of COUNT_COMB_VHDL is
begin
 process(DATA)
 variable TEMP_COUNT : INTEGER range 0 to 8;
 variable SEEN_ZERO, SEEN_TRAILING : BOOLEAN;
 begin
 ERROR <= FALSE;
 SEEN_ZERO <= FALSE;
 SEEN_TRAILING <= FALSE;
 TEMP_COUNT <= 0;
 for I in 0 to 7 loop
 if (SEEN_TRAILING and DATA(I) = ’0’) then
 TEMP_COUNT <= 0;
 ERROR <= TRUE;
 exit;
 elsif (SEEN_ZERO and DATA(I) = ’1’) then
A-20

Examples

 SEEN_TRAILING <= TRUE;
 elsif (DATA(I) = ’0’) then
 SEEN_ZERO <= TRUE;
 TEMP_COUNT <= TEMP_COUNT + 1;
 end if;
 end loop;

 COUNT <= TEMP_COUNT;
 end process;

end BEHAVIOR;

Figure A-11 Count Zeros—Combinational Schematic
A-21

Examples

Count Zeros—Sequential Version

The count zeros—sequential example shows a sequential (clocked)
variant of the preceding design (Count Zeros—Combinational
Version).

The circuit now accepts the 8-bit data value serially, 1 bit per clock
cycle, by using the DATA and CLK inputs. The other two inputs are

• RESET, which resets the circuit

• READ, which causes the circuit to begin accepting data bits

The circuit’s three outputs are

• IS_LEGAL, which is true if the data was a valid value

• COUNT_READY, which is true at the first invalid bit or when all 8
bits have been processed

• COUNT, the number of zeros (if IS_LEGAL is true)

Note:
The output port COUNT is declared with mode BUFFER so that
it can be read inside the process. OUT ports can only be written
to, not read in.

Example A-9 Count Zeros—Sequential
entity COUNT_SEQ_VHDL is
 port(DATA, CLK: in BIT;
 RESET, READ: in BOOLEAN;
 COUNT: buffer INTEGER range 0 to 8;
 IS_LEGAL: out BOOLEAN;
 COUNT_READY: out BOOLEAN);
end COUNT_SEQ_VHDL;
architecture BEHAVIOR of COUNT_SEQ_VHDL is
A-22

Examples

begin
 process
 variable SEEN_ZERO, SEEN_TRAILING: BOOLEAN;
 variable BITS_SEEN: INTEGER range 0 to 7;
 begin
 wait until CLK’event and CLK = ’1’;

 if(RESET) then
 COUNT_READY <= FALSE;
 IS_LEGAL <= TRUE; -- signal assignment
 SEEN_ZERO <= FALSE; -- variable assignment
 SEEN_TRAILING <= FALSE;
 COUNT <= 0;
 BITS_SEEN <= 0;
 else
 if (READ) then
 if (SEEN_TRAILING and DATA = ’0’) then
 IS_LEGAL <= FALSE;
 COUNT <= 0;
 COUNT_READY <= TRUE;
 elsif (SEEN_ZERO and DATA = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA = ’0’) then
 SEEN_ZERO <= TRUE;
 COUNT <= COUNT + 1;
 end if;

 if (BITS_SEEN = 7) then
 COUNT_READY <= TRUE;
 else
 BITS_SEEN <= BITS_SEEN + 1;
 end if;

 end if; -- if (READ)
 end if; -- if (RESET)
 end process;
end BEHAVIOR;
A-23

Examples

Figure A-12 Count Zeros—Sequential Schematic

Soft Drink Machine—State Machine Version

The soft drink machine—state machine example is a control unit for
a soft drink vending machine.

The circuit reads signals from a coin input unit and sends outputs to
a change dispensing unit and a drink dispensing unit.

Here are the design parameters for Example A-10 and Example A-11:

• This example assumes that only one kind of soft drink is
dispensed.

• This is a clocked design with CLK and RESET input signals.

• The price of the drink is 35 cents.

• The input signals from the coin input unit are NICKEL_IN (nickel
deposited), DIME_IN (dime deposited), and QUARTER_IN
(quarter deposited).
A-24

Examples

• The output signals to the change dispensing unit are
NICKEL_OUT and DIME_OUT.

• The output signal to the drink dispensing unit is DISPENSE
(dispense drink).

• The first VHDL description for this design uses a state machine
description style. The second VHDL description is in Example
A-11.

Example A-10 Soft Drink Machine—State Machine
library synopsys; use synopsys.attributes.all;

entity DRINK_STATE_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_STATE_VHDL;

architecture BEHAVIOR of DRINK_STATE_VHDL is
 type STATE_TYPE is (IDLE, FIVE, TEN, FIFTEEN,
 TWENTY, TWENTY_FIVE, THIRTY, OWE_DIME);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of BEHAVIOR : architecture is

 ”CURRENT_STATE”;

attribute sync_set_reset of reset : signal is ”true”;
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN,
 CURRENT_STATE, RESET, CLK)
 begin
 -- Default assignments
 NEXT_STATE <= CURRENT_STATE;
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;

 -- Synchronous reset
A-25

Examples

 if(RESET) then
 NEXT_STATE <= IDLE;
 else

 -- State transitions and output logic
 case CURRENT_STATE is
 when IDLE =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= TEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 end if;

 when FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= TEN;
 elsif(DIME_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= THIRTY;
 end if;
 when TEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 end if;
 when FIFTEEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;
A-26

Examples

 when TWENTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= THIRTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

 when TWENTY_FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= THIRTY;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;

 when THIRTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= OWE_DIME;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

 when OWE_DIME =>
 NEXT_STATE <= IDLE;
 DIME_OUT <= TRUE;
A-27

Examples

 end case;
 end if;
 end process;

 -- Synchronize state value with clock
 -- This causes it to be stored in flip-flops
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;

Figure A-13 Soft Drink Machine—State Machine Schematic
A-28

Examples

Soft Drink Machine—Count Nickels Version

The soft drink machine—count nickels example uses the same design
parameters as the preceding Example A-10 (Soft Drink Machine—
State Machine), with the same input and output signals. In this
version, a counter counts the number of nickels deposited. This
counter is incremented by 1 if the deposit is a nickel, by 2 if it is a
dime, and by 5 if it is a quarter.

Example A-11 Soft Drink Machine—Count Nickels
entity DRINK_COUNT_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_COUNT_VHDL;

architecture BEHAVIOR of DRINK_COUNT_VHDL is
 signal CURRENT_NICKEL_COUNT,
 NEXT_NICKEL_COUNT: INTEGER range 0 to 7;
 signal CURRENT_RETURN_CHANGE, NEXT_RETURN_CHANGE : BOOLEAN;
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN, RESET, CLK,
 CURRENT_NICKEL_COUNT, CURRENT_RETURN_CHANGE)
 variable TEMP_NICKEL_COUNT: INTEGER range 0 to 12;
 begin
 -- Default assignments
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;
 NEXT_NICKEL_COUNT <= 0;
 NEXT_RETURN_CHANGE <= FALSE;

 -- Synchronous reset
 if (not RESET) then
 TEMP_NICKEL_COUNT <= CURRENT_NICKEL_COUNT;

 -- Check whether money has come in
 if (NICKEL_IN) then
 -- NOTE: This design will be flattened, so
 -- these multiple adders will be optimized
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 1;
A-29

Examples

 elsif(DIME_IN) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 2;
 elsif(QUARTER_IN) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 5;
 end if;

 -- Enough deposited so far?
 if(TEMP_NICKEL_COUNT >= 7) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 7;
 DISPENSE <= TRUE;
 end if;

 -- Return change
 if(TEMP_NICKEL_COUNT >= 1 or
 CURRENT_RETURN_CHANGE) then
 if(TEMP_NICKEL_COUNT >= 2) then
 DIME_OUT <= TRUE;
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 2;
 NEXT_RETURN_CHANGE <= TRUE;
 end if;
 if(TEMP_NICKEL_COUNT = 1) then
 NICKEL_OUT <= TRUE;
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 1;
 end if;
 end if;

 NEXT_NICKEL_COUNT <= TEMP_NICKEL_COUNT;
 end if;
 end process;

 -- Remember the return-change flag and
 -- the nickel count for the next cycle
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_RETURN_CHANGE <= NEXT_RETURN_CHANGE;
 CURRENT_NICKEL_COUNT <= NEXT_NICKEL_COUNT;
 end process;

end BEHAVIOR;
A-30

Examples

Figure A-14 Soft Drink Machine—Count Nickels Version Schematic
A-31

Examples

Carry-Lookahead Adder

This example uses concurrent procedure calls to build a 32-bit carry-
lookahead adder. The adder is built by partitioning of the 32-bit input
into eight slices of 4 bits each. Each of the eight slices computes
propagate and generate values by using the PG procedure.

Propagate (output P from PG) is ’1’ for a bit position if that position
propagates a carry from the next-lower position to the next-higher
position. Generate (output G) is ’1’ for a bit position if that position
generates a carry to the next-higher position, regardless of the carry-
in from the next lower position. The carry-lookahead logic reads the
carry-in, propagate, and generate information computed from the
inputs. The logic computes the carry value for each bit position and
makes the addition operation an XOR of the inputs and the carry
values.

Carry Value Computations

The carry values are computed by a three-level tree of 4-bit carry-
lookahead blocks.

• The first level of the tree computes the 32 carry values and the
eight group-propagate and generate values. Each of the first-level
group-propagate and generate values tells if that 4-bit slice
propagates and generates carry values from the next-lower group
to the next-higher group. The first-level lookahead blocks read the
group carry computed at the second level.
A-32

Examples

• The second-level lookahead blocks read the group-propagate and
generate information from the four first-level blocks and then
compute their own group-propagate and generate information.
The second-level lookahead blocks also read group carry
information computed at the third level to compute the carries for
each of the third-level blocks.

• The third-level block reads the propagate and generate
information of the second level to compute a propagate and
generate value for the entire adder. It also reads the external carry
to compute each second-level carry. The carry-out for the adder
is ’1’ if the third-level generate is ’1’ or if the third-level propagate
is ’1’ and the external carry is ’1’.

The third-level carry-lookahead block is capable of processing
four second-level blocks. But because there are only two second-
level blocks, the high-order 2 bits of the computed carry are
ignored; the high-order two bits of the generate input to the third-
level are set to zero, ”00”; and the propagate high-order bits are
set to ”11”. These settings cause the unused portion to propagate
carries but not to generate them. Figure A-15 shows the overall
structure for the carry-lookahead adder.
A-33

Examples

Figure A-15 Carry-Lookahead Adder Block Diagram

CIN COUT 27:24

P
G

GP
GG

CLA

CIN COUT 23:20

P
G

GP
GG

CLA

CIN COUT 19:16

P
G

GP
GG

CLA

CIN COUT 31:28

P
G

GP
GG

CLA

0

A 27:24
B 27:24

P
G

PG

A 31:28
B 31:28

P
G

PG

A 23:20
B 23:20

P
G

PG

A 19:16
B 19:16

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

CIN

P
G

COUT

GP
GG

CLA

7
7

4
4

6
6

5
5

1

CIN COUT 11:8

P
G

GP
GG

CLA

CIN COUT 7:4

P
G

GP
GG

CLA

CIN COUT 3:0

P
G

GP
GG

CLA

CIN COUT 15:12

P
G

GP
GG

CLA

A 11:8
B 11:8

P
G

PG

A 15:12
B 15:12

P
G

PG

A 7:4
B 7:4

P
G

PG

A 3:0
B 3:0

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

3
3

0
0

2
2

1
1

0

1

GGGG or (GGGP and CIN)

GC 7:4

GC 3:0
GGGP

GGGG

GGC

CIN
B A

XOR

S

"00"

3:2
"11"

3:2

Third-Level

Second-Level

First-Level

1

0

COUT

GP 7:4

GP 3:0

GG 7:4

GG 3:0

GGP

GGG

7

6

5

4

1

2

3

0

 Blocks

 Blocks

 Block
A-34

Examples

The VHDL implementation of the design in Figure A-15 is
accomplished with four procedures:

CLA
Names a 4-bit carry-lookahead block.

PG
Computes first-level propagate and generate information.

SUM
Computes the sum by adding the XOR values to the inputs with
the carry values computed by CLA.

BITSLICE
Collects the first-level CLA blocks, the PG computations, and the
SUM. This procedure performs all the work for a 4-bit value except
for the second- and third-level lookaheads.

Example A-12 shows a VHDL description of the adder.

Example A-12 Carry-Lookahead Adder
package LOCAL is
 constant N: INTEGER := 4;

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
 procedure PG(
 A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0));
 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR;
 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
end LOCAL;
A-35

Examples

package body LOCAL is

 -- Compute sum and group outputs from a, b, cin

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is

 variable P, G, C: BIT_VECTOR(3 downto 0);
 begin
 PG(A, B, P, G);
 CLA(P, G, CIN, C, GP, GG);
 S <= SUM(A, B, C);
 end;

 -- Compute propagate and generate from input bits

 procedure PG(A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0)) is

 begin
 P <= A or B;
 G <= A and B;
 end;

 --
 -- Compute sum from the input bits and the carries
 --

 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR is

 begin
 return(A xor B xor C);
 end;

 -- 4-bit carry-lookahead block

 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
A-36

Examples

 signal GP, GG: out BIT) is
 variable TEMP_GP, TEMP_GG, LAST_C: BIT;
 begin
 TEMP_GP <= P(0);
 TEMP_GG <= G(0);
 LAST_C <= CIN;
 C(0) <= CIN;

 for I in 1 to N-1 loop
 TEMP_GP <= TEMP_GP and P(I);
 TEMP_GG <= (TEMP_GG and P(I)) or G(I);
 LAST_C <= (LAST_C and P(I-1)) or G(I-1);
 C(I) <= LAST_C;
 end loop;

 GP <= TEMP_GP;
 GG <= TEMP_GG;
 end;
end LOCAL;

use WORK.LOCAL.ALL;

-- A 32-bit carry-lookahead adder

entity ADDER is
 port(A, B: in BIT_VECTOR(31 downto 0);
 CIN: in BIT;
 S: out BIT_VECTOR(31 downto 0);
 COUT: out BIT);
end ADDER;
architecture BEHAVIOR of ADDER is

 signal GG,GP,GC: BIT_VECTOR(7 downto 0);
 -- First-level generate, propagate, carry
 signal GGG, GGP, GGC: BIT_VECTOR(3 downto 0);
 -- Second-level gen, prop, carry
 signal GGGG, GGGP: BIT;
 -- Third-level gen, prop

begin
 -- Compute Sum and 1st-level Generate and Propagate
 -- Use input data and the 1st-level Carries computed
 -- later.
 BITSLICE(A(3 downto 0),B(3 downto 0),GC(0),
 S(3 downto 0),GP(0), GG(0));
 BITSLICE(A(7 downto 4),B(7 downto 4),GC(1),
 S(7 downto 4),GP(1), GG(1));
A-37

Examples

 BITSLICE(A(11 downto 8),B(11 downto 8),GC(2),
 S(11 downto 8),GP(2), GG(2));
 BITSLICE(A(15 downto 12),B(15 downto 12),GC(3),
 S(15 downto 12),GP(3), GG(3));
 BITSLICE(A(19 downto 16),B(19 downto 16),GC(4),
 S(19 downto 16),GP(4), GG(4));
 BITSLICE(A(23 downto 20),B(23 downto 20),GC(5),
 S(23 downto 20),GP(5), GG(5));
 BITSLICE(A(27 downto 24),B(27 downto 24),GC(6),
 S(27 downto 24),GP(6), GG(6));
 BITSLICE(A(31 downto 28),B(31 downto 28),GC(7),
 S(31 downto 28),GP(7), GG(7));

 -- Compute first-level Carries and second-level
 -- generate and propagate.
 -- Use first-level Generate, Propagate, and
 -- second-level carry.
 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(3 downto 0), GG(3 downto 0), GGC(0), TEMP,
 GGP(0), GGG(0));
 GC(3 downto 0) <= TEMP;
 end process;

 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(7 downto 4), GG(7 downto 4), GGC(1), TEMP,
 GGP(1), GGG(1));
 GC(7 downto 4) <= TEMP;
 end process;

 -- Compute second-level Carry and third-level
 -- Generate and Propagate
 -- Use second-level Generate, Propagate and Carry-in
 -- (CIN)
 process(GGP, GGG, CIN)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GGP, GGG, CIN, TEMP, GGGP, GGGG);
 GGC <= TEMP;
 end process;

 -- Assign unused bits of second-level Generate and
 -- Propagate
 GGP(3 downto 2) <= ”11”;
 GGG(3 downto 2) <= ”00”;
A-38

Examples

 -- Compute Carry-out (COUT)
 -- Use third-level Generate and Propagate and
 -- Carry-in (CIN).
 COUT <= GGGG or (GGGP and CIN);
end BEHAVIOR;

Implementation

In the carry-lookahead adder implementation, procedures perform
the computation of the design. The procedures can also be in the
form of separate entities and used by component instantiation,
producing a hierarchical design. FPGA Compiler II / FPGA Express
does not collapse a hierarchy of entities, but it does collapse the
procedure call hierarchy into one design.

The keyword signal is included before some of the interface parameter
declarations. This keyword is required for the out formal parameters
when the actual parameters must be signals.

The output parameter C from the CLA procedure is not declared as
a signal; thus, it is not allowed in a concurrent procedure call. Only
signals can be used in such calls. To overcome this problem,
subprocesses are used, declaring a temporary variable TEMP. TEMP
receives the value of the C parameter and assigns it to the appropriate
signal (a generally useful technique).
A-39

Examples

Serial-to-Parallel Converter—Counting Bits

This example shows the design of a serial-to-parallel converter that
reads a serial, bit-stream input and produces an 8-bit output.

The design reads the following inputs:

SERIAL_IN
The serial input data.

RESET
The input that, when it is ’1’, causes the converter to reset. All
outputs are set to 0, and the converter is prepared to read the
next serial word.

CLOCK
The value of RESET and SERIAL_IN, which is read on the positive
transition of this clock. Outputs of the converter are also valid only
on positive transitions.

The design produces the following outputs:

PARALLEL_OUT
The 8-bit value read from the SERIAL_IN port.

READ_ENABLE
The output that, when it is ’1’ on the positive transition of CLOCK,
causes the data on PARALLEL_OUT to be read.

PARITY_ERROR
The output that, when it is ’1’ on the positive transition of CLOCK,
indicates that a parity error has been detected on the SERIAL_IN
port. When a parity error is detected, the converter halts until
restarted by the RESET port.
A-40

Examples

Input Format

When no data is being transmitted to the serial port, keep it at a value
of ’0’. Each 8-bit value requires ten clock cycles to read it. On the
eleventh clock cycle, the parallel output value can be read.

In the first cycle, a ’1’ is placed on the serial input. This assignment
indicates that an 8-bit value follows. The next eight cycles transmit
each bit of the value. The most significant bit is transmitted first. The
tenth cycle transmits the parity of the 8-bit value. It must be ’0’ if an
even number of ’1’ values are in the 8-bit data, and ’1’ otherwise. If
the converter detects a parity error, it sets the PARITY_ERROR output
to ’1’ and waits until the value is reset.

On the eleventh cycle, the READ_ENABLE output is set to ’1’ and
the 8-bit value can be read from the PARALLEL_OUT port. If the
SERIAL_IN port has a ’1’ on the eleventh cycle, another 8-bit value
is read immediately; otherwise, the converter waits until SERIAL_IN
goes to ’1’.

Figure A-16 shows the timing of this design.
A-41

Examples

Figure A-16 Sample Waveform Through the Converter

Implementation Details

The implementation of the converter is as a four-state finite-state
machine with synchronous reset. When a reset is detected, the
converter enters a WAIT_FOR_START state. The description of each
state follows

WAIT_FOR_START
Stay in this state until a ’1’ is detected on the serial input. When
a ’1’ is detected, clear the PARALLEL_OUT registers and go to
the READ_BITS state.

READ_BITS
If the value of the current_bit_position counter is 8, all 8 bits have
been read. Check the computed parity with the transmitted parity.
If it is correct, go to the ALLOW_READ state; otherwise, go to the
PARITY_ERROR state.

CLOCK

SERIAL_IN

RESET

PARALLEL_OUT

READ_ENABLE

PARITY_ERROR

XX 2D XX
A-42

Examples

If all 8 bits have not yet been read, set the appropriate bit in the
PARALLEL_OUT buffer to the SERIAL_IN value, compute the
parity of the bits read so far, and increment the
current_bit_position.

ALLOW_READ
This is the state where the outside world reads the
PARALLEL_OUT value. When that value is read, the design
returns to the WAIT_FOR_START state.

PARITY_ERROR_DETECTED
In this state, the PARITY_ERROR output is set to ’1’ and nothing
else is done.

This design has four values stored in registers:

CURRENT_STATE
Remembers the state as of the last clock edge.

CURRENT_BIT_POSITION
Remembers how many bits have been read so far.

CURRENT_PARITY
Keeps a running XOR of the bits read.

CURRENT_PARALLEL_OUT
Stores each parallel bit as it is found.

The design has two processes: the combinational NEXT_ST
containing the combinational logic and the sequential SYNCH that is
clocked.
A-43

Examples

NEXT_ST performs all the computations and state assignments. The
NEXT_ST process starts by assigning default values to all the signals
it drives. This assignment guarantees that all signals are driven under
all conditions. Next, the RESET input is processed. If RESET is not
active, a case statement determines the current state and its
computations. State transitions are performed by assigning the next
state’s value you want to the NEXT_STATE signal.

The serial-to-parallel conversion itself is performed by these two
statements in the NEXT_ST process:

NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <= SERIAL_IN;
NEXT_BIT_POSITION <= CURRENT_BIT_POSITION + 1;

The first statement assigns the current serial input bit to a particular
bit of the parallel output. The second statement increments the next
bit position to be assigned.

SYNCH registers and updates the stored values previously
described. Each registered signal has two parts, NEXT_... and
CURRENT_... :

NEXT_...
Signals hold values computed by the NEXT_ST process.

CURRENT_...
Signals hold the values driven by the SYNCH process. The
CURRENT_... signals hold the values of the NEXT_... signals as
of the last clock edge.

Example A-13 shows a VHDL description of the converter.
A-44

Examples

Example A-13 Serial-to-Parallel Converter—Counting Bits
-- Serial-to-Parallel Converter, counting bits

package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_BIT_POSITION, NEXT_BIT_POSITION:
 INTEGER range PARALLEL_BIT_COUNT downto 0;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin
NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_BIT_POSITION, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_BIT_POSITION <= 0;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

 if (RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
A-45

Examples

 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_BIT_POSITION =
 PARALLEL_BIT_COUNT) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <=
 SERIAL_IN;
 NEXT_BIT_POSITION <=
 CURRENT_BIT_POSITION + 1;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process NEXT_ST;

 SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_BIT_POSITION <= NEXT_BIT_POSITION;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process SYNCH;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;
A-46

Examples

Figure A-17 Serial-to-Parallel Converter—Counting Bits Schematic

Serial-to-Parallel Converter—Shifting Bits

This example describes another implementation of the serial-to-
parallel converter in the last example. This design performs the same
function as the previous one but uses a different algorithm to do the
conversion.

The previous implementation used a counter to indicate the bit of the
output that was set when a new serial bit was read. In this
implementation, the serial bits are shifted into place. Before the
conversion occurs, a ’1’ is placed in the least-significant bit position.
When that ’1’ is shifted out of the most significant position (position
A-47

Examples

0), the signal NEXT_HIGH_BIT is set to ’1’ and the conversion is
complete.

Example A-14 shows the listing of the second implementation. The
differences are highlighted in bold. The differences relate to the
removal of the ..._BIT_POSITION signals, the addition of
..._HIGH_BIT signals, and the change in the way
NEXT_PARALLEL_OUT is computed.

Example A-14 Serial-to-Parallel Converter—Shifting Bits
package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_HIGH_BIT, NEXT_HIGH_BIT: BIT;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin

NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_HIGH_BIT, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
A-48

Examples

 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_HIGH_BIT <= ’0’;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= PARALLEL_TYPE’(others=>’0’);
 if(RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_HIGH_BIT = ’1’) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_HIGH_BIT <= CURRENT_PARALLEL_OUT(0);
 NEXT_PARALLEL_OUT <=
 CURRENT_PARALLEL_OUT(
 1 to PARALLEL_BIT_COUNT-1) &
 SERIAL_IN;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process NEXT_ST;

 SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
A-49

Examples

 CURRENT_STATE <= NEXT_STATE;
 CURRENT_HIGH_BIT <= NEXT_HIGH_BIT;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process SYNCH;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;

Note:
The synthesized schematic for the shifter implementation is much
simpler than that of the previous count implementation in Example
A-13. It is simpler because the shifter algorithm is inherently easier
to implement.

Figure A-18 Serial-to-Parallel Converter—Shifting Bits Schematic
A-50

Examples

With the count algorithm, each of the flip-flops holding the
PARALLEL_OUT bits needed logic that decoded the value stored in
the BIT_POSITION flip-flops to see when to route in the value of
SERIAL_IN. Also, the BIT_POSITION flip-flops needed an
incrementer to compute their next value.

In contrast, the shifter algorithm requires neither an incrementer nor
flip-flops to hold BIT_POSITION. Additionally, the logic in front of most
PARALLEL_OUT bits needs to read only the value of the previous
flip-flop or ’0’. The value depends on whether bits are currently being
read. In the shifter algorithm, the SERIAL_IN port needs to be
connected only to the least significant bit (number 7) of the
PARALLEL_OUT flip-flops.

These two implementations illustrate the importance of designing
efficient algorithms. Both work properly, but the shifter algorithm
produces a faster, more area-efficient design.

Programmable Logic Arrays

This example shows a way to build programmable logic arrays (PLAs)
in VHDL. The PLA function uses an input lookup vector as an index
into a constant PLA table and then returns the output vector specified
by the PLA.

The PLA table is an array of PLA rows, where each row is an array
of PLA elements. Each element is either a one, a zero, a minus, or a
space (’1’, ’0’, ’–’, or ’ ’). The table is split between an input plane and
an output plane. The input plane is specified by zeros, ones, and
minuses. The output plane is specified by zeros and ones. The two
planes’ values are separated by a space.
A-51

Examples

In the PLA function, the output vector is first initialized to be all zeros.
When the input vector matches an input plane in a row of the PLA
table, the ones in the output plane are assigned to the corresponding
bits in the output vector. A match is determined as follows:

• If a zero or one is in the input plane, the input vector must have
the same value in the same position.

• If a minus is in the input plane, it matches any input vector value
at that position.

The generic PLA table types and the PLA function are defined in a
package named LOCAL. An entity PLA_VHDL that uses LOCAL
needs only to specify its PLA table as a constant, then call the
PLA function.

The PLA function does not explicitly depend on the size of the PLA.
To change the size of the PLA, change the initialization of the TABLE
constant and the initialization of the constants INPUT_COUNT,
OUTPUT_COUNT, and ROW_COUNT. In Example A-15, these
constants are initialized to a PLA equivalent to the ROM shown
previously (Example A-3). Accordingly, the synthesized schematic is
the same as that of the ROM, with one difference: in Example A-3,
the DATA output port range is 1 to 5; in Example A-15, the
OUT_VECTOR output port range is 4 down to 0.
A-52

Examples

Example A-15 Programmable Logic Array
package LOCAL is
 constant INPUT_COUNT: INTEGER := 3;
 constant OUTPUT_COUNT: INTEGER := 5;
 constant ROW_COUNT: INTEGER := 6;
 constant ROW_SIZE: INTEGER := INPUT_COUNT +
 OUTPUT_COUNT + 1;
 type PLA_ELEMENT is (’1’, ’0’, ’-’, ’ ’);
 type PLA_VECTOR is
 array (INTEGER range <>) of PLA_ELEMENT;
 subtype PLA_ROW is
 PLA_VECTOR(ROW_SIZE - 1 downto 0);
 subtype PLA_OUTPUT is
 PLA_VECTOR(OUTPUT_COUNT - 1 downto 0);
 type PLA_TABLE is
 array(ROW_COUNT - 1 downto 0) of PLA_ROW;

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR;
end LOCAL;

package body LOCAL is

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR is
 subtype RESULT_TYPE is
 BIT_VECTOR(OUTPUT_COUNT - 1 downto 0);
 variable RESULT: RESULT_TYPE;
 variable ROW: PLA_ROW;
 variable MATCH: BOOLEAN;
 variable IN_POS: INTEGER;

 begin
 RESULT <= RESULT_TYPE’(others => BIT’(’0’));
 for I in TABLE’range loop
 ROW <= TABLE(I);
 MATCH <= TRUE;
 IN_POS <= IN_VECTOR’left;
A-53

Examples

 -- Check for match in input plane
 for J in ROW_SIZE - 1 downto OUTPUT_COUNT loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 MATCH <= MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’1’));
 elsif(ROW(J) = PLA_ELEMENT’(’0’)) then
 MATCH <= MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’0’));
 else
 null; -- Must be minus (”don’t care”)
 end if;
 IN_POS <= IN_POS - 1;
 end loop;

 -- Set output plane
 if(MATCH) then
 for J in RESULT’range loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 RESULT(J) <= BIT’(’1’);
 end if;
 end loop;
 end if;
 end loop;
 return(RESULT);
 end;
end LOCAL;

use WORK.LOCAL.all;
entity PLA_VHDL is
 port(IN_VECTOR: BIT_VECTOR(2 downto 0);
 OUT_VECTOR: out BIT_VECTOR(4 downto 0));
end PLA_VHDL;

architecture BEHAVIOR of PLA_VHDL is
 constant TABLE: PLA_TABLE := PLA_TABLE’(
 PLA_ROW’(”--- 10000”),
 PLA_ROW’(”-1- 01000”),
 PLA_ROW’(”0-0 00101”),
 PLA_ROW’(”-1- 00101”),
 PLA_ROW’(”1-1 00101”),
 PLA_ROW’(”-1- 00010”));
A-54

Examples

begin
 OUT_VECTOR <= PLA(IN_VECTOR, TABLE);
end BEHAVIOR;

Figure A-19 Programmable Logic Array Schematic
A-55

Examples

A-56

Examples

B
Synopsys Packages B

The following Synopsys packages are included with this release:

• std_logic_1164 Package

Defines a standard for designers to use in describing the
interconnection data types used in VHDL modeling.

• std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison
functions for SIGNED, UNSIGNED, INTEGER, STD_ULOGIC,
STD_LOGIC, and STD_LOGIC_VECTOR types.

• numeric_std Package

The numeric_std package is an alternative to the std_logic_arith
package. It is the IEEE standard 1076.3-1997, and documentation
about it is available from IEEE. For more information, see
“numeric_std Package” on page B-20.
B-1

Synopsys Packages

• std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions
for the std_logic_1164 package.

• ATTRIBUTES Package

Declares synthesis attributes and the resource sharing subtype
and its attributes.

std_logic_1164 Package

The std_logic_1164 package defines the IEEE standard for designers
to use in describing the interconnection data types used in VHDL
modeling. The logic system defined in this package might be
insufficient for modeling switched transistors, because such a
requirement is out of the scope of this package. Furthermore,
mathematics, primitives, and timing standards are considered
orthogonal issues as they relate to this package and are, therefore,
beyond its scope.

The std_logic_1164 package file has been updated with Synopsys
synthesis directives.

To use this package in a VHDL source file, include the following lines
at the beginning of the source file:

library IEEE;
use IEEE.std_logic_1164.all;
B-2

Synopsys Packages

When you analyze your VHDL source, FPGA Compiler II / FPGA
Express automatically finds the IEEE library and the std_logic_1164
package. However, you must analyze those use packages that are
not in the IEEE and Synopsys libraries before processing a source
file that uses them.

std_logic_arith Package

Functions defined in the std_logic_arith package provide conversion
to and from the predefined VHDL data type INTEGER, arithmetic,
comparison, and BOOLEAN operations. This package lets you
perform arithmetic operations and numeric comparisons on array
data types. The package defines some arithmetic operators (+, -, *,
ABS) and the relational operators (<, >, <=, >=, =, /=). (IEEE VHDL
does not define arithmetic operators for arrays and defines the
comparison operators in a manner inconsistent with an arithmetic
interpretation of array values.)

The package also defines two major data types of its own: UNSIGNED
and SIGNED (see “Data Types” on page B-6 for details). The
std_logic_arith package is legal VHDL; you can use it for both
synthesis and simulation.

You can configure the std_logic_arith package to work on any array
of single-bit types. You encode single-bit types in 1 bit with the
ENUM_ENCODING attribute.
B-3

Synopsys Packages

You can make the vector type (for example, std_logic_vector)
synonymous with either SIGNED or UNSIGNED. This way, if you plan
to use mostly UNSIGNED numbers, you do not need to convert your
vector type to call UNSIGNED functions. The disadvantage of making
your vector type synonymous with either UNSIGNED or SIGNED is
that it causes redefinition of the standard VHDL comparison functions
(=, /=, <, >, <=, >=).

Table B-1 shows that the standard comparison functions
for BIT_VECTOR do not match the SIGNED and
UNSIGNED functions.

Table B-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions

Using the Package

To use the std_logic_arith package in a VHDL source file, include the
following lines at the beginning of the source file:

library IEEE;
use IEEE.std_logic_arith.all;

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR
”000” = ”000” true true true

”00” = ”000” true true false

”100” = ”0100” true false false

”000” < ”000” false false false

”00” < ”000” false false true

”100” < ”0100” false true false
B-4

Synopsys Packages

Modifying the Package

The std_logic_arith package is written in standard VHDL. You can
modify or add to it. The appropriate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an INTEGER,
you can write the function shown in Example B-1. This
MVL_TO_INTEGER function returns the integer value corresponding
to the vector when the vector is interpreted as an unsigned (natural)
number. If unknown values are in the vector, the return value is –1.

Example B-1 New Function Based on a std_logic_arith Package Function
library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR)
 return INTEGER is
 -- pragma built_in SYN_FEED_THRU
 variable uns: UNSIGNED (ARG’range);
begin
 for i in ARG’range loop
 case ARG(i) is
 when ’0’ | ’L’ => uns(i) := ’0’;
 when ’1’ | ’H’ => uns(i) := ’1’;
 when others => return -1;
 end case;
 end loop;
 return CONV_INTEGER(uns);
end MLV_TO_INTEGER;

Note the use of the CONV_INTEGER function in Example B-1.

FPGA Compiler II / FPGA Express performs almost all synthesis
directly from the VHDL descriptions. However, several functions are
hard-wired for efficiency. They can be identified by the following
comment in their declarations:
B-5

Synopsys Packages

-- pragma built_in

This statement marks functions as special, causing the body of the
function to be ignored. Modifying the body does not change the
synthesized logic unless you remove the built_in comment. If you
want new functionality, write it by using the built_in functions; this is
more efficient than removing the built_in function and modifying the
body of the function.

Data Types

The std_logic_arith package defines two data types: UNSIGNED and
SIGNED.

type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type
BIT_VECTOR, but the std_logic_arith package defines the
interpretation of variables and signals of these types as numeric
values.

UNSIGNED

The UNSIGNED data type represents an unsigned numeric value.
FPGA Compiler II / FPGA Express interprets the number as a binary
representation, with the farthest-left bit being most significant. For
example, the decimal number 8 can be represented as

UNSIGNED’(”1000”)
B-6

Synopsys Packages

When you declare variables or signals of type UNSIGNED, a
larger vector holds a larger number. A 4-bit variable holds values up
to decimal 15, an 8-bit variable holds values up to 255, and so on. By
definition, negative numbers cannot be represented in an UNSIGNED
variable. Zero is the smallest value that can be represented.

Example B-2 illustrates some UNSIGNED declarations. The most
significant bit is the farthest-left array bound, rather than the high or
low range value.

Example B-2 UNSIGNED Declarations
variable VAR: UNSIGNED (1 to 10);
 -- 11-bit number
 -- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0);
 -- 6-bit number
 -- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED

The SIGNED data type represents a signed numeric value. FPGA
Compiler II / FPGA Express interprets the number as a 2’s-
complement binary representation, with the farthest-left bit as the sign
bit. For example, you can represent decimal 5 and –5 as

SIGNED’(”0101”) -- represents +5
SIGNED’(”1011”) -- represents -5

When you declare SIGNED variables or signals, a larger vector holds
a larger number. A 4-bit variable holds values from –8 to 7; an 8-bit
variable holds values from –128 to 127. A SIGNED value cannot hold
as large a value as an UNSIGNED value with the same bit-width.
B-7

Synopsys Packages

Example B-3 shows some SIGNED declarations. The sign bit is the
farthest-left bit, rather than the highest or lowest.

Example B-3 SIGNED Declarations
variable S_VAR: SIGNED (1 to 10);
 -- 11-bit number
 -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0);
 -- 6-bit number
 -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions

The std_logic_arith package provides three sets of functions to
convert values between its UNSIGNED and SIGNED types and the
predefined type INTEGER. This package also provides the
std_logic_vector. Example B-4 shows the declarations of these
conversion functions, with BIT and BIT_VECTOR types.

Example B-4 Conversion Functions
subtype SMALL_INT is INTEGER range 0 to 1;
function CONV_INTEGER(ARG: INTEGER) return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED) return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return UNSIGNED;
B-8

Synopsys Packages

function CONV_SIGNED(ARG: INTEGER;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;

There are four versions of each conversion function. The VHDL
operator overloading mechanism determines the correct version from
the function call’s argument types.

The CONV_INTEGER functions convert an argument of type
INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to an INTEGER
return value. The CONV_UNSIGNED and CONV_SIGNED functions
convert an argument of type INTEGER, UNSIGNED, SIGNED, or
STD_ULOGIC to an UNSIGNED or SIGNED return value whose bit
width is SIZE.

The CONV_INTEGER functions have a limitation on the size of
operands. VHDL defines INTEGER values as being between
–2147483647 and 2147483647. This range corresponds to a 31-bit
UNSIGNED value or a 32-bit SIGNED value. You cannot convert an
argument outside this range to an INTEGER.
B-9

Synopsys Packages

The CONV_UNSIGNED and CONV_SIGNED functions each require
two operands. The first operand is the value converted. The second
operand is an INTEGER that specifies the expected size of the
converted result. For example, the following function call returns a
10-bit UNSIGNED value representing the value in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is
smaller than the expected bit-width (such as representing the value
2 in a 24-bit number), the value is bit-extended appropriately. FPGA
Compiler II / FPGA Express places zeros in the more significant (left)
bits for an UNSIGNED return value, and it uses sign extension for a
SIGNED return value.

You can use the conversion functions to extend a number’s bit-width
even if conversion is not required. For example,

CONV_SIGNED(SIGNED’(”110”), 8) ⇒ ”11111110”

An UNSIGNED or SIGNED return value is truncated when its bit-
width is too small to hold the ARG value. For example,

CONV_SIGNED(UNSIGNED’(”1101010”), 3) ⇒ ”010”

Arithmetic Functions

The std_logic_arith package provides arithmetic functions for use with
combinations of the Synopsys UNSIGNED and SIGNED data types
and the predefined types STD_ULOGIC and INTEGER. These
functions produce adders and subtracters.
B-10

Synopsys Packages

There are two sets of arithmetic functions: binary functions having
two arguments, such as A+B or A*B, and unary functions having one
argument, such as –A. Example B-5 and Example B-6 show the
declarations for these functions.

Example B-5 Binary Arithmetic Functions
function ”+”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED; R: SIGNED) return SIGNED;
function ”+”(L: UNSIGNED; R: SIGNED) return SIGNED;
function ”+”(L: SIGNED; R: UNSIGNED) return SIGNED;
function ”+”(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function ”+”(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED; R: INTEGER) return SIGNED;
function ”+”(L: INTEGER; R: SIGNED) return SIGNED;
function ”+”(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function ”+”(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function ”+”(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function ”+”(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”+”(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”+”(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”+”(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”+”(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”+”(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED; R: SIGNED) return SIGNED;
function ”-”(L: UNSIGNED; R: SIGNED) return SIGNED;
function ”-”(L: SIGNED; R: UNSIGNED) return SIGNED;
function ”-”(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function ”-”(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED; R: INTEGER) return SIGNED;
function ”-”(L: INTEGER; R: SIGNED) return SIGNED;
function ”-”(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function ”-”(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function ”-”(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function ”-”(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function ”-”(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
B-11

Synopsys Packages

function ”-”(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”-”(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function ”-”(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”-”(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function ”-”(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function ”-”(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function ”*”(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function ”*”(L: SIGNED; R: SIGNED) return SIGNED;
function ”*”(L: SIGNED; R: UNSIGNED) return SIGNED;
function ”*”(L: UNSIGNED; R: SIGNED) return SIGNED;

Example B-6 Unary Arithmetic Functions

function ”+”(L: UNSIGNED) return UNSIGNED;
function ”+”(L: SIGNED) return SIGNED;
function ”-”(L: SIGNED) return SIGNED;
function ”ABS”(L: SIGNED) return SIGNED;

The unary arithmetic functions in Example B-5 and Example B-6
determine the width of their return values, as follows:

1. When only one UNSIGNED or SIGNED argument is present, the
width of the return value is the same as that argument’s.

2. When both arguments are either UNSIGNED or SIGNED, the
width of the return value is the larger of the two argument widths.
An exception is that when an UNSIGNED number is added to or
subtracted from a SIGNED number that is the same size or
smaller, the return value is a SIGNED number 1 bit wider than the
UNSIGNED argument. This size guarantees that the return value
is large enough to hold any (positive) value of the UNSIGNED
argument.

The number of bits returned by + and – is illustrated in Table B-2.
B-12

Synopsys Packages

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table B-2 Number of Bits Returned by + and –

In some circumstances, you might need to obtain a carry-out bit from
the + or – operation. To do this, extend the larger operand by 1 bit.
The high bit of the return value is the carry, as shown in Example B-7.

Example B-7 Using the Carry-Out Bit
process
 variable a, b, sum: UNSIGNED (7 downto 0);
 variable temp: UNSIGNED (8 downto 0);
 variable carry: BIT;
begin
 temp <= CONV_UNSIGNED(a,9) + b;
 sum <= temp(7 downto 0);
 carrY <= temp(8);
end process;

Comparison Functions

The std_logic_arith package provides functions for comparing
UNSIGNED and SIGNED data types with each other and with the
predefined type INTEGER. FPGA Compiler II / FPGA Express
compares the numeric values of the arguments, returning a
BOOLEAN value. For example, the following evaluates true:

+ or - U4 U8 S4 S8
U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
B-13

Synopsys Packages

UNSIGNED’(”001”) > SIGNED’(”111”)

The std_logic_arith comparison functions are similar to the built-in
VHDL comparison functions. The only difference is that the
std_logic_arith functions accommodate signed numbers and varying
bit-widths. The predefined VHDL comparison functions perform
bitwise comparisons and do not have the correct semantics for
comparing numeric values (see “Relational Operators” on page 4-5).

These functions produce comparators. The function declarations are
listed in two groups: ordering functions (”<”, ”<=”, ”>”, ”>=”), shown in
Example B-8, and equality functions (”=”, ”/=”), shown in Example B-9.

Example B-8 Ordering Functions
function ”<”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN; =”(L:
INTEGER; R: SIGNED) return BOOLEAN;

Example B-9 Equality Functions
function ”=”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ”=”(L: SIGNED; R: SIGNED) return BOOLEAN;
function ”=”(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ”=”(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ”=”(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ”=”(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ”=”(L: SIGNED; R: INTEGER) return BOOLEAN;
function ”=”(L: INTEGER; R: SIGNED) return BOOLEAN;

function ”/=”(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ”/=”(L: SIGNED; R: SIGNED) return BOOLEAN;
function ”/=”(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ”/=”(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ”/=”(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ”/=”(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ”/=”(L: SIGNED; R: INTEGER) return BOOLEAN;
function ”/=”(L: INTEGER; R: SIGNED) return BOOLEAN;
B-14

Synopsys Packages

Shift Functions

The std_logic_arith package provides functions for shifting the bits in
SIGNED and UNSIGNED numbers. These functions produce
shifters. Example B-10 shows the shift function declarations. For a
list of shift and rotate operators, see “Operators” on page C-9.

Example B-10 Shift Functions
function SHL(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHL(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

function SHR(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHR(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

The SHL function shifts the bits of its argument ARG left by COUNT
bits. SHR shifts the bits of its argument ARG right by COUNT bits.

The SHL functions work the same for both UNSIGNED and SIGNED
values of ARG, shifting in zero bits as necessary. The SHR functions
treat UNSIGNED and SIGNED values differently. If ARG is an
UNSIGNED number, vacated bits are filled with zeros; if ARG is a
SIGNED number, the vacated bits are copied from the ARG sign bit.

Example B-11 shows some shift function calls and their return values.
B-15

Synopsys Packages

Example B-11 Shift Operations
variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED (7 downto 0);
variable COUNT: UNSIGNED (1 downto 0);
. . .
U1 <= ”01101011”;
U2 <= ”11101011”;

S1 <= ”01101011”;
S2 <= ”11101011”;

COUNT <= CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = ”01011000”
SHL(S1, COUNT) = ”01011000”
SHL(U2, COUNT) = ”01011000”
SHL(S2, COUNT) = ”01011000”

SHR(U1, COUNT) = ”00001101”
SHR(S1, COUNT) = ”00001101”
SHR(U2, COUNT) = ”00011101”
SHR(S2, COUNT) = ”11111101”

Multiplication Using Shifts

You can use shift operations for simple multiplication and division of
UNSIGNED numbers if you are multiplying or dividing by a power of 2.

For example, to divide the following UNSIGNED variable U by 4, use
this syntax:

variable U: UNSIGNED (7 downto 0) := ”11010101”;
variable quarter_U: UNSIGNED (5 downto 0);

quarter_U <= SHR(U, ”01”);
B-16

Synopsys Packages

ENUM_ENCODING Attribute

Place the synthesis attribute ENUM_ENCODING on your primary
logic type (see “Enumeration Encoding” on page 3-4). This attribute
allows FPGA Compiler II / FPGA Express to interpret your logic
correctly.

pragma built_in

Label your primary logic functions with built_in pragmas. Pragmas
allow FPGA Compiler II / FPGA Express to interpret your logic
functions easily. When you use a built_in pragma, FPGA Compiler II
/ FPGA Express parses but ignores the body of the function. Instead,
FPGA Compiler II / FPGA Express directly substitutes the appropriate
logic for the function. You need not use built_in pragmas, but they can
result in runtimes that are 10 times as fast.

Use a built_in pragma by placing a comment in the declaration part
of a function. FPGA Compiler II / FPGA Express interprets a comment
as a directive if the first word of the comment is pragma. Example
B-12 shows the use of a built_in pragma.

Example B-12 Using a built_in pragma
function ”XOR” (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_XOR
 begin
 if (L = ’1’) xor (R = ’1’) then
 return ’1’;
 else
 return ’0’;
 end if;
end ”XOR”;
B-17

Synopsys Packages

Two-Argument Logic Functions

Synopsys provides six built-in functions for performing two-argument
logic functions:

• SYN_AND

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

You can use these functions on single-bit arguments or equal-length
arrays of single bits. Example B-13 shows a function that takes the
logical AND of two equal-size arrays.

Example B-13 Built-In AND for Arrays
function ”AND” (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_AND
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
 assert L’length = R’length;
 MY_L <= L;
 MY_R <= R;
 for i in RESULT’range loop
 if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
 RESULT(i) <= ’1’;
 else
 RESULT(i) <= ’0’;
 end if;
 end loop;
 return RESULT;
end ”AND”;
B-18

Synopsys Packages

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument
logic functions:

• SYN_NOT

• SYN_BUF

You can use these functions on single-bit arguments or equal-length
arrays of single bits. Example B-14 shows a function that takes the
logical NOT of an array.

Example B-14 Built-In NOT for Arrays
function ”NOT” (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_NOT
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
 MY_L <= L;
 for i in result’range loop
 if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
 RESULT(i) <= ’1’;
 elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
 RESULT(i) <= ’0’;
 else
 RESULT(i) <= ’X’;
 end if;
 end loop;
 return RESULT;
end ”NOT”;

Type Conversion

The built-in function SYN_FEED_THRU performs fast type
conversion between unrelated types. The synthesized logic from
SYN_FEED_THRU wires the single input of a function to the return
value. This connection can save CPU time required to process a
complicated conversion function, as shown in Example B-15.
B-19

Synopsys Packages

Example B-15 Use of SYN_FEED_THRU
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is ”01 10 11”;
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
 -- pragma built_in SYN_FEED_THRU
begin
 case L is
 when RED => return ”01”;
 when GREEN => return ”10”;
 when BLUE => return ”11”;
 end case;
end COLOR_TO_BV;

numeric_std Package

FPGA Compiler II / FPGA Express supports nearly all of numeric_std,
the IEEE Standard VHDL Synthesis Package, which defines numeric
types and arithmetic functions.

Caution!
The numeric_std package and the std_logic_arith package have
overlapping operations. Use of these two packages
simultaneously during analysis could cause type mismatches.
B-20

Synopsys Packages

Understanding the Limitations of numeric_std package

The 1999.05 version of FPGA Compiler II / FPGA Express does not
support the following numeric_std package components:

• divide, rem, or mod operators

If your design contains these operators, use the std_logic_arith
package.

• TO_01 function as a simulation construct

Using the Package

Access numeric_std package with the following statement in your
VHDL code:

library IEEE;
use IEEE.numeric_std.all;

Synopsys packages are pre-analyzed and do not require further
analyzing. To list the packages currently in memory, use the following
command:

report_design_lib

Data Types

The numeric_std package defines the following two data types in the
same way that the std_logic_arith package does:

• USIGNED

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
B-21

Synopsys Packages

See “UNSIGNED” on page B-6 for more information.

• SIGNED

type SIGNED is array (NATURAL range <>) of STD_LOGIC;

See “SIGNED” on page B-7 for more information.

Conversion Functions

The numeric_std package provides functions to convert values
between its USIGNED and SIGNED types. Example B-16 shows the
declarations of these conversion functions.

Example B-16 numeric_std Conversion Functions
function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
function TO_INTEGER (ARG: SIGNED) return INTEGER;
function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;

TO_INTEGER, TO_SIGNED, and TO_UNSIGNED are similar to
CONV_INTEGER, CONV_SIGNED, and CONV_UNSIGNED in
std_logic_arith (see “Conversion Functions” on page B-8).

Resize Function

The resize function numeric_std supports is shown in the declarations
in Example B-17.

Example B-17 numeric_std Resize Function
function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL) return SIGNED;
function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL) return UNSIGNED;
B-22

Synopsys Packages

Arithmetic Functions

The numeric_std package provides arithmetic functions for use with
combinations of Synopsys UNSIGNED and SIGNED data types and
the predefined types STD_ULOGIC and INTEGER. These functions
produce adders and subtracters.

There are two sets of arithmetic functions, which the numeric_std
package defines in the same way that the std_logic_arith package
does (see “Arithmetic Functions” on page B-10 for more information):

• Binary functions having two arguments, such as

A+B

A*B

Example B-18 shows the declarations for these functions.

• Unary functions having one argument, such as

–A

abs A

Example B-19 on page B-24 shows the declarations for these
functions.

Example B-18 numeric_std Binary Arithmetic Functions

function "+" (L, R: UNSIGNED) return UNSIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "+" (L: INTEGER; R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: INTEGER) return SIGNED;
B-23

Synopsys Packages

function "-" (L, R: UNSIGNED) return UNSIGNED;
function "-" (L, R: SIGNED) return SIGNED;
function "-" (L: UNSIGNED;R: NATURAL) return UNSIGNED;
function "-" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "-" (L: SIGNED; R: INTEGER) return SIGNED;
function "-" (L: INTEGER; R: SIGNED) return SIGNED;

function "*" (L, R: UNSIGNED) return UNSIGNED;
function "*" (L, R: SIGNED) return SIGNED;
function "*" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "*" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "*" (L: SIGNED; R: INTEGER) return SIGNED;
function "*" (L: INTEGER; R: SIGNED) return SIGNED;

Example B-19 numeric_std Unary Arithmetic Functions

function "abs" (ARG: SIGNED) return SIGNED;
function "-" (ARG: SIGNED) return SIGNED;

Comparison Functions

The numeric_std package provides functions to compare UNSIGNED
and SIGNED data types to each other and to the predefined type
INTEGER. FPGA Compiler II / FPGA Express compares the numeric
values of the arguments and returns a BOOLEAN value.

These functions produce comparators. The function declarations are
listed in two groups:

• Ordering functions ("<", "<=", ">", ">="), shown in Example B-20

• Equality functions ("=", "/="), shown in Example B-21 on
page B-25
B-24

Synopsys Packages

Example B-20 numeric_std Ordering Functions

function ">" (L, R: UNSIGNED) return BOOLEAN;
function ">" (L, R: SIGNED) return BOOLEAN;
function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<" (L, R: UNSIGNED) return BOOLEAN;
function "<" (L, R: SIGNED) return BOOLEAN;
function "<" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<=" (L, R: UNSIGNED) return BOOLEAN;
function "<=" (L, R: SIGNED) return BOOLEAN;
function "<=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<=" (L: SIGNED; R: INTEGER) return BOOLEAN;

function ">=" (L, R: UNSIGNED) return BOOLEAN;
function ">=" (L, R: SIGNED) return BOOLEAN;
function ">=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN;

Example B-21 numeric_std Equality Functions

function "=" (L, R: UNSIGNED) return BOOLEAN;
function "=" (L, R: SIGNED) return BOOLEAN;
function "=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "=" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "/=" (L, R: UNSIGNED) return BOOLEAN;
function "/=" (L, R: SIGNED) return BOOLEAN;
function "/=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
B-25

Synopsys Packages

function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "/=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "/=" (L: SIGNED; R: INTEGER) return BOOLEAN;

Defining Logical Operators Functions

The numeric_std package provides functions that define all of the
logical operators: NOT, AND, OR, NAND, NOR, XOR, and XNOR.
These functions work just like similar functions in std_logic_1164,
except that they operate on SIGNED and UNSIGNED values rather
than on STD_LOGIC_VECTOR values. Example B-22 shows these
function declarations.

Example B-22 numeric_std Logical Operators Functions
function "not" (L: UNSIGNED) return UNSIGNED;
function "and" (L, R: UNSIGNED) return UNSIGNED;
function "or" (L, R: UNSIGNED) return UNSIGNED;
function "nand" (L, R: UNSIGNED) return UNSIGNED;
function "nor" (L, R: UNSIGNED) return UNSIGNED;
function "xor" (L, R: UNSIGNED) return UNSIGNED;
function "xnor" (L, R: UNSIGNED) return UNSIGNED;

function "not" (L: SIGNED) return SIGNED;
function "and" (L, R: SIGNED) return SIGNED;
function "or" (L, R: SIGNED) return SIGNED;
function "nand" (L, R: SIGNED) return SIGNED;
function "nor" (L, R: SIGNED) return SIGNED;
function "xor" (L, R: SIGNED) return SIGNED;
function "xnor" (L, R: SIGNED) return SIGNED;

Shift Functions

The numeric_std package provides functions for shifting the bits in
UNSIGNED and SIGNED numbers. These functions produce
shifters. Example B-23 shows the shift function declarations.
B-26

Synopsys Packages

Example B-23 numeric_std Shift Functions
function SHIFT_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

function ROTATE_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function ROTATE_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

The SHIFT_LEFT function shifts the bits of its argument ARG left by
COUNT bits. SHIFT_RIGHT shifts the bits of its argument ARG right
by COUNT bits.

The SHIFT_LEFT functions work the same for both UNSIGNED and
SIGNED values of ARG, shifting in zero bits as necessary. The
SHIFT_RIGHT functions treat UNSIGNED and SIGNED values
differently:

• If ARG is an UNSIGNED number, vacated bits are filled with zeros

• If ARG is a SIGNED number, the vacated bits are copied from the
ARG sign bit

Example B-26 on page B-29 shows some shift functions calls and
their return values.

Rotate Functions

ROTATE_LEFT and ROTATE_RIGHT are similar to the shift functions.

Example B-24 shows rotate function declarations.
B-27

Synopsys Packages

Example B-24 numeric_std Rotate Functions
ROTATE_LEFT (U1, COUNT) = "01011011"
ROTATE_LEFT (S1, COUNT) = "01011011"
ROTATE_LEFT (U2, COUNT) = "01011111"
ROTATE_LEFT (S2, COUNT) = "01011111"

ROTATE_RIGHT (U1, COUNT) = "01101101"
ROTATE_RIGHT (S1, COUNT) = "01101101"
ROTATE_RIGHT (U2, COUNT) = "01111101"
ROTATE_RIGHT (S2, COUNT) = "01111101"

Shift and Rotate Operators

The numeric_std package provides shift operators and rotate
operators, which work in the same way that shift functions and rotate
functions do. The shift operators are: sll, srl, sla, and sra.
Example B-25 shows some shift and rotate operator declarations.
Example B-26 on page B-29 includes some shift and rotate operators.

Example B-25 numeric_std Shift Operators
function "sll" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "sll" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "srl" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "srl" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "rol" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "rol" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "ror" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
B-28

Synopsys Packages

Example B-26 Some numeric_std Shift Functions and Shift Operators
Variable U1, U2: UNSIGNED (7 downto 0);
Variable S1, S2: SIGNED (7 downto 0);
Variable COUNT: NATURAL;
...
U1 <= "01101011";
U2 <= "11101011";
S1 <= "01101011";
S2 <= "11101011";
COUNT <= 3;
...
SHIFT_LEFT (U1, COUNT) = "01011000"
SHIFT_LEFT (S1, COUNT) = "01011000"
SHIFT_LEFT (U2, COUNT) = "01011000"
SHIFT_LEFT (S2, COUNT) = "01011000"

SHIFT_RIGHT (U1, COUNT) = "00001101"
SHIFT_RIGHT (S1, COUNT) = "00001101"
SHIFT_RIGHT (U2, COUNT) = "00011101"
SHIFT_RIGHT (S2, COUNT) = "11111101"

U1 sll COUNT = "01011000"
S1 sll COUNT = "01011000"
U2 sll COUNT = "01011000"
S2 sll COUNT = "01011000"

U1 srl COUNT = "00001101"
S1 srl COUNT = "00001101"
U2 srl COUNT = "00011101"
S2 srl COUNT = "11111101"

U1 rol COUNT = "01011011"
S1 rol COUNT = "01011011"
U2 rol COUNT = "01011111"
S2 rol COUNT = "01011111"

U1 ror COUNT = "01101101"
S1 ror COUNT = "01101101"
U2 ror COUNT = "01111101"
S2 ror COUNT = "01111101"
B-29

Synopsys Packages

std_logic_misc Package

The std_logic_misc package resides in the lib/packages/IEEE/src/
std_logic_misc.vhd subdirectory of the FPGA Compiler II / FPGA
Express directory. It declares the primary data types the Synopsys
VSS tools support.

Boolean reduction functions take one argument (an array of bits) and
return a single bit. For example, the AND reduction of ”101” is ”0”, the
logical AND of all three bits.

Several functions in the std_logic_misc package provide Boolean
reduction operations for the predefined type STD_LOGIC_VECTOR.
Example B-27 shows the declarations of these functions.

Example B-27 Boolean Reduction Functions
function AND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function AND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

These functions combine the bits of the STD_LOGIC_VECTOR, as
the name of the function indicates. For example, XOR_REDUCE
returns the XOR of all bits in ARG. Example B-28 shows some
reduction function calls and their return values.
B-30

Synopsys Packages

Example B-28 Boolean Reduction Operations
AND_REDUCE(”111”) = ’1’
AND_REDUCE(”011”) = ’0’

OR_REDUCE(”000”) = ’0’
OR_REDUCE(”001”) = ’1’

XOR_REDUCE(”100”) = ’1’
XOR_REDUCE(”101”) = ’0’

NAND_REDUCE(”111”)= ’0’
NAND_REDUCE(”011”)= ’1’

NOR_REDUCE(”000”) = ’1’
NOR_REDUCE(”001”) = ’0’

XNOR_REDUCE(”100”)= ’0’
XNOR_REDUCE(”101”)= ’1’

ATTRIBUTES Package

The ATTRIBUTES package declares all the supported synthesis (and
simulation) attributes. These include:

• FPGA Compiler II / FPGA Express constraints and attributes

• State vector attributes

• Resource sharing attributes

• General attributes for interpreting VHDL (described in Chapter 3,
"Data Types”)

• Attributes for use with the Synopsys VSS tools
B-31

Synopsys Packages

Reference this package when you use synthesis attributes:

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;
B-32

Synopsys Packages

C
VHDL Constructs C

Many VHDL language constructs, although useful for simulation and
other stages in the design process, are not relevant to synthesis.
Because these constructs cannot be synthesized, FPGA Compiler II
/ FPGA Express does not support them.

This appendix provides a list of all VHDL language constructs, with
the level of support for each, followed by a list of VHDL reserved
words.

This appendix describes

• VHDL Construct Support

• VHDL Reserved Words
C-1

VHDL Constructs

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored
and unsupported constructs are defined as follows:

• Ignored means that the construct is allowed in the VHDL source
but is ignored by FPGA Compiler II / FPGA Express.

• Unsupported means that the construct is not allowed in the VHDL
source and that FPGA Compiler II / FPGA Express flags it as an
error. If errors are in a VHDL description, the description is not
translated (synthesized).

Constructs are listed in the following order:

• Design units

• Data types

• Declarations

• Specifications

• Names

• Operators

• Operands and expressions

• Sequential statements

• Concurrent statements

• Predefined language environment
C-2

VHDL Constructs

Design Units

entity
The entity statement part is ignored. Generics are supported, but
only of type INTEGER. Default values for ports are ignored.

architecture
Multiple architectures are allowed. Global signal interaction
between architectures is unsupported.

configuration
Configuration declarations and block configurations are
supported, but only to specify the top-level architecture for a top-
level entity.

The use clauses, attribute specifications, component
configurations, and nested block configurations are unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.

subprogram
Default values for parameters are unsupported. Assigning to
indexes and slices of unconstrained out parameters is
unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not
bounded by a static value.

Resolution functions are supported for wired-logic and three-state
functions only.

Subprograms can be declared only in packages and in the
declaration part of an architecture.
C-3

VHDL Constructs

Data Types

enumeration
Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported.

Integer types are automatically converted to bit vectors whose
width is as small as possible to accommodate all possible values
of the type’s range. The type’s range can be either in unsigned
binary for nonnegative ranges or in 2’s-complement form for
ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types
is ignored in delay specifications.

floating
Floating-point type declarations are ignored. The use of floating-
point types is unsupported except for floating-point constants
used with Synopsys-defined attributes.

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are
supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types
is unsupported.
C-4

VHDL Constructs

file
File type declarations are ignored, and the use of file types
is unsupported.

incomplete type declarations
Incomplete type declarations are unsupported.

Declarations

constant
Constant declarations are supported except for deferred constant
declarations.

signal
Register and bus declarations are unsupported. Resolution
functions are supported for wired and three-state functions only.
Declarations other than from a globally static type are
unsupported. Initial values are unsupported.

variable
Declarations other than from a globally static type are
unsupported. Initial values are unsupported.

shared variable
Variable shared by different processes. Shared variables are fully
supported.

file
File declarations are unsupported.

interface
Buffer and linkage are translated to out and inout, respectively.
C-5

VHDL Constructs

alias
Alias declarations are supported, with the following exceptions:

- An alias declaration that lacks a subtype indication

- A nonobject alias—such as an alias that refers to a type.

component
Component declarations that list a name other than a valid entity
name are unsupported.

attribute
Attribute declarations are fully supported, but the use of user-
defined attributes is unsupported.

Specifications

attribute
Others and all are unsupported in attribute specifications. User-
defined attributes can be specified, but the use of user-defined
attributes is unsupported.

configuration
Configuration specifications are unsupported.

disconnection
Disconnection specifications are unsupported. Attribute
declarations are fully supported, but the use of user-defined
attributes is unsupported.
C-6

VHDL Constructs

Names

simple
Simple names are fully supported.

selected
Selected (qualified) names outside a use clause are unsupported.
Overriding the scopes of identifiers is unsupported.

operator symbol
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception: Indexing
an unconstrained out parameter in a procedure is unsupported.

slice
Slice names are fully supported, with one exception: Using a slice
of an unconstrained out parameter in a procedure is unsupported
unless the actual parameter is an identifier.

attribute
Only the following predefined attributes are supported: base, left,
right, high, low, range, reverse_range, and length. The event and
stable attributes are supported only as described with the wait
and if statements (see “wait Statements” on page 5-50). User-
defined attribute names are unsupported. The use of attributes
with selected names (name.name’attribute) is unsupported.
C-7

VHDL Constructs

Identifiers and Extended Identifiers

An identifier in VHDL is a user-defined name for any of these:
constant, variable, function, signal, entity, port, subprogram,
parameter, and instance.

Specifics of Identifiers

The characteristics of identifiers are:

• They can be composed of letters, digits, and the underscore
character (_).

• Their first character cannot be a number, unless it is an extended
identifier (see Example C-1).

• They can be of any length.

• They are case-insensitive.

• All of their characters are significant.

Specifics of Extended Identifiers

The characteristics of extended identifiers are:

• Any of the following can be defined as one:

- Identifiers that contain special characters

- Identifiers that begin with numbers

- Identifiers that have the same name as a keyword
C-8

VHDL Constructs

• They start with a backslash character (\), followed by a sequence
of characters, followed by another backslash (\).

• They are case-sensitive.

Example C-1 shows some extended identifiers.

Example C-1 Sample Extended Identifiers
\a+b\ \3state\
\type\ \(a&b)|c\

For more information about identifiers and extended identifiers, see
“Identifiers” on page 4-23.

Operators

logical
Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported. The / (division), mod,
and rem operators are supported only when both operands are
constant or when the right operand is a constant power of 2.
C-9

VHDL Constructs

miscellaneous
The ** operator is supported only when both operands are
constant or when the left operand is 2. The abs operator is fully
supported.

operator overloading
Operator overloading is fully supported.

short-circuit operation
The short-circuit behavior of operators is not supported.

Shift and Rotate Operators

You can define shift and rotate operators for any one-dimensional
array type whose element type is either of the predefined types, BIT
or Boolean. The right operand is always of type integer. The type of
the result of a shift operator is the same as the type of the left operand.
The shift and rotate operators are included in the list of VHDL reserved
words in Table C-1 on page C-17. There is more information about
the shift and rotate operators that numeric_std supports in “Shift and
Rotate Operators” on page B-28. The shift operators are:

sll
Shift left logical

srl
Shift right logical

sla
Shift left arithmetic

sra
Shift right arithmetic
C-10

VHDL Constructs

The rotate operators are

rol
Rotate left logical

ror
Rotate right logical

Example C-2 illustrates the use of shift and rotate operators.

Example C-2 Sample Showing Use of Shift and Rotate Operators
architecture arch of shft_op is
begin

a <= "01101";
q1 <= a sll 1; -- q1 = "11010"
q2 <= a srl 3; -- q2 = "00001"
q3 <= a rol 2; -- q3 = "10101"
q4 <= a ror 1; -- q4 = "10110"
q5 <= a sla 2; -- q5 = "10100"
q6 <= a sra 1; -- q6 = "00110"

end;

xnor Operator

You can define the binary logical operator xnor for predefined types
BIT and Boolean, as well as for any one-dimensional array type whose
element type is BIT or Boolean. The operands must be the same type
and length. The result also has the same type and length. The xnor
operator is included in the list of VHDL reserved words in Table C-1
on page C-17.

Example C-3 Sample Showing Use of xnor Operator
a <= "10101";
b <= "11100";
c <= a xnor b; -- c = "10110"
C-11

VHDL Constructs

Operands and Expressions

based literal
Based literals are fully supported.

null literal
Null slices, null ranges, and null arrays are unsupported.

physical literal
Physical literals are ignored.

string
Strings are fully supported.

aggregate
The use of types as aggregate choices is supported. Record
aggregates are supported.

function call
Function calls are supported, with one exception: Function
conversions on input ports are not supported, because type
conversions on formal ports in a connection specification (port
map) are not supported.

qualified expression
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocator
Allocators are unsupported.

static expression
Static expressions are fully supported.
C-12

VHDL Constructs

universal expression
Floating-point expressions are unsupported, except in a
Synopsys-recognized attribute definition. Infinite-precision
expressions are not supported. Precision is limited to 32 bits; all
intermediate results are converted to integer.

Sequential Statements

wait
The wait statement is unsupported unless it is in one of the
following forms:

wait until clock = VALUE;
wait until clock’event and clock = VALUE;
wait until not clock’stable and clock = VALUE;

VALUE is ’0’, ’1’, or an enumeration literal whose encoding is 0 or
1. A wait statement in this form is interpreted to mean “wait until
the falling (VALUE is ’0’) or rising (VALUE is ’1’) edge of the signal
named clock.” You cannot use wait statements in subprograms.

assert
Assert statements are ignored.

report
Report statements are ignored.

statement label
Statement labels are ignored.

signal
Guarded signal assignment is unsupported. The transport and
after signals are ignored. Multiple waveform elements in signal
assignment statements are unsupported.

variable
Variable statements are fully supported.
C-13

VHDL Constructs

procedure call
Type conversion on formal parameters is unsupported.
Assignment to single bits of vectored ports is unsupported.

if
The if statements are fully supported.

case
The case statements are fully supported.

loop
The for loops are supported, with two constraints: The loop index
range must be globally static, and the loop body must not contain
a wait statement. The while loops are supported, but the loop body
must contain at least one wait statement. The loop statements
with no iteration scheme (infinite loops) are supported, but the
loop body must contain at least one wait statement.

next
Next statements are fully supported.

exit
Exit statements are fully supported.

return
Return statements are fully supported.

null
Null statements are fully supported.
C-14

VHDL Constructs

Concurrent Statements

block
Guards on block statements are supported. Ports and generics
in block statements are unsupported.

process
Sensitivity lists in process statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded keyword is supported. The transport keyword is
ignored. Multiple waveforms are unsupported.

component instantiation
Type conversion on the formal port of a connection specification
is unsupported.

generate
The generate statements are fully supported.
C-15

VHDL Constructs

Predefined Language Environment

severity_level type
The severity_level type is unsupported.

time type
The time type is ignored if time variables and constants are used
only in after clauses. In the following two code fragments, both
the after clause and TD are ignored:

constant TD: time := 1.4 ns;
X <= Y after TD;

X <= Y after 1.4 ns;

now function
The now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
These predefined attributes are supported: base, left, right, high,
low, range, reverse_range, ascending, and length. The event and
stable attributes are supported only in the if and wait statements,
as described in “wait Statements” on page 5-50.
C-16

VHDL Constructs

VHDL Reserved Words

Table C-1 lists the words that are reserved for the VHDL language
and cannot be used as identifiers:

Table C-1 VHDL Reserved Words

abs exit new select
access next severity
after file nor shared
alias for not signal
all function null sla
and sll
architecture of sra
array generate on srl
assert generic open subtype
attribute group or

guarded others then
begin out to
block if transport
body impure package type
buffer in port
bus inertial postponed unaffected

inout procedure units
case is process until
component pure use
configuration label
constant library range variable

linkage record
disconnect literal register wait
downto loop reject when

rem while
else map report with
elsif mod return
end rol xnor
entity nand ror xor
C-17

VHDL Constructs

C-18

VHDL Constructs

Glossary

anonymous type
A predefined or underlying type with no name, such as universal
integers.

ASIC
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design
by using sequential statements. These statements are similar in
expressive capability to those found in many other programming
languages. See also the data flow view, sequential statement, and
structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example,
the bit-width of the constant 5 is 3 bits.

character literal
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value FPGA Compiler II / FPGA
Express can determine during translation.
GL-1

constraints
The designer’s specification of design performance goals. FPGA
Compiler II / FPGA Express uses constraints to direct the
optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are
convertible, along with same-sized arrays of convertible element
types.

data flow view
The set of VHDL/Verilog statements that describe the behavior of a
design by using concurrent statements. These descriptions are
usually at the level of Boolean equations combined with other
operators and function calls. See also the behavioral view and
structural view definitions.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL
Hardware Description Language.

identifier
A sequence of letters, underscores, and numbers. An identifier
cannot be a VHDL/Verilog reserved word, such as type or loop. An
identifier must begin with a letter or an underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.
GL-2

optimization
The modification of a design in an attempt to improve some
performance aspect. FPGA Compiler II / FPGA Express optimizes
designs and tries to meet specified design constraints for area and
speed.

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit
result, namely the result of the operator applied to each successive
pair of array elements.

register
A memory device containing one or more flip-flops or latches used
to hold a value.

resource sharing
The assignment of a similar VHDL/Verilog operation (for example,
+) to a common netlist cell. Netlist cells are the resources—they are
equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of VHDL/Verilog statements that execute in sequence.

signed value
A value that can be positive, zero, or negative.

structural view
The set of VHDL/Verilog statements used to instantiate primitive
and hierarchical components in a design. A VHDL/Verilog design at
the structural level is also called a netlist. See also the behavioral
view and data flow view definitions.
GL-3

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description.
When VHDL/Verilog is used, synthesis is a two-step process:
translation from VHDL/Verilog to gates and optimization of those
gates for a specific FPGA library.

technology library
A library of cells available to FPGA Compiler II / FPGA Express
during the synthesis process. A technology library can contain area,
timing, and functional information on each cell.

translation
The mapping of high-level language constructs onto a lower-level
form. FPGA Compiler II / FPGA Express translates RTL VHDL/
Verilog descriptions to gates.

type
In VHDL/Verilog, the mechanism by which objects are restricted in
the values they are assigned and the operations that can be applied
to them.

unsigned
A value that can be only positive or zero.

variable
An electrical quantity that can be used to transmit information. A
signal is declared with a type and receives its value from one or
more drivers. Signals are created in Verilog through either wire or
reg declarations.

VHDL
VHSIC hardware description language.
GL-4

VHSIC
Very high speed integrated circuit, a high-technology program of the
United States Department of Defense.
GL-5

GL-6

Index

Symbols
” B-25, B-25
”&” (concatenation operator) 4-8
”**” (exponentiation operator) 4-12
”*” (multiplying operator) 4-11
”*” function B-12, B-24
”+” (adding operator) 4-8
”+” (unary operator) 4-10
”+” function B-11, B-24
”/=” (relational operator) 4-6
”/=” function B-14
”/” (multiplying operator) 4-11
”<=” function B-14
”<” function B-14
”=” (relational operator) 4-6
”=” function B-14, B-26
”>=” (relational operator) 4-6
”>=” function B-14, B-25
”>” (relational operator) 4-6
”>” function B-14, B-25
”-” (adding operator) 4-8
”-” (unary operator) 4-10
”-” function B-24
”–” function B-11

A
abs (absolute value operator) 4-12
actual parameters

subprograms 2-26
adder-subtracter (example) A-17
adding operators 4-8
aggregate target syntax 5-9
aggregates C-12
aggregates (array literals) 4-18
aggregates, record 3-14
algorithms

processes 2-19
alias declarations

supported C-6
and (logical operator) 4-3
architecture 2-5

dataflow
two-input NAND gate 2-34

defined 2-5
overriding entity port names 2-8
RTL

two-input NAND gate 2-34
statement, entity 2-5
structural

two-input NAND gate 2-33
arithmetic functions

numeric_std
IN-1

binary B-23
unary B-23

arithmetic operators
adding 4-8
multiplying 4-11
negating 4-10

arithmetic optimization
considering overflow from carry bits 8-10
introduction 8-6

array attributes
RANGE

example 5-28
array data type

attributes
high 3-12
index 3-12
left 3-12
length 3-12
low 3-12
predefined 3-12
range 3-12
reverse_range 3-12
right 3-12
using 3-12

concatenating 4-9
constrained

array_type_name 3-10
defining 3-10
illustration 3-10
index 3-10
syntax 3-10

definition of 3-9
index

constrained 3-9
ordering 4-6
unconstrained

advantages 3-11
array_type_name 3-11
defining 3-11
element_type_name 3-11
range_type_name 3-11
syntax 3-11

array literals
as aggregates 4-18
as bit strings 4-28

array_type_name 3-10, 3-11
arrival time 8-8
assert statement C-13
assignment statement

aggregate target 5-9
field target 5-8
indexed name target 5-4
signal

syntax 5-12
simple name target 5-3
slice target 5-7
syntax 5-2
variable

syntax 5-11
async_set_reset attribute 7-5
async_set_reset_local attribute 7-5
async_set_reset_local_all attribute 7-5
asynchronous designs

optimization 8-37
using 8-23

asynchronous processes 6-3
attribute declarations C-6
attributes

array 3-12
as operands 4-20
ENUM_ENCODING B-17
synthesis_off 7-8
synthesis_on 7-8
VHDL

ENUM_ENCODING 3-5
ENUM_ENCODING values 3-7

ATTRIBUTES package B-2, B-31

B
binary arithmetic functions

example B-11
numeric_std B-23
IN-2

binary bit string 4-28
bit string literals 4-28
BIT type 3-17
bit vectors

as bit strings 4-28
bit width (of operands) 4-15
BIT_VECTOR type 3-17, B-4
block 2-17
block statement

block_declarative_item 6-10
edge-sensitive latch 6-13
guarded 6-10
guarded blocks 6-12
level-sensitive latch 6-12
nested blocks 6-11

block statements
guards C-15

block_declarative_item
entity architecture 2-6
in block statement 6-10

body
subprogram 2-23

Boolean reduction functions B-30
BOOLEAN type 3-17
buffer

port mode 2-4, 2-24, 2-25
built_in directive

logic functions B-18
type conversion B-19
using B-17

built_in pragma
example of using B-17

bus resolution function 6-9
bused clock

syntax 7-22

C
carry-lookahead adder (example) A-32
carry-out bit

example of using B-13

case statement
invalid usages 5-21
syntax 5-17

character literals 4-26
character string literals 4-28
CHARACTER type 3-17
clock, bused 7-22
combinational feedback

paths 8-35
combinational logic 8-2
combinational processes 5-55, 6-5
common subexpressions

sharing 8-12
comparison functions

numeric_std B-24
compiler directives 5-45
component

declaration
generic parameter 2-11
N-bit adder 2-11
port name and order 6-23
two-input AND gate, example 2-11

implication
directives 5-46
example 5-47
latches and registers 5-55
three-state driver 7-59

instantiation
defined 2-17
direct 6-25
port map 6-23
search order 2-13
statement 2-13, 6-22

mapping subprogram to 5-45
component declarations C-6
component implication

registers 7-1
computable operands 4-16
concatenation operator 4-9
concurrent procedure call

eqivalent process 6-14
IN-3

syntax 6-14
concurrent signal assignment 6-17

conditional signal assignment 6-18
selected signal assignment 6-20

concurrent statement
block 2-17
component instantiation 2-17
procedure call 2-17
signal assignment 2-18
supported C-15

conditional signal assignment
equivalent process 6-19
syntax 6-18

conditionally assigned variable 7-19
conditionally specified signal 8-36
constant declaration

defined 2-18
supported C-5
value 2-18

constant propagation 8-21
constants

record aggregates 3-14
constrained data array 3-10
constructs, VHDL

architecture 2-5
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32
variable declaration 2-20, 2-31

block
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32

component instantiation 2-13
declaration

constant 2-18
signal 2-21
variable 2-20, 2-31

entity
constant declaration 2-18
defined 2-2

subtype declaration 2-32
type declaration 2-32

operator
overloading 2-30

package
constant declaration 2-18
subtype declaration 2-32
type declaration 2-32

process
constant declaration 2-18
defined 2-19
subtype declaration 2-32
type declaration 2-32

signal
bus resolution function 6-9
resolution function 2-40

subprogram
constant declaration 2-18
function 2-22, 2-24
overloading 2-29
procedure 2-22, 2-23
subtype declaration 2-32
type declaration 2-32

subtype
declaration 2-32
defined 2-32

variable
declaration 2-20, 2-31

control unit (example)
counting A-29
state machine A-24

CONV_INTEGER functions B-8
CONV_SIGNED functions B-9
CONV_UNSIGNED functions B-8
conversion functions

arithmetic
binary B-11
for adders and subtracters B-10
unary B-12

numeric_std
TO_INTEGER B-22
TO_SIGNED B-22
IN-4

TO_UNSIGNED B-22
std_logic_arith package B-8

count zeros (example)
combinational A-19
sequential A-22

COUNTER3
description

structural design 2-15
critical path 8-8

D
data type

abstract
BOOLEAN 3-1

advantages 3-2
array

constrained 3-10
syntax 3-10

array attributes
high 3-12
index 3-12
left 3-12
length 3-12
low 3-12
range 3-12
reverse_range 3-12
right 3-12

BIT 3-18
BIT_VECTOR 3-19
BOOLEAN 3-18
CHARACTER 3-18
described 3-1
enumeration syntax 3-3
hardware-related BIT 3-1
integer

defined 3-19
syntax 3-8

new type defined
BYTE, example 3-2

predefined
STANDARD package 3-1

record 3-13
subtype

defined 3-3
syntax 2-32

supported C-4
SYNOPSYS

std_logic_signed 3-9
std_logic_unsigned 3-9

data types
numeric_std

SIGNED B-22
UNSIGNED B-22

dataflow architecture
NAND2 entity 2-34

declaration
constant 2-18

example 2-18
incorrect use of port name example 2-9

signal
example 2-21
incorrect use of port name example 2-9
logical 4-4

subprogram
function syntax 2-24
procedure syntax 2-23

subtype 2-32
supported C-5
variable

defined 2-20, 2-31
example 2-20, 2-31

definitions
register inference 7-1

design architecture
concurrent statement 2-17

block 2-17
block_declarative_item 2-6
component instantiation 2-13, 2-17
procedure call 2-17
process 2-17, 2-19
signal assignment 2-18

declaration section
component 2-10
IN-5

constant 2-10
signal 2-10
subprogram 2-10
type 2-10

design units
package 2-35, 2-36
subprogram 2-22

organization, illustrated 2-5
Design Compiler

asynchronous designs 8-23
design style

data type
enumeration 3-3
integer 3-8

data types 3-2
design unit

package 2-35
supported C-3

designs
efficiency 8-22
structure 8-3

direct component instantiation 6-25
directives

built_in
identifying B-6
using B-17

component implication 5-46
map_to_entity 5-45, 6-14
resolution_method 2-41
return_port_name 5-45
synthetic 9-2
translate_off, warning 9-3
translate_on, warning 9-3
using 2-42

dont care inference
example 8-29
simulation versus synthesis 8-33
using 8-32

E
edge expression 7-58

element_type_name 3-11
encoding

values
ENUM_ENCODING attribute 3-7

vectors
ENUM_ENCODING attribute 3-6

entity
architecture

defined 2-2
syntax 2-5
three-bit counter 2-7
two-input NAND gate 2-34

composition 2-2
consistency

component instantiation 2-14
defined 2-2
generic specification

example 2-5
syntax 2-3

port specification
overriding port names 2-8
port modes 2-4, 2-24, 2-25
syntax 2-4

specification
NAND2 gate 2-3, 2-34
three-bit counter 2-7

ENUM_ENCODING attribute 3-5, B-17
values 3-7
vectors 3-7

enumerated types
ordering 4-6

enumeration data type
encoding

ENUM_ENCODING attribute 3-5
ENUM_ENCODING value 3-7
example 3-5
literal value 3-4

example
COLOR 3-4
encoding 3-5
MY_LOGIC 3-4

literal, overloaded 3-4
IN-6

syntax 3-3
enumeration literals 4-27
equality functions

example B-14
equality operators 4-6
escaped identifier.See extended identifier
examples

adder-subtracter A-17
asynchronous design

incorrect 8-27
carry-lookahead adder A-32
case statement

enumerated type 5-18
combinational process 6-5, 6-6
component implication 5-47
control unit

counting A-29
state machine A-24

count zeros
combinational A-19
sequential A-22

dont care usage 8-29
enumeration encoding

dont care 8-29
for ... generate 6-28
function call 5-42
if statement 5-15
integer data type

definitions 3-8
Mealy finite state machine A-5
Moore finite state machine A-2
PLA A-51
ROM A-7
sequential processes 6-6
serial-to-parallel converter

counting bits A-40
shifting bits A-47

simulation driver 9-3
subprograms

component implication 5-47
declarations 5-36
function call 5-42

synchronous design 8-23
three-state component

registered input 7-67
two-phase clocked design 7-20
wait statement 5-56

in a loop 5-52
multiple waits 5-52

waveform generator
complex A-13
simple A-10

exit statement 5-33
exponentiation operator 4-12
expression tree 8-7

subexpressions in 8-9
expressions

described 4-1
relational

true 4-7
supported C-12
use 4-1
using parentheses in 8-9

expressions, VHDL, tick (’) 4-29
extended identifier C-8

F
falling_edge 7-22, 7-28
feedback paths 8-35
field target syntax 5-8
file declarations C-5
flip-flop

definition 7-1
inference 7-22

for ... generate statement
example 6-28
syntax 6-26

for ... loop statement
and exit statement 5-33
arrays 5-28
label as identifier in 5-25, 6-27
syntax 5-23, 5-25
IN-7

formal parameters
subprograms 2-26

fully specified
signal 8-35
variable 8-35

function
call 4-22, 5-41
declaration

syntax 2-24
resolution

allowed 2-41
bus 6-9
creating 2-40
directives, using 2-41
example 2-42
marking 2-41
signal 2-40
syntax, declaration 2-40
syntax, subtype 2-41
syntax, type 2-40

value 2-22
functions

description 5-38
implementations

mapped to component 5-47
mapped to gates 5-49

return statement 5-43

G
generate statements

for ... generate 6-26
if ... generate 6-26

generic
map

component instantiation 2-13
parameter

component declaration 2-11
two-input AND gate 2-11

specification
entity 2-3
entity syntax 2-3

values
mapping 2-14

guard
on block statement C-15

guarded blocks
in block statement 6-12

guarded keyword C-15

H
hdlin_pragma_keyword variable 9-2
hexadecimal bit string 4-28
high attribute 3-12
high impedance state 7-59

I
identifier C-8

extended C-9
identifiers

defined 4-23
enumeration literals 4-27

if ... generate statement
syntax 6-31

if statement
creating registers 7-23

implying registers 7-1
incompletely specified 8-35
indexed name target 5-4
indexed names

computability 4-25
using 4-24

inequality operators 4-6
inference report

example 7-3
inferred registers

limitations 7-57
instantiation

component
direct 6-25

integer data type
IN-8

bits, accessing
std_logic_signed package 3-9
std_logic_unsigned package 3-9

defining 3-8
definitions

example 3-8
encoding 3-8
INTEGER type 3-17
subrange 3-8

K
keywords C-17

L
language constructs, VHDL

concurrent statements
assertion C-15
block 2-17, C-15
component instantiation 2-13, 2-17, C-15
function 2-22, 2-24
generate C-15
procedure 2-22, 2-23
procedure call 2-17, C-15
process 2-17, 2-19, C-15
signal assignment 2-18, C-15

data types
access C-4
array 3-10, C-4
enumeration 3-3, C-4
file C-5
floating C-4
incomplete type declarations C-5
integer 3-8, C-4
physical C-4
record C-4
subtype 2-32

dataflow
entity, NAND2 2-34

declaration
constant 2-18

signal 2-21
variable 2-20, 2-31

declarations
alias C-6
attribute C-6
component C-6
constant C-5
file C-5
interface C-5
shared variable C-5
signal C-5
variable C-5

design units
architecture 2-5, C-3
configuration 2-34, C-3
entity C-3
entity, NAND2 2-3
library C-3
package 2-35, 2-36, C-3
subprogram C-3
subprogram, overloading 2-29

expressions
aggregate C-12
allocator C-12
based literal C-12
function call C-12
null literal C-12
physical literal C-12
static expression C-12
string C-12
type conversion C-12
universal expression C-13

names
attribute C-7
indexed C-7
operator symbol C-7
selected C-7
simple C-7
slice C-7

operands
aggregate C-12
allocator C-12
IN-9

based literal C-12
function call C-12
null literal C-12
physical literal C-12
static expression C-12
string C-12
type conversion C-12
universal expression C-13

operators
addition C-9
logical C-9
miscellaneous C-10
multiplying C-9
overloading 2-30, C-10
relational C-9
short-circuit operation C-10
signing C-9

predefined language environment
now function C-16
predefined attributes C-16
severity_level type C-16
TEXTIO package C-16
time type C-16

reserved words C-17
sequential statements

assertion C-13
case C-14
exit C-14
if C-14
loop C-14
next C-14
null C-14
procedure call C-14
report C-13
return C-14
signal C-13
statement labels C-13
variable C-13
wait C-13

specifications
attribute C-6
configuration C-6

disconnection C-6
latch

definition 7-1
latch inference

local variables 7-11
latches

edge-sensitive
not in guarded block statement 6-13

level-sensitive
guarded block statement 6-12

left attribute 3-12
length attribute 3-12
literal

enumeration
character, defined 3-3
identifier, defined 3-3

literals
as operands 4-26
bit strings 4-28
character 4-26
character string 4-28
enumeration 4-27
numeric 4-26
string 4-28

logic
combinational 8-2

logical operators 4-3
loop statement 5-22

syntax 5-23
low attribute 3-12

M
map_to_entity directive 5-45, 6-14
mapping

generic values
example 2-14
instantiation 2-14

port connections
example 2-15
expressions 2-15
IN-10

Mealy finite state machine (example) A-5
mod (multiplying operator) 4-11
Moore finite state machine (example) A-2
multiple driven signals 6-8
multiplication using shifts B-16
multiplying operators 4-11

N
names C-7

attributes 4-20
field names 4-30
qualified 4-30
record names 4-30
slice names 4-32

nand (logical operator) 4-3
NAND2 entity

syntax
dataflow architecture 2-34
RTL architecture 2-34
specification 2-3
structural architecture 2-33

NATURAL subtype 3-17
N-bit adder

declaration
example 2-11

nested blocks
in block statement 6-11

netlist
defined 2-13

next statement
in named loops 5-32

noncomputable operands 4-16
nor (logical operator) 4-3
not (logical operator) 4-3
null range 4-33
null slice 4-33
null statement 5-58
numeric literals 4-26
numeric_std package

” B-25, B-25
”*” function B-24
”+” function B-24
”/=” equality function B-26
”=” equality function B-26
”>=” ordering function B-25
”>” ordering function B-25
”-” function B-24
accessing B-21
arithmetic functions

binary B-23
binary example B-24
unary B-23
unary example B-24

comparison functions
equality B-26
ordering B-25

conversion functions
TO_INTEGER B-22
TO_UNSIGNED B-22
UNSIGNED B-22

data types
SIGNED B-22
UNSIGNED B-22

IEEE documentation B-1
location B-21
logical operators

AND B-26
NAND B-26
NOR B-26
NOT B-26
OR B-26
XNOR B-26
XOR B-26

report_design_lib command B-21
resize function B-23
rotate functions B-28
rotate operators B-28
shift functions

ROTATE_LEFT B-27
ROTATE_RIGHT B-27
SHIFT_LEFT B-27
IN-11

SHIFT_RIGHT B-27
shift operators B-28
unsupported components B-21
use with std_logic_arith package B-20

O
octal bit string 4-28
one_cold attribute 7-7
one_hot attribute 7-7
operands

aggregates 4-18
attributes 4-20
bit width 4-15
computable 4-16
defined 4-14
field 4-30
function call 4-22, 5-41
identifiers 4-23
in expressions

defined 4-1
grouping 4-5

integer
predefined operators 4-8

literal 4-26
character 4-26
enumeration 4-27
numeric 4-26
string 4-28

noncomputable 4-16
qualified expressions 4-29
record 4-30
slice names 4-32
supported C-12
type conversions 4-34

operators
absolute value 4-12
adding 4-8
arithmetic

adding 4-8
multiplying 4-11
negation 4-10

array
catenation 4-9
relational 4-6

catenation 4-9
described 4-2
equality 4-6
exponentiation 4-12
in expressions 4-1
logical 4-3
multiplying

predefined 4-11
restrictions on use 4-11

ordering 4-6
and array types 4-6
and enumerated types 4-6

overloading 2-30
defined 2-30
examples 2-30

precedence 4-3
predefined 4-2
relational

described 4-5
std_logic_arith package 4-7

rotate C-11
numeric_std B-28

shift C-10
numeric_std B-28

sign 4-10
supported C-9
unary 4-10
xnor C-11

optimization
arithmetic expressions 8-6
NAND2 gate 2-33

or (logical operator) 4-3
ordering

operators 4-6
ordering functions

example B-14
others (in aggregates) 4-20
others (in case statement) 5-17
overflow characteristics
IN-12

arithmetic optimization 8-10
overloading

enumeration
literal 3-4

enumeration literals 4-27
operators 2-30

defined 2-30
resolving by qualification 4-30
subprograms 2-29

defined 2-29

P
package

body syntax 2-39
component declaration in 2-35
constant declaration in 2-35
declaration

example 2-38
syntax 2-37

defined 2-35
numeric_std

IEEE documentation B-1
package_body_declarative_item 2-39
STANDARD 3-17
std_logic_arith 4-7
std_logic_signed 3-9
std_logic_unsigned 3-9
structure

body 2-36
declaration 2-36

subprogram in 2-35
TEXTIO 3-16
type declaration in 2-35
use statement syntax 2-36, 2-38

package_body_declarative_item 2-39
package_declarative_item 2-37
package_name 2-37
packages

Synopsys-supplied B-1
parameters, subprogram

actual 2-26

formal 2-26
PLA (example) A-51
port

as signal 2-21
connections, mapping example 2-15
map 2-13
mode

buffer 2-4, 2-24
entity port specification 2-4, 2-24, 2-25
in 2-4, 2-24, 2-25
inout 2-4, 2-24
out 2-4, 2-24

name
consistency among entities 2-9, 2-12
incorrect use 2-9

type
consistency among components 2-12

POSITIVE subtype 3-17
pragma keyword comment

hdlin_pragma_keyword variable 9-2
pragmas.See directives
predefined attributes

array 3-12
supported C-7

predefined attributes, supported C-16
predefined language environment C-16
predefined VHDL operators 4-3
procedure

call (defined) 2-17
call syntax 5-39
subprogram declaration syntax 2-23
subprogram description 5-38

process
as algorithm 2-19
declaration 2-19
defined 2-19
description 2-19
sequential statements in 2-19

process statement 6-2, 6-10
processes

asynchronous 6-3
IN-13

combinational
example 6-5

combinational logic 5-55
sensitivity lists 6-3
sequential

example 6-6
sequential logic 5-55
synchronous 6-3
wait statement 5-50

Q
qualified expressions 4-29

R
range attribute 3-12
range_type_name 3-11
record aggregates 3-14
record data type 3-13
record operands 4-30
records

as aggregates C-12
register

definition of 7-1
inference 7-1

register inference
attribute

async_set_reset 7-5
async_set_reset_local 7-5
async_set_reset_local_all 7-5
one_cold 7-7
one_hot 7-7
sync_set_reset 7-6
sync_set_reset_local 7-6
sync_set_reset_local_all 7-6

D latch 7-10
definition 7-1
edge expressions 7-22
if statement 7-23
if versus wait 7-23

signal edge 7-22
SR latch 7-8
templates 7-3
wait statement 7-22
wait versus if 7-23

relational operators 4-5
rem (multiplying operator) 4-11
report statement C-13
reserved words C-17
resize function

numeric_std B-23
resolution function

allowed 2-41
creating 2-40
directive, using 2-41
directives

resolution_method three_state 2-41
resolution_method wired_and 2-41
resolution_method wired_or 2-41

example 2-42
marking 2-41
signal 2-40
syntax

declaration 2-40
subtype 2-41
type 2-40

resolution functions
bus 6-9

resolution_method
three_state directive 2-41
wired_and directive 2-41
wired_or directive 2-41

resolved signal
creating 2-42
example 2-42
subtype declaration 2-40
syntax 2-41
using 2-42

return statement 5-43
return_port_name directive 5-45
reverse_range attribute 3-12
IN-14

right attribute 3-12
rising_edge 7-22, 7-26
ROM (example) A-7
rotate functions

numeric_std B-28
rotate operators C-11

numeric_std B-28
RTL Analyzer

architecture
NAND2 entity 2-34

S
selected signal assignment

equivalent process 6-22
syntax 6-20

sensitivity lists 6-3
sequential processes 5-55, 6-6
sequential statement

if, syntax 5-15
sequential statements

supported C-13
serial-to-parallel converter (example)

counting bits A-40
shifting bits A-47

shared variable C-5
sharing

common subexpressions
automatically determined 8-12

shift functions
example B-15
numeric_std B-27

shift operations
example B-16

shift operators C-10
numeric_std B-28

signal
as port 2-21
assignment 2-18

examples 5-11, 5-13
syntax 5-12

declaration 2-21
example 3-4
logical 4-4

in package 2-37
multiple drivers

bus 6-9
resolution function 2-40
resolved 2-40

signals
concurrent signal assignment 6-17
conditional signal assignment 6-18
drivers 6-8
edge detection 7-22
registering 7-54
selected signal assignment 6-20
supported C-5
three-state 6-8

SIGNED data type
defined B-6, B-7
std_logic_arith package B-4

SIGNED data types
numeric_std package B-22

simple name target 5-3
simulation

dont care values 8-33
driver example 9-3

slice names
limitations 4-33
syntax 4-32

slice target syntax 5-7
specifications C-6
STANDARD package 3-17
state machine (example)

controller A-24
Mealy A-5
Moore A-2

statement
assignment

aggregate target, syntax 5-9
field target, syntax 5-8
indexed name target, syntax 5-4
IN-15

slice target, syntax 5-7
case

enumerated type 5-18
invalid usages 5-21
syntax 5-17

concurrent
block 2-17
component instantiation 2-17
procedure call 2-17
process 2-17, 2-19
signal assignment 2-18

for ... loop
syntax 5-25

loop
syntax 5-23

loop syntax 5-22
sequential

assignment, syntax 5-2
if 5-15

while ... loop syntax 5-24
statement labels C-13
std_logic_1164 package B-2
std_logic_arith package B-2, B-3

_REDUCE functions B-30
”*” function B-12
”+” function B-11
”/=” function B-14
”<=” function B-14
”<” function B-14
”=” function B-14
”>=” function B-14
”>” function B-14
”–” function B-11
arithmetic functions B-10
Boolean reduction functions B-30
built_in functions B-6
comparison functions B-13
CONV_INTEGER functions B-8
CONV_SIGNED functions B-9
CONV_UNSIGNED functions B-8
conversion functions B-10
data types B-6

modifying the package B-5
ordering functions B-14
shift function B-15
using the package B-4

std_logic_misc package B-30
std_logic_signed package 3-9
std_logic_unsigned package 3-9
string literals 4-28

bit 4-28
character 4-28

STRING type 3-17
structural architecture

NAND2 entity 2-33
structural design

component
instantiation statement 2-13

description
COUNTER3 2-15

subexpressions in expression tree 8-9
subprogram

body
calls, examples 2-26
examples 2-29
function syntax 2-28
procedure syntax 2-26

declaration
examples 2-25
function syntax 2-24
overloading 2-29
procedure, syntax 2-23
syntax 2-28

overloading
defined 2-29
examples 2-29

parameter 2-26
profile 2-29

sequential statement 2-22
subprograms

calling 5-37
defined 5-35
defining 5-36
mapping to components
IN-16

example 5-47
matching entity 5-45

procedure versus function 5-38
subrange

integer data type 3-8
subtype data type

declaration 2-32
defining 3-21

SYN_FEED_THRU
example of using B-20

sync_set_reset attribute 7-6
sync_set_reset_local attribute 7-6
sync_set_reset_local_all attribute 7-6
synchronous

designs 8-23
example 8-23

processes 6-3
synopsys keyword comment

hdlin_pragma_keyword variable 9-2
Synopsys packages B-1

std_logic_misc package B-30
Synopsys-defined package

std_logic_arith 3-21
std_logic_signed

integers 3-9
overload for arithmatic 3-9

std_logic_unsigned
integers 3-9
overload for arithmatic 3-9

syntax
array data type

constrained 3-10
unconstrained 3-11

assignment statement
aggregate target 5-9
field target 5-8
indexed name target 5-4
signal 5-2, 5-12
simple name target 5-3
slice target 5-7
variable 5-2, 5-11

bused clock 7-22
case statement 5-17
clock, bused 7-22
component

declaration statement 2-10
instantiation statement 2-13

constant declaration 2-18
enumeration data type 3-3
for ... loop statement 5-25
generic_declaration 2-3
if statement 5-15
integer data type 3-8
loop statement 5-22, 5-23
NAND2

dataflow architecture 2-34
RTL architecture 2-34
specification 2-3
structural architecture 2-33

operator
overloading 2-30

package body 2-39
resolution function

declaration 2-40
subtype 2-41
type 2-40

signal declaration 2-21
subprogram

overloading 2-29
subprogram declaration

body, examples 2-29
body, function syntax 2-28
function 2-24
procedure 2-23
procedure body 2-27

subtype 2-32
type

declaration 2-30
use statement, package 2-36
variable declaration 2-20, 2-31
while ... loop statement 5-24

synthetic comments
hdlin_pragma_keyword variable 9-2
IN-17

synthetic comments.See directives

T
target

signal assignment syntax 5-3
variable assignment syntax 5-2

TEXTIO package 3-16
three-bit counter

circuit description
entity architecture 2-7
entity specification 2-7

three-state
gate 7-65

registered enable 7-67
without registered enable 7-68

inference 7-59
registered drivers 7-65, 7-67
registered input 7-67
signals 6-8

tick (’) in VHDL expressions 4-29
time type C-16
TO_INTEGER function

conversion
numeric_std B-22

TO_SIGNED function
conversion

numeric_std B-22
TO_UNSIGNED function

conversion
numeric_std B-22

translate_off directive, warning 9-3
translate_on directive, warning 9-3
transport keyword C-15
two-input AND gate

component declaration example 2-11
two-input NAND gate

dataflow architecture syntax 2-34
RTL architecture syntax 2-34
specification syntax 2-3
structural architecture 2-33

two-input N-bit comparator
example 2-5

two-phase design 7-20
type

conversion
syntax 4-34

types
as aggregates C-12

U
unary arithmetic functions

example B-12
numeric_std B-23

unary operators
sign 4-10

unconstrained arrays
example using A-17

unconstrained data array 3-9, 3-10
UNSIGNED data type

defined B-6
std_logic_arith package B-4

UNSIGNED data types
numeric_std package B-22

use statement 2-36

V
variable

assignment
examples 5-11, 5-13
syntax 5-2, 5-11

declaration 2-20, 2-31
defined 2-20, 2-31
example 3-4

initializing 2-20, 2-31
variables

conditionally-assigned 7-19
hdlin_pragma_keyword 9-2

vectors
encoding

ENUM_ENCODING attribute 3-6
IN-18

VHDL
aggregates 4-18
architectures 2-5, 6-1
array data type 3-9
BIT data type 3-18
BIT_VECTOR data type 3-19
BOOLEAN data type 3-18
case statement 5-17
CHARACTER data type 3-18
component

implication 5-46
instantiation 2-13

concurrent procedure call 6-14
concurrent statement

block 6-1
process 6-1, 6-2, 6-10

concurrent statements
supported C-15

configuration 2-34
data type supported

enumeration C-4
data type unsupported

integer C-4
data type, supported

enumeration 3-3
integer 3-8

data type, unsupported
access (pointer) types 3-20
file (disk file) types 3-20
floating-point 3-20
physical 3-20

declarations C-5
design units C-3
directives 9-2
enumeration data type 3-3
errors in descriptions 8-38
exit statement 5-33
expressions, supported C-12
for ... loop statement 5-23, 5-25, 6-27
functions 2-22
generate statement 6-26
identifiers 4-23

integer data type 3-8, 3-19
keywords C-17
literals 4-26
names C-7
NATURAL subtype 3-19
null statement 5-58
operands

categories 4-14
supported C-12

operators
precedence 4-3
predefined 4-2
supported C-9

package
composition 2-35
use statement syntax 2-36

port modes 2-4, 2-24, 2-25
POSITIVE subtype 3-19
predefined attributes, supported C-7
predefined data types 3-16
predefined language environment C-16
procedures 2-22
process statement 6-2, 6-10
qualified expressions 4-29
record data type 3-13
reserved words C-17
return statement 5-43
sensitivity lists 6-3
sequential statements, supported C-13
shorthand expressions 8-22
specifications C-6
STANDARD package 3-17
STRING type 3-19
subprograms 2-22, 5-35
subtype data type 3-3, 3-21
TEXTIO package 3-16
three-state components 7-59
type conversion 4-34
wait statement 5-50

VHDL Analyzer
in synthesis process 8-38

VHDL assertions 7-8
IN-19

VHDL Compiler
asynchronous designs 8-23
attributes

supported C-7
Synopsys C-7

ATTRIBUTES package 3-5
component

consistency 2-12
implication 5-46
instantiation, entities 2-14

design efficiency 8-22
design structure 8-3
directives 9-2
dont care information 8-29
entities

consistency 2-12
enumeration encoding 3-5
integer encoding 3-8
operators

supported C-9
port names

consistency 2-12
sensitivity lists 6-3

source directives 9-1, 9-2
syntax checking 8-38
wait statement

limitations 5-54
usages 5-50

W
wait statement 5-50

creating registers 7-22
example 5-56

multiple waits 5-52
while loop 5-52

waveform generator (example)
complex A-13
simple A-10

while ... loop statement syntax 5-24

X
xnor (logical operator) 4-3
xnor operator C-11
xor (logical operator) 4-3
IN-20

	About This Manual
	About This Manual
	1. Using FPGA Compiler II / FPGA Express with VHDL
	Hardware Description Languages 1-2
	Typical uses for HDLs 1-3
	Advantages of HDLs 1-3

	About VHDL 1-4
	FPGA Compiler II / FPGA Express Design Process 1-7
	Using FPGA Compiler II / FPGA Express to Compile a VHDL Design 1-8
	Design Methodology 1-9

	2. Design Descriptions
	Entities 2-2
	Entity Generic Specifications 2-3
	Entity Port Specifications 2-4

	Architecture 2-5
	Declarations 2-10
	Components 2-10
	Concurrent Statements 2-17
	Constants 2-18
	Processes 2-19
	Signals 2-21
	Subprograms 2-22
	Types 2-31

	Examples of Architectures for NAND2 Entity 2-33

	Configurations 2-34
	Packages 2-35
	Package Uses 2-35
	Package Structure 2-36
	Package Declarations 2-37
	Package Body 2-39

	Resolution Functions 2-40

	3. Data Types
	Enumeration Types 3-3
	Enumeration Overloading 3-4
	Enumeration Encoding 3-4
	Enumeration Encoding Values 3-7

	Integer Types 3-8
	Array Types 3-9
	Constrained Arrays 3-10
	Unconstrained Arrays 3-10
	Array Attributes 3-12

	Record Types 3-13
	Record Aggregates 3-14
	Predefined VHDL Data Types 3-16
	Data Type BOOLEAN 3-18
	Data Type BIT 3-18
	Data Type CHARACTER 3-18
	Data Type INTEGER 3-19
	Data Type NATURAL 3-19
	Data Type POSITIVE 3-19
	Data Type STRING 3-19
	Data Type BIT_VECTOR 3-19

	Unsupported Data Types 3-20
	Physical Types 3-20
	Floating-Point Types 3-20
	Access Types 3-20
	File Types 3-20

	Synopsys Data Types 3-21
	Subtypes 3-21

	4. Expressions
	Operators 4-2
	Logical Operators 4-3
	Relational Operators 4-5
	Adding Operators 4-8
	Unary (Signed) Operators 4-10
	Multiplying Operators 4-11
	Miscellaneous Arithmetic Operators 4-12

	Operands 4-14
	Operand Bit-Width 4-15
	Computable Operands 4-16
	Aggregates 4-18
	Attributes 4-20
	Expressions 4-21
	Function Calls 4-22
	Identifiers 4-23
	Indexed Names 4-24
	Literals 4-26
	Numeric Literals 4-26
	Character Literals 4-26
	Enumeration Literals 4-27
	String Literals 4-27

	Qualified Expressions 4-29
	Records and Fields 4-30
	Slice Names 4-32
	Limitations on Null Slices 4-33
	Limitations on Noncomputable Slices 4-34

	Type Conversions 4-34

	5. Sequential Statements
	Assignment Statements and Targets 5-2
	Simple Name Targets 5-3
	Indexed Name Targets 5-4
	Slice Targets 5-7
	Field Targets 5-8
	Aggregate Targets 5-9

	Variable Assignment Statements 5-11
	Signal Assignment Statements 5-12
	if Statements 5-15
	Evaluating Conditions 5-15
	Using the if Statement to Infer Registers and Latches 5-16

	case Statements 5-17
	Using Different Expression Types 5-18
	Invalid case Statements 5-21

	loop Statements 5-22
	Basic loop Statements 5-23
	while...loop Statements 5-24
	for...loop Statements 5-25
	Steps in the Execution of a for...loop Statement 5-27
	for...loop Statements and Arrays 5-28

	next Statements 5-30
	exit Statements 5-33
	Subprograms 5-35
	Subprogram Always a Combinational Circuit 5-35
	Subprogram Declaration and Body 5-35
	Subprogram Calls 5-37
	Procedure Calls 5-39
	Function Calls 5-41

	return Statement 5-43
	Procedures and Functions as Design Components 5-45
	Example With Component Implication Directives 5-47
	Example Without Component Implication Directives 5-49

	wait Statements 5-50
	Inferring Synchronous Logic 5-51
	Combinational Versus Sequential Processes 5-55

	null Statements 5-58

	6. Concurrent Statements
	process Statements 6-2
	Combinational Process Example 6-5
	Sequential Process Example 6-6
	Driving Signals 6-8

	block Statements 6-10
	Nested Blocks 6-11
	Guarded Blocks 6-12

	Concurrent Versions of Sequential Statements 6-13
	Concurrent Procedure Calls 6-14
	Concurrent Signal Assignments 6-17
	Simple Concurrent Signal Assignments 6-17
	Conditional Signal Assignment 6-18
	Selected Signal Assignments 6-20

	Component Instantiation Statements 6-22
	Direct Instantiation 6-25
	generate Statements 6-26
	for...generate Statement 6-26
	Steps in the Execution of a for...generate Statement 6-27
	Common Usage of a for...generate Statement 6-29

	if...generate Statements 6-31

	7. Register and Three-State Inference
	Register Inference 7-1
	The inference Report 7-3
	Latch Inference Warnings 7-4

	Controlling Register Inference 7-4
	Attributes That Control Register Inference 7-5

	Inferring Latches 7-8
	Inferring Set/Reset (SR) Latches 7-8
	Inferring D Latches 7-10
	Inferring Master-Slave Latches 7-20

	Inferring Flip-Flops 7-21
	Inferring D Flip-Flops 7-22
	Inferring JK Flip-Flops 7-41
	Inferring Toggle Flip-Flops 7-45
	Getting the Best Results 7-51

	Understanding Limitations of Register Inference 7-57

	Three-State Inference 7-59
	Reporting Three-State Inference 7-59
	Controlling Three-State Inference 7-60
	Inferring Three-State Drivers 7-60
	Inferring a Simple Three-State Driver 7-60
	Three-State Driver With Registered Enable 7-65
	Three-State Driver Without Registered Enable 7-67

	Understanding the Limitations of Three-State Inference 7-69

	8. Writing Circuit Descriptions
	How Statements Are Mapped to Logic 8-2
	Design Structure 8-3
	Adding Structure 8-3
	Using Variables and Signals 8-4
	Using Parentheses 8-5

	Using Design Knowledge 8-6
	Optimizing Arithmetic Expressions 8-6
	Arranging Expression Trees for Minimum Delay 8-7
	Sharing Common Subexpressions 8-12

	Changing an Operator Bit-Width 8-14
	Using State Information 8-17
	Propagating Constants 8-21
	Sharing Complex Operators 8-22

	Asynchronous Designs 8-23
	Don’t Care Inference 8-29
	Using don’t care Default Values 8-32
	Differences Between Simulation and Synthesis 8-33

	Synthesis Issues 8-34
	Feedback Paths and Latches 8-34
	Fully Specified Variables 8-35
	Asynchronous Behavior 8-37

	Understanding Superset Issues and Error Checking 8-38

	9. FPGA Compiler II / FPGA Express Directives
	Notation for FPGA Compiler II / FPGA Express Directives 9-2
	FPGA Compiler II / FPGA Express Directives 9-2
	Translation Stop and Start Pragma Directives 9-3
	synthesis_off and synthesis_on Directives 9-3
	Resolution Function Directives 9-5
	Component Implication Directives 9-5

	A. Examples
	Moore Machine A-2
	Mealy Machine A-5
	Read-Only Memory A-7
	Waveform Generator A-10
	Smart Waveform Generator A-13
	Definable-Width Adder-Subtracter A-16
	Count Zeros—Combinational Version A-19
	Count Zeros—Sequential Version A-22
	Soft Drink Machine—State Machine Version A-24
	Soft Drink Machine—Count Nickels Version A-29
	Carry-Lookahead Adder A-32
	Carry Value Computations A-32
	Implementation A-39

	Serial-to-Parallel Converter—Counting Bits A-40
	Input Format A-41
	Implementation Details A-42

	Serial-to-Parallel Converter—Shifting Bits A-47
	Programmable Logic Arrays A-51

	B. Synopsys Packages
	std_logic_1164 Package B-2
	std_logic_arith Package B-3
	Using the Package B-4
	Modifying the Package B-5
	Data Types B-6
	UNSIGNED B-6
	SIGNED B-7

	Conversion Functions B-8
	Arithmetic Functions B-10
	Comparison Functions B-13
	Shift Functions B-15
	ENUM_ENCODING Attribute B-17
	pragma built_in B-17
	Two-Argument Logic Functions B-18
	One-Argument Logic Functions B-19
	Type Conversion B-19

	numeric_std Package B-20
	Understanding the Limitations of numeric_std package B-21
	Using the Package B-21
	Data Types B-22
	Conversion Functions B-22
	Resize Function B-23
	Arithmetic Functions B-23
	Comparison Functions B-24
	Defining Logical Operators Functions B-26
	Shift Functions B-27
	Rotate Functions B-28
	Shift and Rotate Operators B-28

	std_logic_misc Package B-30
	ATTRIBUTES Package B-31

	C. VHDL Constructs
	VHDL Construct Support C-2
	Design Units C-3
	Data Types C-4
	Declarations C-5
	Specifications C-6
	Names C-7
	Identifiers and Extended Identifiers C-8
	Specifics of Identifiers C-8
	Specifics of Extended Identifiers C-8

	Operators C-9
	Shift and Rotate Operators C-10
	xnor Operator C-11

	Operands and Expressions C-12
	Sequential Statements C-13
	Concurrent Statements C-15
	Predefined Language Environment C-16

	VHDL Reserved Words C-17

	Figure 1�1 VHDL Hardware Model 1-5
	Figure 1�2 Design Flow 1-9
	Figure 2�1 3-Bit Counter Synthesized Circuit 2-8
	Figure 2�2 Design Using Resolved Signal 2-43
	Figure 4�1 Design Schematic for Logical Operators 4-4
	Figure 4�2 Relational Operators Design Illustrating Example 4�4 4-8
	Figure 4�3 Design Array Illustrating Example 4�5 4-9
	Figure 4�4 Design Illustrating Unary Negation From Example 4�6 4-10
	Figure 4�5 Design Illustrating Multiplying Operators From Example 4�7 4- 12
	Figure 4�6 Design With Arithmetic Operators From Example 4�8 4-13
	Figure 4�7 Design Illustrating Use of Indexed Names From Example 4�16 4-25
	Figure 4�8 Design Illustrating Use of Slices From Example 4�24 4-33
	Figure 5�1 Design Illustrating Indexed Name Targets From Example 5�3 5-6
	Figure 5�2 Schematic Design From Example 5�8 5-16
	Figure 5�3 Schematic Design From Example 5�9 5-19
	Figure 5�4 Schematic Design From Example 5�10 5-20
	Figure 5�5 Schematic Design From Example 5�12 5-28
	Figure 5�6 Schematic Design of Array From Example 5�13 5-29
	Figure 5�7 Schematic Design From Example 5�14 5-31
	Figure 5�8 Schematic Design From Example 5�16 5-34
	Figure 5�9 Schematic Design From Example 5�18 5-41
	Figure 5�10 Schematic Design From Example 5�20 5-45
	Figure 5�11 Schematic Design With Component Implication Directives 5- 48
	Figure 5�12 Schematic Design Without Component Implication Directives 5-50
	Figure 5�13 Schematic Design From Example 5�30 5-57
	Figure 5�14 Schematic Design From Example 5�31 5-59
	Figure 6�1 Modulo-10 Counter Process Design 6-6
	Figure 6�2 Modulo-10 Counter Process With wait Statement Design 6-8
	Figure 6�3 Two Three-State Buffers Driving the Same Signal 6-9
	Figure 6�4 Schematic of Nested Blocks 6-12
	Figure 6�5 Concurrent CHECK Procedure Design 6-16
	Figure 6�6 Conditional Signal Assignment Design 6-19
	Figure 6�7 Selected Signal Assignment Design 6-21
	Figure 6�8 A Simple Netlist Design 6-24
	Figure 6�9 An 8-Bit Array Design 6-29
	Figure 6�10 Design of COMP Components Connecting Bit Vectors A and B 6-30
	Figure 6�11 Design of N-Bit Serial-to-Parallel Converter 6-33
	Figure 7�1 SR Latch 7-10
	Figure 7�2 D Latch 7-13
	Figure 7�3 D Latch With Asynchronous Set 7-15
	Figure 7�4 D Latch With Asynchronous Reset 7-17
	Figure 7�5 D Latch With Asynchronous Set and Reset 7-19
	Figure 7�6 Two-Phase Clocks 7-21
	Figure 7�7 Positive Edge-Triggered D Flip-Flop 7-25
	Figure 7�8 Positive Edge-Triggered D Flip-Flop Using rising_edge 7-27
	Figure 7�9 Negative Edge-Triggered D Flip-Flop 7-28
	Figure 7�10 Negative Edge-Triggered D Flip-Flop Using falling_edge 7-29
	Figure 7�11 D Flip-Flop With Asynchronous Set 7-30
	Figure 7�12 D Flip-Flop With Asynchronous Reset 7-32
	Figure 7�13 D Flip-Flop With Asynchronous Set and Reset 7-34
	Figure 7�14 D Flip-Flop With Synchronous Set 7-35
	Figure 7�15 D Flip-Flop With Synchronous Reset 7-37
	Figure 7�16 D Flip-Flop With Synchronous and Asynchronous Load 7-38
	Figure 7�17 Multiple Flip-Flops with Asynchronous and Synchronous Controls 7-40
	Figure 7�18 JK Flip-Flop 7-43
	Figure 7�19 JK Flip-Flop With Asynchronous Set and Reset 7-45
	Figure 7�20 Toggle Flip-Flop With Asynchronous Set 7-47
	Figure 7�21 Toggle Flip-Flop With Asynchronous Reset 7-49
	Figure 7�22 Toggle Flip-Flop With Enable and Asynchronous Reset 7-51
	Figure 7�23 Circuit With Six Inferred Flip-Flops 7-54
	Figure 7�24 Circuit With Three Inferred Flip-Flops 7-56
	Figure 7�25 Schematic of Simple Three-State Driver 7-61
	Figure 7�26 One Three-State Driver Inferred From a Single Process 7-63
	Figure 7�27 Two Three-State Drivers Inferred From Separate Processes 7- 65
	Figure 7�28 Three-State Driver With Registered Enable 7-67
	Figure 7�29 Three-State Driver Without Registered Enable 7-69
	Figure 8�1 Ripple Carry and Carry-Lookahead Chain Design 8-5
	Figure 8�2 Diagram of 4-Input Adder 8-5
	Figure 8�3 Diagram of 4-Input Adder With Parentheses 8-6
	Figure 8�4 Default Expression Tree 8-7
	Figure 8�5 Balanced Adder Tree (Same Arrival Times for All Signals) 8-8
	Figure 8�6 Expression Tree With Minimum Delay (Signal A Arrives Last) 8-9
	Figure 8�7 Expression Tree With Subexpressions Dictated by Parentheses 8-10
	Figure 8�8 Default Expression Tree With 4-Bit Temporary Variable 8-11
	Figure 8�9 Expression Tree With 5-Bit Intermediate Result 8-12
	Figure 8�10 Function With One Adder Schematic 8-15
	Figure 8�11 Using TEMP Declaration to Save Circuit Area 8-16
	Figure 8�12 Schematic of Simple State Machine With Two Processes 8-19
	Figure 8�13 Schematic of an Improved State Machine 8-21
	Figure 8�14 Schematic of Synchronous Counter With Reset and Enable 8- 24
	Figure 8�15 Design With AND Gate on Clock and Enable Signals 8-26
	Figure 8�16 Design With Asynchronous Reset 8-26
	Figure 8�17 Schematic of Incorrect Asynchronous Design With Gated Clock 8-28
	Figure 8�18 Seven-Segment LED Decoder With Don’t Care Type 8-30
	Figure 8�19 Seven-Segment LED Decoder With 0 LED Default 8-32
	Figure A�1 Moore Machine Specification A-2
	Figure A�2 Moore Machine Schematic A-4
	Figure A�3 Mealy Machine Specification A-5
	Figure A�4 Mealy Machine Schematic A-7
	Figure A�5 ROM Schematic A-9
	Figure A�6 Waveform Example A-10
	Figure A�7 Waveform Generator Schematic A-12
	Figure A�8 Waveform for Smart Waveform Generator Example A-13
	Figure A�9 Smart Waveform Generator Schematic A-16
	Figure A�10 6-Bit Adder-Subtracter Schematic A-19
	Figure A�11 Count Zeros—Combinational Schematic A-21
	Figure A�12 Count Zeros—Sequential Schematic A-24
	Figure A�13 Soft Drink Machine—State Machine Schematic A-28
	Figure A�14 Soft Drink Machine—Count Nickels Version Schematic A-31
	Figure A�15 Carry-Lookahead Adder Block Diagram A-34
	Figure A�16 Sample Waveform Through the Converter A-42
	Figure A�17 Serial-to-Parallel Converter—Counting Bits Schematic A-47
	Figure A�18 Serial-to-Parallel Converter—Shifting Bits Schematic A-50
	Figure A�19 Programmable Logic Array Schematic A-55
	Table 3�1 Array Index Attributes 3-12
	Table 4�1 Predefined VHDL Operators 4-3
	Table 7�1 SR Latch Truth Table (NAND Type) 7-9
	Table 7�2 Truth Table for JK Flip-Flop 7-42
	Table B�1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions B-4
	Table B�2 Number of Bits Returned by + and – B-13
	Table C�1 VHDL Reserved Words C-17
	Example 2�1 VHDL Entity Specification 2-3
	Example 2�2 Interface for an N-Bit Counter 2-5
	Example 2�3 An Implementation of a 3-Bit Counter 2-7
	Example 2�4 Incorrect Use of a Port Name in Declaring Signals or Constants 2-9
	Example 2�5 Component Declaration of a 2-Input AND Gate 2-11
	Example 2�6 Component Declaration of an N-Bit Adder 2-11
	Example 2�7 Equivalent Named and Positional Association 2-15
	Example 2�8 Structural Description of a 3-Bit Counter 2-15
	Example 2�9 Constant Declarations 2-18
	Example 2�10 Variable Declarations 2-20
	Example 2�11 Signal Declarations 2-21
	Example 2�12 Two Subprogram Declarations 2-25
	Example 2�13 Two Subprogram Calls 2-26
	Example 2�14 Two Subprogram Bodies 2-29
	Example 2�15 Subprogram Overloading 2-29
	Example 2�16 Operator Overloading 2-30
	Example 2�17 Variable Declarations 2-31
	Example 2�18 Structural Architecture for Entity NAND2 2-33
	Example 2�19 Data Flow Architecture for Entity NAND2 2-34
	Example 2�20 RTL Architecture for Entity NAND2 2-34
	Example 2�21 Sample Package Declarations 2-38
	Example 2�22 Resolved Signal and Its Resolution Function 2-42
	Example 3�1 Enumeration Type Definitions 3-4
	Example 3�2 Enumeration Literal Overloading 3-4
	Example 3�3 Automatic Enumeration Encoding 3-5
	Example 3�4 Using the ENUM_ENCODING Attribute 3-6
	Example 3�5 Integer Type Definitions 3-8
	Example 3�6 Declaration of Array of Arrays 3-9
	Example 3�7 Constrained Array Type Definition 3-10
	Example 3�8 Unconstrained Array Type Definition 3-11
	Example 3�9 Use of Array Attributes 3-13
	Example 3�10 Record Type Declaration and Use 3-13
	Example 3�11 Simple Record Type 3-15
	Example 3�12 Named Aggregate for Example 3�11 3-15
	Example 3�13 Use of others in an Aggregate 3-16
	Example 3�14 Positional Aggregate 3-16
	Example 3�15 Record Aggregate Equivalent to Example 3�16 3-16
	Example 3�16 Record Aggregate With Set of Choices 3-16
	Example 3�17 FPGA Compiler II / FPGA Express STANDARD Package 3- 17
	Example 3�18 Valid and Invalid Assignments Between INTEGER Subtypes 3-22
	Example 3�19 Attributes and Functions Operating on a Subtype 3-23
	Example 4�1 Operator Precedence 4-3
	Example 4�2 Logical Operators 4-4
	Example 4�3 True Relational Expressions 4-7
	Example 4�4 Relational Operators 4-7
	Example 4�5 Adding Operators 4-9
	Example 4�6 Unary (Signed) Operators 4-10
	Example 4�7 Multiplying Operators With Powers of 2 4-11
	Example 4�8 Miscellaneous Arithmetic Operators 4-13
	Example 4�9 Computable and Noncomputable Expressions 4-17
	Example 4�10 Simple Aggregate 4-19
	Example 4�11 Equivalent Aggregates 4-20
	Example 4�12 Equivalent Aggregates Using the others Expression 4-20
	Example 4�13 Function Calls 4-23
	Example 4�14 Sample Extended Identifiers 4-23
	Example 4�15 Identifiers 4-24
	Example 4�16 Indexed Name Operands 4-25
	Example 4�17 Numeric Literals 4-26
	Example 4�18 Enumeration Literals 4-27
	Example 4�19 Character String Literals 4-28
	Example 4�20 Bit String Literals 4-29
	Example 4�21 A Qualified Decimal Literal 4-30
	Example 4�22 Qualified Aggregates and Enumeration Literals 4-30
	Example 4�23 Record and Field Access 4-31
	Example 4�24 Slice Name Operands 4-32
	Example 4�25 Null and Noncomputable Slices 4-34
	Example 4�26 Valid and Invalid Type Conversions 4-35
	Example 5�1 Simple Name Targets 5-4
	Example 5�2 Indexed Name Targets 5-5
	Example 5�3 Computable and Noncomputable Indexed Name Targets 5- 5
	Example 5�4 Slice Targets 5-7
	Example 5�5 Field Targets 5-8
	Example 5�6 Aggregate Targets 5-10
	Example 5�7 Variable and Signal Assignments 5-14
	Example 5�8 if Statement 5-16
	Example 5�9 case Statement With Enumerated Type 5-18
	Example 5�10 case Statement With Integers 5-20
	Example 5�11 Invalid case Statements 5-21
	Example 5�12 for...loop Statement With Equivalent Code Fragments 5-27
	Example 5�13 for...loop Statement Operating on an Entire Array 5-28
	Example 5�14 next Statement 5-30
	Example 5�15 Named next Statement 5-32
	Example 5�16 Comparator That Uses the exit Statement 5-34
	Example 5�17 Subprogram Declarations and Bodies 5-37
	Example 5�18 Procedure Call to Sort an Array 5-40
	Example 5�19 Function Definition With Two Calls 5-42
	Example 5�20 Use of Multiple return Statements 5-44
	Example 5�21 Using Component Implication Directives on a Function 5-47
	Example 5�22 Using Gates to Implement a Function 5-49
	Example 5�23 Equivalent wait Statements 5-51
	Example 5�24 wait for a Positive Edge 5-51
	Example 5�25 Loop That Uses a wait Statement 5-52
	Example 5�26 Multiple wait Statements 5-52
	Example 5�27 wait Statements and State Logic 5-53
	Example 5�28 Synchronous Reset That Uses wait Statements 5-54
	Example 5�29 Invalid Uses of wait Statements 5-54
	Example 5�30 Parity Tester That Uses the wait Statement 5-56
	Example 5�31 null Statement 5-58
	Example 6�1 Modulo-10 Counter Process 6-5
	Example 6�2 Modulo-10 Counter Process With wait Statement 6-7
	Example 6�3 Multiple Drivers of a Signal 6-9
	Example 6�4 Nested Blocks 6-11
	Example 6�5 Guarded Blocks 6-12
	Example 6�6 Level-Sensitive Latch Using Guarded Blocks 6-13
	Example 6�7 Concurrent Procedure Call and Equivalent Process 6-14
	Example 6�8 Procedure Definition for Example 6�9 6-15
	Example 6�9 Concurrent Procedure Calls 6-16
	Example 6�10 Concurrent Signal Assignment 6-17
	Example 6�11 Conditional Signal Assignment 6-19
	Example 6�12 Process Equivalent to Conditional Signal Assignment 6-19
	Example 6�13 Selected Signal Assignment 6-21
	Example 6�14 Process Equivalent to Selected Signal Assignment 6-22
	Example 6�15 Component Declaration and Instantiations 6-24
	Example 6�16 A Simple Netlist 6-24
	Example 6�17 Component Instantiation Statement 6-25
	Example 6�18 Direct Component Instantiation Statement 6-26
	Example 6�19 for...generate Statement 6-28
	Example 6�20 for...generate Statement Operating on an Entire Array 6-30
	Example 6�21 Typical Use of if...generate Statements 6-32
	Example 7�1 Inference Report for a JK Flip-Flop 7-3
	Example 7�2 SR Latch 7-9
	Example 7�3 Inference Report for an SR Latch 7-10
	Example 7�4 Latch Inference 7-11
	Example 7�5 Fully Specified Signal: No Latch Inference 7-11
	Example 7�6 Function: No Latch Inference 7-11
	Example 7�7 D Latch 7-13
	Example 7�8 Inference Report for a D Latch 7-13
	Example 7�9 D Latch With Asynchronous Set 7-14
	Example 7�10 Inference Report for D Latch With Asynchronous Set 7-15
	Example 7�11 D Latch With Asynchronous Reset 7-16
	Example 7�12 Inference Report for D Latch With Asynchronous Reset 7- 16
	Example 7�13 D Latch With Asynchronous Set and Reset 7-18
	Example 7�14 Inference Report for D Latch With Asynchronous Set and Reset 7-18
	Example 7�15 Invalid Use of a Conditionally Assigned Variable 7-19
	Example 7�16 Two-Phase Clocks 7-20
	Example 7�17 Inference Reports for Two-Phase Clocks 7-21
	Example 7�18 Using a wait Statement to Infer a Flip-Flop 7-23
	Example 7�19 Using an if Statement to Infer a Flip-Flop 7-23
	Example 7�20 Positive Edge-Triggered D Flip-Flop 7-25
	Example 7�21 Inference Report for Positive Edge-Triggered D Flip-Flop 7- 25
	Example 7�22 Positive Edge-Triggered D Flip-Flop Using rising_edge 7-26
	Example 7�23 Inference Report for a Positive Edge-Triggered D Flip-Flop Using rising_edge 7-26
	Example 7�24 Negative Edge-Triggered D Flip-Flop 7-27
	Example 7�25 Inference Report for Negative Edge-Triggered D Flip-Flop 7-28
	Example 7�26 Negative Edge-Triggered D Flip-Flop Using falling_edge 7- 28
	Example 7�27 Inference Report for a Negative Edge-Triggered D Flip-Flop Using falling_edge 7-29
	Example 7�28 D Flip-Flop With Asynchronous Set 7-30
	Example 7�29 Inference Report for a D Flip-Flop With Asynchronous Set 7-30
	Example 7�30 D Flip-Flop With Asynchronous Reset 7-31
	Example 7�31 Inference Report for a D Flip-Flop With Asynchronous Reset 7-31
	Example 7�32 D Flip-Flop With Asynchronous Set and Reset 7-33
	Example 7�33 Inference Report for a D Flip-Flop With Asynchronous Set and Reset 7-33
	Example 7�34 D Flip-Flop With Synchronous Set 7-35
	Example 7�35 Inference Report for a D Flip-Flop With Synchronous Set 7- 35
	Example 7�36 D Flip-Flop With Synchronous Reset 7-36
	Example 7�37 Inference Report for a D Flip-Flop With Synchronous Reset 7-36
	Example 7�38 D Flip-Flop With Synchronous and Asynchronous Load 7- 37
	Example 7�39 Inference Report for a D Flip-Flop With Synchronous and Asynchronous Load 7-38
	Example 7�40 Multiple Flip-Flops: Asynchronous and Synchronous Controls 7-39
	Example 7�41 Inference Reports for Example 7�40 7-40
	Example 7�42 JK Flip-Flop 7-42
	Example 7�43 Inference Report for JK Flip-Flop 7-43
	Example 7�44 JK Flip-Flop With Asynchronous Set and Reset 7-44
	Example 7�45 Inference Report for JK Flip-Flop With Asynchronous Set and Reset 7-45
	Example 7�46 Toggle Flip-Flop With Asynchronous Set 7-46
	Example 7�47 Inference Report for Toggle Flip-Flop With Asynchronous Set 7-47
	Example 7�48 Toggle Flip-Flop With Asynchronous Reset 7-48
	Example 7�49 Inference Report for a Toggle Flip-Flop With Asynchronous Reset 7-48
	Example 7�50 Toggle Flip-Flop With Enable and Asynchronous Reset 7-50
	Example 7�51 Inference Report for Toggle Flip-Flop With Enable and Asynchronous Reset 7-50
	Example 7�52 Circuit With Six Inferred Flip-Flops 7-52
	Example 7�53 Inference Report for Circuit With Six Inferred Flip-Flops 7- 53
	Example 7�54 Circuit With Three Inferred Flip-Flops 7-55
	Example 7�55 Inference Report for Circuit With Three Inferred Flip-Flops 7-55
	Example 7�56 Delays in Registers 7-57
	Example 7�57 Three-State Inference Report 7-59
	Example 7�58 Simple Three-State Driver 7-61
	Example 7�59 Inference Report for Simple Three-State Driver 7-61
	Example 7�60 Inferring One Three-State Driver From a Single Process 7- 62
	Example 7�61 Single Process Inference Report 7-62
	Example 7�62 Inferring Two Three-State Drivers From Separate Processes 7-64
	Example 7�63 Inference Report for Two Three-State Drivers From Separate Processes 7-64
	Example 7�64 Inferring a Three-State Driver With Registered Enable 7-66
	Example 7�65 Inference Report for Three-State Driver With Registered Enable 7-66
	Example 7�66 Three-State Driver Without Registered Enable 7-68
	Example 7�67 Inference Report for Three-State Driver Without Registered Enable 7-68
	Example 7�68 Incorrect Use of the Z Value in an Expression 7-70
	Example 7�69 Correct Use of the Z Value in an Expression 7-70
	Example 8�1 Four Logic Blocks 8-2
	Example 8�2 Ripple Carry Chain 8-4
	Example 8�3 Carry-Lookahead Chain 8-4
	Example 8�4 4-Input Adder 8-5
	Example 8�5 4-Input Adder Structured With Parentheses 8-6
	Example 8�6 Simple Arithmetic Expression 8-7
	Example 8�7 Parentheses in an Arithmetic Expression 8-9
	Example 8�8 Adding Numbers of Different Bit-Widths 8-11
	Example 8�9 Simple Additions With a Common Subexpression 8-12
	Example 8�10 Sharing Common Subexpressions—Increases Area 8-13
	Example 8�11 Common Subexpressions 8-14
	Example 8�12 Function With One Adder 8-15
	Example 8�13 Using Design Knowledge to Simplify an Adder 8-16
	Example 8�14 A Simple State Machine 8-17
	Example 8�15 A Better Implementation of a State Machine 8-20
	Example 8�16 Equivalent Statements 8-22
	Example 8�17 Fully Synchronous Counter With Reset and Enable 8-24
	Example 8�18 Design With Gated Clock and Asynchronous Reset 8-25
	Example 8�19 Incorrect Design (Counter With Asynchronous Load) 8-27
	Example 8�20 Incorrect Asynchronous Design With Gated Clock 8-28
	Example 8�21 Using don’t care Type for Seven-Segment LED Decoder 8- 29
	Example 8�22 Seven-Segment Decoder Without Don’t Care Type 8-31
	Example 8�23 Fully Specified Variables 8-35
	Example 9�1 Using synthesis_on and synthesis_off Directives 9-4
	Example A�1 Implementation of a Moore Machine A-3
	Example A�2 Implementation of a Mealy Machine A-5
	Example A�3 Implementation of a ROM in Random Logic A-8
	Example A�4 Implementation of a Waveform Generator A-11
	Example A�5 Implementation of a Smart Waveform Generator A-14
	Example A�6 MATH Package for Example A�7 A-17
	Example A�7 Implementation of a 6-Bit Adder-Subtracter A-18
	Example A�8 Count Zeros—Combinational A-20
	Example A�9 Count Zeros—Sequential A-22
	Example A�10 Soft Drink Machine—State Machine A-25
	Example A�11 Soft Drink Machine—Count Nickels A-29
	Example A�12 Carry-Lookahead Adder A-35
	Example A�13 Serial-to-Parallel Converter—Counting Bits A-45
	Example A�14 Serial-to-Parallel Converter—Shifting Bits A-48
	Example A�15 Programmable Logic Array A-53
	Example B�1 New Function Based on a std_logic_arith Package Function B-5
	Example B�2 �UNSIGNED Declarations B-7
	Example B�3 SIGNED Declarations B-8
	Example B�4 Conversion Functions B-8
	Example B�5 Binary Arithmetic Functions B-11
	Example B�6 Unary Arithmetic Functions B-12
	Example B�7 Using the Carry-Out Bit B-13
	Example B�8 Ordering Functions B-14
	Example B�9 Equality Functions B-14
	Example B�10 Shift Functions B-15
	Example B�11 Shift Operations B-16
	Example B�12 Using a built_in pragma B-17
	Example B�13 Built-In AND for Arrays B-18
	Example B�14 Built-In NOT for Arrays B-19
	Example B�15 Use of SYN_FEED_THRU B-20
	Example B�16 numeric_std Conversion Functions B-22
	Example B�17 numeric_std Resize Function B-23
	Example B�18 numeric_std Binary Arithmetic Functions B-24
	Example B�19 numeric_std Unary Arithmetic Functions B-24
	Example B�20 numeric_std Ordering Functions B-25
	Example B�21 numeric_std Equality Functions B-26
	Example B�22 numeric_std Logical Operators Functions B-26
	Example B�23 numeric_std Shift Functions B-27
	Example B�24 numeric_std Rotate Functions B-28
	Example B�25 numeric_std Shift Operators B-28
	Example B�26 Some numeric_std Shift Functions and Shift Operators B- 29
	Example B�27 Boolean Reduction Functions B-30
	Example B�28 Boolean Reduction Operations B-31
	Example C�1 Sample Extended Identifiers C-9
	Example C�2 Sample Showing Use of Shift and Rotate Operators C-11
	Example C�3 Sample Showing Use of xnor Operator C-11

	Using FPGA Compiler II / FPGA Express with VHDL
	Hardware Description Languages
	Typical uses for HDLs
	Advantages of HDLs

	About VHDL
	FPGA Compiler II / FPGA Express Design Process
	Using FPGA Compiler II / FPGA Express to Compile a VHDL Design
	Design Methodology

	Design Descriptions
	Entities
	Entity Generic Specifications
	Entity Port Specifications

	Architecture
	Declarations
	Examples of Architectures for NAND2 Entity

	Configurations
	Packages
	Package Uses
	Package Structure
	Package Declarations
	Package Body

	Resolution Functions

	Data Types
	Enumeration Types
	Enumeration Overloading
	Enumeration Encoding
	Enumeration Encoding Values

	Integer Types
	Array Types
	Constrained Arrays
	Unconstrained Arrays
	Array Attributes

	Record Types
	Record Aggregates
	Predefined VHDL Data Types
	Data Type BOOLEAN
	Data Type BIT
	Data Type CHARACTER
	Data Type INTEGER
	Data Type NATURAL
	Data Type POSITIVE
	Data Type STRING
	Data Type BIT_VECTOR

	Unsupported Data Types
	Physical Types
	Floating-Point Types
	Access Types
	File Types

	Synopsys Data Types
	Subtypes

	Expressions
	Operators
	Logical Operators
	Relational Operators
	Adding Operators
	Unary (Signed) Operators
	Multiplying Operators
	Miscellaneous Arithmetic Operators

	Operands
	Operand Bit-Width
	Computable Operands
	Aggregates
	Attributes
	Expressions
	Function Calls
	Identifiers
	Indexed Names
	Literals
	Qualified Expressions
	Records and Fields
	Slice Names
	Type Conversions

	Sequential Statements
	Assignment Statements and Targets
	Simple Name Targets
	Indexed Name Targets
	Slice Targets
	Field Targets
	Aggregate Targets

	Variable Assignment Statements
	Signal Assignment Statements
	if Statements
	Evaluating Conditions
	Using the if Statement to Infer Registers and Latches

	case Statements
	Using Different Expression Types
	Invalid case Statements

	loop Statements
	Basic loop Statements
	while...loop Statements
	for...loop Statements

	next Statements
	exit Statements
	Subprograms
	Subprogram Always a Combinational Circuit
	Subprogram Declaration and Body
	Subprogram Calls

	return Statement
	Procedures and Functions as Design Components
	Example With Component Implication Directives
	Example Without Component Implication Directives

	wait Statements
	Inferring Synchronous Logic
	Combinational Versus Sequential Processes

	null Statements

	Concurrent Statements
	process Statements
	Combinational Process Example
	Sequential Process Example
	Driving Signals

	block Statements
	Nested Blocks
	Guarded Blocks

	Concurrent Versions of Sequential Statements
	Concurrent Procedure Calls
	Concurrent Signal Assignments

	Component Instantiation Statements
	Direct Instantiation
	generate Statements
	for...generate Statement
	if...generate Statements

	Register and Three-State Inference
	Register Inference
	The inference Report
	Controlling Register Inference
	Inferring Latches
	Inferring Flip-Flops
	Understanding Limitations of Register Inference

	Three-State Inference
	Reporting Three-State Inference
	Controlling Three-State Inference
	Inferring Three-State Drivers
	Understanding the Limitations of Three-State Inference

	Writing Circuit Descriptions
	How Statements Are Mapped to Logic
	Design Structure
	Adding Structure
	Using Design Knowledge
	Optimizing Arithmetic Expressions
	Changing an Operator Bit-Width
	Using State Information
	Propagating Constants
	Sharing Complex Operators

	Asynchronous Designs
	Don’t Care Inference
	Using don’t care Default Values
	Differences Between Simulation and Synthesis

	Synthesis Issues
	Feedback Paths and Latches
	Understanding Superset Issues and Error Checking

	FPGA Compiler II / FPGA Express Directives
	Notation for FPGA Compiler II / FPGA Express Directives
	FPGA Compiler II / FPGA Express Directives
	Translation Stop and Start Pragma Directives
	synthesis_off and synthesis_on Directives
	Resolution Function Directives
	Component Implication Directives

	Examples
	Moore Machine
	Mealy Machine
	Read-Only Memory
	Waveform Generator
	Smart Waveform Generator
	Definable-Width Adder-Subtracter
	Count Zeros—Combinational Version
	Count Zeros—Sequential Version
	Soft Drink Machine—State Machine Version
	Soft Drink Machine—Count Nickels Version
	Carry-Lookahead Adder
	Carry Value Computations
	Implementation

	Serial-to-Parallel Converter—Counting Bits
	Input Format
	Implementation Details

	Serial-to-Parallel Converter—Shifting Bits
	Programmable Logic Arrays

	Synopsys Packages
	std_logic_1164 Package
	std_logic_arith Package
	Using the Package
	Modifying the Package
	Data Types
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Shift Functions
	ENUM_ENCODING Attribute
	pragma built_in

	numeric_std Package
	Understanding the Limitations of numeric_std package
	Using the Package
	Data Types
	Conversion Functions
	Resize Function
	Arithmetic Functions
	Comparison Functions
	Defining Logical Operators Functions
	Shift Functions
	Rotate Functions
	Shift and Rotate Operators

	std_logic_misc Package
	ATTRIBUTES Package

	VHDL Constructs
	VHDL Construct Support
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Identifiers and Extended Identifiers
	Operators
	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Predefined Language Environment

	VHDL Reserved Words

