
CADSTAR FPGA
TRAINING

Agenda Agenda

1. ALDEC Corporate Overview

2. Introduction to Active-HDL

3. Design Entry Methods

4. Efficient Design Management

5. Design Verification – Running Simulation

6. Design Verification- Debugging

7. Synthesis and Implementation in Flow Manager

8. Using the PCB interface

Corporate Overview

Aldec Focus - Background

• Founded 1984 – Dr. Stanley Hyduke
• Privately held, profitable and 100%

product revenue funded
• Leading EDA Technology

– VHDL and Verilog Simulation
– SystemVerilog
– SystemC Co-Verification
– Server Farm Manager
– IP Cores
– Hardware assisted Acceleration/Emulation

and Prototyping

• Over 30,000 active licenses worldwide
• Several key Patents in Verification

Technology
• Office Locations:

– Direct Sales and Support
• United States
• Japan
• Canada
• France
• ROW – Distribution Channel

Corporate Milestones

Technology Focus

Design Creation
• Text, block diagram and state diagram entry

• Automatic testbench generation

• Automatically created parameterized blocks

• Variety of IP cores

Verification
• Multiple language support (VHDL, [System]Verilog,

C++, SystemC)

• Assertions (OpenVera, PSL, SystemVerilog)

• Direct compilation and common kernel simulation

• Co-simulation Interfaces(VHPI/VPI,
Matlab/Simulink, SWIFT, …)

Technology Focus – cont.

Hardware Validation

• Hardware assisted acceleration of HDL
simulation

• Emulation and ASIC prototyping

• Hardware / software co-simulation (Embedded
Systems, SoC)

Niche Solution
• Actel CoreMP7 Designs Co-verification (ARM7)

• DO-254 Verification Solution

• Actel RTAX-S/SL Prototyping Solution
(Flash to Antifuse conversion

World Wide Customers

http://www.l-3com.com/

Aldec Partners

http://www.accellera.org/home
http://www.systemverilog.org/
http://www.systemc.org/
http://www.actel.com/
http://www.atmel.com/
http://www.chipx.com/index.asp
http://www.quicklogic.com/
http://www.xilinx.com/
http://www.denali.com/
http://www.novas.com/
http://www.arm.com/
http://www.freemodelfoundry.com/
http://www.nsysinc.com/index.htm
http://www.standardics.nxp.com/to/
http://www.edac.org/

Product Definition

• Active-HDL
– Target FPGA Market
– Windows Only
– Graphical Entry and Documentation
– Mixed Language Simulation

• Riviera-Pro
– Target ASIC/FPGA Market
– Linux, Solaris and Windows (32/64 bit)
– Mixed Language Simulation/Debugging

• SFM
– Server Farm Manager
– Manage 100’s of HDL Simulation from central location

 HES
– Hardware based Debugging Acceleration

(FPGA based board with software – PCI-Express interface)
– Acceleration, Emulation and Prototyping Support
– Patents

• Automatic ASIC to FPGA Clock Conversion
• Smart ClockTM used in Hardware/Software Co-Verification
• “Hardware-In-The-Loop” Technology

• ALINT
• - Comprehensive RTL design checker

- Based on STARC design rules, best practices for Verilog
- The pre-packaged set of STARC rules allows designers to easily check HDL code for

synthesizability, testability, and reusability
– Dynamic Control
– Synthesis Emulation Engine
– Chip-Level Netlist Checks

EE Times 2006 EDA Study

76%

72%

67%

67%

64%

54%

39%

38%

38%

73%

66%

44%

71%

63%

46%

49%

46%

30%

Synplicity

Xilinx

Aldec

Altera

Mentor Graphics

Cadence Design Systems

Synopsys

Actel

Lattice Semiconductor

2006 North America (n=106)

2005 NA (n=63)

Satisfaction with vendor support

North America

2006 vs 2005 scores

Introduction to
Active-HDL

SETTING THE STANDARD IN

• PERFORMANCE
• ACCURACY
• INTEGRATION

Introduction to
Active-HDL

SETTING THE STANDARD IN

• PERFORMANCE
• ACCURACY
• INTEGRATION

A Comprehensive Solution A Comprehensive Solution

Design Flow Manager Design Flow Manager

• Design Flow Manager

interfaces to 87 different

3rd party tools

• Manages the HDL, C and

Physical Synthesis Tools

• Runs the implementation for

any FPGA vendor

• Generates TCL scripts for

advanced automation

• Runs the simulation at all

stages of design

• Invokes external analysis tools provided by silicon vendors

Advanced HDL Editor Advanced HDL Editor

• Keyword and Template auto-completion

• Automatic structure generation of enhanced

legibility

• Built-in customizable language

assistant

• Source code auto-formatting

• Advanced Find, Find in Files and

replace, Column Selection

• Presentation of simulation values

• Navigation Bookmarks

• Ability to interface to third party text

 editors

Block Diagram Editor Block Diagram Editor
• Multi-page hierarchical block diagrams

• Multidimensional arrays and record

signals supported

• Bottom-up and top-down design

methodologies supported

• Allows mixed structural and

behavioral elements

• Cross probing with generated code

• Handles mixed HDL designs

• Customizable design rules checking

• Customizable symbols

Finite State Machine Editor Finite State Machine Editor
• Multiple State Machines on a

single diagram

• Full-Moore machines support

• Hierarchical states and junctions

provided for legibility

• Delay states simplify control

of machine timing

• Advanced code generation

settings

Debugging Tools Debugging Tools
• View simulation results in

• Waveform Viewer

• List Viewer

• Watch

• Trace code execution with

• Processes

• Call Stack

• Breakpoint Manager

• Code Breakpoint

• Signal Breakpoint

Common Kernel Simulator Common Kernel Simulator

• VHDL, Verilog, EDIF, SystemC and SystemVerilog

• VHDL and Verilog Lint

• Strict IEEE Standards Adherence

Design Entry Methods

Creating HDL Text
Modules

Part 1

1. Bottom-Up Design Concepts 1. Bottom-Up Design Concepts

• Start by creating a new workspace and design
• Use the New Source File Wizards

• Add existing files

• Create an empty design

• Complete the source code

• Check syntax for errors

• Verify the functionality of the design

• Create a top-level diagram or entity

1.1 Creating Bottom-Up Design 1.1 Creating Bottom-Up Design

• First, create a new workspace (File | New Workspace). You will
be asked to specify its name. To set up a new design, you can also
select the Design option in the File| New menu.

• In the New Design Wizard window, you can choose the design
entry method:

– To add existing files, check the Add existing resource files
option. Select the source files in the Open window and finish
the design creation by clicking the Finish button.

– To import a design from Active-CAD, check the Import a
design from Active-CAD option.

– To create an empty design, check the Create an empty
design option.

• Type the name of the design, for example BottomUp and click
the Next button.

See 1.1 ref. A for more details

1.1 Ref. A The Design Wizards 1.1 Ref. A The Design Wizards

The Design Wizard
simplifies the process
that guides you through
initial stages of design
development.
By using the Design
Wizard, you will create
a new design.

• Check the Create an empty design option and click Next.

1.1 Ref. B The Design Wizards 1.1 Ref. B The Design Wizards

In the window, you can specify information on:

• Configuration of Block
Diagram Editor

• Default language:
VHDL or Verilog.

• Synthesis and
implementation tools

• Default target device
family

1.1 Ref. C The Design Wizards 1.1 Ref. C The Design Wizards

In the next window, you can set:

•Design name,

•Location of the
design folder,

•Name of the default
working library.

1.1 Ref. D The Design Wizards 1.1 Ref. D The Design Wizards

In the last window of
the New Design
Wizard, press the
Finish button to
accomplish the
design creation
stage.

1.2 Creating Bottom-Up Design 1.2 Creating Bottom-Up Design

• Double-click the Add new file icon.
The Add New File dialog opens.

• Click Wizards and select the VHDL
Source Code Wizard.

See 1.3 ref.B for more details

• Click OK to start the
New VHDL Source
Code Wizard.

1.3 Creating Bottom-Up Design 1.3 Creating Bottom-Up Design

• Check Add the generated file to the design option and
advance by clicking the Next button. Type the name of the
file: counter. You can also use the Browse button to add an
existing file at this stage.

• Define the following ports:
Input Ports:
 - CLK

 - RESET

 Output Port:
 - Q [3:0]

• Click the Finish
button.

1.3 Ref. B Design Wizard - Ports 1.3 Ref. B Design Wizard - Ports

• To add a port, click the New button and type the name of a port.

• To change a port type, click the appropriate button in the Port
direction box. There are four types:

– In

– Out

– Inout

– Buffer

• To remove any port, click
its name on the list and click
the Delete button.

• To create a bus, add a new
port name and click the
Array Indexes arrows to
specify the bus width.

1.4 Creating Bottom-Up Design 1.4 Creating Bottom-Up Design

• HDL Editor window
contains the skeleton
of the counter.

• Click the icon to
open the Language
Assistant window.

• Open the Tutorial
branch and select the
Counter template.

 • Drag the Counter template to the HDL Editor window
and drop it after the: --Enter your statements here line.

1.4 Ref. A Language Assistant 1.4 Ref. A Language Assistant

• The Language Assistant
window contains the
templates of frequently used
models, user-defined
models, and VHDL or Verilog
constructs.

• You can drag the templates
to the HDL Editor window
or select the Use option
from the pop-up menu.

• You can also take advantage
of the Auto-Complete option

Type the first couple of letters of the VHDL or Verilog keyword and it
will be automatically completed. You can now press the Right Arrow
or Space key on the keyboard to complete the word or press the
Ctrl+Enter keys to insert a language template.

1.5 Creating Bottom-Up Design 1.5 Creating Bottom-Up Design

 The HDL Editor offers ways to efficiently manage the code by
performing the following operations:

• Enables keyword coloring for VHDL, Verilog, and C/C++/Handel-C

• Increases indentation of selected blocks

• Comments selected part of code

• Creates groups out of highlighted blocks

• Automatically creates the structure for the source code

• Auto-formats the source code

• Sets bookmarks in the code for easy navigation

• Highlights incorrect constructs after compilation

• Finds and replaces given strings

Note: Most of the above functions also have counteractions.

1.5 Ref. A Marking Blocks 1.5 Ref. A Marking Blocks

• With the mouse, hold down the
left button and drag the cursor
over the text; highlight the desired
block and release the button.

• To perform the same operation
with the keyboard, hold down the
Shift key and use the arrow keys.
After selecting the block, release
the keys. The above techniques let
you select the adjacent lines of the
code.

To select blocks, you can either use the mouse or the keyboard.
The selected blocks are displayed with colors specified for active
selection in the Preferences window.

Note: You can select whole words holding together the Ctrl and Shift keys and
pressing the arrow keys.

1.5 Ref. B Marking Columns 1.5 Ref. B Marking Columns

• Hold down the Alt key and
move the mouse pointer while
pressing its left button. Release
the mouse button after selecting
the desired section of code.

• Click the column selection
button or press Alt+C
combination and then use the
Shift key and the Arrows to
select a rectangular block. To
disable column selection use
either the button or keystroke
combination again.

To select columns, you can either use the mouse or the keyboard. The
selected blocks are displayed with colors specified for active selection in
the Preferences window.

1.5 Ref. C Commenting Blocks 1.5 Ref. C Commenting Blocks

• To comment a selected block,
you can either click the
toolbar button or use Comment
from the pop-up menu.

• You can also select a block and
press the Ctrl+K keys to achieve
the same result.

To comment blocks, select the desired portion of the code
using the previously described techniques.

Note: You can convert lines into comments
as well as their parts, but remember that in
VHDL everything after the ‘--’ sign is treated
as a comment.

1.5 Ref. D Commenting Columns 1.5 Ref. D Commenting Columns

• To comment selected columns,
you can either click the
toolbar button or use Comment
from pop-up menu.

• You can also select columns and
press the Ctrl+K keys to achieve
the same result.

To comment columns, select the desired portion of the code
using the previously described technique. (see 1.5 ref. B)

Note: The column mode is especially
effective while converting line endings into
comments. This may be useful for
describing time steps in testbenches.

• To uncomment selected
columns and blocks, you can
either click the toolbar
button or use Uncomment
from the pop-up menu.

• You can also select columns
and blocks, and press the
Ctrl+Shift+K keys to achieve
the same result.

1.5 Ref. E Uncommenting Blocks and Columns 1.5 Ref. E Uncommenting Blocks and Columns

To uncomment blocks and columns, select the desired
portion of the code using the previously described
techniques.

1.5 Ref. F Indenting Blocks 1.5 Ref. F Indenting Blocks

• To indent a selected
block, you can either click
the toolbar button or
use Indent from the
pop-up menu.

• You can also select a
block and press the Tab
key to achieve the same
result.

To indent blocks, select the desired portion of the code
using the previously described techniques.

Note: Even if you select a section of a
line, the whole line will be indented.

1.5 Ref. G Outdenting Blocks 1.5 Ref. G Outdenting Blocks

• To outdent a selected block,
you can either click the
toolbar button or use
Outdent from the pop-up
menu.

• You can also select a block
and press the Shift+Tab
key to achieve the same
result.

To outdent blocks, select the desired portion of the code
using the previously described techniques.

Note: The default tabulation size is set to 4, but you can change it in
the HDL Editor category of the Preferences window.

1.5 Ref. H Improved Auto Complete 1.5 Ref. H Improved Auto Complete

• The HDL Editor automatically completes VHDL, Verilog keywords based on the
initial letters that you type. Similar keywords can be exchanged with the TAB
key. The Auto-Complete feature can automatically complete both words and
the whole HDL templates.

• The Interactive templates option allows users to invoke a dialog window
before a template is created. In the dialog you can enter, for example, the
name of the identifier for an entity, architecture, module, etc.

1.5 Ref. I Searching strings 1.5 Ref. I Searching strings

• To find a desired string in the
source code, press the Ctr+F
keys or choose the Find option
from the pop-up or Search
menu.

• You can type a string you are
looking for or use the default
one.

 Note that the Find what: field
contains a string at which the
text cursor has been positioned.

Note: You can also search for the specified string in
several files at once. To do this, choose the Find in
files option from the Search menu

To search any string in the file, use the Search menu
options.

1.5 Ref. J Replacing strings 1.5 Ref. J Replacing strings

• To replace a desired
string in the source code,
press the Ctrl+H keys.
You can also choose the
Replace option from the
pop-up or the Search
menu.

• Type the string you want
to replace or use the
automatically inserted
one.

1.5 Ref. K Syntax Highlighting 1.5 Ref. K Syntax Highlighting

The HDL Editor supports syntax highlighting of the following file types:

• VHDL

• Verilog

• EDIF

• SDF

• C/C++/Handel-C

• Tcl/Tk

• Perl

• Active-HDL .DO macro

1.6 Navigation and Bookmarks 1.6 Navigation and Bookmarks

 HDL Editor provides a number of features designed to facilitate the
navigation of source documents
in the Active-HDL environment:
– Bookmarks

– Named Bookmarks

– Links

– Browse Buttons

– Horizontal and Vertical Splitters

Using the Browse buttons you
can scroll the document by:
– pages

– links

– bookmarks

– breakpoints

– named bookmarks

1.6 Ref. A Using Bookmarks 1.6 Ref. A Using Bookmarks

• To toggle a bookmark in the code, click
the button or press the Ctrl+F2
keyboard keys.

• To navigate between the bookmarks
use the buttons.

• To remove all bookmarks from the code
use the button.

Bookmarks facilitate navigation through long documents. You can
place bookmarks in distant regions of the edited document, and then
quickly move the insertion point from one bookmark to another.

Note: All of these functions can be
invoked from the Search menu.

1.6 Ref. B Using Named Bookmarks 1.6 Ref. B Using Named Bookmarks

 The difference between named and regular bookmarks is that named
bookmarks are encoded by special strings inserted directly in the
document text. Such strings are referred to as bookmark codes.

For example, a bookmark named jump will be implemented by the following
strings:

--

 HDL Editor does not display the bookmarks codes directly. Instead,
only the bookmark names are displayed in a distinguishing color:

--Named bookmark in HDL code:

--Jump

 Note: Bookmark codes occurring outside comments are ignored by

the HDL Editor and displayed as true code.

To place a named bookmark click the button or choose the
Insert/Named bookmark option from the pop-up menu.

1.6 Ref. C Smart Indent and Auto Indent 1.6 Ref. C Smart Indent and Auto Indent

HDL Editor provides two features designed to facilitate indenting of
the edited code: Auto Indent and Smart Indent. Both options
are controlled from the Preferences dialog.

• Auto Indent
When you hit Enter to start a new text line, the editor
automatically inserts tab characters or spaces in the new line so as
to align the insertion point with the first character in the previous
line.

• Smart Indent
When you hit Enter to start a new text
line, the editor automatically inserts tab
characters or spaces in the new line so
as to indent consecutive HDL constructs.

1.6 Ref. D Auto-formatting the Code 1.6 Ref. D Auto-formatting the Code

• You can format your source code automatically using the
Autoformat Text button. This command analyzes the code
and indents consecutive lines of text based on the same
principle as the Smart Indent option.

Before After

1.6 Ref. E Generating Text Structure 1.6 Ref. E Generating Text Structure

• You can automatically divide
the source code into groups
according to the HDL syntax
using the Generate
Structure button

Note: The operation of this command is fully
customizable in the Preferences dialog. You can
choose what HDL constructs are to be grouped and
what shade colors to use for specific constructs.

1.6 Ref. F Using Text Structure 1.6 Ref. F Using Text Structure

• To take advantage of the
generated code structure you
can click on the buttons
to collapse or expand groups
of HDL statements.

• You can also create your own
structures by grouping
selected statements. To do this
select a portion of the code
and click the button.

• To revert to the original
document layout, click the
button. This will remove the
generated structure
automatically

• Source files can be compiled individually by
choosing the Design|Compile command
or clicking the toolbar button.

• All source files can be compiled in one pass
according to the order set in Design
Compilation Order (Design | Design
Compilation Order). To do this
select the Design|Compile All command
or click the button.

• All source files can be compiled in one pass with
the prior reorder. The files are reordered so as to
ensure the proper order of analysis.
To do this, select the Design|Compile All
with File Reorder command or click the
button.

1.7 Compiling the Design 1.7 Compiling the Design

Active-HDL allows you to compile design source files
in several manners.

1.7 Ref. A Compilation Status 1.7 Ref. A Compilation Status

Errors occurred during the last compilation

Warnings occurred during the last compilation

Not compiled or modified after the last
compilation

Successfully compiled

Each source file can have one of the following statuses,
denoted with additional markers placed on file icons in the
Design Browser window.

1.7 Ref. B Tracking Errors 1.7 Ref. B Tracking Errors

• You can easily track any errors
in the HDL Editor window
(underlined in red).

• The Console window displays
all errors with short descriptions
and takes you directly to them by
double-clicking the particular error
message. Moreover, the line is
marked with a red x.

• If you rest the cursor over the
underlined line, a short error
description(s) will appear.

• Add line “use
ieee.std_logic_unsigned.all” to
correct the error and recompile the
file

1.8 Instantiating Components 1.8 Instantiating Components

• By creating a top-level entity,
you can test the functionality
of the entire design. To do
this, you must instantiate the
components of the design.

• Component instantiation is
like plugging a hardware
component into a socket in a
board.

Active-HDL allows you to work with multiple-file projects.

You can then create required models in separate files and verify them individually instead
of placing them in one large design file.

1.8 Ref.A Declaring Components 1.8 Ref.A Declaring Components

• Expand the library contents in the Design
Browser and copy the declaration pressing
Ctrl+C keys or use the Copy Declaration
option from the pop-up menu.

• Go to the HDL Editor window and paste the
declaration pressing Ctrl+V keys or using
the Paste option from the pop-up menu.

Active-HDL provides a utility to speed up a component declaration.
You can copy a component declaration from the working library or a
library in the Library Manager window.

Note: This will only copy the component
declaration. You will have to map the ports and
generics of the entity by yourself.

1.8 Ref.B Instantiating Components 1.8 Ref.B Instantiating Components

• Expand the library contents in the Design Browser and
copy the instantiation to be used in either VHDL or Verilog
source file using appropriate pop-up menu option.

• Go to the HDL Editor window and paste the instantiation
using Ctrl+V keys or the Paste option from the pop-up
menu.

Active-HDL also provides a feature to speed up a component
instantiation. You can derive component instantiation for either
VHDL or Verilog.

Note: The instance label and
actuals mapped to the ports
of the instance can be
customized in the
Preferences window.

Design Entry Methods

Creating HDL Graphical
Modules

Part 2

2. Top-Down Design Concepts 2. Top-Down Design Concepts

• Start by creating a top level diagram

• Push into individual symbols

• Select your preferred design entry tool:
• BDE – Block Diagram Editor

• HDE – HDL Editor

• FSM – Finite State Machine Editor

• Create the source code

• Compile the entire design sources

2.1 Creating at Top Level Block Diagram 2.1 Creating at Top Level Block Diagram

• To create the new block diagram, double click on Add New File
from the Files tab on the Design Browser

• Select Wizards tab and double click Block Diagram Wizard

 Note that you can also create an empty skeleton file by selecting Empty
Files tab in the Add New File window.

• Click Next >

• Type Top_Counter in the first box in the New Source File
Wizard - Name window and click Next >

See ref. A for more details

In this section we will implement the top level Block Diagram file to
familiarize you with the basic concepts of the Block Diagram Editor.
We will also create a State Machine module Control using top-down
design methodology.

2.1 Ref. A The Design Wizards 2.1 Ref. A The Design Wizards

Design Wizards simplify the creation process guiding
you through the initial stages of design development.
Using design wizards, you will create skeleton files
with little effort.

2.2 Creating the Top Level Block Diagram 2.2 Creating the Top Level Block Diagram

• Define the following ports of the top_counter block diagram:
Input Ports:

– START

– RESET

– CLK

 Output Ports:

– Q [3:0]

• Click Finish

 Block Diagram Editor (BDE) screen with an empty diagram will
appear.

See ref. B for more details

2.2 Ref. A Design Wizard - Ports 2.2 Ref. A Design Wizard - Ports

• To add a port, click the New button and type the name of the port.

• To change a port type, click the radio buttons in the Port direction
box. There are four types:

– In

– Out

– Inout

– Buffer

• To remove any port, click its name on the list and click the Delete
button.

• To create a bus, add a new port name and click the Array indexes
arrows to specify the bus width.

2.3 Creating the Top Level Block Diagram 2.3 Creating the Top Level Block Diagram

• Click the Fub button on the BDE toolbar and create fub to the
right of the START, RESET and CLK and input port symbols by
clicking in the one corner of the fub and dragging to the opposite
corner.

 The fub you are drawing should look like this:

NOTE: A FUB is a symbol ‘in the process of creation’ and can be
converted to a regular symbol when completed. The main difference
between a fub and a symbol is that you can have multiple instances of the
same symbol, but only one fub.

2.4 Creating the Top Level Block Diagram 2.4 Creating the Top Level Block Diagram

• Click the Wire button on the BDE toolbar and drag three
horizontal wires from the START, RESET and CLK input port
symbols to the U1 fub;

 * please note that three input pins are automatically created in the fub

• Hit Esc key to return to Select
mode

• Double-click “Fub1” label below
the fub and change fub name
to CONTROL

• Right click in the fub body and
select Edit to switch to Edit
mode

2.5 Creating the Top Level Block Diagram 2.5 Creating the Top Level Block Diagram

• Drag Out pin from the Add New Pin window to the fub and drop it
on the right-hand edge to create Pin1; repeat dragging to create
Pin2

• Double-click Pin1 and change its name to Clock

• Double-click Pin2 and change its name to RST

• Click outside the fub and answer Yes when asked if you want to
save changes to the fub

2.6 Creating the Top Level Block Diagram 2.6 Creating the Top Level Block Diagram

• The completed fub should look like this:

 (we will fill the fub contents after
completing our top level block diagram)

• We can now proceed to placing the
remaining symbol on the
top_counter block diagram.
To place the symbol from the library,
we will use the Symbol Toolbox

window.

To open it, use the Show Symbol
Toolbox button .

2.7 Creating the Top Level Block Diagram 2.7 Creating the Top Level Block Diagram

• The Symbol Toolbox contains
compiled units without symbols. The
symbol is generated ”on-the-fly”
when you select the unit you want
to use. However, you can add the
symbols from other libraries or use
Built-in symbols right away.

• Right-click the empty space and
select the Select Libraries option
from the pop-up menu.

• In the Libraries window, check
which libraries you want to use in
the current design. Accept the
changes by pressing the OK button.

• Drag the counter symbol to the diagram window and drop it to
the right of the Control fub.

• Use the Wire button to draw the following connections:
1. from the Clock output port of the Control symbol to the
 CLK input of the Counter symbol

 2. from the RST output port of the Control symbol to
 the Reset input of the Counter symbol

• Hit Esc to return to the Select mode

• You can rename wires by double-clicking on them and typing a
new name in the Segment box in the Wire Properties
window. Please rename:

– wire drawn in point 1 above to CLOCK

– wire drawn in point 2 above to RST

2.8 Creating the Top Level Block Diagram 2.8 Creating the Top Level Block Diagram

2.9 Creating the Top Level Block Diagram 2.9 Creating the Top Level Block Diagram

• Use the Bus button to draw the following connection, from
the Q(3:0) output port of the Counter symbol to the Q(3:0) port
of the block diagram

• Hit Esc to return to the Select mode

• You can rename buses by double-clicking on them and typing a
new name in the Segment box in the Bus Properties window.
Please verify if the bus has the same name and range as the
output of the Counter symbol.

2.10 Creating the Top Level Block Diagram 2.10 Creating the Top Level Block Diagram

• The completed top_counter block diagram should look like this:

• Please save and close the diagram

• Create the Functional folder, drag the top_counter block diagram
to the Functional folder in the Design Browser window and
reopen it

Note: Symbols placed on diagrams can contain other block
 diagrams, state machines or HDL files.

2.10 Ref.A Design Rule Checking 2.10 Ref.A Design Rule Checking

• DRC formally verifies the
correctness of connections
between symbols on the
diagram. Errors are reported
in the Console window. You
can change the severity level
of an error in the Check
Diagram Settings window
(in the Diagram menu).

• You can customize these
settings to be more or less
restrictive according to your
preferences.

2.11 Creating Fub Contents 2.11 Creating Fub Contents

• Right-click on the Control fub
in the top level block diagram
and select Push

• Click State Diagram in the
Type window

• The “Functional\” text should
be added automatically before
the “Control.asf” in the File
box

• Click OK

The Finite State Machine (FSM) editor window should open with an
outline of our state machine.

2.12 Creating Fub Contents 2.12 Creating Fub Contents

Output ports of the machine can be either combinatorial, registered or
clocked. Clocked outputs require ”Two Processes” or ”Three Processes”
generation pattern. To select between these, right-click the port
symbol and select the Properties option from the pop-up menu. You
can also change the port type there.

2.13 Creating Fub Contents 2.13 Creating Fub Contents

• Right click on the CLK
port symbol in the
Control state diagram
and select Properties.

• Select the Clock
checkbox in the Port
Properties window.

• Click OK.

• Similarly create START
as an input port, GATE
and END_RESET as
Registered Output
ports.

The FSM Editor is designed for behavioral descriptions of State
Machines. The Control unit we are going to describe will be
synchronous, so we must declare one of the inputs F_PATTERN in the
diagram as our machine clock.

2.14 Creating Fub Contents 2.14 Creating Fub Contents

• Using the FSM | State
menu option or State
button in the toolbar, place
three states on the
diagram as shown in the
picture.

• Don’t worry if the state
names on your diagram
are different from the ones
in the picture, we will be
changing them anyway.

2.15 Creating Fub Contents 2.15 Creating Fub Contents

You can change a state name by right-clicking on the state, selecting
Properties and typing a new name in the General tab of the
State Properties window. If you are zoomed close enough, you
can double click the old name and type the new name directly in the
diagram.

• Change the first state
name to Idle.

• Change the second
state name to
Open_Gate

• Change the third state
name to end_cycle

2.16 Creating Fub Contents 2.16 Creating Fub Contents

• Draw transitions as shown in this picture.

• To draw a loop transition, click inside the
same state twice.

• To change the shape of any transition,
click on it and drag the handles.

You can draw transitions between states by selecting
FSM | Transition from the menu or Transition button in the
toolbar and clicking the starting state, then clicking the target state.

2.17 Creating Fub Contents 2.17 Creating Fub Contents

• Draw the reset symbol and
transition as shown in this picture

• Make sure to set reset as
“Asynchronous” by clicking the .

• To set the parameters of the
reset signal, you must invoke the
Machine Properties window by
right-clicking on the rectangular
frame surrounding the machine
and selecting Properties

You can define a reset state in your FSM by selecting FSM | RESET
from the menu or Reset button in the toolbar, clicking close to
the reset state to place the reset symbol, then clicking inside the
state to draw the reset transition.

Right-click
in this area

2.18 Creating Fub Contents 2.18 Creating Fub Contents

• Click the Reset tab in the Machine Properties window and select:

– Reset signal in the Name box

– Asynchronous in the Type box

– High in the Active Level box

You can specify more elaborate
reset conditions by clicking
Advanced & typing an expression
describing the reset condition

• Click OK

• To change the machine name, switch to the General tab and type
the name of the machine in the Name field.

• To set a trap or default state, you can switch to the Defaults tab.
These states are used in cases when illegal conditions are met.

2.19 Creating Fub Contents 2.19 Creating Fub Contents

• Please add the following conditions:

– Start=‘0’ to the loop transition
in the Idle state and to the
transition from the END_CYCLE
to the Idle state;

– Start=‘1’ to the loop transition
in the END_CYCLE state and to
the transition from the Idle to
the OPEN_GATE state;

You can add conditions to the transitions
by selecting FSM | Condition from the
menu or Condition button in the
toolbar, clicking the transition and typing
the condition expression.

2.20 Creating Fub Contents 2.20 Creating Fub Contents

• Add the following actions:
 GATE<=‘0

 END_RESET<=‘1’

 to the Idle state

• Similarly add action
statements for OPEN_GATE
and END_CYCLE states as
shown in Figure.

Three kinds of actions can be specified for a state – entry, state and
exit actions. Use FSM | Action | State from the menu, clicking
inside the state and typing the expression(s) that should be executed
in the state.

2.21 Creating Fub Contents 2.21 Creating Fub Contents

• Save your state diagram by pressing
Ctrl+S or choosing the button on the
toolbar

• Right-click on the Control.asf file in the
Design Browser and select the Compile
option. Watch as the VHDL code is
generated from the state diagram and
then compiled

• Active-HDL automatically creates
corresponding VHDL code for the state
machine. To open the Control.vhd file in
the HDL Editor window, double click its
name.

• Compile the top level block diagram
top_counter.bde

2.22 Creating Fub Contents 2.22 Creating Fub Contents

• The HDL Editor window
contains the code for the
state machine and
highlights the syntax to
increase readability.

• You can also generate the
structure for the code to
ease navigation.

• For more details on the
HDL Editor, please refer to
the Bottom-Up Design
Methodology course

2.23 Creating Graphical Process/Always 2.23 Creating Graphical Process/Always

• The Process/Always elements introduce another level of abstraction in the Active-HDL
projects.

• The Graphical Process/Always text blocks allow adding another form of the description in
the designs that extensively employ block diagrams.

• By creating special text blocks representing VHDL processes or Verilog always blocks,
statements can be placed directly on a block diagram in the same way as other typical
HDL statements.

• They can be edited and connected with other objects on a sheet and the list of
signals/nets attached to the symbol is automatically updated and displayed within the
object frame visible in the block diagram window.

• Graphical Process and Graphical Always can be edited directly in the Block Diagram
Editor window or in the standalone HDL Editor window.

2.24 Objects View 2.24 Objects View

• The Objects View option allows
you to view, sort and change
properties of all objects defined in
a block diagram e.g. terminals,
signals, generics, parameters,
statements.

• The objects listed within this
window can be put in the user-
defined order by using the drag
and drop technique.

• They can also be sorted in
ascending or descending order or
with the default settings.

• The final order applied by the user
is used while generating a code.

• Additionally, the Objects View
window allows the user to follow
signals/net and processes specified
on block diagrams.

2.25 Multiple architectures support 2.25 Multiple architectures support

• The Block Diagram Editor allows the user to generate the VHDL code
that contains an architecture body only.

• This way, you different implementations (several architectures) for the
same entity can be created and used.

2.26 Visible Port Direction 2.26 Visible Port Direction

• The purpose of this
feature is to make the
port direction visible on a
block diagram.

• It makes the analysis of a
block diagram easier
especially when it
contains a large number
of complex symbols that
have different types of
ports located on the left
and right side of the
symbol.

2.27 Cross-probing between Block
Diagram Editor and generated HDL code

2.27 Cross-probing between Block
Diagram Editor and generated HDL code

• The Show in Generated Code
is available in context menu of
selected object in the block
diagram window.

• The Block Diagram Editor
supports cross-probing between
a diagram and the generated
code.

• It allows to link diagram objects
(e.g. wires, buses, components,
graphical processes / always ,
other HDL statements) with the
HDL code and to see the
declaration of the selected object
from a diagram directly in the
code.

2.28 Bitmap support 2.28 Bitmap support

• The Block Diagram Editor allows the user to place on a
block diagram a picture (e.g. company's logo) from the
bitmap file

The Block Diagram Editor supports the

following picture formats:

• Bitmap files (*.bmp)

• Windows Metafile files (*.wmf)

• Enhanced Metafile files (*.emf)

2.29 Comments for diagram elements 2.29 Comments for diagram elements

• The Block Diagram Editor
allows users to add
comments for each class of
block diagram elements.

• The terminals, wires,
buses, symbols, and fubs
can be described with
additional text on the
object properties
Comment tab.

• The comments appearing
on diagrams as well as in
the generated HDL code
are very helpful while
documenting or during the
analysis of complex designs

2.30 Add Stubs feature 2.30 Add Stubs feature

• The Add Stubs option automatically adds wires and/or buses to
unconnected ports of the symbol and assigns them names proper for
individual ports of the symbol.

• This significantly speeds up the process of creating interconnect using
named assoctiation.

Design Entry Methods

Creating HDL Graphical
Modules

Part 3

3. State Diagram Editor features 3. State Diagram Editor features

• Multiple architectures support
• Code Generation Settings
• HDL code editing
• Asynchronous machines
• Multiple reset support
• Transition Auto Priority
• Junction
• Convert to Hierarchical State
• State register port
• Synthesis Attributes
• Export to previous ASF format
• Report file generation

3.1 Multiple state machines 3.1 Multiple state machines

• The Active-HDL State Diagram Editor allows the user to describe the
behavion of a design unit using multiple concurrent state diagrams in
one document.

• The space on the diagram
has to be partitioned and the
New Machine menu option
will create a frame for the
new state machine.

3.2 Multiple architectures support 3.2 Multiple architectures support

• The State Diagram
Editor allows the user
to generate the VHDL
code that contains an
architecture body only.

• This way you can
create and use different
implementations
(several architectures)
for the same entity.

3.3 Code Generation Settings 3.3 Code Generation Settings

Code Generation Settings dialog:

• To generate a code from a state
diagram, you can set several HDL styles.

• You can decide whether to use the if or
case statements in the state register

description.

• Additionally, you can choose the final
form of your state machine logic, that is,
whether it will be described by using one,
two, or three processes.

• Users can control the header and
comments insertion in the generated
code.

• The State Diagram Editor allows you to
choose the clock specification in the
generated code.

• The State Diagram Editor allows
designers to use blocking or non-blocking
assignments in the generated code.

3.4 HDL code editing 3.4 HDL code editing

• The Use HDE for Actions
editing option has been
added to the State Diagram
Editor's Preferences.

• It allows users to
automatically open the
standalone HDL Editor
window for editing state
actions.

3.5 Asynchronous machines 3.5 Asynchronous machines

• The State Diagram Editor
supports the creation of
asynchronous state machines.

• If you create this type of state
machine, you can set
appropriate options in the
Machine Properties window.

3.6 Multiple reset support 3.6 Multiple reset support

• The State Diagram Editor allows the user to specify several reset
signals in state machine projects.

3.7 Transition Auto Priority 3.7 Transition Auto Priority

• The Transition Auto Priority option has been enabled in the State Machine Editor.
If several transitions come out of one state, their priorities will be assigned
automatically. It allows the user to avoid the ambiguity in the machine's behavior in
case two or more conditions are met at the same time.

3.8 Junction 3.8 Junction

• The Junction is an
additional graphical
object that simplifies
the creation and
analysis of state
diagrams.

• Junction is a
"connector" that
enables a set of
transitions to be
replaced by another
reduced set of state-
to-state transitions.

• The less transitions on
a state diagram, the
easier its evaluation is.

3.9 Convert to Hierarchical State 3.9 Convert to Hierarchical State

• Once a part of the state diagram has been
selected, it can be converted to a Hierarchical
State. If you work on very complex state machine
projects, you can use Convert to Hierarchical
State option to decompose your machine and
make the resulting diagram easier to document
and analyze for you and other designers.

3.10 State register port 3.10 State register port

Contents of the state register can be passed to a
combinatorial output vector. This is useful when creating
Full Moore machines and for debugging purposes as well.

3.11 Synthesis attributes 3.11 Synthesis attributes

Synthesis attributes can be added to the generated HDL
code to better control and improve FSM synthesis results.

• Enable Synthesis Attributes and choose
the tool you would like to use for syntesis
in Code Generation Settings

• Select the appropriate values for
attributes supported by your synthesis
tool.

3.12 Report file generation 3.12 Report file generation

• The State Diagram
Editor generates the
documentation for a
state machine project.

• The ASF Report is an
auxiliary tool that
gathers complete
information about the
created state machine.

• It contains details of
port types, structure of
the design hierarchy
tree, specified reset
signal(s) and active
clock's edge, headers,
etc.

Efficient Design Management

Part 4

4.1 Efficient Design Management 4.1 Efficient Design Management

• Set up Designs Using Wizards in Design Browser

• Archive Designs

• Create Revisions

• Use Library Manager:
• Browse Libraries

• Add New Libraries

• Update Existing Libraries

• Create Macro Command Files

• Use Tcl/Tk, Perl and VBasic Scripts

• Add External Tools to Active-HDL

• Plug in IP Cores

• Using Source Control

4.2 Using Design Browser 4.2 Using Design Browser

• Add, remove, view, modify, or perform
another specific operation on the
resource files.

• View the contents of the libraries
present in the current design.

• View the elaborated structure of the
currently selected simulation top-level
design unit.

• View objects defined within specific
regions of the simulated design units.

The Design Browser is a tool designed for managing the
attached design resources.

4.3 Using Design Browser 4.3 Using Design Browser

• The Files tab shows resource files
attached to the design and displays the
contents of the default working library.

• The Structure tab shows the
hierarchical structure of the top-level
design unit, along with objects defined
within the currently selected design
region.

• The Resources tab displays resource
files sorted according to file types.

The Design Browser window includes
three tabs:

4.4 Design Browser - Files Tab 4.4 Design Browser - Files Tab

• The design contents are displayed as an expandable hierarchical
tree. Each file is represented by a separate icon. Branches with
source files can be expanded to show design units (except
packages and package bodies) contained within them.

• Resource files can be grouped in hierarchical folders. Folders
displayed on the Files tab correspond to file folders residing in the
folder $DSN\Src where $DSN denotes the current design folder.

• The lower part of the tree shows the default working library branch
with compiled design units. Each design unit type is represented by
a specific icon.

The Files tab shows resource files attached to the design
and displays the contents of the default working library.

4.5 Design Browser - Files Tab
Resource File Types

4.5 Design Browser - Files Tab
Resource File Types

This chart shows the available
resource file types with their
default file extensions and icon
images:

4.5.1 Design Browser - Files Tab
File status display

4.5.1 Design Browser - Files Tab
File status display

It is very easy to recognize whether your source file is controlled by an
external revision control system and what Active-HDL status your
source has while working with it.

The Design Browser-Files tab distinguishes sources
and their status in the source revision control
systems as follows:

- the sources checked out are displayed in blue,

- the sources located in the Source Revision Control
system but not checked out yet are displayed in
black,

- the sources excluded from compilation are
displayed as italics,

- the sources not added to the Source Revision
Control system are displayed in gray.

4.5.2 Design Browser - Files Tab
Compilation Order

4.5.2 Design Browser - Files Tab
Compilation Order

Active-HDL provides dedicated dialogs that allow
to precisely specify the order the designs and
files within these designs will be compiled in.

Workspace Compilation Order allows you to
modify (by using drag&drop) the order the
designs added to the current workspace will be
compiled. The order can be preserved and saved
in a macro file and then used in the batch mode
compilation.

The Design Compilation Order dialog box is
similar to the Workspace Compilation Order
window but it allows you to change the order of
HDL source files being compiled within the
design. In this window, by dragging and
dropping sources, you can specify the order used
during the compilation of the active design.

4.5.3 Design Browser - Files Tab
Design Unit Types

4.5.3 Design Browser - Files Tab
Design Unit Types

The branch of the tree headed by the library icon shows design units
stored within the default working library. Unlike the Library Manager,
the Files tab shows only those units that can be selected as top-level
design units for simulation.

 VHDL design entity-architecture pair

VHDD entity without architecture

Configuration declaration

Verilog module

SystemC module

EDIF cell

Architecture body

4.6 Design Browser - Structure Tab 4.6 Design Browser - Structure Tab

The hierarchical structure is a result of elaboration

of a design and consists of blocks and processes.

The Structure tab is comprised of two parts.

- The upper part shows the hierarchical structure
of the top-level design unit.

- The lower part displays HDL objects defined
within the selected design region with their value.

4.6.1 Design Browser - Structure Tab 4.6.1 Design Browser - Structure Tab

• A block results from elaboration of one of the following
concurrent statements:

– Block statement

– Generate statement (zero, one or more blocks may result)

– Component instantiation statements

• A process results from elaboration of one of the concurrent
statements.

– Process statement

– Concurrent procedure call statement

– Concurrent assertion statement

– Concurrent signal assignment statement

The hierarchical structure resulting from elaboration of a design consists
of blocks and processes.

After the compilation the “Top-Level” unit is detected.

4.6.2 Design Browser - Structure Tab 4.6.2 Design Browser - Structure Tab

You can choose which columns are
to be displayed. To do this, right-
click the columns header and check
the columns you want to view.

The following icons are used for HDL objects on the object
list in the lower part of the Structure tab:

4.6.3 Design Browser - Structure Tab
Multiple architectures and configuration support

4.6.3 Design Browser - Structure Tab
Multiple architectures and configuration support

You can create several architectures for the same entity and easily
prepare configuration declaration for your design.

Configuration file
automatically updated

• Folder name.

• Set of file extensions. The resource folder
will include resource files with matching
extensions only.

• File folder to be scanned for resource
files. The Design Browser will scan the
contents of the specified file folder and all
of its subfolders. You can specify a folder
that does not belong to the current
design.

4.7 Design Browser - Resources Tab 4.7 Design Browser - Resources Tab

The Resources tab shows resource files existing in the
design sorted by their extension. The files are displayed in
resource folders. For each resource folder you can define:

NOTE: Resource folders have nothing to do with file folders.
They exist only on the Resources tab of the Design Browser.

4.8 Archiving Designs and Workspaces 4.8 Archiving Designs and Workspaces

• To pack your design use the
Archive design option from the
Design menu or Archive
Workspace from Workspace
menu.

• Select the destination directory and
some comments if you wish.

• Active-HDL adds all design files and
lets you specify additional files.

• Archive the Workspace or Design
contents by clicking the Start
button.

• After the design has been archived,
you can send it via e-mail.

Active-HDL provides you with a Wizard that lets you pack all design or
workspace contents into one ZIP archive.

Note:You can extract designs using any program supporting ZIP compression format.

4.9 Creating Revisions 4.9 Creating Revisions

• To backup your design, select
the Backup Revision option
from the Design menu.

• Type the revision name and a
comment.

• Start the process by clicking
the OK button.

For safety reasons you can create backup revisions of your
design. To speed up the process, Active-HDL offers you the
Backup Revision wizard.

Note: Each revision is identified by its number assigned automatically during
creation of a revision.

4.10 Restoring Revisions 4.10 Restoring Revisions

• To restore your design from a
previously saved revision,
select the Restore Revision
option from the Design menu.

• Select the revision.

• Start the process by clicking
the OK button.

When you need to restore one of the previous revisions,
use the Restore Revision option from the Design menu.

4.11 Library Manager 4.11 Library Manager

• Create new libraries and setting up the working mode.

• Attach, detach and delete libraries.

• Edit logical names of libraries.

• Refresh, compact and empty libraries.

Library Manager is designed for managing HDL libraries. It allows
you to perform the following operations on libraries and their contents:

• View the contents of libraries.

• View the source code of specific
 library units.

• Delete specific library units.

• View the contents of libraries.

• View the source code of specific
 library units.

• Delete specific library units.

4.11.1 Library Manager 4.11.1 Library Manager

The Library Manager window contains two panels.
The left pane shows a list of currently attached libraries and their
parameters. It has five columns:
• Library - displaying the logical name of the library.

• Vendor - displaying library vendor

• Mode - displaying the mode of the library:

• Read/Write (R/W)

• Read/Only (R/O)

• Comment - displaying an optional comment providing a short

description of the library contents.

• Directory - displaying the library index file with the full path.

4.11.2 Library Manager 4.11.2 Library Manager

The right pane shows library units within the library selected in the left
panel. The panel contains the following columns:

• Unit Name - displays library units contained in the selected library.

• Secondary Unit Name – displays secondary unit name of library unit

• Source Type - displays information about the type of the source
document containing description of a specific architecture body. The
available types are: Source Code, Block Diagram, State Diagram,
and EDIF Netlist.

• Target Language - Indicates the language of the source code from
which the library unit was effectively compiled

• Symbol - Indicates if the primary library unit has a block diagram symbol
in the library

• Simulation Data - shows whether a specific architecture body or EDIF
module has simulation data (YES) or not (NO).

4.11.3 Library Manager 4.11.3 Library Manager

Library Units and Secondary Units are represented by the following
symbols:

4.11.4 Library Manager 4.11.4 Library Manager

When a VHDL package is selected in right panel, the Package
Contents panel will appear. This panel contains the names of the
declarations in this package.

The following icons are used to represent declarations within VHDL
packages:

4.11.5 Library Manager 4.11.5 Library Manager

To work with libraries obtained from independent providers, add them
in the Library Manager window.

Note: Standard libraries are attached to the list during installation. Active-HDL
comes with precompiled standard libraries.

• To add a new library in the Library
Manager window, use the Attach
Library command in the pop-up menu or
click the toolbar button.

• In the Open window, navigate to the
folder where the library is
stored and select its name. Attach the
library clicking the Open button.

4.11.6 Library Manager 4.11.6 Library Manager

• Choose the Create Library
option from the Library
menu or click . This will
start the New Library
Wizard.

• Specify the source files for
the library contents.

• Compile the library by
clicking the Finish button.

You can create new libraries from previously compiled
designs. For this purpose use the New Library Wizard.

Note: You can create an empty library for
later use.

4.12 Creating Macro Command Files 4.12 Creating Macro Command Files

• To execute a single macro command, enter it in the Console window
with appropriate parameters. The moment you press Enter, the
command will be executed.

• To execute a macro command file that contains a sequence of macro
commands, enter the following command line in the Console
window:

 do <filename> [<parameter_value> ...]

• To find out more about particular command, type the line:

 help <command_name>

 This will open the Help window with the topic describing the
command behavior and syntax.

Active-HDL’s macro language has been designed to enable the user to
work with Active-HDL without using the graphical user interface (GUI).
You can get most of the Active-HDL functionality by entering the
appropriate macro commands in the Console window and without
touching the mouse.

4.12.1 Creating Macro Command Files 4.12.1 Creating Macro Command Files

The fundamental macro commands are:

• comp – compiles the given file

• asim – simulates selected architecture

• wave – adds signals to Waveform Editor

• run – runs the simulation

• endsim – terminates the simulation

* You can execute the macro
command files in the Design
Browser window by selecting
Execute from the context menu.

4.12.2 Creating Macro Command Files 4.12.2 Creating Macro Command Files

Active-HDL provides also a very convenient mechanism for automated
generation of compilation macros for entire Workspace and Designs.
These macros can be also generated for VSimSA standalone simulator
for use in batch mode.

4.13 Using Tcl/Tk Scripts 4.13 Using Tcl/Tk Scripts

• Tcl/Tk script can be either executed from Design Browser context
menu or from the Console by entering the runscript command
followed by the script file name:

 runscript <scriptname> [<parameter_value> ...]

• Tcl/Tk scripts can provide the same functionality as the Active-HDL
macro language.

Tcl (Tool Command Language) is a simple yet powerful scripting
language for controlling and extending applications. Tcl together with
its Tk extension, provide a programming system for developing and
using graphical user interface (GUI) applications.

A Tcl/Tk script is a text file containing a program created in the Tcl
language.

4.13.1 Using Tcl/Tk Scripts 4.13.1 Using Tcl/Tk Scripts

 package require ::aldec::scripter 1.0

To execute a BASIC script, use the following statement:

 ::aldec::scripter::ExecuteScript runscript

<script_filename> <parameters>"

To execute a Tcl script, use the following statement:

 source "<script_filename>"

To execute a Perl script, use the following statement:

 ::aldec::scripter::RunConsoleCommand

"<script_filename>" "<parameters>"

To execute the macro file, use the following statement:

 ::aldec::scripter::RunDo "<script_filename>"

A Tcl script can call other scripts of any type (BASIC, Perl, Tcl), as well as a
macro command file. To enable this, the following line should be included in
the Tcl script file:

4.13.2 Using Tcl/Tk Scripts 4.13.2 Using Tcl/Tk Scripts

Active-HDL comes with a Modulator example that employs a Tcl/Tk
script to run an automated simulation. Tcl/Tk scripts are executed in
Active-HDL similarly to the macro command files.

• Select the TCL/TK file in the Design Browser window, then choose
 the Execute command from the context menu.

The simulation is controlled from within the Tcl/Tk
window by clicking appropriate buttons or sliding the
scroll bars.

4.14 Using BASIC and Perl Scripts 4.14 Using BASIC and Perl Scripts

• Perl and Basic scripts can be invoked from the Design Browser or
from the Console window.

• To execute a script file in the Design Browser, add it to the
design using the Add New File wizard. Then right-click on the
script file and choose the Execute option from the context menu.

• In the Console window, enter the runscript command followed by
the script file name:

 runscript <scriptname> [<parameter_value> ...]

Active-HDL allows you to work with Perl and VisualBasic scripts as well.

Note: In order to execute scripts from the Console window without necessity
to use runscript command, BASIC scripts should be placed in the Scripts folder
located in the Active-HDL home directory and Perl scripts should be stored in
the Scripts/Perl subfolder.

4.15 Using Scripts 4.15 Using Scripts

The Active-HDL command interpreter provides a few special features related to
the string interpretation:

• Any string surrounded by brace brackets ({ }) is treated exactly as it looks.
This is useful when you use values (for example, strings with spaces or
other special characters inside) that would be normally misinterpreted:

set time 10" #this command will fail (# Error: missing ")

set time {10"} #this command will succeed

• The exclamation mark (!) sign preceding a
string allows executing system shell
commands. The Console window also
allows users to execute system shell
commands.

 set -- displays the Aldec’s environment
 variables, while

!set -- displays the system variables.

4.15.1 Using Scripts 4.15.1 Using Scripts

• Any string surrounded by square brackets ([]) is treated as a valid Active-HDL
macro language subcommand and executed in the first place. The result of
the subcommand replaces the square brackets before the higher level
command runs. This is used for nesting commands.

• The macro files can be easily created
by using the GUI interface. Users can
do this if the Commands transcript
on option in the Preferences |
Environment | Console category is
checked. When this option is checked,
user actions are translated into the
Active-HDL Macro Language commands
and displayed in the Console window.
Then, they can be copied and pasted
to a new script file. In the future, this
sequence of macro commands can be
executed automatically as a script.

4.16 Interfacing External Tools 4.16 Interfacing External Tools

• To set up a new icon in the
Tools menu open the
Preferences window and
select the Tool category.

• Type the name for the
program.

• Navigate to the folder where
the executable file is located.

• The outcome of execution can
also be re-directed to the
Console Window

• Accept by clicking either
Apply or OK button.

Active-HDL allows you to call external tools from within the
environment. You can either create a new icon in the Tools menu for
any executable file or call it directly from the Console window using
runexe command.

4.17 Interfacing External Tools 4.17 Interfacing External Tools

• To call an executable file from the Console window, use the runexe
macro command with the following syntax

runexe file_name

 where the file_name is the name of the external program to execute.

• If you would like to see the executable output in the Console

window use ! instead of runexe command.

4.18 Using IP Cores 4.18 Using IP Cores

1. Open an existing design or set up a
new one.

2. Use the Add New File dialog.

3. Select the Empty file tab and
click the Add existing file button.

4. Navigate to the folder where the
IP core file is saved. Click its name.

5. Click the Add button.

6. Instantiate the IP core to use it in
the current project.

With HDL Intellectual Property modules (IP cores) obtained from
various providers, you can build your design faster and with less
effort. IP cores usually come in the form of HDL code or EDIF netlist

files. The following steps must be taken to utilize an IP core module:

Note: The remaining steps are identical with the typical design development process. See
Part 1 and 2.

4.19 Using IP Core Generator 4.19 Using IP Core Generator

Simple yet very useful IP modules can be also added to your design by
using the IP Core Generator tool from the Tools menu.

4.19.1 Using IP Core Generator 4.19.1 Using IP Core Generator

The IP Core Generator allows you to generate fully synthesizable
and optimized VHDL or Verilog models.

model
name

element
type

disable/enable
port

HDL
selection

model
configuration

the Generate
button

toggle
polarity

4.20 Using Source Control 4.20 Using Source Control

Source Control enables communication between Active-HDL and
external Source Revision Control systems.

However, there are options that can be used or invoked from the
Source Revision Control system only. To use such features, you do not
need to leave the Active-HDL simulator to run your Source Revision
Control tool. You can use the Source Control Manager option from
the Tools|Source Control menu.

This option invokes your currently initialized Source Revision Control
system directly from the Active-HDL environment.

4.20.1 Using Source Control 4.20.1 Using Source Control

• Open the Preferences
window from the Tools
menu

• Select the Setup category

• Initialize the Source
Control Provider

To benefit from the tight integration between Active-HDL Design
Browser and your Source Revision Control software, you have initialize
your source control service in Active-HDL first.

4.20.2 Using Source Control 4.20.2 Using Source Control

Now you can add your designs to Source Control System.

• Open the Source
Control submenu
from the Tool
menu.

• Select the Add
Design to Source
Control option.

4.20.3 Using Source Control 4.20.3 Using Source Control

Now the Source Control submenu
is available in the context menu of
the Design Browser.

You can easily:

• Check-in or check-out a file

• Undo changes made after
the last check-out

• Get the any version of file

• Show changes history

• Look for differences

Design Verification

Running Simulation

Part 5

5. Simulation 5. Simulation

Simulation steps:

• Compile the design

• Set the top-level architecture

• Open Waveform Editor

• Drag the signals

• Initialize simulation

• Apply stimulators

• Advance simulation

• Verify results

• Save simulation run

5.1 Compiling Designs 5.1 Compiling Designs

Open the freq_meter sample design. Before you start simulation, you

must compile the design files to reflect the latest changes. Remember
that saving the source file is not enough. Simulation is based on the
entities compiled into the working library.

To compile the design you can choose
the Compile All or Compile All in
Folder options from the pop-up menu
in the Design Browser window. You
can also call the same commands from
the Design menu.

Note: The Compile All with File Reorder command
automatically compiles all design files in the specified
compilation order.

5.2 Setting top-level 5.2 Setting top-level

 Simulation is carried out for the
selected library architecture called
top-level architecture.

• To choose a top-level architecture, expand
the working library in the Design Browser
window.

• Select the architecture and choose the Set
as Top-Level option from the pop-up
menu.

5.2 a Setting up the Standard Waveform Viewer 5.2 a Setting up the Standard Waveform Viewer

To set up the Standard Waveform Viewer to observe simulation results please
choose Tools -> Preferences from the main menu. In the Preferences
window, scroll down and highlight Waveform viewer/Editor and make sure
that “Standard waveform viewer/Editor” is selected.

5.3 Opening Waveform Editor 5.3 Opening Waveform Editor

Simulation results are displayed in the Standard
Waveform viewer that is a tool designed to observe
simulation results as timing waveforms.

 To open the Waveform
viewer:

• Click the toolbar button

• Choose New/Waveform
 option from the File menu.

5.3 Ref.A Waveform Editor 5.3 Ref.A Waveform Editor

5.4 Adding Signals 5.4 Adding Signals

To see the results of simulation, you
must add the signals to the Waveform
Editor window. You can either drag them
from the Design Browser window or
use the Add Signals window.

• In the Design Browser window,
switch to the Structure tab and select a
particular component.

• Select the signals and drag them to
the Waveform Editor window

5.5 Adding Signals 5.5 Adding Signals

• Select a component from the design structure

• Select the signals

• Click the Add button

• Close the window
by clicking the
Close button

To add signals using the Add Signals window, click the
toolbar icon or select the Add Signals option from the
pop-up menu.

Note: You can add signals individually by selecting their names and
clicking the Add button.

5.6 Adding Signals 5.6 Adding Signals

You can also drag a component from the Design
Browser window to add all of its signals to the
Waveform Editor window.

• Select any component and drag it
 to the Waveform Editor. Notice that all
 the signals are automatically added.

5.6 Ref.A Removing Signals 5.6 Ref.A Removing Signals

 To remove the signal from the Waveform Editor,
select the signal name and press the Delete key or
choose the Delete option from the pop-up menu.

• Select any signal and press the
Del keyboard key. This signal
should be removed from the
current waveform window.

5.7 Initializing Simulation 5.7 Initializing Simulation

The Initialize Simulation command in
the Simulation menu launches
elaboration and initialization of the
simulation model.

During elaboration, the simulator loads
design entities and builds the simulation
model in the computer memory. During
initialization, all objects in the model
(signals, variables, etc.) acquire their
initial values (either default or explicitly
specified) and all concurrent processes
are executed once until their suspension.

5.8 Initializing Simulation 5.8 Initializing Simulation

Notice that the + sign appeared to the left of some signals.
You can click the + sign to expand the view. This is the
way Waveform Editor handles complex signals like
buses.

After you have added the signals, you need to force them with specific

values to see the model’s response.

5.9 Stimuli 5.9 Stimuli

Active-HDL supports the following methods of stimulating
or forcing input signals during the simulation:

– Manually selected stimulators from the Active-HDL resources

– HDL Testbench files

– Simulation commands entered in the Console window

– Files containing simulation macro commands

– Test Vector files imported from Active-CAD

– Simulation input based on waveforms edited by the user

5.10 Stimulators 5.10 Stimulators

For the purpose of this course, we will use stimulators to drive the
model with its required stimuli.

Stimulators are specialized signal waveform generators that can
produce any desired legal value on the model’s inputs. There are
several types of stimulators:

• Clock

• Formula

• Value

• Hotkey

• Counter

• Predefined

• Custom

• Random

5.11 Stimulator types 5.11 Stimulator types

• Clock drives a signal with a clock pulse wave.

• Counter drives a signal with a sequence of values that represent
consecutive states of a counter.

• Custom drives a signal with its own waveform existing in the
Waveform Editor window.

• Formula drives a signal with values defines by a formula
expression.

• Hotkey drives a signal with values toggled with a specific
hotkey.

• Predefined specifies that the signal is to be driven with a
named stimulator whose definition is on the Predefined tab.

• Value drives a signal with a constant value.

• Random drives a signal with a sequence of integer values
distributed according to standard probabilistic functions.

5.12 Assigning Stimulators 5.12 Assigning Stimulators

To assign a stimulator to a signal, select its name in the
Waveform Editor window and click the
 toolbar button. This invokes the Stimulators
window.

You can also call
Stimulators by choosing
the Stimulators option
from the pop-up
menu either in the
Waveform Window
or Structure tab of
Design Browser.

5.13 Assigning Stimulators 5.13 Assigning Stimulators

Choose the Clock type stimulator, set Frequency as 60Mhz and click
the Apply button.To assign the next stimulator, you do not need to
close the Stimulators window. Move it aside and select the
F_PATTERN signal in the Waveform Editor. Notice the F_PATTERN
signal appear in the Stimulators window. Choose the Clock type
stimulator, set Frequency as 10Mhz and click the Apply button for
F_PATTERN

5.14 Assigning Stimulators 5.14 Assigning Stimulators

Use the icons to scroll the stimulators types in the window.
Select the RESET signal in waveform window. For RESET Select the
Formula stimulator type. Type 1 at 0 ns and 0 at 10 ns. Accept the
stimulator by clicking the Apply button.

5.15 Assigning Stimulators 5.15 Assigning Stimulators

Select the START signal in waveform window. For START Select the
Formula stimulator type. Type 0 at 0 ns and 1 at 10 ns and 0 at
880ns. Accept the stimulator by clicking the Apply button.

5.16 Advancing Simulation 5.16 Advancing Simulation

When the signals have stimulators assigned, you can run the simulation.
Active-HDL lets you advance simulation by clicking the three tool bar
buttons.

 The Simulation|Run command run simulation for an unspecified
amount of time. The simulation stops when either of these conditions is met:

• There are no more test vectors.

• A breakpoint in the code has been set.

In each of the above cases, you can break the simulation by using the
Simulation|Pause command or by clicking

 The Simulation|Run For command advances simulation by a specified
time step. To set the time step, use the Simulation Step box located on the
 main toolbar:

 The Simulation|Run Until command
advances simulation until a specified time point.

5.17 Advancing Simulation 5.17 Advancing Simulation

• Set the simulation step to 50 ns in the Simulation Step box.

• Click the Run for button or press the F5 keyboard key to
 advance the simulation.

• Now, press the R keyboard key.

• Click the Run until button and set
 the time to 60 ns.

• Press the R key again.

• Set the simulation step to 100 ns in the Simulation Step box.

• Click the Run button and after a couple of seconds.

• Click the Zoom In button several times.

• Click the sign next to BCD_D bus to expand the signal.

5.18 Customizing the View 5.18 Customizing the View

The Waveform Editor allows scrolling the display with simulation
results. To zoom the display that best suits the view, you can use
toolbar buttons or the corresponding options from the View menu:

 - To increase the zooming factor twice or choose Zoom|In.

 - To decrease the zooming factor twice or choose Zoom|Out.
 - To adjust the zooming factor so as to display the whole timing,
 or choose Zoom|Zoom To Fit.
 - To specify exactly the zooming range. Type the time points in the
 Zoom window.

You can also switch to Zoom mode by clicking
the Zoom mode button. In the zoom mode,
you can select manually the zoom scope and
increase it. To decrease the zoom, select the
scope and then press and hold down the Ctrl
key.

5.19 Customizing the View 5.19 Customizing the View

• Choose the Colorize Waveforms option from the
 Waveform menu.

Waveform Editor offers many useful
functions for browsing and searching
the results.

• Go to a specified time point

• Set and browse simulation
bookmarks

• Right click on the signal and
choose Insert Empty Row.

• Search for a signal value and
text in comments.

5.20 Customizing the View 5.20 Customizing the View

• The Waveform Viewer/Editor allows you to navigate
backward and forward through events.

After selecting one or more signals
in the waveform, the timing cursor
jumps to the nearest event found
among displayed in the waveform
window signals.

If there are no signals selected in
the waveform window, an event
search goes through all signals.

5.21 Customizing the View 5.21 Customizing the View

To jump to the next/previous event:

• Switch to the Select mode. Press the Esc keyboard key or
or click the Select Mode button

• Click the waveform in place where you want to start
tracking events. By default, tracking starts at the the
beginning of the waveform (0ps).

• Click the Previous event button or the Next event
button to find the nearest event before or after the
current cursor position, respectively.

5.22 Customizing the View 5.22 Customizing the View

We can browse through waveforms by using constraints.

• Click the Select Browse Object button located in the bottom-
right corner of the Waveform Editor window.

• Select the Browse by constraints browsing mode in the
browse selection box.

• Specify browsing conditions (see the example below) in the
Browse by constraint dialog window.

5.23 Customizing the View 5.23 Customizing the View

• The waveform editor allows us to
group and collapse signals to/from
a virtual bus. This can be done by
right-clicking the mouse in the
Name column of the Waveform
Editor and choosing Merge
signals / Split signals.

• Aggregated objects (virtual buses)
can be also renamed in any of the
available working modes (Select,
Zoom, Measurement, or Edit).

5.24 Expression signals 5.24 Expression signals

 To create an expression, right click on the
waveform window after choosing a signal
or signals. Select Create Expression
Signal.

The Waveform Editor allows you to create logical
expressions by using design signals.

In the dialog box that pops up, write
the expression that is a function of the
selected signals.

The value of this expression is
evaluated and added to the waveform
window.

5.25 Signal Properties 5.25 Signal Properties

This dialog box is used to view properties of the selected signal in the
Waveform Viewer/Editor window. To open the dialog, select the
desired signal with the right mouse button and then choose
Properties from the shortcut menu.

• This dialog box displays the signal name, its
hierarchy, and its declaration.

• You can choose the signal to display the
values with a Radix of 2 (binary), 8 (octal),
10 (decimal), 16 (hexadecimal).

• Use Alias enables the use of alias selected
from the list box.

• Different notations can be used to display
the values of signals like Unsigned, Signed 2’s
complement, Signed 1’s complement, Signed
Magnitude.

5.26 Signal Properties 5.26 Signal Properties

Auto-range calculation for the
display of analog signals:

• This feature allows the user to automatically
calculate the value range of the analog signal
displayed in the waveform window.

• The Auto-range feature searches for the
minimum and maximum value of the displayed
waveform and automatically adjusts its range
to present the entire signal.

• If you choose Analog and the signal whose
properties you are about to change has
already been displayed, the auto-range
feature will calculate the proper range values
and display them in the from and to edit
boxes.

5.27 Waveform Synchronization 5.27 Waveform Synchronization

This option specifies how the timing cursors will be
synchronized in all opened waveform windows:

None - cursors are not
synchronized at all.

Cursors only - cursors are
set at the same time position
in all waveform windows but
time ranges (zoom) of these
windows remain unchanged.

Full - similar to Cursors only
except that the time ranges
(zoom) are also synchronized.

5.28 Saving Waveforms 5.28 Saving Waveforms

Waveform Editor saves simulation results into waveform files (AWF) that are based
on a text format. The editor also allows you to export waveforms into other format
files. The following text formats are supported:

• WAVES-compliant test vector files (*.vec). This format is briefly referred to as
VEC.

• Regular VHDL code with process statements generating equivalent signal
waveforms (*.vhs).

• Verilog Initial Block with statements generating equivalent signal waveforms
(*.ver).

• Verilog Value Change Dump, Extended VCD, Xilinx Xpower VCD Compatible
(*.vcd). This format is described in Verilog standard.

• List Viewer (*.lst) and Tabular Format (*.exp).

• Chip Express Test Vector (*.ctv).

5.29 Exporting Waveforms 5.29 Exporting Waveforms

1. Choose Export -> Waveforms from the File
menu.

The Save As dialog box will open.

2. In the Save as Type box, select the desired
format type. The following formats are
supported: VHS, VEC, VER, VCD, EXP, LST, CTV.

3. In the Range box, select which signals are to
be exported. You can choose one of the
following:

• All signals
• Selected signals (you should select the

desired signals before using the
Export Waveforms command).

• All ports
• Input ports

4. Specify the file name, the folder to
which the file will be saved, and
then click Save.

5.30 Opening List as Waveform 5.30 Opening List as Waveform

1. Choose Open from the File menu. The Open dialog box will open.

2. In the dialog, enter the list file name (*lst).

3. Choose List File (in Waveform Viewer/Editor) in Open As
dialog and then click Open. The waveform file is loaded.

5.31 Using Macro Commands for Simulation 5.31 Using Macro Commands for Simulation

Active-HDL provides a macro command language for manual entering of
such simulation commands as forcing signal values, assigning formulas
and executing simulation steps. You can force a value on a signal at any
time during simulation by entering the appropriate macro command in the
Console window. You can also use macro commands to add forced
signals to the Waveform Editor, etc.

5.32 VITAL and SDF 5.32 VITAL and SDF

Active-HDL simulator can perform timing simulation based on
HDL structural netlists, EDIF netlists, and SDF files. These
files are created during the synthesis and implementation
processes. The simulator provides built-in acceleration for
VITAL packages.

HDL and EDIF netlists contain structural connections between
components. SDF (Standard Delay Format) files contain
specific timing constraints of a programmable device.

To simulate such netlists in Active-HDL, you need to add
these files to the current design. You can do it by using the
Add New File wizard. For details, refer to the previous
courses.

5.33 Timing Settings 5.33 Timing Settings

You can set the timing simulation settings in the Design Settings
window. Here you can specify if the simulator should ignore VITAL
glitches for VHDL and specify the type of delays for Verilog. You can
also load the SDF file(s) for a specific region to enable timing
simulation (not required for Verilog).

5.34 Timing Settings 5.34 Timing Settings

You can set the timing simulation settings from the macro
command file. For this purpose use the asim macro
command. An example usage is shown below:

asim testbench -sdftyp UUT/U1=$DSN\implement\TIME_SIM.SDF

testbench

- Specifies the name of the top-level configuration to be simulated.

-sdftyp

- Annotates VITAL cells in the specified region with typical timing values from the

SDF file.

UUT/=$DSN\implement\TIME_SIM.SDF

- Specifies the design region into which timing data from the specified SDF file are to
be loaded.

5.35 Running Timing Simulation 5.35 Running Timing Simulation

• Open the VITAL_Glitch_example design.

• Execute the run_stimulators.do file.

• Observe the simulation results in the
waveform.

5.36 Measuring Distance between Events 5.36 Measuring Distance between Events

During the timing simulation, the most important issue is to
check the timing constraints. Active-HDL facilitates this
process providing you with Measurement mode in the
Waveform Editor window.

5.37 Measuring Distance between Events 5.37 Measuring Distance between Events

• Switch to the Measurement mode clicking button.

• Click the event at which you want to anchor one end
of the measured area and hold the mouse button.

• Drag the mouse pointer to stretch the measured area
(displayed on grayed background) to another event.
The time distance is displayed in the tooltip.

• Release the mouse button.

Note: You can set the Snap to event option in the
Preferences|Waveform window to automatically snap the
cursor while measuring events.

5.38 Tracing Timing Violations 5.38 Tracing Timing Violations

During the timing simulation (in VHDL), you may
observe the glitch warning messages displayed in
the Console window. An example of a warning is
presented below:

 KERNEL: WARNING: VitalGlitch: GLITCH Detected on port Y ;
Preempted Future Value := 1 @ 23 ns; Newly Scheduled Value

:= 0 @ 23.04 ns;

KERNEL: Time: 20040 ps, Iteration: 1, Instance: /AND3_0,

Process: VITALBehavior.

Note: Glitch is a short pulse on a signal waveform that is usually
undesired and may cause an unexpected design behavior.

5.39 Tracing Timing Violations 5.39 Tracing Timing Violations

Active-HDL allows you to disable glitch
detection by checking the
Ignore VITAL glitches option on the
Simulation tab of the Design
Settings window. If you only want to
disable glitch messaging check the
Disable VITAL Glitch messages
option.

In the example, the glitch has been detected on the Y output port
of the /AND3_0 instance.

5.40 Tracing Timing Violations 5.40 Tracing Timing Violations

To quickly locate the listed instance, switch to
the Structure tab in the Design Browser
window. Then, expand the hierarchy tree by
clicking the sign near the top level unit
(simple_gate).

Select the AND3_0 unit, the Design Browser
displays additional information in the lower
part of the window.

5.41 Tracing Timing Violations 5.41 Tracing Timing Violations

As you can see, there are time structures of the
VitalDelayType01 type. Each of these structures
contains two time values:

• first, containing the time for signal transition
from 0 to 1

• second, containing the time for signal
transition from 1 to 0

The tipd_IN1, tipd_IN2 and tipd_IN3 structures
hold time values for the input delays. This is the time
after which a signal change is propagated from the
input to the circuit.

The tpd_IN1_Y, tpd_IN2_Y and tpd_IN3_Y
structures hold time values for the output delays.
This is the time after which signal change is
propagated through the circuit to the output.

5.42 Tracing Timing Violations 5.42 Tracing Timing Violations

Keeping in mind all of the above information, we can
now explain what causes the glitch. In the warning
displayed in the Console window, the time of the glitch
detection is 20040 ps (20.04 ns). This is specified in the
line beginning with the Time clause:

KERNEL: WARNING: VitalGlitch: GLITCH Detected on port Y

; Preempted Future Value := 1 @ 23 ns; Newly Scheduled

Value := 0 @ 23.04 ns;

KERNEL: Time: 20040 ps, Iteration: 1, Instance:

/AND3_0, Process: VITALBehavior.

5.43 Tracing Timing Violations 5.43 Tracing Timing Violations

The next preempted value for the output Y port is '1' at
23 ns. However, the newly scheduled value for the
output Y port is '0' at 23.04 ns.

We should keep in mind that the current output value
for the Y port is '0'. The absolute time period between
those two transactions equals 40 ps and we know that
the output delay for this particular gate is 3000 ps.

If we add the present time value of 20040 ps and the
output delay of 3000 ps then we will have the result of
23040 ps. This is the time of the newly scheduled value
for the output Y port.

5.44 Tracing Timing Violations 5.44 Tracing Timing Violations

The design operates in the OnEvent mode…
 CONSTANT DefGlitchMode : VitalGlitchKindType := OnEvent;

 ...

 VitalPathDelay01 (...

 Mode => DefGlitchMode,

 …where all input changes that have a duration time shorter than the
output delay tpd are propagated to the output with ‘X’ values.

The simulator, however, does not display the glitch on the waveform
because the XOn generic has been assigned with FALSE value.
 CONSTANT DefGlitchXOn : BOOLEAN := FALSE;

 ...

 generic(...

 XOn: Boolean := DefGlitchXOn;

 ...

 VitalPathDelay01 (...

 XOn => XOn,

5.45 Signal Alias Editor 5.45 Signal Alias Editor

The Signal Alias Editor is designed for creating and modifying
signal aliases.

It can be used to:

• Create a new alias

• Create new value
mappings for existing
aliases

• Modify or delete existing
aliases and their value
mappings

5.46 Signal Alias Editor
Preparing Design

5.46 Signal Alias Editor
Preparing Design

• Open the IPCore8051 design.

• Click Compile All With File Reorder button

• When the Top-level Selection dialog box
appears select testbench_for_a8051_exp
configuration as a top-level unit and press OK
button.

• Initialize simulation and add /UUT/U0/zcom1
signal to the waveform:

5.47 Signal Alias Editor
Creating Aliases

5.47 Signal Alias Editor
Creating Aliases

Choose the Signal Alias Editor option from the Tools menu.

Create aliases for 8051 instructions and
save them to a file using Save As toolbar
button

5.48 Signal Alias Editor
 Using Aliases

5.48 Signal Alias Editor
 Using Aliases

Choose the Use Alias
option in the Properties
window for zcom1 signal.

Run simulation and in the
waveform you will see
aliases mapped to the
signal values.

Design Verification

Debugging

Part 6

6.1 Debugging 6.1 Debugging

• Syntax Checking - performed with every Compile command

• Code Tracing - HDL code is executed either statement-by-statement
or traced by processes, subprograms, and procedures

• Value Verification - variable values are displayed in additional
Watch, List, and Memory View windows

• Activity Status – active processes are displayed in the Processes
window

• Off-line Simulation – the Post Simulation Debug mode allows
observing simulation results saved to a file after the simulation has
been finished

• Design Interconnects - statements, port maps, connections,
instances are displayed in the Advanced Dataflow window

• XTrace – helps to find the unknown values throughout the design

Active-HDL provides several mechanisms for efficient
HDL code debugging and viewing design interconnects:

6.2 Debug Setup 6.2 Debug Setup

Before you start debugging a source code, you have to
perform some initial procedures:

• Set up a design and
add all required files.

• Generate an HDL description
for any block diagram
and state machine.

• Compile source files into
a working library to perform
syntax check

• Start debugging the source code

6.3 Debugging Restrictions 6.3 Debugging Restrictions

Active-HDL allows you to debug the source code of your design that has
been compiled into a working library.

However, the components stored in some standard libraries provided
with Active-HDL software do not contain the original source code.

Instead, they contain the headers for the pre-compiled code that you will
not be able to debug.

6.4 Syntax Checking 6.4 Syntax Checking

• name of the source file

• internal error number

• line & column number location of the error in the code

• a short description of the error

After you execute the Compile command and errors occur, a
list of errors is displayed in the Console window.

Each error is displayed with additional information:

6.5 Searching for Errors 6.5 Searching for Errors

• Double-clicking any error message will
take you directly to the HDL Editor
window with the source of an error.

• The line is also underscored with a red
wavy line and a red marker is placed to
the left of the line.

• Resting the pointer over the
underscored line for a second, pulls up a
tooltip with error descriptions.

• We can review the history of issued
commands in the Console window by
using the navigation keys (the up or
down arrow key). They can be recalled
very quickly and then re-executed by
pressing Enter.

The Console window is tightly integrated with the HDL
Editor.

6.6 Preferences 6.6 Preferences

• Select one of the two
options for tracing state
machine code:

– trace the original state
machine

– trace HDL code
generated from a state
machine

• Separate component
instances view

• Set the display options for
vectors and numbers

The Preferences window allows you to customize the
way the debugger works:

6.7 Code Tracing 6.7 Code Tracing

Trace into - executes a single HDL statement. If a
subprogram call is encountered, the execution descends
into the subprogram body.

Trace over - executes a single HDL command. If a
subprogram call is encountered, the statements
contained within the subprogram body are executed in a
single step.

Trace out - executes as many HDL statements as are
required to complete the execution of a subprogram. If
subprograms are nested, the command completes the
execution of the innermost subprogram only.

Trace over transition - executes as many HDL statements
as are required to perform a transition between states.

You can trace the HDL source code statement-by-statement. There are
four functions that allow you to trace the code:

6.8 Code Tracing 6.8 Code Tracing

 To trace the code, click the trace buttons. The
currently executed line is highlighted in yellow.
To improve source debugging, you can also set multiple:

• code breakpoints

• signal breakpoints

 Note: The breakpoints stop
the debugging process.

6.9 Simulation Breakpoints 6.9 Simulation Breakpoints

Breakpoints allow you to stop the verification process
when some desired condition(s) occurred. All processes
are suspended and signal values are displayed in the
Watch window.

NOTE: The HDL Editor allows inserting breakpoints only in these
lines that contain appropriate constructs, e.g. statements containing
assignments, expressions, etc.

To set a breakpoint,
hit the F9 key or
choose the Toggle
Breakpoint option
from the pop-up
menu.

6.10 Breakpoint Editor 6.10 Breakpoint Editor

The Breakpoint Editor allows manual toggling of the
breakpoints. Moreover, you can add signal breakpoints on
signals that you want to trace.

• You can select which breakpoints
should be active when debugging the
design.

• You can also set the signal
breakpoints by specifying the
following conditions:

 Event

 Transaction

 Value

6.11 Edit Condition 6.11 Edit Condition

In the Edit Condition dialog box you can specify that the scope of the
code breakpoint should be limited only for the specified design region
(Instance) or the breakpoint should pause the simulation only when it
is hit for the nth time (Hit Count).

NOTE: Instance can be specified only for code breakpoints.

The simulation can be paused when
the specified line is executed or
specified signal meets the specified
conditions (break always); when
the breakpoint hit count is less than
(break when less), equal (break
when equal), or greater than
(break when greater), or when it
is and integer multiple of (break
when multiple of) the value
specified in the Hit Count field.

6.12 State Machine Code Debugging 6.12 State Machine Code Debugging

• All the Trace commands are
active during the debugging.
Therefore, you can trace an
execution of any statement
in the HDL code and observe
its influence on the model’s
behavior.

• The Trace over Transition
option executes the source
code to the point where the
next transition takes place.

To trace state machines, you need to generate their
corresponding HDL code. The State Machine Editor
highlights the currently active state in yellow.

6.13 State Machine Code Debugging 6.13 State Machine Code Debugging

You can also set breakpoint on the specified state of the
state machine. It allows you to stop simulation when the
specified state is reached.

To set a breakpoint select
desired state and choose
the Breakpoint option
from the pop-up menu.

To mark that a breakpoint
is set on a state, the state
symbol is distinguished by
double-line border.

6.14 Verifying Results 6.14 Verifying Results

• Watch – displays the current signal, variable, or generic value
• List – displays results in a tabular format
• Waveform – displays graphical results in a form of signal waves
• Processes – displays the process status in the current simulation

cycle
• Call Stack – displays a list of sub-programs being currently

executed and their parameters

You can use additional tools while tracing HDL code that will help you to
verify the design’s overall responses.
Active-HDL comes with the following interactive windows:

Note: You can open each window by choosing an appropriate option from the View or
File | New menu.

The window is divided into several columns that show:

• names

• types of the selected objects

• current value

• last value

• event

• last event time

6.15 Watch Window 6.15 Watch Window

To find the last or current signal value, you may use the
Watch window. The Watch window displays values of
selected signals (including ports) and variables.

Note: The red exclamation mark means that an event occurred
on the marked signal in the current simulation cycle.

6.16 Adding Signals to Watch 6.16 Adding Signals to Watch

• To add the signal
from the HDL code,
highlight the signal
name.

• Drag the signal to
the Watch
window.

All signals viewed in the Watch window can be dragged
and dropped from the Design Browser window or the
Standard Waveform window. You can also drag a signal
name from the HDL source code itself.

Note: You can change signal display options in the Preferences
window by choosing the Display options from the pop-up menu.

6.17 List Window 6.17 List Window

 Each signal is represented by a column with corresponding
event times. The window can display signal values in two
ways:

• For all simulation cycles executed for the specified time step.

• Only for the last simulation cycle within the specified time step.

The List window displays all results in a tabular form.

(This window is used only as a viewer of simulation results)

Note: You can
toggle the delta
display using
the button.

6.18 Delta Cycle Handling 6.18 Delta Cycle Handling

 The Active-HDL simulator uses delta cycles to simulate the design.

 A delta time is an infinitesimally small amount of time that represents a
time greater than zero, but it is zero when added to a discrete amount
of time. Thus, if a signal assignment is made at time "100ns + 1 delta
time" and the model discrete delay is 10ns, the new signal value is
assigned at 100ns + 10ns + 0 delta time = 110ns. This is because the 1
delta time * 1 = 0ns.

 The number of delta delays reflects the number of events that take
place in particular simulation cycles.

6.19 Adding Signals to List 6.19 Adding Signals to List

• To add the signal from the
Design Browser, select the
entity in the Structure tab and
drag it to the Watch window.

• To add signals using the Add
Signals window, click the
 button and select the
signals. Close the window by
clicking the Close button.

All signals viewed in the List window can be dragged and
dropped here, from the Design Browser window, Watch
window and Standard Waveform window. You can also
use the Add signals window.

6.20 Processes Window 6.20 Processes Window

 Each concurrent statement that is modeling a sequential process
is represented in the window. There are:
– process statements

– concurrent signals assignment statements

– concurrent assertion statements

– concurrent procedure call statements

The Processes window displays a list of processes in the elaborated
model along with their current status. This window is available only
while the simulator is running.

Note: For processes without explicit
labels, the compiler generates
default labels that show the line
number of the source file in which a
process is located (e.g., line__15).

6.21 Processes window 6.21 Processes window

A process listed in the Process window can have one of the following
statuses:

• Ready - indicates that the process is scheduled to be executed
within the current simulation cycle.
• Wait - indicates that the process is suspended and is waiting to
be resumed.

The Processes window can show either:
• All processes in the selected region of the elaborated design,
irrespective of their status in the current simulation cycle.
• Only active processes in the selected region of the elaborated
design (those scheduled to be executed within the current
simulation cycle).

Note: In addition, you can choose a region of the design whose
processes you want to trace.

6.22 Call Stack 6.22 Call Stack

The Call Stack window is a debugging tool that displays a list of
subprograms (procedures and functions) and variables being currently
executed.

For each subprogram, the window displays the following information:

• Formal parameters

 along with their actual

 values.

• Variables, constants

 and files declared

 locally in subprogram

 bodies along with

 their current values.

Note: The Call Stack window is available only

while the simulator is running.

6.23 Variables 6.23 Variables

 You can change variable values in the Call
Stack window for a current simulation run.

• To change a variable value,
click within the Call Stack
window.

• Now click the variable value

and type the new value.

Note: You can also change the variable value in the lower part
of Design Browser following the same steps.

6.24 Dataflow 6.24 Dataflow

The Dataflow window provides a graphical view of signals
flowing in and out of processes during the simulation.

 The window provides two
different views:

– with a process in the
center of the window

– with a signal in the

center of the window.

Note: The Dataflow window is available only while the simulator is
running.

6.25 Using Dataflow 6.25 Using Dataflow

To work with the data flow window, select the desired object on the
Structure tab of the Design Browser and use pop-up menu option
View in Dataflow.

The tracking process of the signal’s path is based on two
procedures:

• Click any signal name displayed in

the Dataflow window to follow the
signal path.

• Click the process symbol to follow

the signal deeper into the design’s
hierarchy.

Synthesis and Implementation in
Flow Manager

Part 7

7.1 Synthesis & Implementation Flow 7.1 Synthesis & Implementation Flow

Synthesis and Implementation
Flow was designed in order to
run your synthesis and/or
implementation tool from within
one design and verification
environment – Active-HDL.

It allows you to set all
necessary options for synthesis
and implementation, choose
between GUI and batch mode
and finally, automatically adds
output files to the design.

7.2 Synthesis & Implementation Flow 7.2 Synthesis & Implementation Flow

The Design Flow Manager can be enabled in the Flows
category of the Preferences window (Tools |
Preferences).

By default Multivendor
Flow is enabled. This
gives you access to all
major synthesis and
implementation tools on
the market.

To disable Flow select
None in Select Flow
drop-down menu.

7.3 Opening Flows 7.3 Opening Flows

• To open the flow, press the View Flow icon or
select the Flow option from the View menu.

7.4 Flow Configuration 7.4 Flow Configuration

At the beginning, you have to select synthesis and
implementation tools.

• Press the Flow Settings button located in the bottom
part of the Design Flow Manager window.

The Settings window will appear.

7.5 Flow Configuration 7.5 Flow Configuration

• Select the HDL and
optionally C synthesis
tools.

• Select the
implementation tool.

• Select the family of
devices.

• Press the OK button.

7.6 Synthesis 7.6 Synthesis

When the Flow is configured and your design is ready,
you can start synthesis.

To set the synthesis options, press the Options button
located to the left of the Synthesis button.

The Synthesis Options window will appear.

7.7 Synthesis 7.7 Synthesis

On the General tab you
have to select the top-level
unit and device etc.

You can specify more
options that will be passed
to the synthesis tool with the
additional tabs.

You can use context menus to select the files that should be
synthesized.
To add to synthesis files from the BCD_COUNTER library, right click on
the BCD_COUNTER.adf icon and select Add all files to library.

7.8 Synthesis 7.8 Synthesis

The new Synthesis window will appear.

Synthesis is working in batch mode so you can use
Active-HDL during synthesis process.

Now you can press the Synthesis
button to run the synthesis process.

7.9 Synthesis 7.9 Synthesis

A new post-synthesis folder will be
created in your design. Links to all
post-synthesis netlist files will be
located in this directory.

A new post-synthesis library will
also be added to your design.

When you compile your synthesis
files, design units will be compiled
into this new library.

7.10 Post-synthesis Simulation 7.10 Post-synthesis Simulation

Now you are ready to run post-synthesis simulation. You
can use the same testbench model as for behavioral
simulation.

Press the Options button located near the Post-synthesis
simulation button.

The Post-synthesis Simulation Options window will
appear.

7.11 Post-synthesis Simulation 7.11 Post-synthesis Simulation

• Press the Select Design Flies
icon.

• Select
synthesis/top_frqm.vhm

and
src/TestBench/top_frqm_TB.vhd
files.

• Set files in proper order using
the arrow buttons.

• Recompile files.

• Chose top_frqm_tb as top-level.

• Save DO-macro as synthesis.do.

• Press the OK button.

7.12 Post-synthesis Simulation 7.12 Post-synthesis Simulation

• Open the synthesis.do macro.

• Add the following lines:
run –all

endsim

 before the line containing
label end

• Save changes.

• Close all files.

• Execute this macro.

@onerror

{

goto end

}

savealltabs

SetActiveLib -post-synthesis

acom -work FREQ_METER_post_synthesis

"$dsn\synthesis\top_frqm.vhm”

acom -work FREQ_METER_post_synthesis

"$dsn\src\TestBench\top_frqm_TB.vhd"

asim –advdataflow top_frqm_tb

wave

wave *

run -all

endsim

label end

@onerror

{

goto end

}

savealltabs

SetActiveLib -post-synthesis

acom -work FREQ_METER_post_synthesis

"$dsn\synthesis\top_frqm.vhm”

acom -work FREQ_METER_post_synthesis

"$dsn\src\TestBench\top_frqm_TB.vhd"

asim –advdataflow top_frqm_tb

wave

wave *

run -all

endsim

label end

7.13 Post-synthesis Simulation 7.13 Post-synthesis Simulation

The Simulation will be made. All results will be displayed on the created
waveform.

7.14 Implementation 7.14 Implementation

If results of synthesis are correct and satisfactory, you can
start implementation.

To set implementation options, press the Options button to
the left of the Implementation button.

Usually you do not have to configure this option (unless you
want to customize the place&route tool) because it is set up
automatically based on the synthesis options.

7.15 Implementation 7.15 Implementation

In the Main tab you can
select Netlist File to be
sent to implementation,
change device and mode
(Batch/GUI).

Additional tabs allow you
to change and customize
options available in your
implementation tool
including the option to
include FPGA Pin
constraints file.

7.16 Implementation 7.16 Implementation

The new Implementation
window will appear.

Implementation is working in
batch mode so you can use
Active-HDL during
implementation process.

Now you can press the Implementation
button to run the implementation
process.

7.17 Implementation 7.17 Implementation

A new timing folder will be created in
your design. Links to all simulation
files generated by implementation
tool will be located in this directory.

A new timing library will also be
added to your design. This way you
have separate libraries for each
stage of the design flow.

7.18 Implementation 7.18 Implementation

You have access to both synthesis and implementation
reports under the Reports button near the Synthesis and
Implementation buttons.

You can open each report in the text editor.

7.19 Timing Simulation 7.19 Timing Simulation

Now you are ready to perform the timing simulation.
Again you are able to use the same testbench as you did
for behavioral and post-synthesis simulation.

Press the Options button located near the Timing
Simulation button.

The Timing Simulation Options window will appear.

7.20 Timing Simulation 7.20 Timing Simulation

• Press the Select Design Flies
icon.

• Select
IMPLEMENT/TIME_SIM.VHD

 and
src/TestBench/top_frqm_TB.vhd
files.

• Set proper files in order using
the arrow buttons.

• Recompile files.

• Chose top_frqm_tb as top-level.

• Save DO-macro as
timing_sim.do.

• Press the OK button.

7.21 Timing Simulation 7.21 Timing Simulation

• Open timing_sim.do macro
file

• Add the following lines
run –all

endsim

before the line containing
label end

• Save changes

• Close all files

• Execute this macro

@onerror

{

goto end

}

savealltabs

SetActiveLib -timing

acom -work FREQ_METER_timing

"$dsn\IMPLEMENT\TIME_SIM.VHD"

acom -work FREQ_METER_timing

"$dsn\src\TestBench\top_frqm_TB.vhd"

asim –advdataflow top_frqm_tb -sdftyp -

AUTO="$dsn\IMPLEMENT\TIME_SIM.SDF"

wave

wave *

run -all

endsim

label end

@onerror

{

goto end

}

savealltabs

SetActiveLib -timing

acom -work FREQ_METER_timing

"$dsn\IMPLEMENT\TIME_SIM.VHD"

acom -work FREQ_METER_timing

"$dsn\src\TestBench\top_frqm_TB.vhd"

asim –advdataflow top_frqm_tb -sdftyp -

AUTO="$dsn\IMPLEMENT\TIME_SIM.SDF"

wave

wave *

run -all

endsim

label end

7.22 Timing Simulation 7.22 Timing Simulation

The Simulation will be performed. The results will be displayed on the
created waveform.

Using PCB Interface

Part 8

8.1 Export Constraints file to CADSTAR 8.1 Export Constraints file to CADSTAR

• Export to PCB reads information about pins from
implementation reports, implementation
constraints and synthesis constraint files and
writes it to the CSV file.

• Implementation reports from Actel Designer,
Altera Quartus, Lattice ispLEVER and Xilinx ISE
could be read. Also implementation constraints
used by these tools are supported.

• Synthesis constraints from Synplicity Synplify,

 PrecisionRTL and Xilinx XST are also supported.

8.1 Export Constraints file to CADSTAR 8.1 Export Constraints file to CADSTAR

• Export to PCB

8.2 CADSTAR Schematics Block Creation
Wizard

8.2 CADSTAR Schematics Block Creation
Wizard

Create a schematic symbol,
use an existing PCB Component (or
create a new one) and create a Part.

8.3 CADSTAR Parts Library Editor 8.3 CADSTAR Parts Library Editor

Once the symbol has been created we must now create the Part, which will link the
created schematic symbol and PCB component (footprint) together

8.4 Creating backannotation pin
assignments

8.4 Creating backannotation pin
assignments

Choose manual routing on your
PCB scheme from the
connector into the direction of
the FPGA device.

- You will notice a number
of flags on top of certain
balls of the FPGA device
indicating which balls are
swappable. If you get closer
the connection will
automatically swap. You can
use multiple layers to
optimize and finalize the
routing pattern around the
FPGA device.

8.5 Import of SWAP Pin file from
CADSTAR to Active-HDL

8.5 Import of SWAP Pin file from
CADSTAR to Active-HDL

Click on the options to the left of PCB Interface Button in the Design
Flow Manager.

In the PCB Interface Options window, choose the option “Import from
PCB”. Make sure that PCB Tool is set to Cadstar.

8.6 P&R with updated pin assignment 8.6 P&R with updated pin assignment

1. Open the Implementation options
and point new constraint file (ucf)

2. Disable all implementation steps
except the P&R

3. Re-run implementation

