Understanding Verilog Blocking
and Non-blocking Assignments

International Cadence
User Group Conference

September 11, 1996

presented by

Stuart Sutherland
Sutherland HDL Consulting

About the Presenter

Stuart Sutherland has over 8 years of experience using Verilog with a variety of software tools. He
holds a BS degree in Computer Science, with an emphasis on Electronic Engineering, and has
worked as a design engineer in the defense industry, and as an Applications Engineer for Gateway
Design Automation (the originator of Verilog) and Cadence Design Systems. Mr. Sutherland has
been providing Verilog HDL consulting services since 1991. As a consultant, he has been actively
involved in using the Verilog langiage with a many different of software tools for the design of
ASICs and systems. He is a member of the IEEE 1364 standards committee and has been involved
in the specification and testing of Verilog simulation products from several EDA vendors, including
the Intergraph-VeriBest VeriBest simulator, the Mentor QuickHDL simulator, and the Frontline
CycleDrive cycle based simulator. In addition to Verilog design consutlting, Mr. Sutherland
provides expert on-site Verilog training on the Verilog HDL language and Programing Language
Interface. Mr. Sutherland is the author and publisher of the popular “ Verilog IEEE 1364 Quick
Reference Guide” and the “ Verilog IEEE 1364 PLI Quick Reference Guide” .

Please conact Mr. Sutherland with any gquestions about this material!

Sutherland HDL Consulting
Verilog Consulting and Training Services phone: (503) 692-0898
22805 SW 92™ Place fax: (503) 692-1512
Tualatin, OR 97062 USA e-mail: stuart@sutherland.com

copyright notice

©1996

The material in this presentation is copyrighted by Sutherland HDL Consulting,
Tualatin, Oregon. The presentation is printed with permission as part of the
proceedings of the 1996 International Cadence User Group Conference. All rights
are reserved. No material from this presentation may be duplicated or transmitted by

any means or in any form without the express written permission of Sutherland HDL
Consulting.

Sutherland HDL Cdonsulting
22805 SW 92" Place
Tuaatin, OR 97062 USA

phone: (503) 692-0898
fax: (503) 692-1512
e-mail: info@sutherland.com

Objectives

0 The primary objective Is to understand:

What type of hardware Is represented

by blocking and non-blocking
assignments?

0 The material presented is a subset of an advanced Verilog
HDL training course

Procedural Assignments

0 Procedural assignment evaluation can be modeled as:
0 Blocking
0 Non-blocking

0 Procedural assignment execution can be modeled as:
0 Sequential
0 Concurrent

1 Procedural assignment timing controls can be modeled as:
0 Delayed evaluations
0 Delayed assignments

Blocking
Procedural Assignments

0 The = token represents a blocking procedural assignment

0 Evaluated and assigned in a single step

0 Execution flow within the procedure is blocked until the
assignment is completed

0 Evaluations of concurrent statements in the same time step
are blocked until the assignment is completed

These examples will not work []

//swap bytesin word //swap bytesin word
aways @(posedge clk) always @(posedge clk)
begin fork
word[15:8] = word[7:0]; word[15:8] = word[7:0];
word[7:0] = word[15:8]; word[7:0] = word[15:8];
end join

Non-Blocking
Procedural Assignments

0 The <= token represents a non-blocking assignment
0 Evaluated and assigned in two steps:
[1 The right-hand side is evaluated immediately

[1 The assignment to the left-hand side is postponed until
other evaluations in the current time step are completed

0 Execution flow within the procedure continues until a
timing control is encountered (flow is not blocked)

These examples will work []

//swap bytes in word //[swap bytesin word
aways @(posedge clk) always @(posedge clk)
begin fork
word[15:8] <= word[7:0]; word[15:8] <= word[7:0];
word[7:0] <=word[15:8]; word[7:0] <=word[15:8];
end join

Representing
Simulation Time as Queues

0 Each Verilog simulation time step is divided into 4 queues

Time O:

0 Q1 — (in any order) :
0 Evaluate RHS of all non-blocking assignments
0 Evaluate RHS and change LHS of all blocking assignments
0 Evaluate RHS and change LHS of all continuous assignments
0 Evaluate inputs and change outputs of all primitives
0 Evaluate and print output from $display and $write

0 Q2 — (in any order)
o Change LHS of all non-blocking assignments

0 Q3 — (in any order) :
0 Evaluate and print output from $monitor and $strobe
o Call PLI with reason_synchronize

0Q4:

0 Call PLI with reason_rosynchronize
Time 1.

Note: this is an abstract view, not how simulation algorithms are implemented

Seguential
Procedural Assignments

0 The order of evaluation is determinate
0 A sequential blocking assignment evaluates and assigns
before continuing on in the procedure

aways @(posedge clk)
begin
AL evaluate and assign A immediately
delay 5 time units, then evaluate and assign

0 A seqguential non-blocking assignment evaluates, then
continues on to the next timing control before assigning

aways @(posedge clk)
begin
A 1 evaluate A immediately; assign at end of time step
#HB A+1 delay 5 time units, then evaluate; then assign at
end end of time step (clock + 5)

Concurrent
Procedural Assignments

The order of concurrent evaluation is indeterminate
0 Concurrent blocking assignments have unpredictable results

always @(posedge clk)
#HH5A -~ A+ 1;
(new value of B could be evaluated before
aways @(posedge clk) or after A changes)
#HB A +1;

1 Concurrent non-blocking assignments have predictable results

aways @(posedge clk)
#HA A+1;
(new value of B will'always be evaluated
aways @(posedge clk) before A changes)
#HB A+

Delayed Evaluation
Procedural Assignments

0 A timing control before an assignment statement will postpone
when the next assignment is evaluated

0 Evaluation is delayed for the amount of time specified

begin
A=1 delay for 5, then evaluate and assign
A=A+1 delay 5 more, then evaluate and assign

B=A+1 no delay; evaluate and assign

end
What values do A and B contain after 10 time units?

Delayed Assignment
Procedural Assignments

0 An intra-assignment delay places the timing control after the
assignment token

0 The right-hand side is evaluated before the delay
0 The left-hand side Is assigned after the delay

aways @(A) A Is evaluated at the time it changes, but
B=#5A; IS not assigned to B until after 5 time units

aways @(negedge clk) D Is evaluated at the negative edge of CLK,
Q <= @(posedge clk) D; Q Is changed on the positive edge of CLK

aways @(instructor_input)
If (morning)
understand = instructor_input;
elseif (afternoon)
understand = #5 instructor_input;
elseif (lunch_time)
understand = wait (!lunch_time) instructor_input;

Intra-Assignment Delays
With Repeat L oops

0 An edge-sensitive intra-assignment timing control permits a
special use of the repeat loop

1 The edge sensitive time control may be repeated several
times before the delay is completed

1 Either the blocking or the non-blocking assignment may be
used

aways @(IN)
OUT <= repeat (8) @(posedge clk) IN;

The value of IN is evaluated when it changes, but is
not assigned to OUT until after 8 clock cycles

Choosing the
Correct Procedural Assignment

0 Which procedural assignment should be used to model a

combinatorial logic buffer?
aways @(in) aways @(in)
#5 out = in; out =#51n;

aways @(in) aways @(in)
#5 out <=Iin; out <=#5In;

0 Which procedural assignment should be used to model a
sequential logic flip-flop?
aways @(posedge clk) always @(posedge clk)
#5q=d; g=#5d;

aways @(posedge clk) aways @(posedge clk)
#5g<=d; g<=#5d;

0 The following pages will answer these guestions

Transition
Propagation M ethods

0 Hardware has two primary propagation delay methods:

0 Inertial delay models devices with finite switching speeds;
Input glitches do not propagate to the output

10 20 30 40 50 60 ‘ 10 20 30 40 50 60

Buffer with a 10 nanosecond propagation dela

1
—(—
1

0 Transport delay models devices with near infinite
switching speeds; input glitches propagate to the output

10 20 30 40 50 60 ‘ 10 20 30 40 50 60

Buffer with a 10 nanosecond propagation dela

1
—(—
1

Combinational Logic
Procedural Assignments

0 How will these procedural assignments behave?
10 20 30 40

4{> | : | 33 36__|

Blocking, aways @(in)
No delay ol=in;

Non-blocking, aways @(in)
No delay 02 <=in;

Blocking, aways @(in)
Delayed evaluation #5 03 =in;

Non-blocking, aways @(in)
Delayed evaluation #5 04 <=in;

Blocking, aways @(in)
Delayed assignment 05 =#51n;

Non-blocking, aways @(in)
Delayed assignment 06 <=#51in;

Sequential Logic
Procedural Assignments

0 How will these procedural assignments behave?
1 Sequential assignments 10 20 30 40 S0 60

10 No delays

clk

' 35

In

aways @(posedge clk) L _i
begin 1
yl=im; e
y2=y1; S e
end \%

adways @(posedge clk)
begin
yl<=in;

>

shift-register with zeto deiays |

Seguential Logic

Procedural Assignments

0 How will these procedural assignments behave?

0 Seguential assignments
0 Delayed evaluation

aways @(posedge clk)
begin

10 20 30 40

clk

In

#yl=in;
#5y2 =vy1,
end

‘—>

shift register With deléyed :plock:s

aways @(posedge clk)
begin

yl

#yl<=in;

‘—>

shift register with delz:ayed :clock:s

Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Seguential assignments Lo Ua S R
0 Delayed assignment

clk

In

aways @(posedge clk)
begin
yl=#5in;
y2 =#5Vy1; mk
end ‘

shift register deliayediclock: on sieconbl stagi]e

aways @(posedge clk)
begin
yl<=#5in;

‘—>

shift register Witih del:ays |

Sequential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments 10 20 30 40 50 60
10 No delays e

adways @(posedge clk)
yl=in;

>

adways @(posedge clk)
y2=yl,

adways @(posedge clk)
yl<=in;

always @(posedge clk) >
y2<=yl;

shift-register with zero delays

Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments e
0 Delayed evaluation

aways @(posedge clk)
#5yl=Iin;

aways @(posedge clk) >
#5y2 =vy1,

aways @(posedge clk)
#yl<=in;

always @(posedge clk) %
#5y2 <=vy1,

shift register with race condition

Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments pcottal ROTTED L
0 Delayed assignment

aways @(posedge clk)
yl=#5in;

>

always @(posedge clk)] ‘_
y2 =#5vy1l,

+

shift register, délay nﬁust b:e < c:lock [:Derioc:tl

aways @(posedge clk)
yl<=#5in;

aways @(posedge clk)
y2 <=#5vy1;

‘—>

shift register Wi'[ih deli’:lys |

Rules of Thumb for
Procedural Assignments

0 Combinational Logic:
0 No delays: Use blocking assignments (a = Db;)

0 Inertial delays: Use delayed evaluation blocking
assignments (#5a=0D0b;)

0 Transport delays: Use delayed assignment non-blocking
assignments (a <=#5Db;)

0 Sequential Logic:
0 No delays: Use non-blocking assignments (g <=d;)

0 With delays: Use delayed assignment non-blocking
assignments (g <=#5d;)

An Exception to Non-blocking
Assignments in Sequential Logic

0 Do not use a non-blocking assignment if another statement in
the procedure requires the new value in the same time step

What values do A and B contain
after 10 time units? A is 2 B g 2

Aways @(posedge cli) Assume state and next_state
big'sg (state) are STOP at the first clock,
"STOP: next_state <= "GO; what Is state:
‘GO: next_state <= “STOP; - At the 2nd clock? STOP
endcase - At the 3rd clock? GO
state <= next_state; - At the 4th clock? GO

end - At the 5th clock? STOP

Exercise 3:
Procedural Assignments

0 Write a procedure for an adder (combinational logic) that
assigns C the sum of A plus B with a 7ns propagation delay.

aways @(A or B)
#7 C=A +B;

1 Write the procedure(s) for a 4-bit wide shift register (positive
edge triggered) of clock and has a 4ns propagation delay.

always @(posedge clk) always @(posedge clk)
begin yl <=#4in;

yl <=#4in; aways @(posedge clk)
y2 <=#4yl, y2 <=#4yl,;

y3 <=#4y2; aways @(posedge clk)
out <=#4vy3; y3 <=#4y?2;

end aways @(posedge clk)
out <=#4y3;

Exercise 3 (continued):
Procedural Assignments

0 Write a Verilog procedure for a “black box” ALU pipeline that
takes 8 clock cycles to execute an instruction. The pipeline
triggers on the positive edge of clock. The “black box” is
represented as call to a function named ALU with inputs A, B
and OPCODE. How many Verilog

statements does it
take to model an
eight stage pipeline?

aways @(posedge clk)
alu_out <= repeat(7) @(posedge clk) ALU(A,B,OPCODE);

