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Objectives

0 The primary objective Is to understand:

What type of hardware Is represented

by blocking and non-blocking
assignments?

0 The material presented is a subset of an advanced Verilog
HDL training course




Procedural Assignments

0 Procedural assignment evaluation can be modeled as:
0 Blocking
0 Non-blocking

0 Procedural assignment execution can be modeled as:
0 Sequential
0 Concurrent

1 Procedural assignment timing controls can be modeled as:
0 Delayed evaluations
0 Delayed assignments




Blocking
Procedural Assignments

0 The = token represents a blocking procedural assignment

0 Evaluated and assigned in a single step

0 Execution flow within the procedure is blocked until the
assignment is completed

0 Evaluations of concurrent statements in the same time step
are blocked until the assignment is completed

These examples will not work []

//swap bytesin word //swap bytesin word
aways @(posedge clk) always @(posedge clk)
begin fork
word[15:8] = word[ 7:0]; word[15:8] = word[ 7:0];
word[ 7:0] = word[15:8]; word[ 7:0] = word[15:8];
end join




Non-Blocking
Procedural Assignments

0 The <= token represents a non-blocking assignment
0 Evaluated and assigned in two steps:
[1 The right-hand side is evaluated immediately

[1 The assignment to the left-hand side is postponed until
other evaluations in the current time step are completed

0 Execution flow within the procedure continues until a
timing control is encountered (flow is not blocked)

These examples will work []

//swap bytes in word //[swap bytesin word
aways @(posedge clk) always @(posedge clk)
begin fork
word[15:8] <= word[ 7:0]; word[15:8] <= word[ 7:0];
word[ 7:0] <=word[15:8]; word[ 7:0] <=word[15:8];
end join




Representing
Simulation Time as Queues

0 Each Verilog simulation time step is divided into 4 queues

Time O:

0 Q1 — (in any order) :
0 Evaluate RHS of all non-blocking assignments
0 Evaluate RHS and change LHS of all blocking assignments
0 Evaluate RHS and change LHS of all continuous assignments
0 Evaluate inputs and change outputs of all primitives
0 Evaluate and print output from $display and $write

0 Q2 — (in any order)
o Change LHS of all non-blocking assignments

0 Q3 — (in any order) :
0 Evaluate and print output from $monitor and $strobe
o Call PLI with reason_synchronize

0Q4:

0 Call PLI with reason_rosynchronize
Time 1.

Note: this is an abstract view, not how simulation algorithms are implemented



Seguential
Procedural Assignments

0 The order of evaluation is determinate
0 A sequential blocking assignment evaluates and assigns
before continuing on in the procedure

aways @(posedge clk)
begin
AL evaluate and assign A immediately
delay 5 time units, then evaluate and assign

0 A seqguential non-blocking assignment evaluates, then
continues on to the next timing control before assigning

aways @(posedge clk)
begin
A 1 evaluate A immediately; assign at end of time step
#HB  A+1 delay 5 time units, then evaluate; then assign at
end end of time step (clock + 5)




Concurrent
Procedural Assignments

The order of concurrent evaluation is indeterminate
0 Concurrent blocking assignments have unpredictable results

always @(posedge clk)
#HH5A -~ A+ 1;
(new value of B could be evaluated before
aways @(posedge clk) or after A changes)
#HB A +1;

1 Concurrent non-blocking assignments have predictable results

aways @(posedge clk)
#HA  A+1;
(new value of B will'always be evaluated
aways @(posedge clk) before A changes)
#HB A+




Delayed Evaluation
Procedural Assignments

0 A timing control before an assignment statement will postpone
when the next assignment is evaluated

0 Evaluation is delayed for the amount of time specified

begin
A=1 delay for 5, then evaluate and assign
A=A+1 delay 5 more, then evaluate and assign

B=A+1 no delay; evaluate and assign

end
What values do A and B contain after 10 time units?




Delayed Assignment
Procedural Assignments

0 An intra-assignment delay places the timing control after the
assignment token

0 The right-hand side is evaluated before the delay
0 The left-hand side Is assigned after the delay

aways @(A) A Is evaluated at the time it changes, but
B=#5A; IS not assigned to B until after 5 time units

aways @(negedge clk) D Is evaluated at the negative edge of CLK,
Q <= @(posedge clk) D; Q Is changed on the positive edge of CLK

aways @(instructor_input)
If (morning)
understand = instructor_input;
elseif (afternoon)
understand = #5 instructor_input;
elseif (lunch_time)
understand = wait (!lunch_time) instructor_input;




Intra-Assignment Delays
With Repeat L oops

0 An edge-sensitive intra-assignment timing control permits a
special use of the repeat loop

1 The edge sensitive time control may be repeated several
times before the delay is completed

1 Either the blocking or the non-blocking assignment may be
used

aways @(IN)
OUT <= repeat (8) @(posedge clk) IN;

The value of IN is evaluated when it changes, but is
not assigned to OUT until after 8 clock cycles




Choosing the
Correct Procedural Assignment

0 Which procedural assignment should be used to model a

combinatorial logic buffer?
aways @(in) aways @(in)
#5 out = in; out =#51n;

aways @(in) aways @(in)
#5 out <=Iin; out <=#5In;

0 Which procedural assignment should be used to model a
sequential logic flip-flop?
aways @(posedge clk) always @(posedge clk)
#5q=d; g=#5d;

aways @(posedge clk) aways @(posedge clk)
#5g<=d; g<=#5d;

0 The following pages will answer these guestions




Transition
Propagation M ethods

0 Hardware has two primary propagation delay methods:

0 Inertial delay models devices with finite switching speeds;
Input glitches do not propagate to the output

10 20 30 40 50 60 ‘ 10 20 30 40 50 60

Buffer with a 10 nanosecond propagation dela

1
—(—
1

0 Transport delay models devices with near infinite
switching speeds; input glitches propagate to the output

10 20 30 40 50 60 ‘ 10 20 30 40 50 60

Buffer with a 10 nanosecond propagation dela

1
—(—
1




Combinational Logic
Procedural Assignments

0 How will these procedural assignments behave?
10 20 30 40

4{> | : | 33 36__|

Blocking, aways @(in)
No delay ol=in;

Non-blocking, aways @(in)
No delay 02 <=in;

Blocking, aways @(in)
Delayed evaluation #5 03 =in;

Non-blocking, aways @(in)
Delayed evaluation #5 04 <=in;

Blocking, aways @(in)
Delayed assignment 05 =#51n;

Non-blocking, aways @(in)
Delayed assignment 06 <=#51in;




Sequential Logic
Procedural Assignments

0 How will these procedural assignments behave?
1 Sequential assignments 10 20 30 40 S0 60

10 No delays

clk

' 35

In

aways @(posedge clk) L _i
begin 1
yl=im; e
y2=y1; S e
end \%

adways @(posedge clk)
begin
yl<=in;

>

shift-register with zeto deiays |




Seguential Logic

Procedural Assignments

0 How will these procedural assignments behave?

0 Seguential assignments
0 Delayed evaluation

aways @(posedge clk)
begin

10 20 30 40

clk

In

#yl=in;
#5y2 =vy1,
end

‘—>

shift register With deléyed :plock:s

aways @(posedge clk)
begin

yl

#yl<=in;

‘—>

shift register with delz:ayed :clock:s



Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Seguential assignments Lo Ua S R
0 Delayed assignment

clk

In

aways @(posedge clk)
begin
yl=#5in;
y2 =#5Vy1; mk
end ‘

shift register deliayediclock: on sieconbl stagi]e

aways @(posedge clk)
begin
yl<=#5in;

‘—>

shift register Witih del:ays |




Sequential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments 10 20 30 40 50 60
10 No delays e

adways @(posedge clk)
yl=in;

>

adways @(posedge clk)
y2=yl,

adways @(posedge clk)
yl<=in;

always @(posedge clk) >
y2<=yl;

shift-register with zero delays




Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments e
0 Delayed evaluation

aways @(posedge clk)
#5yl=Iin;

aways @(posedge clk) >
#5y2 =vy1,

aways @(posedge clk)
#yl<=in;

always @(posedge clk) %
#5y2 <=vy1,

shift register with race condition




Seguential Logic
Procedural Assignments

0 How will these procedural assignments behave?
0 Concurrent assignments pcottal ROTTED L
0 Delayed assignment

aways @(posedge clk)
yl=#5in;

>

always @(posedge clk) ] ‘_
y2 =#5vy1l,

+

shift register, délay nﬁust b:e < c:lock [:Derioc:tl

aways @(posedge clk)
yl<=#5in;

aways @(posedge clk)
y2 <=#5vy1;

‘—>

shift register Wi'[ih deli’:lys |




Rules of Thumb for
Procedural Assignments

0 Combinational Logic:
0 No delays: Use blocking assignments (a = Db; )

0 Inertial delays: Use delayed evaluation blocking
assignments (#5a=0D0b;)

0 Transport delays: Use delayed assignment non-blocking
assignments (a <=#5Db; )

0 Sequential Logic:
0 No delays: Use non-blocking assignments (g <=d;)

0 With delays: Use delayed assignment non-blocking
assignments (g <=#5d;)




An Exception to Non-blocking
Assignments in Sequential Logic

0 Do not use a non-blocking assignment if another statement in
the procedure requires the new value in the same time step

What values do A and B contain
after 10 time units? A is 2 B g 2

Aways @(posedge cli) Assume state and next_state
big'sg (state) are STOP at the first clock,
"STOP: next_state <= "GO; what Is state:
‘GO: next_state <= “STOP; - At the 2nd clock? STOP
endcase - At the 3rd clock? GO
state <= next_state; - At the 4th clock? GO

end - At the 5th clock? STOP




Exercise 3:
Procedural Assignments

0 Write a procedure for an adder (combinational logic) that
assigns C the sum of A plus B with a 7ns propagation delay.

aways @(A or B)
#7 C=A +B;

1 Write the procedure(s) for a 4-bit wide shift register (positive
edge triggered) of clock and has a 4ns propagation delay.

always @(posedge clk) always @(posedge clk)
begin yl <=#4in;

yl <=#4in; aways @(posedge clk)
y2 <=#4yl, y2 <=#4yl,;

y3 <=#4y2; aways @(posedge clk)
out <=#4vy3; y3 <=#4y?2;

end aways @(posedge clk)
out <=#4y3;




Exercise 3 (continued):
Procedural Assignments

0 Write a Verilog procedure for a “black box” ALU pipeline that
takes 8 clock cycles to execute an instruction. The pipeline
triggers on the positive edge of clock. The “black box” is
represented as call to a function named ALU with inputs A, B
and OPCODE. How many Verilog

statements does it
take to model an
eight stage pipeline?

aways @(posedge clk)
alu_out <= repeat(7) @(posedge clk) ALU(A,B,OPCODE);




