

The Verilog Language

Originally a modeling language for a very efficient
event-driven digital logic simulator

Later pushed into use as a speC|f|cat|on language for log
synthesis

C

Now, one of the two most commonly-used languages in
digital hardware design (VHDL IS the other)

Virtually every chip (FPGA, ASIC, etc.)is designed in part
using one of these two languages

Combines structural and behaworal modellng styles

Multiplexer Built From Primitives
B

module mux(f, a, b, sel);

output T,
input a, b, sel;

and gl(fl, a,
g2(f2, b, sel);

or g3(f, f1, f2);

not g4(nsel, sel);‘\\\\

endmodule

‘\\\\‘\\\\\ Each module has
nsel),

~\\'Vémogpw&ﬂﬂﬂﬂg.....

built from modules

an Interface

Module may contain
structure: instances of
primitives and other

Multiplexer Built with Always

module mux(f, a, b, sel);

Modules may

output f; _
input a, b, sel; contain one or mor
reg T; always blocks

always<@(a or b or sel) Sensitivity i
it (sel) f = a; \ SISV 115
else ¥ = b; contains signals

whose change
~ makes the block
execute

endmodule

a

se| —e

Multiplexer Built with Always

module mux(f, a, b, sel);

?gsﬂztaﬁ b. sel- A reg behaves like
reg T; — memory: holds its value

always @(a or b or sel) until imperatively
'f (sel) T = a; assigned otherwise

else T = b;
endmodule \ Body of an always block
Contalns tradltlonal

|mperat1ve Code

a

se| —e

Mux with Continuous AsSSig

module mux(f, a, b, sel);
output T;
input a, b, sel;

i — 2D - -
assign<1f = sel 2 a : b; LHS is always set to
endmodule the value on the RHS

Any cha\nge on the right

—

causes reevaluatior

Mux with User-Defined Primiti

primitive mux(f, a, b, sel);
output T;
input a, b, sel;

table

170 :
0?70 :
?11 :
7?01 :
117 :

00?

endtable
endprimitive

Behavior defined using
_atruth table that

includes “don’t cares”
This is a less pessimistic th

others: when a & b match, ¢

N

ignored; others produce X

OFrRORFRLOR

Y
sel Is

How Are Simulators Used?

Testbench generates stimulus and checks response

Coupled to model of the system

Pair is run simultaneously

Stimulus

Testbench

Response

Result checker <€

System Model

Structural Modeling

When Verilog was first developed (1984) most logic
simulators operated on netlists L

Netlist: list of gates and how they’re connected
A natural representation of a digital logic circuit

Not the most convenient Way to express test benches

Behavioral Modeling

A much easier way to write testbenches

Also good for more abstract models of circuits

* Easier to write /
/
//

* Simulates faster

More flexible

Provides sequencing

e \

Verilog succeeded u/part because it all\ved both the
model and the testbench to be described together

How Verilog Is Used

Virtually every ASIC is designed using either Verilog or
VHDL (a similar language) .

Behavioral modeling with som/e”étructural elements

“Synthesis subset” can be ,t-r’"enslated using Synopsys’
Design Compiler or others into a netlist

Design written in Verilog
Simulated to death to check functlonallty
Synthesized (netllst generated)

Static timing analysis to checlg timing

_I
2
O
<
D
=
O
O
3
T
O
S
D
>
~+
%
O
*

Behavioral

Concurrent, event-triggered processes (behavioral)
Initial and Always blocks

Imperative code that can pe/i?form standard data
manipulation tasks (assighment If-then, case)

f_l'

Processes run until they delay for a period of time or wal
for a triggering event —

A
/,,/' ‘ ~
S \ N
/ \
\
\ \
\
/ \ N\
/ \ \
/
/ \
/ \\\
N\
\\
\
\\
.
N
o

-

Two Main Components ofE

Structural

Structure (Plumbing) L

//// \\\\
~ ~

Verilog program build from y@ﬁes with 1/O interfaces

Modules may contain instances of other modules \
Modules contain local signals, etc.

Module configuration is static and all run concurrently

Two Main Data Types: N

Nets represent connections between things

Do not hold their value — —

Take their value from a driver such as a gate or other
module

Cannot be assigned in an initial or always block

Two Main Data Types: Reg

Regs represent data storage

Behave exactly like memory in a computer

\

Hold their value until epr|C|tIy/aSS|gned In an initial or
always block ;

///

Never connected to somefhing

Can be used to model Iatches fllp flops etc., but do not
correspond exactly T~

Actually shared va/r/iables with all their attendant problem

\\
AN

AN

\\\ ‘ B y

Discrete-event Simulation

Basic idea: only do work when something changes

Centered around an event queue that contains events
labeled with the simulated t|me at which they are to be
executed !

Basic simulation paradigm
e Execute every event for the current simulated time

e Doing this changes system state and may schedule
events in the future |

e When there are no events left at the current time

instance, advance simulated time soonest event in th

queue

Four-valued Data

Verilog’'s nets and registers hold four-valued data

0, 1: Obvious T

AN

Z: Output of an undriven tri-s/;af/e driver. Models case
where nothing is setting a wire’s value

X: Models when the simulétor can’t decide the value

 [nitial state of reglste»rs
* When a wire is bemg drlven to O anc(l simultaneous

e Qutput of a gate with Z lnputs \

\

AN

\\\ ““‘ ///

Four-valued Logic

Logical operators work on three-valued logic

_) O 1 X Z o

0 lo o0 0 o0-— .Outpu.ts O if either
Input is O

1 |0 X

X |0 Outputs X if both

Z

outs are gibberish

Structural Modeling

Nets and Registers

Wires and registers can be bits, vectors, and arrays

wire a;

tri [15:0] dbus;
tri #(5,4,8) b;
reg [-1:4] vec;

trireg (small) q;

reg [31.0] dcaChe/M 63]

Il A 32-bit memory

\
\
\
\\
\\
AN
AN
N
NG

/I Simple wire

/1 16-bit tristate bus
I/ Wire with delay

Il Six-bit register
// Wire stores a small charg
/I Array of 1024 integers

\\

e

Modules and Instances

Basic structure of a Verilog module:

U I

-I\\‘

=y

N

b/
N lf‘j/
//

module mymod(outl, out2, iInl

output outl;

Verilog convention
output [3:0] out2; lists outputs first

/
/
/

input 1Inl;

input [2:0] in2;

| —

endmodule ////// \

/
/
/

|

Instantiating a Module

Instances of

\
\
\
|
|
|
|
|
|
|
|
/
/
/f

modulle mymod(y, a, b);

\\

look like
mymod mml(yl, al, bl); // Connect-by-position
mymod (y2, al, bl),

(y3, a2, b2); /[Instance names omitted

\

Gate-level Primitives

Verilog provides the following:

and
or
Xor
buf
bufifO
bififl

nor logical O OR
OR/XNOR

not buffer/inverter

xnor logical

notifO Tristqte with low enable

notifl T/ris@téwithhigh&ible

/

\
\
|
|
|
|
|
|
|
|
|
/
/
/
/

Delays on Primitive Ins

Instances of primitives may include delays

buf

buf #3

buf #(4,5)
buf #(3:4:5)

// Delay of 3
/Il Rise=4, fall=5
[/ Min-typ-max

Switch-level Primitives

Verilog also provides mechanisms for modeling CMOS
transistors that behave like switches

A more detailed modeling scheme that can catch some
additional electrical problems when transistors are used In
this way

Now, little-used because circuits generally aren’t built this
way

More seriously, model is not detailed enough to catch
many of the problems

These circuits are usually simulated using SPICE-like
simulators based on nonlinear differential equation solvers

User-Defined Primitives

Way to define gates and sequential elements using a tru
table

7

Often simulate faster than using expressions, coIIecﬁn\?
of primitive gates, etc.

/

Gives more control over b,éhavior with X inputs

Most often used for specifying custom gate libraries
|

N\ ™S

\ .
\
\
\
\
\
\
y \
/
/
/
/
/
[\
| \

\
\\
\

A Carry Primitive

primitive carry(out, a, b, c);
output out; -
- Et 2 b ‘c\ Always has exactly
taEle o one output
00? : O; |
070 - 0- /nﬂhtamernayuuﬂude |
?60 O/ don't-care (?) entries
11?2 - 1;
171 - 1; \ |
?11 - 1;
endtable f \
endprimitive |
\ J

A Sequential Primitive

Primitive dff(g, clk, data);
output q; reg q; o
input clk, data; "

e

table ///

// clk data q new-q
(01) O =: ? : O0; /lLatchaO

|
|
/"“‘
/
//
/
/
/
e
///
_—

(01) 1 ? 1; //Latchal

(OX) 1 : 1 : 1: //Holdwhendand g both1
(0x) O - 0 : O0; //HoldwhendandqbothO
(?0) 2 :?: -; [/ Holdwhen clkfalls

? (??) = ? : ~-; //Holdwhen clk stable
endtable / \\\\ \
endprimitive “ | o

. _
~ | -

Continuous Assignment

Another way to describe combinational function

Convenient for logical or datapath specifications

wire [8:0] sum; < Define bus widths

wire [7:0] a, b; Continuous

wire carryin; assignment:
permanentl

- atb+carryin.

\ Recompute
Whena . or

%,*,carryln changes

assign sum = a//b + carryin;\T sum to be

Behavioral Modeling

Initial and Always Blocks

initial always
begin begln
// imperative statements hmperatlve statemen&
end

/
/
/
/

Runs when simulation stairts Runs when simulation start
Terminates when control Restarts when control
reaches the end ~ reaches the end

N

Good for prowdlng/stlmulus Good for modellng or
- specifying hardware

N

. | P
L S

S | rd

S

Initial and Always

Run until they encounter a delay

initial begin -
#10 a = 1; b = 0O;
#10 a = 0; b = 1;

end

or a wait for an event /

always @(posedge

always begin
waitt(n);

\
wailt Ni);///////

a = 0;
a 1; /

end |

\
\\
\
\
\
|
|
|
|
|
|
|
|
|
/
|
/r‘
//
_—

Procedural Assignment

Inside an initial or always block:

sum = a + b + cin; . .
Just like in C: RHS evaluated and assigned to LHS @
next statement executes

RHS may contain wires and/or regs

LHS must be a reg |

(only primitives or c?m/nu\ous assignmém\may set wire
values) \ \

Imperative Statements

iIT (select == 1) y = a;
else y = b;

case (op)
27b00: vy
27b01: vy
2°b10: vy
default:

endcase

For Loops

—

Example generates an increasing sequence of values or
an output

reg [3:0] 1, output;

for (1 =0 ; 1 <=
output = 1;
#10;

end

, 1 =1 + 1) begin

While Loops

A increasing seqguence of values on an output

reg [3:0] 1, output;

Modeling A Flip-Flop WE
N

Very basic: an edge-sensitive flip-flop
reg d: -
always @(posedge clk
q = d; / \
/ . \
g = d assignment runs when clock rises: exactly the
behavior you expect S ‘
‘x\]
/\ /
//
/ |
|
‘.\ - |~
\ /

Blocking vs. Nonblocking

Verilog has two types of procedural assignment

Fundamental problem: T

e In a synchronous system, all flip-flops sample
simultaneously /

« In Verilog, always @(posedge clk) blocks run in
some undefined sequenc

e I
|
7
\
\
\
\
\\
\
\
/ \
/
/
/ \
//” \\\
\
/
| \
| |

A Flawed Shift Register

This does not work as you would expect:

always @(posedge ClK)/;;/; di;

always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

|
|
|
|
|
|
|
|

/

/

//
/
_

These run in some order, but you don’t know which

\
‘
|
\
\
|
|
|

e

\ /

\ /

\ /

\ /

\ /

y \ /

/ \ \\
\
/ \
\
/
/

“ \

i |

| |

|

~__ |

Non-blocking Assignments =

This version does work: Nonblocking rule:

reg dl, d2, d3, d4; _— RHs evaluated
when assignment
runs

always @(posedge clk) d2 <= di; \

always @(posedge cfk) d3 <= d2;
always @(posedge cIk) d4\<= d3;

\HS updated only -

after all events fo
the current instant
~ haverun

Nonblocking Can Behav

A sequence of nonblocking assignments don’t

communicate P -

a = 1; 1;

b = a; b <= a;

cC = b; . C <= b;
// \\\

Blocking assignment: Nonblocking assignment: |
|

a=b=c=1 a=1 |
~ b=oldvalue of a /
- c=oldvalue of b

\ /

Nonblocking Looks Like La

RHS of nonblocking taken from latches

RHS of blocking taken from wires

a
b

o Q

|
|
/
///
/
%

Building Behavioral Models

Modeling FSMs BehaviorE

There are many ways to do it:

« Define the next-state logic co iﬁationallyaﬁd\@
the state-holding latches explicitly

* Define the behavior in a single always @(posedge

clk) block

e Variations on these themes

el ™~

\
\
:
:
\
/
// \
// \\
//” \\\
\
/
‘ ‘
‘ ‘
|

e

v

_n
92
<
=
~
S
O
O
3
=5
S
D
=
O
-
D

‘n

gﬁ?ﬁh? ESMO a, b, reset); Output o is declared a r

reg 0, < because it is assigned
| nput a, b, reset;

reg [1:0] state, nextState; ~_procedurally, not becau
always @a or b or stat e)/ holds state \
case (state)
2’ b00: begin
o =a & b;
next State = a ?/é’bOO : 2’ bO1;
end
2" b01: begin /
o0 = 0; nextSt ate = 2’ b10;
end |
endcase L
al ways @ posedge k or reset)
1 f (reset) ﬂ \ \\
state <= 2’ UOO \ \
el se \

state <= next St at e; \

endnodul e o %

S | rd

€9

se It

_n
2
<
=
~
>
O
O
3
S,
S
D
=
O
-
D

‘n

rm%iul te FSM o, a, b, reset);
?ggpg; © Combinational block must be
| nput a, b, reset;
reg [1:0] state, hextState; sensitive to any change on any
“of its inputs (Implies
aL\gfggs(g gt gg b or stat e)/ state-holding elements
b00: begin otherwise)
0O =a & b; \
next State = a ? 2 b00 : 2’ b01;
end /
2" b01: begin /
o = 0; nextSt ate = 2’ b10;
end |
endcase k,, - .
al wvays @ posedge c;rk QI‘ reset) \
1 f (reset)
o gte ate <= 2’ bOO Latch implied by
state <= nex’[St at e; \ sensitivity to the clock
endmodul e or reset only

@ 20
@ 20
@ 20
_ @ 20
FSM from a Single Always Block ™

modulle FSM(o, a, b);
output o; reg o; Expresses Moore

:QDUEE_IE)] bétate _ ~machine behavior:
d - ’ Outputs \are\l tched.

always @(posedge clk 0r reset) Inputs only S: mpled
1T (reset) state <= 27b00; \
else case (state) at clock edge
2”b00: begin
state <= a ? 2’b00 - 2°b01;
0O <= a & b; |

end . Nonblocking assignments
2°b01: begin N\ |
state <= 2~ blO used throughout to ensure
0 <= 0; < coherency. RHS refers 0.
end - values calculated In /’
endcase | \

“previous clock cycle

Writing Testbenches

Inputs to
mOdu I e test ’ / under test
reg a, b, sel;

/ Device under test
mux m(y, a, b, sel); o o

/// \\\

initial begin $monjt45 a built-in even-driven “
$monitoré€$time, ,"a=%b b=%b sel=%b y=%b",

a, b, sel, y);
a = 0; b= 0; sel = 0; Stimulus generated by
#10 a = 1; |
#10 sel = 1; «<— =
410 b = 1 / asagmnents and
end / \ delays N\ /
\ \ /

Simulating Verilog

Simulation Behavior

Scheduled using an event queue

\
\
|
|
|
|
|
|
|
|
|
|
/
/
/
/
/
/
//

Non-preemptive, no priorities —
A process must explicitly request a context switch
Events at a particular time unordered \

Scheduler runs each event at the current time, possibly
scheduling more as a result

\
‘
|
\
|
. T~ |
1\ [
~ \ /
\ /
\ /
\ /
\ /
\ /
/ \ /
/
/
/
/
| \

Two Types of Events

Evaluation events compute functions of inputs

Update events change outputs — T

Split necessary for delays, nonblocking assignments,}s‘\
Update event writes
new value of a and

Evaluation event
a<=b+c reads values of
schedules any / o \

| Nandc, adds them,

evaluation events
N nd schedules an

that are sensitive to
\ update event

a change on a

Simulation Behavior

Concurrent processes (initial, always) run until they stop
at one of the following e —

//// ‘\\\

° #42
Schedule process to resume 42 time units from now

///

e wait(cf & of)

Resume when expression “cf & of” becomes true
|

e @@orboryy
Resume when a/b or y changes \

///

* @(posedge clk)

S | -

Resume when clk change fromOto1l

Simulation Behavior

Infinite loops are possible and the simulator does not
check for them This runs forever: no context switch
allowed, so ready can never change

while (Cready)
count = count + 1;

Instead, use

wait(ready);

Simulation Behavior

Race conditions abound in Verilog

These can execute in either order: fi
undefined:

always @(posedge cl
always @(posedge clk) a
/

I
=

Simulation Behavior

Semantics of the language closely tied to simulator
implementation o

—

r~—+

Context switching behavior convenient for smulaﬂon\tg
always best way to model

/ \
\

Undefined execution order convenient for implementing
event queue

Compiled-Code Discrete-Even

Most modern simulators use this approach

Verilog program compiled into C |

Each concurrent process (e.g., contlnuous aSS|gnment \

always block) becomes one or more C functions

Initial and always blocks split into multiple functions, one
per segment of code between a delay, a wait, or event

control (@) B

Central, dynamic event queue Invokes these functions ar
advances simulation time

Verilog and Logic Synthesis

Logic Synthesis

Verilog is used in two ways

‘
|
/ /
/
y
/
// /
y

Model for discrete-event simulation
Specification for a logic synth/eé/is system

Logic synthesis converts a/éubset of the Verilog languag
into an efficient netlist

One of the major breakthroughs In deS|gn|ng logic chips
the last20 years .

Most chips are deSJQned usmg at Ieast some logic
synthesis |

e

n

Logic Synthesis Tools

Mostly commercial tools
e Very difficult, complicated programstowritewell
e Limited market S
e Commercial products |n $/Ok $100k price range
Major vendors
e Synopsys Design Compller FPGA Express
e Cadence BuﬂdGates\ -
e Synplicity (FPGA}) |
- Exemplar (FPGAS)
Academic tools \

* SIS (UC Berkeley)

Logic Synthesis

Takes place in two stages:

1. Translation of Verilog (or VHDL) source to a netllst

\

Register inference performed here

2. Optimization of the resultlng netlist to improve speed
and area

Most critical part of the process

Algorithms very compllcated andbeyond the scope of
this class: Take Prof. Nowmks class Tor details

\\\

Logic Optimization

Netlist optimization the critical enabling technology

Takes a slow or large netlist and transforms itinto Qne th
Implements the same functlon more cheaply

Typical operations:
e Constant propagation

* Common subexpression elimination

,/‘a T~

e Function factorlng | \

Time- consumlng operatlon Can take hours for large chiy

\

AN

\\\ ‘ B y

at

Translating Verilog into Ga

Parts of the language easy to translate
Structural descriptions with primitives is already a netlist

Continuous assignment expressions turn into little
datapaths

// \\

Behavioral statements the bigger challenge

What Can Be Translated

Every structural defi nition

|
|
/
/
/

Behavioral blocks

* Depends on sensitivity list
/

* Only when they have reasq,n/éble interpretation as
combinational logic, edge, or level-sensitive latches

* Blocks sensitive to both edges of the clock, changes on

unrelated signals, changing sensitivity lists, etc. cannot be

synthesized I

T ~

User-defi ned pr|m|t|ves

\

* Primitives defi ned with truth tables

e Some sequentlal UDPs can’t be translated (not latches or
fip-flops)

~— | e

| |
| |
| |
| ~

|

What Is Not Translated

Initial blocks

* Used to set up initial state or describe fi nite testbench stimt

e S

* Don’t have obvious hardware/%/mponent

Delays /

/

* May be in the Verilog souﬁrce, but are simply ignored
A variety of other obscure language features

* In general, things heavﬂy//depender‘i\t‘on\discrete-event

simulation semantics

/ \ \

e Certain “disable” statement:

e Pure events \

‘ \\\ |) //

///

Register Inference

The main trick

\
\\
\
\
\
|
|
|
|
|
|
|
|
|
/
/
/f

/

A reg is not always a latch or flip-f

Rule: Combinational if outputs always depend excmﬂ
on sensitivity list

e

Sequential if outputs may also depend on previous values

Register Inference

Combinational:
reg vy,

always @(a or b or sel)

i1IT (sel) y = a;
else y = D; «——

Sequential:

reg q;
always @(d or clk)
1T (clk) g d; <

/
/
|

— -

Sensitive to
- changes

all the
variable it read

IS always assigned

_—

—_

g only assigned
henclkisl

Register Inference

A common mistake is not completely specifying a case

Statement

This implies a latch:

always @(a or

case ({a, b})

2”b00 :
27b01 :
27b10 :

f
f
f

— - \\\

b)

endcase <

Register Inference

The solution is to always have a default case

always @(a or

case ({a, b})

2”b00 :
27b01 :
27b10 :

f
f
f

default :

endcase

f =

b) R

Inferring Latches with R

Latches and Flip-flops often have reset inputs

Can be synchronous or asynchron s T

Asynchronous positive reset:

always @(posedge clk or posedge reset)
if (reset) /
q <= 0;

Simulation-synthesis Mismatc

Many possible sources of conflict

* Synthesis ignores delays (e.g., #10), but S|mulat|on
behavior can be affected by them *

e Simulator models X epr|C|tIy, synthesis does not

e Behaviors resulting from shared-variable-like behavior
of regs is not synthesized:

always @(pOSedge Clk) a = 1;

New value of a may be seen by other @(posedge cIk)
statements in S|mulat|on ‘never In synthesis

Summary

Summary of Verilog

Systems described hierarchically

|
|
/ /
/
y
/
y
/ g
/
/
/

\\

e Modules with interfaces

* Modules contain mstances of primitives, other
modules

 Modules contain initial and always blocks
Based on discrete- event S|mula1:|on semantlcs

e Concurrent prooésses with senS|t|V|ty Ilsts

\

* Scheduler runs parts of these processes in response

to changes N

Modeling Tools

Switch-level primitives: CMOS transistors as switches that

move around charge o

// -

Gate-level primitives: Boolean logic gates

User-defined primitives: Gat"és and sequential elements

defined with truth tables

Continuous assignment: Modeling combinational logic
. . |
with expressions L

Initial and always b/l///aé/i%s: Procedural m\a\de_ling of behavic

\

o

Language Features

Nets (wires) for modeling interconnection
* Non state-holding S
* Values set continuously
Regs for behavioral modelin’/
* Behave exactly like memory for imperative modeling

e Do not always correspond to memory elements in
synthesized netlist

Blocking vs. nonblocklng aSS|gnment
e Blocking behaves like normal “C- Ilke” assignment

* Nonblocking delays update modeling synchronous
behavior

Language Uses

Event-driven simulation

* Event queue containing thlngs to do at partlcular
simulated times

» Evaluate and update eyé/i:lts

e Compiled-code event-driven simulation for speed
Logic synthesis
e Translating Verllog (structural and behavmral) Into

netlists \ AN

e Register mference whether output is always updatec

e Logic optlmlzatlon for cleanlng up the result

Little-used Language Features

Switch-level modeling

» Much slower than gate or beh vi()ral-levelmbdels\

 Insufficient detail for modeling most electrical
problems / \

e Delicate electrical prblems simulated with a
SPICE-like differential equation simulator

el ™~

\
\
|
|
|
|
|
|
|
|
|
|
\ /
\ /
\ /
\ /
\ /
\ /
\ /
/ \ /
/
/
/
/"’
/
/
| \
| \

\
\\
\

Little-used Language Features

Delays

e Simulating circuits with delays doesnotimprb\f\

confidence enough
* Hard to get timing models accurate enough
 Never sure you have simulated the worst case

e Static timing analysié/h/astaken\its place

1\
"
\
\
\
\
\
/ \
/
/
/
/
| |

\
\
\\

Compared to VHDL

Verilog and VHDL are comparable languages

VHDL has a slightly wider scope
o System-level modeling
* EXxposes even more dis’érete-event machinery

VHDL is better-behaved: Fewer sources of
nondeterminism (e.q., nd shared variables)

VHDL is harder to S|mulate qmckly \\
VHDL has fewer bunt In faC|I|t|es for hardware modeling

VHDL is a much more verbose Ianguage Most examplesr-”
don'’t fit on slldes |

In Conclusion

Verilog is a deeply flawed language

* Nondeterministic

mismatch .

In Conclusion

Verilog is widely used because it solves a problem
e Good simulation speed that contlnues to |mpreve
e Designers use a well- beh@ed subset of the Ianguac

 Makes a reasonable speC|f|cat|on language for logic
synthesis |

e Logic synthesis one bf the great de3|gn automation
success stories / | \

///

///
- —

N\
\
\
\

