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Modeling the “Effective Capacitance” for
the RC Interconnect of CMOS Gates

Jessica Qian, Satyamurthy Pullela, and Lawrence Pillage, Member, IEEE

Abstract—With finer line widths and faster switching speeds,
the resistance of on-chip metal interconnect is having a dominant
impact on the timing behavior of logic gates. Specifically, the
gates are switching faster and the interconnect delays are getting
longer due to scaling. This results in a trend in which the RC
interconnect delay is beginning to comprise a larger portion
of the overall logic stage delay. This shift in relative delay
dominance from the gate to the RC interconnect is increased
by resistance shielding. That is, as the gate “resistance” gets
smaller and the metal resistance gets larger, the gate no longer
“sees” the total net capacitance and the gate delay may be
significantly less than expected. This trend complicates the timing
analysis of digital circuits, which relies upon simple, empirical
gate delay equations for efficiency. In this paper, we develop an
analytical expression for the “effective load capacitance” of an
RC interconnect. In addition, when there is significant shielding,
the response waveforms at the gate output may have a large
exponential tail. We show that this waveform tail can strongly
influence the delay of the RC interconnect. Therefore, we propose
an extension of the effective capacitance equation that captures
the complete waveform response accurately, with a two-piece
gate-output-waveform approximation.

1. INTRODUCTION

S INTEGRATED circuit technologies continue to im-

prove, the feature sizes of transistors and interconnect
wiring are getting smaller, thus allowing for denser chips with
increased functionality. With this trend, metal interconnect
resistance-per-unit-length is scaling up due to R scaling up and
C not scaling down due to fringing fields. If the interconnect
lengths shortened according to the scale factor, then the total
metal resistance would remain relatively constant with scaling.
However, since the integrated circuit densities are increasing
dramatically, the average metal lengths are not scaling down
as the feature sizes are reduced. This situation is evidenced
by the increase in the RC-interconnect-delay portion of the
overall logic-stage delay.

In addition to the gate delay getting faster while the RC
delay gets longer due to scaling, the interconnect resistance
also acts to reduce the gate delay due to resistance shielding.
That is, as the gate’s resistance becomes comparable to the
total metal resistance, some of the load capacitance is shielded
from the gate. This shielding tends to decrease the gate delay
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since the gate is driving an “effective load” that is less than the
total capacitance of the net. In [1], an “effective capacitance”
model is proposed that accounts for the reduction in the gate
delay due to the metal shielding component but maintains
compatibility with the popular (empirically derived) k-factor
gate-delay equations. This effective capacitance model results
in gate delay predictions that are within +10% of a SPICE
prediction. Since optimistic delay predictions are generally
unacceptable, in this paper we derive an effective capacitance
expression similar to the one proposed in [1] that provides a
more pessimistic delay approximation.

One difficulty with the model in [1] is that while it predicts
the gate delay with reasonable accuracy, it is not able to predict
the transition time (rise/fall time) of the gate-output signal.
Moreover, when the metal resistance is significant, the digital
waveforms at the gate output begin to take on a non-digital
character. That is, it is very difficult to even specify the signal
transition time since the RC shielding effects give the signal
a strong nonlinear character. To overcome this limitation, the
effective capacitance model is augmented by a gate resistance
model to approximate a complete gate-output waveform. This
paper will show that given the RC interconnect parameters
and the k-factor equations for the gate delay and gate-output
transition time as a function of load capacitance, the gate
delay’and the gate output waveform can be calculated with
reasonable accuracy even when there is significant resistance-
shielding.

II. BACKGROUND

It is recognized that the overall logic-stage delay consists
of a gate delay component and an RC interconnect delay
component [2]. There are two approaches to capturing the
combined delay of both the gate and the interconnect which
have gained considerable acceptance: 1) a switch-resistor
model comprised of a linear resistor and a step function
of voltage [3]-[6] and 2) empirically derived expressions
for delay and output-signal transition time as a function of
load capacitance and input-signal transition time (k-factor
equations) [7]. Both methods are empirically based, since even
the second method requires empirical fitting to approximate
the resistance value as a function of input transition time and
output load.

Switch resistor models have an advantage since their cou-
pling with the RC interconnect is inherently modeled. How-
ever, it is extremely difficult to model a submicron gate in
terms of a single resistor, and for this reason empirical gate
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Fig. 1. (a) An inverter driving an RC interconnect with 5 loads and 10

segments of metal (URC’s). (b) The same inverter driving the total capacitance
of the net in (a).

delay equations are the model of choice for cell-based design
styles.

With empirical gate delay models, we must decouple the
gate and interconnect delay analyses, analyze them individ-
ually, and then sum the resulting delays to approximate the
overall logic-stage delay. In order to decouple the interconnect
and gate-delay problems, we must have a model for the loading
on the gate due to the RC interconnect and fan-out gates.

For example, consider the logic-stage delay problem shown
in Fig. 1(a). The fan-out for this net is 5, with each fan-out
input characterized by a 10-fF load capacitance. There are 10
segments of metal, each represented by a uniform RC segment
(URC) in the figure. The total R and C' values for these URC
segments (based upon per unit length R’s and C’s, and the
corresponding length for each URC), are shown in Table 1.
There is also a capacitance associated with the interconnect
vias that is modeled by a 5-fF capacitance.

For delay analysis, we are given the rise time of the inverter
input-signal and we want to calculate the falling transition
delays at all of the loads. For efficiency, we analyze the
falling-transition gate delay (the delay of the signal just at
the output of the inverter) and the RC interconnect delay (to
the various fan-out points) separately, then add them together
for an overall logic-stage delay. To enable such an analysis
we must approximate the driving point admittance of the RC
load. That is, we can accurately model the waveform at the
output of the inverter only if we accurately approximate the
load “seen by” the gate. The simplest driving point admittance
load for an RC interconnect is the total capacitance of the net,
as shown in Fig. 1(b). For this example, the results in Fig. 2
demonstrate that the total capacitance is a reasonably accurate
model of the driving point admittance for this net.

Since we can use such a simple model for the driving
point admittance, the gate’s delay can be pre-characterized in
terms of the input-signal transition time, t;, and the total load
capacitance, Cr. That is, for efficiency, the gate delay for a
falling output transition, ¢4, and the waveform fall time, t¢,

TABLE 1
URC VALUES FOR THE RC INTERCONNECT IN FIG. 1(a)
URCH# R (Q) C (fF)
1 1.20 11.1
2 1.33 365
3 3.55 223
4 30.6 275
5 1.20 11.1
6 50.7 224
7 50.5 432
8 64.8 583
9 70.6 194
10 80.4 306
5.0 -
Actual Input Signal
4.0 Output
/ Signal
o ] for RC
8 3.0 load Output
§ Signal for
2.0 1 Total
Capacitance
1.0 4 Load
0.0 T T T
0.0 0.2 0.4 0.6 0.8
Time(ns)

Fig. 2. The total capacitance is a fairly accurate model of the driving point
admittance for this example.

can be characterized in terms of empirically derived k-factor
eqqations such as [7]:

ta = (k1 + koCp)t: + k3C2 + kaCpL + ks (2.1)
tp= (k) + kOt + K3C2 + K4CL + K, (2.2)

where the k’s are empirical fitting parameters and the falling
output delay (50% point delay), tq, and the fall time, ty, are
defined as shown in Fig. 3. Notice that we have defined ¢y
to be the 100% to 0% (or 0 to 100% for ¢,.) time determined
by fitting a straight line through the 20 and 80% points of the
output voltage waveform. It is apparent from Fig. 3 that such
an approximation is reasonable for this waveform.

For timing analysis, once the delay and the output transi-
tion time are efficiently evaluated using (2.1) and (2.2), the
interconnect delay is calculated by driving the RC circuit
model with a voltage defined by a transition time, ¢5. The RC
interconnect can be efficiently precharacterized [8] in terms
of a reduced-order transfer function. In this case, Asymptotic
Waveform Evaluation (AWE) [9] is used to determine the
reduced order model. The overall logic stage delay is the gate
delay, ¢4, plus the RC delay, tgrc.

A delay analysis procedure such as the one outlined above
can be extremely efficient and accurate for delay analysis of
digital gates and interconnect. However, as the logic gates
switch faster with lower “resistance,” and as the interconnect
resistance per-unit-length increases with technology advances,
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Fig. 3. Defining the transition time and delay for an output signal waveform.

Fig. 4. The inverter example from Fig. 1 with a different interconnect
topology.

some of the interconnect capacitance can be shielded from the
logic gate. That is, a total capacitance model is guaranteed to
be a pessimistic approximation for the driving point admit-
tance. In some cases, the delay prediction can be extremely
pessimistic.

As an example, consider once again the inverter in Fig. 1,
still driving five load capacitors and 10 URC’s of metal. If we
change the interconnect topology of this net, as shown in Fig.
4, the total capacitance is unchanged, however the “effective
capacitance” is changed significantly. When we compare the
signal waveform for the output of the inverter in Fig. 4 with
that for the inverter in Fig. 1(b), the delay and transition time
are dramatically different, as shown in Fig. 5. Notice that the
actual waveform has a smaller delay due to the metal resistance
shielding some of the load capacitance. Also, it is apparent
that the waveshape does not appear as “digital” as the total
capacitance waveshape, due to the RC effects.

To better capture the delay and the output signal transition
time for the circuit in Fig. 4 requires a better approximation
for the driving point admittance of the RC interconnect.
One can synthesize higher-order equivalent circuit models
for the driving point admittance of the RC interconnect. The
procedure for doing this using AWE is described in [10].
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Fig. 5. The inverter-output response waveform for the circuit in Fig, 4.
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Fig. 6. A w-model of the driving point admittance for the RC interconnect
in Fig. 4.

A m-model load is easily synthesized using the first three
moments of the driving point admittance [11], [10]. The -
model synthesis for the RC interconnect in Fig. 4 is shown
in Fig. 6. Note that the sum of capacitors C; and Co is
equal the total capacitance of ‘this net [11]. The resistance
R represents the amount of capacitance shielding. When the
m-mogdel resistance R is comparable to the “resistance” of the
switching inverter, we can expect significant shielding and a
waveshape with an RC tail.

Comparing the actual response waveform to that obtained
using the w-model load for this example shows that the
waveforms are nearly identical (Fig. 7). The only difficulty
with this approach is that the m-model load is incompatible
with the k-factor Equations (2.1) and (2.2). In order to generate
empirical k-factor equations for all possible input transition
times and w-model loads would require fitting a 4D table
of empirical data. Generating such models does not seem
practical from a storage or run-time point of view.

Instead of a 4D table, an “effective capacitance” model was
proposed in [1] that would maintain compatibility with the k-
factor equations while also modeling the resistance shielding
effect. In [1], an effective capacitance could be generated that
captures the delay to within £10% of the actual delay. For the
example in Fig. 4, an effective capacitance value was obtained
(as shown in Fig. 8) that adequately approximated the loading
behavior of the w-model. The results are shown in Fig. 9.

The effective capacitance from [1] is reasonably accurate,
as shown by the example in Fig. 9. However, it is occasionally
optimistic, which is not always acceptable for applications
such as worst-case timing analysis. It is also apparent from
the waveforms in Fig. 9 that while a single capacitance value
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Fig. 7. The excellent agreement between the actual response and the approx-

imate responses using the w-model for the driving point admittance.
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Fig. 8. An effective capacitance that captures the effects of the w-model load.
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Fig. 9. A comparison of the actual waveform with the results when using
a total capacitance and an effective capacitance to model the driving point
admittance.

seems to result in a delay close to that obtained using the -
model load, it is impossible to capture both the delay and the
output waveshape with a single capacitance value. In Sections
III and IV we consider these limitations and propose models
which capture the effective delay as well as the RC waveform
tail.

ITI. THE “EFFECTIVE” CAPACITANCE

To establish an expression for an effective capacitance that
considers the resistance shielding of the interconnect, we
attempt to find a single capacitor that will result in the same
50% point delay as a m-model load. The approach taken in
[1] is to determine the capacitance load that has the same
average current (therefore the same total charge transfer) as
the m-model load. Referring to Fig. 10, we equate the average
currents for the waveforms of V() up to the 50% delay
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Fig. 10. Equating the average currents for the (a) —pi-model load and (b)
the effective capacitance load. :

point, tp.
1 tp 1 tp
— | L(tydt=_— [ Ic(t)dt 3.1
tp Jo tp Jo
where
In(8) = Yz (5)Vour(s) (3.2)
and
Ic(s) = sCet Vour(s) (3.3)

and Y;(s) is the admittance of the w-model. Note that we
make- a distinction between the time at which the 50% point
is reached, ¢p, and the 50% point delay value from (2.1), ¢4,
since the latter represents the time difference between the 50%
points of the input and output waveforms.

Since the delay point, tp, is what we seek, we assume
a waveshape for V. (t) and equate the integrals in (3.1)
using (3.2) and (3.3). Almost any waveshape can be used to
equate this averaging of currents, however the more realis-
tic the waveshape assumption, the more accurate the delay
approximation. In [12], CMOS gates are modeled using a
combination of quadratic and linear functions that correspond
to the operating regions of the MOSFET’s. Following this
reaspning, we use the following waveshape assumption:

Vi — ct? 0<t<t,
Vour(t) = {a+b(t—t1) t. <t<tp

Starting at an initial voltage, V;, the waveshape is quadratic to
the 20% point, t,.. (V; is equal to Vpp for a falling waveform,
and equal to zero for a rising waveform.) Then, from the 20%
point to the midpoint, the transistors are in saturation and the
voltage is assumed to be linear up to the 50% point, . The
constants, a, b, and ¢ are determined by the factors we must
solve for in order to determine the delay. One simplifying
assumption is that the voltage waveform and its first derivative
are continuous at ¢, therefore,

3.4

a=V;—ct?
b= —2ct,

(3.5)

Using this waveshape assumption, the average current in
the capacitance load Ceg is

Ic(t) = i [/Ot Cofr - (—2ct)dt

tp
+ / Coest - (—26!;,)dtj|
t

T

—2Ceﬂ‘ cC- tw tm
= " tp - = .
D D=5 (3.6)
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Similarly, the average current in capacitor C; of the m-model
is given by

_ :_ZM |:tD t;] 3.7

702 (t) = o

Estimating the average current in capacitor C) of the «-
model is not quite as simple. What we must consider is the
current in capacitor C, as a function of the voltage waveshape
at Cy. First, the average current in C; due to the quadratic
voltage waveform at Cy, can be shown to be

- —2C; -c[t2 ~t
To,(t) = t—lc [51 —RCit, + (RC1)2(1 - em‘)]
3.8)

Next, we consider the average current in C; due to a linear
voltage at Cq from ¢, to ¢{p, which is given by

- — Ve ~(tp-te)
Ie,(t) = atD—YCtllCl(l —e R4 )

x

RC,
D~z

+bC, [1 - (1 R )] (3.9)

Note that we have also considered that there is an initial
voltage on capacitor C; at time ¢, V1;, which is different
than the initial voltage at Cz. We approximate this initial
voltage by integrating the average C; current from ¢ = 0 to ¢,:

Voi = Vi — c[tg ~ 2RCit, + 2(RC1)2(1 - e%?)] (3.10)

Using (3.5) and (3.10), (3.9) evaluates to

Io,(t) = tl‘ff; [2RC1t. — 2(RC1)? (1 - 7]
x (1 - eif&_‘l)
(3.11)
~ 2t.Cy [1 o (1 - e—(ézr))}

Then, from (3.8) and (3.11), the total average current in C)
for the interval (0,¢p) is

'—2001 ti
t

= 4 t,(tp — t, — RCy) + (RCy)?

701 (t) = 5

D

—(tp—ta) =t
x (e—&—l - eﬁ‘f)] (3.12)
Finally, we equate the average currents in the w-model ((3.7)
and (3.12)) to those in the Ceg model ((3.6)) and solve for the
“effective capacitance value™:

RC
Ceg =Co+Cy [l— lt
ip— %
2 —ltp—ta _
LY e ()
tz(tp — %)

(3.13)

As expected, the effective capacitance value lies between Cy
(the first capacitance of the 7-model) and C; + C; (the total
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capacitance) and is determined by the values of R, ¢, and
tp. As expected, in the limit as R goes to zero in (3.13), the
effective capacitance is equal to the total capacitance. And, in
the limit as R tends toward infinity, the effective capacitance
is Cz.

The values ¢, and tp are determined in part by the char-
acteristics of the driving gate and the input signal to the gate.
That is, we could calculate these quantities from the 7-model
parameters, the input-signal slope information, and the k-factor
Equations (2.1) and (2.2):

t

tp =td+§’ (3.14)
t

tz=td+§'—0.5-tf (3.15)

From (3.14) and (3.15), we can see that the effective capaci-
tance is a function of the delay and the fall (or rise) time of
the output voltage waveform. Of course, the delay and the fall
time of the waveform are not known a priori, since they are
the values that we seek. Therefore, the effective capacitance
must be calculated iteratively using the k-factors and (3.13),
(3.14), and (3.15).
The iteration procedure is as follows:

1) Set the load capacitance value equal to the total capac-

itance.
2) Use the load capacitance value to obtain a delay and an
output-signal transition time using (2.1) and (2.2).

3) Using the ¢4 and ¢; obtained in step 2, calculate a Ceg
using (3.13), (3.14), and (3.15).

4) If the value of Ceg is still changing, set the load
capacitance value equal to Ceg and go to step 2.

This iteration procedure can be used with k-factor equations
to calculate the effective capacitance. k-factor equations like
the dnes shown in Fig. 11 are usually generated using regres-
sion techniques to fit the data from thousands of SPICE runs
to such equations as (2.1) and (2.2) (for various capacitance
loads and input transition times). To avoid the error associated
with the k-factor fit, we instead used SPICE to extract the fall
time and the delay at each effective capacitance iteration in
order to emulate “perfect” k-factor Equations ((2.1) and (2.2)).
Therefore, the differences in the waveforms in Fig. 9, which
compares the effective capacitance in Fig. 10(b) with the =-
model in Fig. 10(a), is due only to the effective capacitance
approximation, and there is no error attributable to the k-
factor equations. In practice, however, the k-factor errors can
influence this approximation depending on the regression fit
€rTor.

For the example in Fig. 10, the effective capacitance con-
verged to a value of 1.23 pF in 3 iterations. Empirically, we
have found that the effective capacitance value converges in
3 to 4 iterations. The speed of convergence and the guarantee
of convergence (a unique solution for Ceg) are most easily
explained using Fig. 11. Referring to the figure, (3.13) is
shown plotted as a function of ¢4 for the three iterations of
the aforementioned example. Note that each iteration (each
curve) corresponds to a different delay, and therefore, a
different value of ty. Shown on the plot is the k-factor
Equation (2.1) for the 50x inverter used in the previous
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Fig. 11. Plots of the effective capacitance value as a function of delay for
three iterations (three different values of fall time) of the example. Also shown
on the plot are two k-factor equations for the delay ((Equation 2.1)) of a 50x
and a 4Xx inverter.

examples. The intersection of the Cog equation and the -
factor equation represents one iteration point solution. As the
iterations proceed, the Ceq curves move toward smaller delay
values. Convergence is reached when the k-factor delay agrees
with the delay value for the C.g curve that it intersects, as
shown in Fig. 11.

Also shown in Fig. 11 is a k-factor equation for an inverter
with a W/L ratio of 4z. This corresponds to significantly
smaller W/L ratios for the p- and n-channel transistors
that comprise this inverter. As shown in Fig. 11, the &-
factor equation is significantly weaker for the 4x inverter as
compared to the 50x inverter. Notice that for this somewhat
weak inverter, the k-factor equation intersects the C.g curves
at a point very close to the total capacitance value. This is
expected, since the inverter’s “resistance” is now significantly
larger than the resistance of the w-model load, hence, the
inverter sees the total capacitance of the net. For the
4 x inverter example, the Ceg value would converge in one
iteration.

As a second example we consider an inverter and RC
interconnect problem that is characterized by a 30x inverter
driving a w-model with R =232 Q,C; =3.849 pF, and

Co =0.283 pF. After 3 iterations, a C.q value of 0.668 pF
is obtained. The response for the C.i load is compared with
that for the 7-model load in Fig. 12. Once again, there is good
agreement between the two waveforms up to the 50% point,

It is apparent, however, from the examples in Figs. 9 and
12 that an effective capacitance model is able to capture the
delay with reasonable accuracy, but that the overall waveshape
is not captured beyond the 50% point. It is not unexpected that
a single capacitance value is unable to capture the complete
behavior of a w-model load. Moreover, it is the resistance
shielding effect that gives these response waveforms such long
exponential tails, which are significantly different than the
more “digital” waveshapes for the capacitance loads. If we
were concerned only with obtaining the delay of the gate, the
Cet model would be sufficient. But since we are planning
to use the output waveform (at the driving point of the RC
interconnect) to calculate the RC interconnect delay, this Ceg
waveform may be unacceptable.
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Fig. 12.  Comparison of C.y¢ and w-model load for a large RC tree.

IV. APPROXIMATING THE DRIVING POINT WAVEFORM

As observed in Fig. 9 and Fig. 12, the slow decaying tail
portion of the response waveform is not accurately captured
using the effective capacitance model. One explanation for
the tail portion of this waveform is that the CMOS gate is
behaving like a resistor, and its interaction with a 7-model
load is described by a second-order exponential function. This
line of reasoning follows from the piecewise CMOS inverter
models described in [12].

In [12], the transient response of a CMOS inverter is
analyzed as four separate regions of operation based upon
the operating regions of the p- and n-channels. We will
assume throughout this section that the input signal is a rising
transition, therefore an output falling transition is considered
for this discussion. One can argue that when the rising input-
signal to an inverter is greater than the output voltage by more
than the threshold voltage, the n-channel goes from saturation
to linear and the p-channel is off or barely conducting. The
inverter, or any logic gate, can be accurately modeled by a
resistor to ground for this region of operation. This resistance
value can be approximated by the large-signal output resistance
of the gate. A similar argument for a two-region gate model
was made previously in [13].

Assuming that the gate is behaving like a resistance to
ground, it is apparent from Fig. 13 that the C.g model is
going to yield a vastly different response than the m-model
load. Therefore, the C.g model is accurate only up to the
point at which the gate begins to behave like a resistance.
And, it is shown in [4]-[6] that a single resistance model
accurately captures the latter portion of a CMOS response
waveform, however the initial delay and the initial portion of
the response waveform are more difficult to capture. Therefore,
we propose to use the Ceg model to capture the initial delay
and a resistance model to capture the remaining portion of the
response.

Given the k-factor equations for a gate and the input
transition time value, we would begin by iteratively calculating
the effective capacitance as described in Section III. With our
assumption of a falling output transition, and given the values
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Fig. 14. Fitting a ramp response to the initial portion of the effective
capacitance response waveform.

for the gate delay, t4, and gate-output-waveform transition
time, t;, we can model the initial portion of the response
waveform by a single ramp as shown in Fig. 14. This ramp
is a valid approximation since it simplifies the driving-point
waveform description, and it pessimistically models the re-
sponse waveform as it will impact the RC interconnect delay
at the fan-out points.

The intrinsic delay of the gate, or the waveform offset
Toffset, 1 given by

te i
Tofiset =t —- - = 4.1
ffset d+2 5 4.1

which is simply obtained by solving for the point at which a
straight line with slope ¢; passing through the 50% point time,
tp, will intersect the initial voltage point of the waveform.
Using (4.1), the initial portion of the falling waveform in Fig.
14 is approximated by:

_Viluty) ViV

-t

4.
iy 2 ity “.2)

where V; is the initial voltage (Vpp for a falling waveform
and zero for a rising waveform) as defined previously.

This ramp approximation using Ce.g is valid up to some
timepoint ¢,, which we define (for a falling output signal)
as the time at which the n-channel enters its linear region of
operation as discussed above. We estimate ¢, as follows: if
the input reaches its final value before the logic gate output
reaches its 20% of falling transition, that is ¢; < tg9, then
t, is assigned tqo; or, if the input transition is greater than
to0, then t, is assigned the value #;. The case of really slow
input transition, that is, the logic gate output completes 80%
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Fig. 15. The intersection of the Ce s and the resistance-model curves.

of its falling transition before the input reaches its final value,
is not considered since the effective capacitance waveform
is a reasonable approximation for such a case. That is, the
20 to 80% point time range is accurately approximated by a
straight line in such cases, and the effective capacitive model
is therefore an accurate depiction of the load for this period
of time.

The time points 20 and tgo, which denote the times when
the output reaches 20 and 80% of falling transition, respec-
tively, are approximated by the ramp equation in (4.2). From
these time points, we determine ¢, and use ¢, to indicate when
to switch from the C.g model to the situation of a linear
resistance driving the m-model load (as shown in Fig. 13).
The intersection of these two models is shown in Fig. 15.

Notice in Fig. 15 that the derivatives of the R-model and
the Ceg approximation are not continuous at ¢,. Forcing these
derivatives to be equal at this point automatically specifies
the éate resistance value, which fails to capture the overall
waveshape and the proper RC exponential tail. Instead, we
force only the voltage on C; to be continuous at time ¢,. The
voltage V3 on Oy of w-model should equal the voltage Veeg
of the effective capacitance model at ¢ = ¢,:

‘/Z(ts) = 1/t:eff(ts)

Then, we calculate the effective driving resistance Ry,
in Fig. 13 from the k-factor equations that characterize the
gate. For the case of a linear load capacitance, the k-factors
contain the information that describe the gate’s behavior for
all possible output voltage values. We would like to estimate
the gate’s pull-down resistance from time ¢, to the end of the
waveform. Since the k-factors were generated by fitting the
20%, 50%, and 80% points for a purely capacitive load, we
use them to estimate an effective pull-down resistance for the
gate between the time point ¢, and the time at which the 80%
point value would be reached for the effective capacitance
model.

If the gate is behaving like a linear resistance for ¢ > t,,
for the case of a linear capacitance load (which is what the k-
factors describe), this portion of the response waveform would
be described by a single exponential:

V(t) = V(t,)e Facerm

4.3)

(4.4)
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This single exponential approximation is similar to the one de-
scribed in [5], however instead of approximating the complete
transition as a single exponential, we calculate the resistance
of the gate for a smaller portion of the response waveform (¢,
to tgp). The value Ry, for our approach is calculated as:

(tSO - ts)

(4.5)

V(tsa)

Similar arguments and expressions result for a rising output
signal.

From Fig. 13, the voltage V,(t) for time greater than ¢, can
be expressed in terms of the initial conditions on the w-model
and the m-model parameters. The voltage response of this two
RC circuit for time ¢ > tg is:

Va(t) = agePr 1) 4 gpeP2(t=te) (4.6)

And the poles, p; and p2, can be symbolically analyzed by
(4.7), shown at the bottom of this page.
The coefficients a; and a2 in (4.6) are solved for using the

initial conditions at ¢ = {,:
V2(t3) =ax + as (48)

Va(t .
% + i, (ts) = —Ca(a1py + azp2)
dr

Solving (4.8) and (4.9), the values a; and ay are given by:
; ic, (ts)
[VZ(ts) (Pl + cziadr) + _q%:‘;_‘]

P1— P2
a3 = Va(ts) — a2

(4.9)

as =
(4.10)

To calculate a; and as, it is apparent from (4.10) that current
through C; at ¢, must be approximated since it is part of the

initial conditions on the 7-model. Considering continuity with
the Cor model, we approximate this current by:

i61(t5) = Z-r:eff(t-i) — e, (tS) = k(ceﬂ - 02)

where k represents the slope of the ramp and the capacitor
current is simply kC at ¢ = t,. For a falling transition;

(4.11)

k= -Vbp
ty

Using the initial conditions above, the double exponential
approximation in (4.6) starting at ¢ = ¢, will intersect the
ramp approximation in (4.2) at some time t,, as shown in Fig.
15. To characterize the driving point waveform, one could
use the linear approximation from the Ceg estimate up to the
timepoint ¢,, and then the resistance approximation from t,
to infinity. However, to ensure a pessimistic waveform ap-
proximation, one can also choose to characterize the response
using (4.2) up to t,, the point at which the resistance-model
becomes more pessimistic than Ceg. Using ¢, instead of ¢,
guarantees a pessimistic result, however it does require solving
a transcendental equation to obtain the value of ¢,. We should

(4.12)
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Fig. 16. Comparison of waveforms using w-model load (7-model), effective
capacitance (Cesy), and the complete waveform approximation (Apprx) for
Fig. 4.
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Fig. 17. Comparison of waveforms using 7-model load (7-model), effective
capacitance (Ce f f), and the complete waveform approximation (Apprx) for
a large RC tree.

also mention that it can be shown that ¢, is guaranteed to
exist (meaning the resistor model always intersects with the
straight-line Ces approximation as shown in Fig. 15) using the
equations and the initial conditions above [14].

To demonstrate the accuracy of our approach, consider once
again the RC interconnect example in Fig. 4. Comparing our
approximate waveform model with the effective capacitance
waveform and the 7-model waveform in Fig. 16, the approx-
imate waveform provides a pessimistic estimate as expected.
Similarly, for the circuit example that was characterized by
the response waveform with an extremely large RC tail in
Fig. 12, the waveform approximation described above accu-
rately captures the overall shape, pessimistically, as shown in
Fig. 17.

—[(01 + Cg)Rd, + RCl] + \/[(Cl + Cz)Rdr + Rcl}z — 4R4,RC;Cs

P1,p2 =

4.7

2R4:RC1C;
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Fig. 18. Comparison of output waveforms at a fan-out point in the RC
tree in Fig. 4. The driving point waveforms (from Fig. 16) were calculated
using a w-model load (x), an effective capacitance (Ceyy), and the complete
waveform approximation (Apprx) described in this section.

Of course, in general we are not interested in the gate output
waveform, but merely the delay and the waveforms at the
fan-out points (since these waveforms are used to determine
the delay of subsequent logic stages). Even though the Ceq
model approximates the gate delay rather accurately, the RC
interconnect acts as a low-pass filter on the driving point
waveform. Therefore, if we use an incorrect driving point
waveform to determine the delays and waveforms at the fan-
out points, we can end up with an erroneous waveshape and
delay.

To illustrate the importance of capturing the complete
driving point waveform, consider the farthest fan-out node for
the RC interconnect in Fig. 4. Fig. 18 contains the response
waveforms at this fan-out node when using the various driving
point waveforms from Fig. 16. That is, the time domain plots
for a Ceg load, our two-piece approximate waveform, and a
w-model load were numerically convolved with an accurate,
yet approximate, RC tree transfer function from the driving
point of the interconnect to this fan-out point of interest.
In practice, we do not use numerical convolution, but we
convolve the analytical waveshape expressions for the Ceg
load response and the resistance model response directly with
the approximate analytical transfer function from AWE for
a symbolic expression for the fan-out waveform. Numerical
convolution is used here so that we can avoid any waveshape
fitting errors for the Ctor and Ceg driving point waveforms.

Notice that even though the effective capacitance model
starts out pessimistically in Fig. 16, the delay starts becoming
optimistic at this fan-out point since the tail portion of this
driving point waveform is optimistic. That is, the delay time at
the fan-out point occurs when the Ceg driving point waveform
has practically reached its final value. We would expect that
this optimistic error would increase in absolute size as the
resistance of the RC interconnect increases and the speed of the
driving point waveforms increases. Moreover, Ceg will always
tend to predict a faster signal transition at the fan-out points
than is actually the case, and this optimistic transition time
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TABLE 11
SPICE MoODEL PARAMETERS
P-channel N- P-channel N-
channel channel
— a——
VTO -1.0 1.0 CGSO | 0.22E-9 | 0.22E-9
TOX 0.2E-7 0.2E-7 CGDO | 0.22E-9 | 0.22E-9
NSUB | 4Elé6 2E16 CGBO | 0.17E-7 | 0.17E-7
PB 0.37 0.4 CIJSW | 0.68E-3 | 0.47E-3
JS 0.1E-2 0.1E-2 M]J 0.4 0.4
NSS 0.0 0.0 MJISW 0.17 0.11
NFS 0.2E12 0.2E12 TPG 1 1
XJ 0.3E-06 | 0.3E-06 LD 0.3E-07 | 0.3E-07
VMAX | 3.40E+0 | 3.0E+04 || UCRIT | 1.0E+04 | 1.2E+04
) 4
NEFF 1.0 1.0 UEXP 0.4 0.4
FC 0.5 0.5 DELTA 0.0 0.0
XQC 0.499 0.499 Uo 300 700
TABLE III
THE Cer VALUES FOR SEVERAL EXAMPLE CIRCUITS
Inverter n-model parameters Ceft #of
Size | C2 (pF)] R(Q) [ CI(pF) | (pF) | iterations
30x 0.245 89.5 1.46 |0.938 4
30x 0.283 232 3.85 [0.668 3
30x 0.454 | 106 250 | 1.29 3
50x 0.575 72.6 2.13 1.48 3
200x 125 1620 750 126 2

will be propagated as an optimistic delay and an optimistic
output transition time for the next logic stage.

V. RESULTS

All of the examples in this paper were generated for a
1-un? CMOS technology. The SPICE model parameters are
shown in Table II. Five circuit examples were tested using
this approach, as shown in Table III. Shown for each example
is the size of the driving inverter and the 7-model parameters
for an actual RC interconnect. Also shown are the C.g values
and the number of iterations required to reach convergence.

Table IV shows the accuracy of this approach for these five
eclectic examples. In all cases, the 20%, 50%, and 80% points
are pessimistic, but reasonably accurate, approximations to the
actual (nominal results using SPICE and the 7-model load)
percentage points. We should also point out that the waveform
approximation following the procedure in Section IV will
sometimes yield an 80% estimate that is more pessimistic
than the total capacitance estimate. However, it is important
to recognize that the overall waveshape is more accurately
captured using the waveform approximation in Section IV than
it is with the total capacitance. Moreover, the waveshape at the
driving point of the interconnect affects the RC delay more so
than the 80% point value since we ultimately convolve this
waveform with the approximate transfer function to estimate
the delays and waveshapes at the fan-out points.

This model has been applied to thousands of real circuit
examples, mainly from high-speed microprocessor chips at
IBM, Austin TX, and these five shown above represent a
sampling of some of the larger, more resistive loads. The



QIAN et al.: MODELING THE “EFFECTIVE CAPACITANCE” FOR THE RC INTERCONNECT OF CMOS GATES

TABLE IV
COMPARISON OF CRITICAL WAVEFORM POINT PREDICTIONS USING TOTAL
CAPACITANCE (Ciot ), 7-MODEL LOAD (), THE EFFECTIVE CAPACITANCE
(Cesr), AND THE COMPLETE WAVEFORM APPROXIMATION IN SECTION IV (APPR.)
Inv. | 20% point (pS) using: 50% point (pS) using: 80% point (pS) using:
Size | Ciot | T | Ceif |appr{ Crot | ® | Ceif |appr| Crot | ® | Ceqr |appr

30 | 2571203 | 225 [ 216 | 348 | 264 | 282 | 282 | 481 | 450 | 358 | 501
30 | 3371 192 | 208 | 206 | 551 | 240 | 257 | 257 | 865 | 470 | 311 | 739
30 § 299|215 } 238 | 224 | 452 | 287 | 308 | 308 | 677 § 614 | 406 | 708
50 | 262211 {230 221 | 350 | 269 | 287 | 287 | 477 | 434 | 361 | 497
2001 4540] 894 | 896 | 897 | 11260 1870 ] 1869]2095] 21117 | 33133295 | 3321

results from this testing indicate errors and improvements
similar to those in the tables shown above.

VI. CONCLUSION

We have shown a complete scheme for modeling the delays
of CMOS logic gates when the resistance of the interconnect
significantly shields some of the load capacitance. First, an
effective capacitance value is used to capture the initial portion
of the response waveform. Then, a resistor-model is used to
capture the remaining portion of the waveform, which may
include a long exponential tail due to the RC interconnect ef-
fects. The approach is completely compatible with the popular
k-factor modeling equations, thereby making it suitable for
incorporating circuit-level effects such as resistance shielding
into higher-level tools such as timing analyzers. This concept
of effective capacitance has also been used recently to generate
a linear, time-varying Thevenin equivalent gate model in [15].
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